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Π: classical thick polar space of rank n ≥ 2
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∆: dual polar space of rank n associated to Π

points of ∆: maximal singular subspaces of Π

lines of ∆: next-to-maximal singular subspaces of Π
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∆ = (P,L): dual polar space

x , y : points of ∆
d(x , y): distance between x and y in the collinearity graph of ∆.
∆k(x) := {z ∈ P : d(x , z) = k} (k ∈ N)
x⊥ := {z ∈ P : d(x , z) = 1} ∪ {x}

X 6= ∅ 6= Y ⊆ P
d(X, Y) = min{d(x , y) : x ∈ X, y ∈ Y}
X is a subspace if for every line l of X s.t. |X ∩ l | ≥ 2 then l ⊆ X

X subspace is convex if every point on a shortest path between any
two points of X is also contained in X.

Q(2n, F) ↔ DQ(2n, F)
Q−(2n − 1, F) ↔ DQ−(2n − 1, F)
H(2n − 1, F2

0) ↔ DH(2n − 1, F2
0)

H(2n, F2
0) ↔ DH(2n, F2

0)
W (2n − 1, F) ↔ DW (2n − 1, F)
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

Definition

Let ∆ = (P,L) be a dual polar space and Σ = PG(V) be a
projective space.

An injective mapping ε : P → Σ is a full
projective embedding of ∆ of dimension dim(V) if :

(PE1) 〈ε(P)〉 = Σ;

(PE2) ε(l) is a (projective) line ∀l ∈ L;

(PE3) ε(l) 6= ε(m) for any distinct lines l , m ∈ L.
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

∆ = (P,L): dual polar space; x : point of ∆

Hx : set of points of ∆ at non-maximal distance from x .

(∗) Hx is a hyperplane of ∆

(∗) Hx is a maximal subspace of ∆

ε : ∆→ Σ: projective embedding
⇓

ε(Hx) spans either a hyperplane of Σ or the whole of Σ.

Definition

A projective embedding ε of a dual polar space ∆ in a projective
space Σ is a polarized embedding if 〈ε(Hx)〉 is a hyperplane of Σ
for every point x of ∆.
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

∆ = (P,L): dual polar space;

ε : ∆→ Σ: projective embedding

Let Ω be a subspace of Σ such that

(Q1) Ω ∩ ε(P) = ∅
(Q2) 〈Ω, ε(x)〉 6= 〈Ω, ε(y)〉 ∀x 6= y ∈ P.

Let εΩ : ∆→ Σ/Ω, εΩ(x) := 〈Ω, ε(x)〉
εΩ is an embedding of ∆ in Σ/Ω called the quotient of ε over Ω.

ε: full projective embedding ⇒ εΩ: full projective embedding

εΩ: polarized embedding ⇒ ε: polarized embedding
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

ε1 : ∆→ Σ1, ε2 : ∆→ Σ2

ε1 ≥ ε2

if ∃f : Σ1 → Σ2 semilinear such that ε2 ' f ◦ ε1

If f is an isomorphism then ε1
∼= ε2

Definition

Let ∆ be a dual polar space. The embedding εuniv : ∆→ Σ̃ is
(absolutely) universal if for any full embedding ε of ∆ we have
εuniv ≥ ε.

εuniv : universal embedding of ∆⇒ ε ∼= εuniv/Ω for any
embedding ε of ∆ and a suitable subspace Ω of Σ̃.

If a universal embedding exists then it is uniquely determined
up to isomorphism.

Universal embedding of ∆↔hull of all linear embeddings of ∆.
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

Definition

ε : ∆→ Σ, Σ = PG(V), g ∈ Aut(∆)

g lifts to Σ through ε if ∃ ε(g) ∈ PΓL(V) s.t. ε(g)ε = εg.

(*) If ε(g) exists then it is uniquely determined by g.

ε(g): lifting of g to Σ.

G ≤ Aut(∆). If all elements of G lift to Σ through ε then we
say that G lifts to Σ.

The embedding ε : ∆→ Σ is G-homogeneous if G lifts to Σ
through ε
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

ε : ∆→ Σ, Aut(∆)0 E Aut(∆)

Theorem

If ε is Aut(∆)0-homogeneous then it is polarized.

Theorem

If a thick dual polar space ∆ of rank n ≥ 2 admits at least one full
projective embedding then ∆ admits the absolutely universal
embedding.
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

∆: thick dual polar space of rank n ≥ 2
admitting a full polarized embedding

Theorem

Up to isomorphisms, there exists a unique full polarized embedding
εmin such that every full polarized embedding ε of ∆ has a
quotient isomorphic to εmin.
εmin: the minimal full polarized embedding of ∆.

dim(εmin) ≥ 2n

For every ε : ∆→ Σ full polarized embedding

εuniv : universal embedding of ∆

εmin: minimal embedding of ∆

εmin ≤ ε ≤ εuniv
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

Characterization of the minimal polarized embedding

∆ = (P,L): dual polar space

↓ Kasikova-Shult

εuniv : ∆→ Σ̃: universal embedding of ∆

R :=
⋂

x∈P〈εuniv (Hx)〉 : nucleus of εuniv

↓
εmin = εuniv/R: minimal polarized embedding of ∆

If R is trivial then εuniv is the unique polarized embedding of ∆.
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

εuniv : ∆→ Σ̃, Σ̃ = PG(Ṽ), universal embedding of ∆

The nucleus R of εuniv is a Aut(∆)-invariant subspace of PG(Ṽ ).

↓
R is G -invariant ∀G ≤ Aut(∆)

↓
εmin = εuniv/R is Aut(∆)0-homogeneous

Theorem

All Aut(∆)0-invariant proper subspaces of PG(Ṽ ) are contained in
the nucleus R of εuniv .

Regard Ṽ as a module for Aut(∆)0

↓
The nucleus R is the largest proper submodule of Ṽ
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The nucleus R is the largest proper submodule of Ṽ
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Regard Ṽ as a module for Aut(∆)0

↓
The nucleus R is the largest proper submodule of Ṽ
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

Embedding DQ(2n, F)

Π := Q(2n, F): orthogonal polar space of rank n ≥ 2 of parabolic
type arising from a non-singular quadratic form
of Witt index n

∆ = DQ(2n, F): dual of Π

Aut(∆)0 = PΩ(2n + 1, F).

εspin : DQ(2n, F)→ PG(2n − 1, F): spin embedding of ∆

εspin: full projective polarized homogeneous embedding.

char(F) 6= 2 : εspin is the universal and minimal projective

embedding of ∆.
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

char(F) = 2 and F perfect → Q(2n, F) ∼= W(2n − 1, F).

W(2n − 1, F): symplectic dual polar space of rank n

N0: nucleus of the quadratic form defining Q(2n, F),

V := V (2n + 1, F); V/N0
∼= V (2n, F)

The projection V→ V/N0

↓ induces

Q(2n, F) ∼= W(2n − 1, F)

↓
DQ(2n, F) ∼= DW(2n − 1, F)
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

Wn :=
∧n V (2n, F)

εsp
gr : DQ(2n, F)→ PG(Wn): grassmann embedding
〈v1, ..., vn〉 7→ 〈v1 ∧ ... ∧ vn〉

εsp
gr : full projective polarized homogeneous embedding

dim(εsp
gr ) =

(2n
n

)
−
( 2n
n−2

)
.
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

∆ = DQ(2n, F)

F = F2e and F 6= F2 : * εsp
gr is the universal embedding of ∆

* εspin is the minimal embedding of ∆

F = F2 : * εsp
gr is not universal.

* dim(εuniv ) = (2n + 1)(2n − 1)/3

* εspin is the minimal embedding of ∆

char(F) = 2, F perfect : * εsp
gr is universal

* εspin is the minimal embedding of ∆

char(F) = 2, F non perfect : * εuniv =?

* dim(εmin) = 2n
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

Embedding DQ−(2n + 1, F)

Π := Q−(2n + 1, F): orthogonal polar space of rank n ≥ 2 of
elliptic type arising from a non-singular
quadratic form of Witt index n

∆ = DQ−(2n + 1, F): dual of Π.

Aut(∆)0 = PΩ−(2n + 2, F).

ε−spin : DQ−(2n + 1, F)→ PG(2n − 1, F): spin embedding of ∆

ε−spin: arises from the half-spin embedding of the half-spin

geometry of Q+(2n + 1, F1);

ε−spin: full projective polarized homogeneous embedding of ∆.

ε−spin is the universal and minimal full polarized embedding of ∆
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ε−spin: full projective polarized homogeneous embedding of ∆.

ε−spin is the universal and minimal full polarized embedding of ∆
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

Embedding DH(2n − 1, F2
0)

Π := H(2n − 1, F2
0): hermitian polar space of rank n ≥ 2

arising from a non-singular hermitian
form of Witt index n;
F0 is the subfield of F = F2

0 fixed by an
involutory automorphism of F.

∆ = DH(2n − 1, F2
0): dual of Π.

Aut(∆)0 = PSU(2n, F2
0).

Wn :=
∧n V (2n, F0), dim(Wn) =

(2n
n

)
=: N

εH
gr : DH(2n − 1, F2

0)→ PG(Wn): grassmann embedding

εH
gr arises from the embedding of the grassmannian of n-subspaces

of V (2n, F) in PG(N − 1, F), via the choice of a suitable Baer
subgeometry PG(Wn) of PG(N − 1, F).

εH
gr : full projective polarized homogeneous embedding of ∆
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

∆ = DH(2n − 1, F), F = F2
0

F arbitrary field : * εH
gr is the minimal projective embedding of ∆.

F0 6= F2 : * εH
gr is the universal projective embedding of ∆.

F0 = F2 : * εH
gr is not the universal projective embedding of ∆.

* dim(εuniv ) = (4n + 2)/3
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

The dual polar space DH(2n, F)

DH(2n, F) can NOT be PROJECTIVELY embedded

Since DH(4, F) can not be embedded in any projective space

↓

DH(2n, F) can not be embedded in any projective space
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

Embedding DW(2n − 1, F)

Π := W(2n − 1, F): symplectic polar space of rank n ≥ 2
arising from a non-singular alternating form
of Witt index n

∆ = DW(2n − 1, F): dual of Π

Aut(∆)0 = PSp(2n, F).

Wn :=
∧n V (2n, F)

εgr : DW(2n − 1, F)→ PG(Wn): grassmann embedding
〈v1, ..., vn〉 7→ 〈v1 ∧ ... ∧ vn〉

εgr : full projective polarized homogeneous embedding

dim(εgr ) =
(2n

n

)
−
( 2n
n−2

)
.
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

The universal embedding of DW(2n − 1, F)

∆ = DW(2n − 1, F)

char(F) 6= 2 or F2 6= F = F2e , : * εgr is the universal embedding.

F = F2 : * εgr is not universal.

* dim(εuniv ) = (2n + 1)(2n − 1)/3.

char(F) = 2, F2 6= F arbitrary : * εgr is universal.
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

The minimal embedding of DW(2n − 1, F)

εmin = εgr/R where R ⊆Wn is the nucleus of εgr .

char(F) = 0⇒ R = 0 : ∗ εgr is the minimal embedding.

char(F) 6= 0→ R 6= 0 in general

char(F) = 2 : * dim(R) =
(2n

n

)
−
( 2n
n−2

)
− 2n ⇒ dim(εmin) = 2n

char(F) = 2, F perfect : * εmin
∼= εspin spin embedding of DQ(2n, F)
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Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

char(F) > 2 : The dimension dim(R) of R and hence the

dimension dim(εmin) = dim(εgr/R) of the minimal full polarized
embedding can be computed by a recursive formula which indeed
describes the dimensions of the modules in the composition series
of R as a module for PSp(2n, F).

A. A. Premet and I. D. Suprunenko. The Weyl modules and the
irreducible representations of the symplectic group with the
fundamental highest weights. Comm. Algebra 11 (1983),
1309–1342

Ilaria Cardinali An outline of polar spaces: basics and advances Part 3



Projective embedding of dual polar spaces
Embeddings of Classical thick dual polar spaces

char(F) > 2 : The dimension dim(R) of R and hence the

dimension dim(εmin) = dim(εgr/R) of the minimal full polarized
embedding can be computed by a recursive formula which indeed
describes the dimensions of the modules in the composition series
of R as a module for PSp(2n, F).

A. A. Premet and I. D. Suprunenko. The Weyl modules and the
irreducible representations of the symplectic group with the
fundamental highest weights. Comm. Algebra 11 (1983),
1309–1342

Ilaria Cardinali An outline of polar spaces: basics and advances Part 3


	Projective embedding of dual polar spaces
	Embeddings of Classical thick dual polar spaces

