> An outline of polar spaces: basics and advances Part 3

> > Ilaria Cardinali

University of Siena Italy

Workshop and Conference on Groups and Geometries Indian Statistical Institute, Bangalore, December 10-21, 2012

- 4 同 6 4 日 6 4 日 6

 Part 3a: Theory of Projective Embeddings of classical thick dual polar spaces: Homogeneous, Polarized, Universal and Minimal embedding.

• Part 3a: Theory of Projective Embeddings of classical thick dual polar spaces: Homogeneous, Polarized, Universal and Minimal embedding.

References:

- ✓ R. J. Blok, I. Cardinali, B. De Bruyn, A. Pasini. Polarized and homogeneous embeddings of dual polar spaces. J. Alg. Combin., 30 (2009), 381–399.
- ✓ I. Cardinali, B. De Bruyn and A. Pasini. Minimal full polarized embeddings of dual polar spaces. J. Algebraic Combin. 25 (2007), 7–23.
- A. Kasikova and E. E. Shult. Absolute embeddings of point-line geometries. J. Algebra 238 (2001), 265–291.

• Part 3b: Projective embeddings of Orthogonal, Hermitian, Symplectic dual polar spaces.

イロト イヨト イヨト イヨト

3

• Part 3b: Projective embeddings of Orthogonal, Hermitian, Symplectic dual polar spaces.

Reference:

- ✓ R. J. Blok and B. N. Cooperstein. The generating rank of the unitary and symplectic grassmannians. J. Combin. Theory Ser. A 119, no. 1 (2012), 113.
- ✓ B. N. Cooperstein and E. E. Shult, A note on embedding and generating dual polar spaces, *Adv. Geom.* 1 (2001), 37-48.
- ✓ De Bruyn and A. Pasini. Generating symplectic and Hermitian dual polar spaces over arbitrary fields nonisomorphic to 𝔽<sub>2</sub>. *Electron. J. Combin.* 14 (2007) Research Paper 54.
- ✓ B. De Bruyn and A. Pasini. Minimal scattered sets and polarized embeddings of dual polar spaces, European J. Combin. 28 (2007), no. 7, 1890-1909.

・ロン ・回 と ・ ヨ と ・ ヨ と



イロン 不同と 不同と 不同と

æ



 $\Delta$ : dual polar space of rank *n* associated to  $\Pi$ 

<ロ> (日) (日) (日) (日) (日)

3



 $\Delta$ : dual polar space of rank *n* associated to  $\Pi$  points of  $\Delta$ : maximal singular subspaces of  $\Pi$ 

- 4 同 6 4 日 6 4 日 6



 $\Delta$ : dual polar space of rank *n* associated to  $\Pi$ points of  $\Delta$ : maximal singular subspaces of  $\Pi$ lines of  $\Delta$ : next-to-maximal singular subspaces of  $\Pi$ 

(4月) イヨト イヨト

## $\Delta = (\mathcal{P}, \mathcal{L})$ : dual polar space

・ロン ・回 と ・ ヨン ・ モン

æ

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space

x, y: points of  $\Delta$ 

d(x, y): distance between x and y in the collinearity graph of  $\Delta$ .

・ロン ・回 と ・ ヨ と ・ ヨ と

3

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space

x, y: points of  $\Delta$ 

d(x, y): distance between x and y in the collinearity graph of  $\Delta$ .  $\Delta_k(x) := \{z \in \mathcal{P} : d(x, z) = k\} \ (k \in \mathbb{N})$ 

イロン イヨン イヨン イヨン

3

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space

x, y: points of  $\Delta$ d(x, y): distance between x and y in the collinearity graph of  $\Delta$ .  $\Delta_k(x) := \{z \in \mathcal{P} : d(x, z) = k\} \ (k \in \mathbb{N})$  $x^{\perp} := \{z \in \mathcal{P} : d(x, z) = 1\} \cup \{x\}$ 

・ロト ・回ト ・ヨト ・ヨト

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space

x, y: points of  $\Delta$ d(x, y): distance between x and y in the collinearity graph of  $\Delta$ .  $\Delta_k(x) := \{z \in \mathcal{P} : d(x, z) = k\} \ (k \in \mathbb{N})$  $x^{\perp} := \{z \in \mathcal{P} : d(x, z) = 1\} \cup \{x\}$ 

$$X \neq \emptyset \neq \mathbb{Y} \subseteq \mathcal{P} \\ d(\mathbb{X}, \mathbb{Y}) = min\{d(x, y) \colon x \in \mathbb{X}, y \in \mathbb{Y}\}$$

・ロン ・回と ・ヨン ・ヨン

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space

x, y: points of  $\Delta$ d(x, y): distance between x and y in the collinearity graph of  $\Delta$ .  $\Delta_k(x) := \{z \in \mathcal{P} : d(x, z) = k\} \ (k \in \mathbb{N})$  $x^{\perp} := \{z \in \mathcal{P} : d(x, z) = 1\} \cup \{x\}$ 

$$\mathbb{X} 
eq \emptyset 
eq \mathbb{Y} \subseteq \mathcal{P} \ \mathrm{d}(\mathbb{X}, \mathbb{Y}) = \min\{d(x, y) \colon x \in \mathbb{X}, y \in \mathbb{Y}\}$$

X is a *subspace* if for every line *I* of X s.t.  $|X \cap I| \ge 2$  then  $I \subseteq X$ 

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space

x, y: points of  $\Delta$ d(x, y): distance between x and y in the collinearity graph of  $\Delta$ .  $\Delta_k(x) := \{z \in \mathcal{P} : d(x, z) = k\} \ (k \in \mathbb{N})$  $x^{\perp} := \{z \in \mathcal{P} : d(x, z) = 1\} \cup \{x\}$ 

$$\mathbb{X} \neq \emptyset \neq \mathbb{Y} \subseteq \mathcal{P}$$
  
 $d(\mathbb{X}, \mathbb{Y}) = min\{d(x, y) \colon x \in \mathbb{X}, y \in \mathbb{Y}\}$ 

X is a *subspace* if for every line *I* of X s.t.  $|X \cap I| \ge 2$  then  $I \subseteq X$ 

X subspace is *convex* if every point on a shortest path between any two points of X is also contained in X.

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space

x, y: points of  $\Delta$ d(x, y): distance between x and y in the collinearity graph of  $\Delta$ .  $\Delta_k(x) := \{z \in \mathcal{P} : d(x, z) = k\} \ (k \in \mathbb{N})$  $x^{\perp} := \{z \in \mathcal{P} : d(x, z) = 1\} \cup \{x\}$ 

$$\mathbb{X} \neq \emptyset \neq \mathbb{Y} \subseteq \mathcal{P} d(\mathbb{X}, \mathbb{Y}) = \min\{d(x, y) \colon x \in \mathbb{X}, y \in \mathbb{Y}\}$$

X is a *subspace* if for every line *I* of X s.t.  $|X \cap I| \ge 2$  then  $I \subseteq X$ 

X subspace is *convex* if every point on a shortest path between any two points of X is also contained in X.

$$Q(2n,\mathbb{F}) \quad \leftrightarrow \quad DQ(2n,\mathbb{F})$$

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space

x, y: points of  $\Delta$ d(x, y): distance between x and y in the collinearity graph of  $\Delta$ .  $\Delta_k(x) := \{z \in \mathcal{P} : d(x, z) = k\} \ (k \in \mathbb{N})$  $x^{\perp} := \{z \in \mathcal{P} : d(x, z) = 1\} \cup \{x\}$ 

$$\begin{split} & \mathbb{X} \neq \emptyset \neq \mathbb{Y} \subseteq \mathcal{P} \\ & \mathrm{d}(\mathbb{X}, \mathbb{Y}) = \min\{d(x, y) \colon x \in \mathbb{X}, y \in \mathbb{Y}\} \\ & \mathbb{X} \text{ is a } subspace \text{ if for every line } I \text{ of } \mathbb{X} \text{ s.t. } |\mathbb{X} \cap I| \geq 2 \text{ then } I \end{split}$$

X subspace is *convex* if every point on a shortest path between any two points of X is also contained in X.

$$egin{array}{rcl} Q(2n,\mathbb{F})&\leftrightarrow&DQ(2n,\mathbb{F})\ Q^{-}(2n-1,\mathbb{F})&\leftrightarrow&DQ^{-}(2n-1,\mathbb{F}) \end{array}$$

イロト イポト イヨト イヨト

 $\subset \mathbb{X}$ 

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space

x, y: points of  $\Delta$ d(x, y): distance between x and y in the collinearity graph of  $\Delta$ .  $\Delta_k(x) := \{z \in \mathcal{P} : d(x, z) = k\} \ (k \in \mathbb{N})$  $x^{\perp} := \{z \in \mathcal{P} : d(x, z) = 1\} \cup \{x\}$ 

$$\begin{split} & \mathbb{X} \neq \emptyset \neq \mathbb{Y} \subseteq \mathcal{P} \\ & \mathrm{d}(\mathbb{X}, \mathbb{Y}) = \min\{d(x, y) \colon x \in \mathbb{X}, y \in \mathbb{Y}\} \\ & \mathbb{X} \text{ is a } subspace \text{ if for every line } I \text{ of } \mathbb{X} \text{ s.t. } |\mathbb{X} \cap I| \geq 2 \text{ then } I \subseteq \mathbb{X} \end{split}$$

X subspace is *convex* if every point on a shortest path between any two points of X is also contained in X.

$$\begin{array}{lcl} Q(2n,\mathbb{F}) & \leftrightarrow & DQ(2n,\mathbb{F}) \\ Q^{-}(2n-1,\mathbb{F}) & \leftrightarrow & DQ^{-}(2n-1,\mathbb{F}) \\ H(2n-1,\mathbb{F}_{0}^{2}) & \leftrightarrow & DH(2n-1,\mathbb{F}_{0}^{2}) \end{array}$$

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space

x, y: points of  $\Delta$ d(x, y): distance between x and y in the collinearity graph of  $\Delta$ .  $\Delta_k(x) := \{z \in \mathcal{P} : d(x, z) = k\} \ (k \in \mathbb{N})$  $x^{\perp} := \{z \in \mathcal{P} : d(x, z) = 1\} \cup \{x\}$ 

$$\begin{split} & \mathbb{X} \neq \emptyset \neq \mathbb{Y} \subseteq \mathcal{P} \\ & \mathrm{d}(\mathbb{X}, \mathbb{Y}) = \min\{d(x, y) \colon x \in \mathbb{X}, y \in \mathbb{Y}\} \\ & \mathbb{X} \text{ is a } subspace \text{ if for every line } I \text{ of } \mathbb{X} \text{ s.t. } |\mathbb{X} \cap I| \geq 2 \text{ then } I \subseteq \mathbb{X} \end{split}$$

X subspace is *convex* if every point on a shortest path between any two points of X is also contained in X.

$$\begin{array}{lcl} Q(2n,\mathbb{F}) & \leftrightarrow & DQ(2n,\mathbb{F}) \\ Q^{-}(2n-1,\mathbb{F}) & \leftrightarrow & DQ^{-}(2n-1,\mathbb{F}) \\ H(2n-1,\mathbb{F}_{0}^{2}) & \leftrightarrow & DH(2n-1,\mathbb{F}_{0}^{2}) \\ H(2n,\mathbb{F}_{0}^{2}) & \leftrightarrow & DH(2n,\mathbb{F}_{0}^{2}) \end{array}$$

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space

x, y: points of  $\Delta$ d(x, y): distance between x and y in the collinearity graph of  $\Delta$ .  $\Delta_k(x) := \{z \in \mathcal{P} : d(x, z) = k\} \ (k \in \mathbb{N})$  $x^{\perp} := \{z \in \mathcal{P} : d(x, z) = 1\} \cup \{x\}$ 

$$\begin{split} & \mathbb{X} \neq \emptyset \neq \mathbb{Y} \subseteq \mathcal{P} \\ & \mathrm{d}(\mathbb{X}, \mathbb{Y}) = \min\{d(x, y) \colon x \in \mathbb{X}, y \in \mathbb{Y}\} \end{split}$$

X is a *subspace* if for every line *I* of X s.t.  $|X \cap I| \ge 2$  then  $I \subseteq X$ 

X subspace is *convex* if every point on a shortest path between any two points of X is also contained in X.

Ilaria Cardinali An outline of polar spaces: basics and advances Part 3

Let  $\Delta = (\mathcal{P}, \mathcal{L})$  be a dual polar space and  $\Sigma = PG(\mathbb{V})$  be a projective space.

・ロン ・回 と ・ ヨン ・ ヨン

æ

Let  $\Delta = (\mathcal{P}, \mathcal{L})$  be a dual polar space and  $\Sigma = PG(\mathbb{V})$  be a projective space. An injective mapping  $\varepsilon \colon \mathcal{P} \to \Sigma$  is a full projective embedding of  $\Delta$  of dimension dim $(\mathbb{V})$  if :

・ロト ・回ト ・ヨト ・ヨト

Let  $\Delta = (\mathcal{P}, \mathcal{L})$  be a dual polar space and  $\Sigma = PG(\mathbb{V})$  be a projective space. An injective mapping  $\varepsilon \colon \mathcal{P} \to \Sigma$  is a full projective embedding of  $\Delta$  of dimension dim $(\mathbb{V})$  if :

(PE1) 
$$\langle \varepsilon(\mathcal{P}) \rangle = \Sigma;$$

・ロト ・回ト ・ヨト ・ヨト

Let  $\Delta = (\mathcal{P}, \mathcal{L})$  be a dual polar space and  $\Sigma = PG(\mathbb{V})$  be a projective space. An injective mapping  $\varepsilon \colon \mathcal{P} \to \Sigma$  is a full projective embedding of  $\Delta$  of dimension dim $(\mathbb{V})$  if :

 $\begin{array}{l} (PE1) \left< \varepsilon(\mathcal{P}) \right> = \Sigma; \\ (PE2) \left. \varepsilon(l) \text{ is a (projective) line } \forall l \in \mathcal{L}; \end{array}$ 

・ロン ・回 と ・ ヨ と ・ ヨ と

Let  $\Delta = (\mathcal{P}, \mathcal{L})$  be a dual polar space and  $\Sigma = PG(\mathbb{V})$  be a projective space. An injective mapping  $\varepsilon \colon \mathcal{P} \to \Sigma$  is a full projective embedding of  $\Delta$  of dimension dim $(\mathbb{V})$  if :

 $\begin{array}{l} (PE1) \ \langle \varepsilon(\mathcal{P}) \rangle = \Sigma; \\ (PE2) \ \varepsilon(I) \ is \ a \ (projective) \ line \ \forall I \in \mathcal{L}; \\ (PE3) \ \varepsilon(I) \neq \varepsilon(m) \ for \ any \ distinct \ lines \ I, \ m \in \mathcal{L}. \end{array}$ 

イロン イ部ン イヨン イヨン 三日

$$\Delta = (\mathcal{P},\mathcal{L})$$
: dual polar space; x: point of  $\Delta$ 

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

 $\Delta = (\mathcal{P}, \mathcal{L}): \text{ dual polar space; } x: \text{ point of } \Delta$ H<sub>x</sub>: set of points of  $\Delta$  at non-maximal distance from x.

(4回) (4回) (4回)

 $\Delta = (\mathcal{P}, \mathcal{L})$ : dual polar space; x: point of  $\Delta$  $H_x$ : set of points of  $\Delta$  at non-maximal distance from x.

(\*)  $H_x$  is a hyperplane of  $\Delta$ 

- 4 回 ト 4 ヨ ト 4 ヨ ト

 $\Delta = (\mathcal{P}, \mathcal{L})$ : dual polar space; x: point of  $\Delta$  $H_x$ : set of points of  $\Delta$  at non-maximal distance from x.

(\*) H<sub>x</sub> is a hyperplane of Δ
(\*) H<sub>x</sub> is a maximal subspace of Δ

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\Delta = (\mathcal{P}, \mathcal{L})$ : dual polar space; x: point of  $\Delta$ H<sub>x</sub>: set of points of  $\Delta$  at non-maximal distance from x.

(\*)  $H_x$  is a hyperplane of  $\Delta$ (\*)  $H_x$  is a maximal subspace of  $\Delta$  $\varepsilon \colon \Delta \to \Sigma$ : projective embedding  $\Downarrow$  $\varepsilon(H_x)$  spans either a hyperplane of  $\Sigma$  or the whole of  $\Sigma$ .

▲祠 → ▲ 臣 → ▲ 臣 →

 $\Delta = (\mathcal{P}, \mathcal{L}): \text{ dual polar space; } x: \text{ point of } \Delta$ H<sub>x</sub>: set of points of  $\Delta$  at non-maximal distance from x.

(\*)  $H_x$  is a hyperplane of  $\Delta$ (\*)  $H_x$  is a maximal subspace of  $\Delta$  $\varepsilon \colon \Delta \to \Sigma$ : projective embedding  $\Downarrow$  $\varepsilon(H_x)$  spans either a hyperplane of  $\Sigma$  or the whole of  $\Sigma$ .

#### Definition

A projective embedding  $\varepsilon$  of a dual polar space  $\Delta$  in a projective space  $\Sigma$  is a polarized embedding

ヘロン 人間と 人間と 人間と

 $\Delta = (\mathcal{P}, \mathcal{L}): \text{ dual polar space; } x: \text{ point of } \Delta$ H<sub>x</sub>: set of points of  $\Delta$  at non-maximal distance from x.

(\*)  $H_x$  is a hyperplane of  $\Delta$ (\*)  $H_x$  is a maximal subspace of  $\Delta$   $\varepsilon \colon \Delta \to \Sigma$ : projective embedding  $\downarrow$  $\varepsilon(H_x)$  spans either a hyperplane of  $\Sigma$  or the whole of  $\Sigma$ .

#### Definition

A projective embedding  $\varepsilon$  of a dual polar space  $\Delta$  in a projective space  $\Sigma$  is a polarized embedding if  $\langle \varepsilon(H_x) \rangle$  is a hyperplane of  $\Sigma$  for every point x of  $\Delta$ .

・ロン ・回と ・ヨン ・ヨン

$$\Delta = (\mathcal{P}, \mathcal{L})$$
: dual polar space;

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

### $\Delta = (\mathcal{P}, \mathcal{L}): \text{ dual polar space}; \varepsilon \colon \Delta \to \Sigma: \text{ projective embedding}$

<ロ> (日) (日) (日) (日) (日)

# $\Delta = (\mathcal{P}, \mathcal{L}): \text{ dual polar space}; \varepsilon \colon \Delta \to \Sigma: \text{ projective embedding}$ Let $\Omega$ be a subspace of $\Sigma$ such that

- 4 回 2 - 4 回 2 - 4 回 2 - 4
$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ dual polar space}; \varepsilon \colon \Delta \to \Sigma: \text{ projective embedding} \\ \text{Let } \Omega \text{ be a subspace of } \Sigma \text{ such that} \\ (Q1) \ \Omega \cap \varepsilon(\mathcal{P}) = \emptyset \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ dual polar space}; \varepsilon: \Delta \to \Sigma: \text{ projective embedding} \\ \text{Let } \Omega \text{ be a subspace of } \Sigma \text{ such that} \\ & (Q1) \ \Omega \cap \varepsilon(\mathcal{P}) = \emptyset \\ & (Q2) \ \langle \Omega, \varepsilon(x) \rangle \neq \langle \Omega, \varepsilon(y) \rangle \ \forall x \neq y \in \mathcal{P}. \end{split}$$

Let  $\varepsilon_{\Omega} \colon \Delta \to \Sigma/\Omega, \ \varepsilon_{\Omega}(x) := \langle \Omega, \varepsilon(x) \rangle$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ dual polar space}; \varepsilon \colon \Delta \to \Sigma: \text{ projective embedding} \\ \text{Let } \Omega \text{ be a subspace of } \Sigma \text{ such that} \\ & (Q1) \ \Omega \cap \varepsilon(\mathcal{P}) = \emptyset \\ & (Q2) \ \langle \Omega, \varepsilon(x) \rangle \neq \langle \Omega, \varepsilon(y) \rangle \ \forall x \neq y \in \mathcal{P}. \end{split}$$

Let  $\varepsilon_{\Omega} \colon \Delta \to \Sigma/\Omega, \ \varepsilon_{\Omega}(x) := \langle \Omega, \varepsilon(x) \rangle$ 

 $\varepsilon_{\Omega}$  is an embedding of  $\Delta$  in  $\Sigma/\Omega$  called the quotient of  $\varepsilon$  over  $\Omega$ .

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ dual polar space}; \varepsilon \colon \Delta \to \Sigma: \text{ projective embedding} \\ \text{Let } \Omega \text{ be a subspace of } \Sigma \text{ such that} \\ & (Q1) \ \Omega \cap \varepsilon(\mathcal{P}) = \emptyset \\ & (Q2) \ \langle \Omega, \varepsilon(x) \rangle \neq \langle \Omega, \varepsilon(y) \rangle \ \forall x \neq y \in \mathcal{P}. \end{split}$$

Let  $\varepsilon_{\Omega} \colon \Delta \to \Sigma/\Omega$ ,  $\varepsilon_{\Omega}(x) := \langle \Omega, \varepsilon(x) \rangle$ 

 $\varepsilon_{\Omega}$  is an embedding of  $\Delta$  in  $\Sigma/\Omega$  called the quotient of  $\varepsilon$  over  $\Omega$ .

 $\varepsilon$ : full projective embedding  $\Rightarrow \varepsilon_{\Omega}$ : full projective embedding

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ dual polar space}; \varepsilon \colon \Delta \to \Sigma: \text{ projective embedding} \\ \text{Let } \Omega \text{ be a subspace of } \Sigma \text{ such that} \\ & (Q1) \ \Omega \cap \varepsilon(\mathcal{P}) = \emptyset \\ & (Q2) \ \langle \Omega, \varepsilon(x) \rangle \neq \langle \Omega, \varepsilon(y) \rangle \ \forall x \neq y \in \mathcal{P}. \end{split}$$

Let  $\varepsilon_{\Omega} \colon \Delta \to \Sigma/\Omega$ ,  $\varepsilon_{\Omega}(x) := \langle \Omega, \varepsilon(x) \rangle$ 

 $\varepsilon_{\Omega}$  is an embedding of  $\Delta$  in  $\Sigma/\Omega$  called the quotient of  $\varepsilon$  over  $\Omega$ .

 $\varepsilon$ : full projective embedding  $\Rightarrow \varepsilon_{\Omega}$ : full projective embedding  $\varepsilon_{\Omega}$ : polarized embedding  $\Rightarrow \varepsilon$ : polarized embedding

# $\varepsilon_1:\Delta\to \Sigma_1,\ \varepsilon_2:\Delta\to \Sigma_2$

$$\varepsilon_1: \Delta \to \Sigma_1, \ \varepsilon_2: \Delta \to \Sigma_2$$

 $\varepsilon_1 \geq \varepsilon_2$ 

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

$$\varepsilon_1: \Delta \to \Sigma_1, \ \varepsilon_2: \Delta \to \Sigma_2$$

### $\varepsilon_1 \geq \varepsilon_2$

if  $\exists f \colon \Sigma_1 \to \Sigma_2$  semilinear such that  $\varepsilon_2 \simeq f \circ \varepsilon_1$ 

・ロン ・回と ・ヨン・

æ

$$\varepsilon_1: \Delta \to \Sigma_1, \ \varepsilon_2: \Delta \to \Sigma_2$$

## $\varepsilon_1 \geq \varepsilon_2$

if  $\exists f \colon \Sigma_1 \to \Sigma_2$  semilinear such that  $\varepsilon_2 \simeq f \circ \varepsilon_1$ 

If f is an isomorphism then  $\varepsilon_1 \cong \varepsilon_2$ 

・ロト ・回ト ・ヨト ・ヨト

$$\varepsilon_1: \Delta \to \Sigma_1, \ \varepsilon_2: \Delta \to \Sigma_2$$

## $\varepsilon_1 \geq \varepsilon_2$

if  $\exists f \colon \Sigma_1 \to \Sigma_2$  semilinear such that  $\varepsilon_2 \simeq f \circ \varepsilon_1$ 

If f is an isomorphism then  $\varepsilon_1 \cong \varepsilon_2$ 

### Definition

Let  $\Delta$  be a dual polar space. The embedding  $\varepsilon_{univ} : \Delta \to \overline{\Sigma}$  is (absolutely) universal if for any full embedding  $\varepsilon$  of  $\Delta$  we have  $\varepsilon_{univ} \ge \varepsilon$ .

イロン イヨン イヨン イヨン

$$\varepsilon_1: \Delta \to \Sigma_1, \ \varepsilon_2: \Delta \to \Sigma_2$$

#### $\varepsilon_1 \geq \varepsilon_2$

if  $\exists f \colon \Sigma_1 \to \Sigma_2$  semilinear such that  $\varepsilon_2 \simeq f \circ \varepsilon_1$ 

If f is an isomorphism then  $\varepsilon_1 \cong \varepsilon_2$ 

#### Definition

Let  $\Delta$  be a dual polar space. The embedding  $\varepsilon_{univ} : \Delta \to \Sigma$  is (absolutely) universal if for any full embedding  $\varepsilon$  of  $\Delta$  we have  $\varepsilon_{univ} \ge \varepsilon$ .

*ε<sub>univ</sub>*: universal embedding of Δ ⇒ *ε* ≅ *ε<sub>univ</sub>*/Ω for any embedding *ε* of Δ and a suitable subspace Ω of Σ̃.

$$\varepsilon_1: \Delta \to \Sigma_1, \ \varepsilon_2: \Delta \to \Sigma_2$$

## $\varepsilon_1 \geq \varepsilon_2$

if  $\exists f \colon \Sigma_1 \to \Sigma_2$  semilinear such that  $\varepsilon_2 \simeq f \circ \varepsilon_1$ 

If f is an isomorphism then  $\varepsilon_1 \cong \varepsilon_2$ 

#### Definition

Let  $\Delta$  be a dual polar space. The embedding  $\varepsilon_{univ} : \Delta \to \Sigma$  is (absolutely) universal if for any full embedding  $\varepsilon$  of  $\Delta$  we have  $\varepsilon_{univ} \ge \varepsilon$ .

- $\varepsilon_{univ}$ : universal embedding of  $\Delta \Rightarrow \varepsilon \cong \varepsilon_{univ} / \Omega$  for any embedding  $\varepsilon$  of  $\Delta$  and a suitable subspace  $\Omega$  of  $\widetilde{\Sigma}$ .
- If a universal embedding exists then it is uniquely determined up to isomorphism.

$$\varepsilon_1: \Delta \to \Sigma_1, \ \varepsilon_2: \Delta \to \Sigma_2$$

#### $\varepsilon_1 \geq \varepsilon_2$

if  $\exists f \colon \Sigma_1 \to \Sigma_2$  semilinear such that  $\varepsilon_2 \simeq f \circ \varepsilon_1$ 

If f is an isomorphism then  $\varepsilon_1 \cong \varepsilon_2$ 

## Definition

Let  $\Delta$  be a dual polar space. The embedding  $\varepsilon_{univ} : \Delta \to \Sigma$  is (absolutely) universal if for any full embedding  $\varepsilon$  of  $\Delta$  we have  $\varepsilon_{univ} \ge \varepsilon$ .

- $\varepsilon_{univ}$ : universal embedding of  $\Delta \Rightarrow \varepsilon \cong \varepsilon_{univ} / \Omega$  for any embedding  $\varepsilon$  of  $\Delta$  and a suitable subspace  $\Omega$  of  $\widetilde{\Sigma}$ .
- If a universal embedding exists then it is uniquely determined up to isomorphism.
- Universal embedding of  $\Delta \leftrightarrow$  hull of all linear embeddings of  $\Delta$ .

ロト (日) (日) (日) (日) (日) (日)

$$\varepsilon \colon \Delta \to \Sigma, \ \Sigma = \operatorname{PG}(\mathbb{V}), \ g \in \operatorname{Aut}(\Delta)$$

• g lifts to  $\Sigma$  through  $\varepsilon$  if  $\exists \varepsilon(g) \in P\Gamma L(\mathbb{V})$  s.t.  $\varepsilon(g)\varepsilon = \varepsilon g$ .

イロン イヨン イヨン イヨン

$$\varepsilon \colon \Delta \to \Sigma, \ \Sigma = \mathrm{PG}(\mathbb{V}), \ g \in Aut(\Delta)$$

g lifts to Σ through ε if ∃ ε(g) ∈ PΓL(V) s.t. ε(g)ε = εg.
 (\*) If ε(g) exists then it is uniquely determined by g.
 ε(g):

イロン イ部ン イヨン イヨン 三日

$$\varepsilon \colon \Delta \to \Sigma, \ \Sigma = \mathrm{PG}(\mathbb{V}), \ g \in Aut(\Delta)$$

g lifts to Σ through ε if ∃ ε(g) ∈ PΓL(V) s.t. ε(g)ε = εg.
(\*) If ε(g) exists then it is uniquely determined by g.
ε(g): lifting of g to Σ.

$$\varepsilon \colon \Delta \to \Sigma, \ \Sigma = \operatorname{PG}(\mathbb{V}), \ g \in Aut(\Delta)$$

- g lifts to Σ through ε if ∃ ε(g) ∈ PΓL(V) s.t. ε(g)ε = εg.
  (\*) If ε(g) exists then it is uniquely determined by g.
  ε(g): lifting of g to Σ.
- G ≤ Aut(Δ). If all elements of G lift to Σ through ε then we say that G lifts to Σ.

イロン イボン イヨン イヨン 三日

$$\varepsilon \colon \Delta \to \Sigma, \ \Sigma = \mathrm{PG}(\mathbb{V}), \ g \in Aut(\Delta)$$

- g lifts to Σ through ε if ∃ ε(g) ∈ PΓL(V) s.t. ε(g)ε = εg.
  (\*) If ε(g) exists then it is uniquely determined by g.
  ε(g): lifting of g to Σ.
- G ≤ Aut(Δ). If all elements of G lift to Σ through ε then we say that G lifts to Σ.
- The embedding  $\varepsilon \colon \Delta \to \Sigma$  is G-homogeneous if G lifts to  $\Sigma$  through  $\varepsilon$

(日) (同) (E) (E) (E)

# $\varepsilon \colon \Delta \to \Sigma, \ \operatorname{Aut}(\Delta)_0 \trianglelefteq \operatorname{Aut}(\Delta)$

・ロト ・回ト ・ヨト ・ヨト

æ

$$\varepsilon \colon \Delta \to \Sigma, \operatorname{Aut}(\Delta)_0 \trianglelefteq \operatorname{Aut}(\Delta)$$

#### Theorem

If  $\varepsilon$  is Aut( $\Delta$ )<sub>0</sub>-homogeneous then it is polarized.

イロン イヨン イヨン イヨン

$$\varepsilon \colon \Delta \to \Sigma, \operatorname{Aut}(\Delta)_0 \trianglelefteq \operatorname{Aut}(\Delta)$$

#### Theorem

If  $\varepsilon$  is Aut( $\Delta$ )<sub>0</sub>-homogeneous then it is polarized.

#### Theorem

If a thick dual polar space  $\Delta$  of rank  $n \ge 2$  admits at least one full projective embedding then  $\Delta$  admits the absolutely universal embedding.

・ロン ・回と ・ヨン・

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □

#### Theorem

Up to isomorphisms, there exists a unique full polarized embedding  $\varepsilon_{min}$  such that every full polarized embedding  $\varepsilon$  of  $\Delta$  has a quotient isomorphic to  $\varepsilon_{min}$ .

(4月) (4日) (4日)

#### Theorem

Up to isomorphisms, there exists a unique full polarized embedding  $\varepsilon_{min}$  such that every full polarized embedding  $\varepsilon$  of  $\Delta$  has a quotient isomorphic to  $\varepsilon_{min}$ .

 $\varepsilon_{min}$ : the minimal full polarized embedding of  $\Delta$ .

- A 同 ト - A 三 ト - A 三 ト

#### Theorem

Up to isomorphisms, there exists a unique full polarized embedding  $\varepsilon_{min}$  such that every full polarized embedding  $\varepsilon$  of  $\Delta$  has a quotient isomorphic to  $\varepsilon_{min}$ .  $\varepsilon_{min}$ : the minimal full polarized embedding of  $\Delta$ .  $\dim(\varepsilon_{min}) \geq 2^n$ 

- 4 同 ト 4 臣 ト 4 臣 ト

#### Theorem

Up to isomorphisms, there exists a unique full polarized embedding  $\varepsilon_{min}$  such that every full polarized embedding  $\varepsilon$  of  $\Delta$  has a quotient isomorphic to  $\varepsilon_{min}$ .

 $\varepsilon_{min}$ : the minimal full polarized embedding of  $\Delta$ .

 $\dim(\varepsilon_{min}) \geq 2^n$ 

## For every $\varepsilon \colon \Delta \to \Sigma$ full polarized embedding

・ロン ・同 と く ヨン ・ ヨン

#### Theorem

Up to isomorphisms, there exists a unique full polarized embedding  $\varepsilon_{\textit{min}}$  such that every full polarized embedding  $\varepsilon$  of  $\Delta$  has a quotient isomorphic to  $\varepsilon_{\textit{min}}$ .

 $\varepsilon_{min}$ : the minimal full polarized embedding of  $\Delta$ .

 $\dim(\varepsilon_{min}) \geq 2^n$ 

## For every $\varepsilon \colon \Delta \to \Sigma$ full polarized embedding

 $\varepsilon_{\textit{univ}}$ : universal embedding of  $\Delta$ 

ヘロン 人間と 人間と 人間と

#### Theorem

Up to isomorphisms, there exists a unique full polarized embedding  $\varepsilon_{min}$  such that every full polarized embedding  $\varepsilon$  of  $\Delta$  has a quotient isomorphic to  $\varepsilon_{min}$ .

 $\varepsilon_{\min}$ : the minimal full polarized embedding of  $\Delta$ .

 $\dim(\varepsilon_{\min}) \geq 2^n$ 

## For every $\varepsilon \colon \Delta \to \Sigma$ full polarized embedding

 $\varepsilon_{univ}$ : universal embedding of  $\Delta$ 

 $\varepsilon_{min}$ : minimal embedding of  $\Delta$ 

・ロン ・回と ・ヨン・

#### Theorem

Up to isomorphisms, there exists a unique full polarized embedding  $\varepsilon_{min}$  such that every full polarized embedding  $\varepsilon$  of  $\Delta$  has a quotient isomorphic to  $\varepsilon_{min}$ .

 $\varepsilon_{\min}$ : the minimal full polarized embedding of  $\Delta$ .

 $\dim(\varepsilon_{min}) \geq 2^n$ 

# For every $\varepsilon \colon \Delta \to \Sigma$ full polarized embedding

 $\varepsilon_{\textit{univ}}$ : universal embedding of  $\Delta$ 

 $\varepsilon_{\textit{min}}$ : minimal embedding of  $\Delta$ 

$$\varepsilon_{\min} \le \varepsilon \le \varepsilon_{\min}$$

イロト イポト イヨト イヨト

# Characterization of the minimal polarized embedding

 $\Delta = (\mathcal{P}, \mathcal{L})$ : dual polar space

(4回) (1日) (日)

# Characterization of the minimal polarized embedding

$$\begin{split} \Delta = (\mathcal{P}, \mathcal{L}) \text{: dual polar space} \\ \downarrow \text{ Kasikova-Shult} \end{split}$$

- 4 回 2 - 4 回 2 - 4 回 2 - 4

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ dual polar space} \\ &\downarrow \text{Kasikova-Shult} \\ \varepsilon_{\textit{univ}} : \Delta &\to \widetilde{\Sigma}: \text{ universal embedding of } \Delta \end{split}$$

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ dual polar space} \\ &\downarrow \text{Kasikova-Shult} \\ \varepsilon_{\textit{univ}} : \Delta &\to \widetilde{\Sigma}: \text{ universal embedding of } \Delta \end{split}$$

$$R := \bigcap_{x \in \mathcal{P}} \langle \varepsilon_{univ}(H_x) \rangle$$

・ロン ・聞と ・ほと ・ほと

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ dual polar space} \\ &\downarrow \text{Kasikova-Shult} \\ \varepsilon_{\textit{univ}} : \Delta &\to \widetilde{\Sigma}: \text{ universal embedding of } \Delta \end{split}$$

$$\begin{array}{c} R := \bigcap_{x \in \mathcal{P}} \langle \varepsilon_{univ}(H_x) \rangle \\ \downarrow \end{array}$$
: nucleus of  $\varepsilon_{univ}$ 

・ロン ・回と ・ヨン・

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ dual polar space} \\ &\downarrow \text{Kasikova-Shult} \\ \varepsilon_{\textit{univ}} : \Delta &\to \widetilde{\Sigma}: \text{ universal embedding of } \Delta \end{split}$$

$$\frac{R := \bigcap_{x \in \mathcal{P}} \langle \varepsilon_{univ}(H_x) \rangle}{\downarrow} : \text{ nucleus of } \varepsilon_{univ}$$
$$\varepsilon_{min} = \varepsilon_{univ} / R : \text{ minimal polarized embedding of } \Delta$$

・ロン ・回と ・ヨン・

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ dual polar space} \\ &\downarrow \text{Kasikova-Shult} \\ \varepsilon_{\textit{univ}} : \Delta &\to \widetilde{\Sigma}: \text{ universal embedding of } \Delta \end{split}$$

$$\mathbb{R} := \bigcap_{x \in \mathcal{P}} \langle \varepsilon_{univ}(H_x) \rangle : \text{ nucleus of } \varepsilon_{univ}$$

$$\downarrow$$

$$\varepsilon_{min} = \varepsilon_{univ}/R: \text{ minimal polarized embedding of } \Delta$$

If R is trivial then  $\varepsilon_{univ}$  is the unique polarized embedding of  $\Delta$ .

イロン イヨン イヨン イヨン
### $\varepsilon_{univ}: \Delta \to \widetilde{\Sigma}, \ \widetilde{\Sigma} = \mathrm{PG}(\widetilde{\mathbb{V}}), \text{ universal embedding of } \Delta$

・ロン ・回と ・ヨン ・ヨン

æ

 $\varepsilon_{univ} : \Delta \to \widetilde{\Sigma}, \ \widetilde{\Sigma} = \operatorname{PG}(\widetilde{\mathbb{V}}), \text{ universal embedding of } \Delta$ The nucleus R of  $\varepsilon_{univ}$  is a  $\operatorname{Aut}(\Delta)$ -invariant subspace of  $\operatorname{PG}(\widetilde{V})$ .

$$\begin{split} \varepsilon_{univ} &: \Delta \to \widetilde{\Sigma}, \ \widetilde{\Sigma} = \mathrm{PG}(\widetilde{\mathbb{V}}), \text{ universal embedding of } \Delta \\ \text{The nucleus } R \text{ of } \varepsilon_{univ} \text{ is a } \mathrm{Aut}(\Delta)\text{-invariant subspace of } \mathrm{PG}(\widetilde{V}). \\ \downarrow \\ R \text{ is } G\text{-invariant } \forall G \leq \mathrm{Aut}(\Delta) \end{split}$$

$$\begin{split} \varepsilon_{univ} &: \Delta \to \widetilde{\Sigma}, \ \widetilde{\Sigma} = \mathrm{PG}(\widetilde{\mathbb{V}}), \ \text{universal embedding of } \Delta \\ \text{The nucleus } R \ \text{of } \varepsilon_{univ} \ \text{is a } \mathrm{Aut}(\Delta) \text{-invariant subspace of } \mathrm{PG}(\widetilde{V}). \\ & \downarrow \\ R \ \text{is } G \text{-invariant } \forall G \leq \mathrm{Aut}(\Delta) \\ & \downarrow \end{split}$$

$$\begin{split} \varepsilon_{univ} &: \Delta \to \widetilde{\Sigma}, \ \widetilde{\Sigma} = \operatorname{PG}(\widetilde{\mathbb{V}}), \text{ universal embedding of } \Delta \\ \text{The nucleus } R \text{ of } \varepsilon_{univ} \text{ is a } \operatorname{Aut}(\Delta)\text{-invariant subspace of } \operatorname{PG}(\widetilde{V}). \\ & \downarrow \\ R \text{ is } G\text{-invariant } \forall G \leq \operatorname{Aut}(\Delta) \\ & \downarrow \\ \varepsilon_{min} &= \varepsilon_{univ}/R \text{ is } \operatorname{Aut}(\Delta)_0\text{-homogeneous} \end{split}$$

$$\begin{split} \varepsilon_{univ} &: \Delta \to \widetilde{\Sigma}, \ \widetilde{\Sigma} = \operatorname{PG}(\widetilde{\mathbb{V}}), \text{ universal embedding of } \Delta \\ \text{The nucleus } R \text{ of } \varepsilon_{univ} \text{ is a } \operatorname{Aut}(\Delta)\text{-invariant subspace of } \operatorname{PG}(\widetilde{V}). \\ & \downarrow \\ R \text{ is } G\text{-invariant } \forall G \leq \operatorname{Aut}(\Delta) \\ & \downarrow \\ \varepsilon_{min} &= \varepsilon_{univ}/R \text{ is } \operatorname{Aut}(\Delta)_0\text{-homogeneous} \end{split}$$

#### Theorem

All  $\operatorname{Aut}(\Delta)_0$ -invariant proper subspaces of  $\operatorname{PG}(\widetilde{V})$  are contained in the nucleus R of  $\varepsilon_{univ}$ .

- 4 同 6 4 日 6 4 日 6

$$\begin{split} \varepsilon_{univ} &: \Delta \to \widetilde{\Sigma}, \ \widetilde{\Sigma} = \operatorname{PG}(\widetilde{\mathbb{V}}), \text{ universal embedding of } \Delta \\ \text{The nucleus } R \text{ of } \varepsilon_{univ} \text{ is a } \operatorname{Aut}(\Delta)\text{-invariant subspace of } \operatorname{PG}(\widetilde{V}). \\ & \downarrow \\ R \text{ is } G\text{-invariant } \forall G \leq \operatorname{Aut}(\Delta) \\ & \downarrow \\ \varepsilon_{min} &= \varepsilon_{univ}/R \text{ is } \operatorname{Aut}(\Delta)_0\text{-homogeneous} \end{split}$$

#### Theorem

All  $\operatorname{Aut}(\Delta)_0$ -invariant proper subspaces of  $\operatorname{PG}(\widetilde{V})$  are contained in the nucleus R of  $\varepsilon_{univ}$ .

Regard 
$$\widetilde{V}$$
 as a module for  $\operatorname{Aut}(\Delta)_0$ 

- 4 同 6 4 日 6 4 日 6

 $\varepsilon_{\text{univ}}: \Delta \to \widetilde{\Sigma}, \ \widetilde{\Sigma} = \mathrm{PG}(\widetilde{\mathbb{V}}), \text{ universal embedding of } \Delta$ The nucleus R of  $\varepsilon_{univ}$  is a Aut( $\Delta$ )-invariant subspace of PG( $\widetilde{V}$ ). *R* is *G*-invariant  $\forall G \leq \operatorname{Aut}(\Delta)$  $\varepsilon_{min} = \varepsilon_{univ}/R$  is Aut( $\Delta$ )<sub>0</sub>-homogeneous

#### Theorem

All  $Aut(\Delta)_0$ -invariant proper subspaces of PG(V) are contained in the nucleus R of  $\varepsilon_{univ}$ .

Ilaria Cardinali

 $\Pi := \mathrm{Q}(2n,\mathbb{F}): \text{ orthogonal polar space of rank } n \geq 2 \text{ of parabolic type arising from a non-singular quadratic form of Witt index } n$ 

・ロト ・回ト ・ヨト ・ヨト

 $\Pi := \mathrm{Q}(2n,\mathbb{F}): \text{ orthogonal polar space of rank } n \geq 2 \text{ of parabolic type arising from a non-singular quadratic form of Witt index } n$ 

 $\Delta = \mathrm{DQ}(2n,\mathbb{F}): \text{ dual of } \Pi$ 

・ロン ・回 と ・ 回 と ・ 回 と

 $\Pi := \mathrm{Q}(2n,\mathbb{F}): \text{ orthogonal polar space of rank } n \geq 2 \text{ of parabolic type arising from a non-singular quadratic form of Witt index } n$ 

 $\Delta = \mathrm{DQ}(2n,\mathbb{F}): \text{ dual of } \Pi$ 

 $\operatorname{Aut}(\Delta)_0 = \operatorname{P}\Omega(2n+1, \mathbb{F}).$ 

 $\Pi := \mathrm{Q}(2n,\mathbb{F}): \text{ orthogonal polar space of rank } n \geq 2 \text{ of parabolic type arising from a non-singular quadratic form of Witt index } n$ 

 $\Delta = \mathrm{DQ}(2n,\mathbb{F})$ : dual of  $\Pi$ 

 $\operatorname{Aut}(\Delta)_0 = \operatorname{P}\Omega(2n+1, \mathbb{F}).$ 

 $\varepsilon_{\text{spin}} : \mathrm{DQ}(2n, \mathbb{F}) \to \mathrm{PG}(2^n - 1, \mathbb{F})$ : *spin embedding* of  $\Delta$ 

 $\Pi := \mathrm{Q}(2n,\mathbb{F}): \text{ orthogonal polar space of rank } n \geq 2 \text{ of parabolic type arising from a non-singular quadratic form of Witt index } n$ 

 $\Delta = \mathrm{DQ}(2n, \mathbb{F})$ : dual of  $\Pi$ 

 $\operatorname{Aut}(\Delta)_0 = \operatorname{P}\Omega(2n+1, \mathbb{F}).$ 

 $\varepsilon_{\text{spin}} : \mathrm{DQ}(2n, \mathbb{F}) \to \mathrm{PG}(2^n - 1, \mathbb{F})$ : *spin embedding* of  $\Delta$ 

 $\varepsilon_{\rm spin}$ : full projective polarized homogeneous embedding.

 $\Pi := \mathrm{Q}(2n,\mathbb{F}): \text{ orthogonal polar space of rank } n \geq 2 \text{ of parabolic type arising from a non-singular quadratic form of Witt index } n$ 

 $\Delta = DQ(2n, \mathbb{F}): \text{ dual of } \Pi$ Aut( $\Delta$ )<sub>0</sub> = P $\Omega$ (2n + 1,  $\mathbb{F}$ ).

 $\varepsilon_{spin}: \mathrm{DQ}(2n,\mathbb{F}) \to \mathrm{PG}(2^n-1,\mathbb{F}):$  spin embedding of  $\Delta$ 

 $\varepsilon_{\rm spin}$ : full projective polarized homogeneous embedding.

 $\frac{\text{char}(\mathbb{F}) \neq 2}{\text{espin}}$  is the universal and minimal projective embedding of Δ.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

$$\operatorname{char}(\mathbb{F}) = 2 \text{ and } \mathbb{F} \text{ perfect } | \to \operatorname{Q}(2n, \mathbb{F}) \cong \operatorname{W}(2n - 1, \mathbb{F}).$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

$$\operatorname{char}(\mathbb{F}) = 2 \text{ and } \mathbb{F} \text{ perfect } | \to \operatorname{Q}(2n, \mathbb{F}) \cong \operatorname{W}(2n - 1, \mathbb{F}).$$

 $W(2n-1,\mathbb{F})$ : symplectic dual polar space of rank n

イロン イヨン イヨン イヨン

W( $2n - 1, \mathbb{F}$ ): symplectic dual polar space of rank n $N_0$ : nucleus of the quadratic form defining Q( $2n, \mathbb{F}$ ),

・ロン ・回 と ・ 回 と ・ 回 と

W( $2n - 1, \mathbb{F}$ ): symplectic dual polar space of rank n $N_0$ : nucleus of the quadratic form defining Q( $2n, \mathbb{F}$ ),

$$\mathbb{V} := V(2n+1,\mathbb{F}); \quad \mathbb{V}/N_0 \cong V(2n,\mathbb{F})$$

・ロン ・回 と ・ 回 と ・ 回 と

W( $2n - 1, \mathbb{F}$ ): symplectic dual polar space of rank n $N_0$ : nucleus of the quadratic form defining Q( $2n, \mathbb{F}$ ),

$$\mathbb{V} := V(2n+1,\mathbb{F}); \quad \mathbb{V}/N_0 \cong V(2n,\mathbb{F})$$
  
The projection  $\mathbb{V} \to \mathbb{V}/N_0$ 

(ロ) (同) (E) (E) (E)

W( $2n - 1, \mathbb{F}$ ): symplectic dual polar space of rank n $N_0$ : nucleus of the quadratic form defining Q( $2n, \mathbb{F}$ ),

$$\mathbb{V} := V(2n+1,\mathbb{F}); \quad \mathbb{V}/N_0 \cong V(2n,\mathbb{F})$$
  
The projection  $\mathbb{V} \to \mathbb{V}/N_0$ 

 $\downarrow$  induces

(ロ) (同) (E) (E) (E)

W( $2n - 1, \mathbb{F}$ ): symplectic dual polar space of rank n $N_0$ : nucleus of the quadratic form defining Q( $2n, \mathbb{F}$ ),

$$\mathbb{V} := V(2n+1,\mathbb{F}); \quad \mathbb{V}/N_0 \cong V(2n,\mathbb{F})$$
  
The projection  $\mathbb{V} \to \mathbb{V}/N_0$ 

$$\downarrow$$
 induces  $\mathrm{Q}(2n,\mathbb{F})\cong\mathrm{W}(2n-1,\mathbb{F})$ 

・ロン ・回 と ・ 回 と ・ 回 と

W( $2n - 1, \mathbb{F}$ ): symplectic dual polar space of rank n $N_0$ : nucleus of the quadratic form defining Q( $2n, \mathbb{F}$ ),

$$\mathbb{V} := V(2n+1,\mathbb{F}); \quad \mathbb{V}/N_0 \cong V(2n,\mathbb{F})$$
  
The projection  $\mathbb{V} \to \mathbb{V}/N_0$ 

$$\downarrow$$
 induces  
 $\mathrm{Q}(2n,\mathbb{F})\cong\mathrm{W}(2n-1,\mathbb{F})$ 

(ロ) (同) (E) (E) (E)

char( $\mathbb{F}$ ) = 2 and  $\mathbb{F}$  perfect  $| \to Q(2n, \mathbb{F}) \cong W(2n-1, \mathbb{F})$ .  $W(2n-1,\mathbb{F})$ : symplectic dual polar space of rank n  $N_0$ : nucleus of the quadratic form defining  $Q(2n, \mathbb{F})$ ,  $\mathbb{V} := V(2n+1,\mathbb{F}); \quad \mathbb{V}/N_0 \cong V(2n,\mathbb{F})$ The projection  $\mathbb{V} \to \mathbb{V}/N_0$ ⊥ induces  $Q(2n,\mathbb{F})\cong W(2n-1,\mathbb{F})$  $DQ(2n, \mathbb{F}) \cong DW(2n-1, \mathbb{F})$ 

$$W_n := \bigwedge^n V(2n, \mathbb{F})$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

$$\begin{split} \mathcal{W}_n &:= \bigwedge^n V(2n, \mathbb{F}) \\ \varepsilon_{gr}^{sp} : \mathrm{DQ}(2n, \mathbb{F}) \to \mathrm{PG}(\mathcal{W}_n): \text{ grassmann embedding} \\ \langle v_1, ..., v_n \rangle \mapsto \langle v_1 \wedge ... \wedge v_n \rangle \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

$$W_n := \bigwedge^n V(2n, \mathbb{F})$$

$$\varepsilon_{gr}^{sp} : \mathrm{DQ}(2n, \mathbb{F}) \to \mathrm{PG}(W_n): \text{ grassmann embedding}$$

$$\langle v_1, ..., v_n \rangle \mapsto \langle v_1 \wedge ... \wedge v_n \rangle$$

 $\varepsilon_{gr}^{sp}$ : full projective polarized homogeneous embedding

- 4 回 2 - 4 回 2 - 4 回 2 - 4

$$W_n := \bigwedge^n V(2n, \mathbb{F})$$

$$\varepsilon_{gr}^{sp} : \mathrm{DQ}(2n, \mathbb{F}) \to \mathrm{PG}(W_n): \text{ grassmann embedding}$$

$$\langle v_1, ..., v_n \rangle \mapsto \langle v_1 \land ... \land v_n \rangle$$

 $\varepsilon_{gr}^{sp}$ : full projective polarized homogeneous embedding  $\dim(\varepsilon_{gr}^{sp}) = \binom{2n}{n} - \binom{2n}{n-2}.$ 

・ 回 と く ヨ と く ヨ と

$$\Delta = \mathrm{DQ}(2n, \mathbb{F})$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

$$\Delta = \mathrm{DQ}(2n, \mathbb{F})$$

 $\mathbb{F} = \mathbb{F}_{2^e}$  and  $\mathbb{F} \neq \mathbb{F}_2$ : \*  $\varepsilon_{gr}^{sp}$  is the universal embedding of  $\Delta$ 

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

 $\mathbb{F} = \mathbb{F}_{2^e}$  and  $\mathbb{F} \neq \mathbb{F}_2$ :

\*  $\varepsilon_{gr}^{sp}$  is the universal embedding of  $\Delta$ \*  $\varepsilon_{spin}$  is the minimal embedding of  $\Delta$ 

 $\label{eq:spin} \begin{array}{|c|c|c|c|} \hline \mathbb{F} = \mathbb{F}_{2^e} \mbox{ and } \mathbb{F} \neq \mathbb{F}_2 \\ \hline & \ast \ \varepsilon_{gr}^{sp} \mbox{ is the universal embedding of } \Delta \\ & \ast \ \varepsilon_{spin} \mbox{ is the minimal embedding of } \Delta \\ \end{array}$ 

$$\mathbb{F} = \mathbb{F}_2$$
: \*  $\varepsilon_{gr}^{sp}$  is not universal.

$$\label{eq:spin} \begin{split} \overline{\mathbb{F} = \mathbb{F}_{2^e} \text{ and } \mathbb{F} \neq \mathbb{F}_2} & : \ ^* \varepsilon_{gr}^{sp} \text{ is the universal embedding of } \Delta \\ & * \varepsilon_{spin} \text{ is the minimal embedding of } \Delta \end{split}$$

$$\begin{array}{|c|} \hline \mathbb{F} = \mathbb{F}_2 \end{array} : & \varepsilon_{gr}^{sp} \text{ is not universal.} \\ & & \dim(\varepsilon_{univ}) = (2^n + 1)(2^n - 1)/3 \end{array}$$

$$\label{eq:F} \begin{split} \mathbb{F} = \mathbb{F}_{2^e} \mbox{ and } \mathbb{F} \neq \mathbb{F}_2 \\ : \ * \ \varepsilon_{gr}^{sp} \mbox{ is the universal embedding of } \Delta \\ * \ \varepsilon_{spin} \mbox{ is the minimal embedding of } \Delta \end{split}$$

$$\begin{split} \hline \mathbb{F} &= \mathbb{F}_2 \\ \vdots \ * \ \varepsilon_{gr}^{sp} \text{ is not universal.} \\ &* \ \dim(\varepsilon_{univ}) = (2^n + 1)(2^n - 1)/3 \\ &* \ \varepsilon_{spin} \text{ is the minimal embedding of } \Delta \end{split}$$

$$\label{eq:F} \begin{split} \mathbb{F} = \mathbb{F}_{2^e} \mbox{ and } \mathbb{F} \neq \mathbb{F}_2 \\ & : \ \varepsilon_{gr}^{sp} \mbox{ is the universal embedding of } \Delta \\ & \ \varepsilon_{spin} \mbox{ is the minimal embedding of } \Delta \end{split}$$

$$\begin{split} \hline \mathbb{F} &= \mathbb{F}_2 \\ \vdots \ * \ \varepsilon_{gr}^{sp} \text{ is not universal.} \\ &* \ \dim(\varepsilon_{univ}) = (2^n + 1)(2^n - 1)/3 \\ &* \ \varepsilon_{spin} \text{ is the minimal embedding of } \Delta \end{split}$$

 $\operatorname{char}(\mathbb{F}) = 2, \mathbb{F} \text{ perfect} : * \varepsilon_{gr}^{sp} \text{ is universal}$ 

イロン イヨン イヨン イヨン

 $\mathbb{F} = \mathbb{F}_{2^e}$  and  $\mathbb{F} \neq \mathbb{F}_2$ : \*  $\varepsilon_{gr}^{sp}$  is the universal embedding of  $\Delta$ \*  $\varepsilon_{\rm spin}$  is the minimal embedding of  $\Delta$ 

$$\begin{split} \overline{\mathbb{F}} &= \overline{\mathbb{F}}_2: \ * \ \varepsilon_{gr}^{sp} \text{ is not universal.} \\ & * \ \dim(\varepsilon_{univ}) = (2^n + 1)(2^n - 1)/3 \\ & * \ \varepsilon_{spin} \text{ is the minimal embedding of } \Delta \end{split}$$

 $\operatorname{char}(\mathbb{F}) = 2, \mathbb{F} \text{ perfect} : * \varepsilon_{gr}^{sp} \text{ is universal}$ 

\*  $\varepsilon_{\rm spin}$  is the minimal embedding of  $\Delta$ 

イロン イヨン イヨン イヨン

$$\label{eq:F} \begin{split} \mathbb{F} = \mathbb{F}_{2^e} \text{ and } \mathbb{F} \neq \mathbb{F}_2 \\ & : \ \varepsilon_{gr}^{sp} \text{ is the universal embedding of } \Delta \\ & * \ \varepsilon_{spin} \text{ is the minimal embedding of } \Delta \end{split}$$

$$\begin{split} \overline{\mathbb{F}} &= \overline{\mathbb{F}}_2 \\ \vdots &^* \varepsilon_{gr}^{sp} \text{ is not universal.} \\ &^* \dim(\varepsilon_{univ}) = (2^n + 1)(2^n - 1)/3 \\ &^* \varepsilon_{\text{spin}} \text{ is the minimal embedding of } \Delta \end{split}$$

 $\begin{array}{l} {\rm char}(\mathbb{F})=2, \ \mathbb{F} \ {\rm perfect} : \ * \ \varepsilon_{gr}^{sp} \ {\rm is \ universal} \\ * \ \varepsilon_{{\rm spin}} \ {\rm is \ the \ minimal \ embedding \ of \ } \Delta \end{array}$ 

$$char(\mathbb{F}) = 2, \mathbb{F} \text{ non perfect} : * \varepsilon_{univ} =?$$

・ロト ・回ト ・ヨト ・ヨト
#### $\Delta = \mathrm{DQ}(2n, \mathbb{F})$

$$\label{eq:F} \begin{split} \mathbb{F} = \mathbb{F}_{2^e} \mbox{ and } \mathbb{F} \neq \mathbb{F}_2 \\ : \ * \ \varepsilon_{gr}^{sp} \mbox{ is the universal embedding of } \Delta \\ * \ \varepsilon_{spin} \mbox{ is the minimal embedding of } \Delta \end{split}$$

$$\begin{split} \overline{\mathbb{F}} &= \overline{\mathbb{F}}_2 \\ \vdots &^* \varepsilon_{gr}^{sp} \text{ is not universal.} \\ &^* \dim(\varepsilon_{univ}) = (2^n + 1)(2^n - 1)/3 \\ &^* \varepsilon_{spin} \text{ is the minimal embedding of } \Delta \end{split}$$

$$\frac{\operatorname{char}(\mathbb{F}) = 2, \mathbb{F} \text{ non perfect}}{: * \varepsilon_{univ} = ?}$$
$$* \dim(\varepsilon_{min}) = 2^{n}$$

(日) (部) (注) (注) (言)

### Embedding $DQ^{-}(2n + 1, \mathbb{F})$

$$\label{eq:polarization} \begin{split} \Pi := \mathrm{Q}^-(2n+1,\mathbb{F}) \text{: orthogonal polar space of rank } n \geq 2 \text{ of } \\ & \text{elliptic type arising from a non-singular} \\ & \text{quadratic form of Witt index } n \end{split}$$

・ロン ・回 と ・ 回 と ・ 回 と

### Embedding $DQ^{-}(2n + 1, \mathbb{F})$

$$\label{eq:polarization} \begin{split} \Pi := \mathrm{Q}^-(2n+1,\mathbb{F}) \text{: orthogonal polar space of rank } n \geq 2 \text{ of } \\ & \text{elliptic type arising from a non-singular} \\ & \text{quadratic form of Witt index } n \end{split}$$

・ロン ・回 と ・ 回 と ・ 回 と

### Embedding $DQ^{-}(2n + 1, \mathbb{F})$

$$\label{eq:point} \begin{split} \Pi := \mathrm{Q}^-(2n+1,\mathbb{F}) \text{: orthogonal polar space of rank } n \geq 2 \text{ of} \\ \text{elliptic type arising from a non-singular} \\ \text{quadratic form of Witt index } n \end{split}$$

 $\Delta = \mathrm{DQ}^{-}(2n+1,\mathbb{F}): \text{ dual of } \Pi.$ 

## Embedding $DQ^{-}(2n + 1, \mathbb{F})$

$$\label{eq:gamma} \begin{split} \Pi := \mathrm{Q}^-(2n+1,\mathbb{F}) \text{: orthogonal polar space of rank } n \geq 2 \text{ of } \\ \text{elliptic type arising from a non-singular} \\ \text{quadratic form of Witt index } n \end{split}$$

 $\Delta = DQ^{-}(2n+1, \mathbb{F}): \text{ dual of } \Pi.$ Aut( $\Delta$ )<sub>0</sub> = P $\Omega^{-}(2n+2, \mathbb{F})$ .

## Embedding $DQ^{-}(2n + 1, \mathbb{F})$

$$\label{eq:polarization} \begin{split} \Pi := \mathrm{Q}^-(2n+1,\mathbb{F}) \text{: orthogonal polar space of rank } n \geq 2 \text{ of elliptic type arising from a non-singular quadratic form of Witt index } n \end{split}$$

 $\Delta = DQ^{-}(2n+1,\mathbb{F}): \text{ dual of } \Pi.$ Aut( $\Delta$ )<sub>0</sub> = P $\Omega^{-}(2n+2,\mathbb{F}).$ 

 $\varepsilon_{spin}^-: \mathrm{DQ}^-(2n+1,\mathbb{F}) \to \mathrm{PG}(2^n-1,\mathbb{F}):$  spin embedding of  $\Delta$ 

$$\label{eq:polarization} \begin{split} \Pi := \mathrm{Q}^-(2n+1,\mathbb{F}) \text{: orthogonal polar space of rank } n \geq 2 \text{ of elliptic type arising from a non-singular quadratic form of Witt index } n \end{split}$$

 $\Delta = DQ^{-}(2n+1, \mathbb{F}): \text{ dual of } \Pi.$ Aut( $\Delta$ )<sub>0</sub> = P $\Omega^{-}(2n+2, \mathbb{F}).$ 

 $\varepsilon_{spin}^-: \mathrm{DQ}^-(2n+1,\mathbb{F}) \to \mathrm{PG}(2^n-1,\mathbb{F}):$  spin embedding of  $\Delta$ 

 $\varepsilon_{\rm spin}^-:$  arises from the half-spin embedding of the half-spin

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

$$\label{eq:polarization} \begin{split} \Pi := \mathrm{Q}^-(2n+1,\mathbb{F}) \text{: orthogonal polar space of rank } n \geq 2 \text{ of elliptic type arising from a non-singular quadratic form of Witt index } n \end{split}$$

 $\Delta = DQ^{-}(2n+1, \mathbb{F}): \text{ dual of } \Pi.$ Aut( $\Delta$ )<sub>0</sub> = P $\Omega^{-}(2n+2, \mathbb{F}).$ 

 $\varepsilon_{spin}^-: \mathrm{DQ}^-(2n+1,\mathbb{F}) \to \mathrm{PG}(2^n-1,\mathbb{F}):$  spin embedding of  $\Delta$ 

 $\varepsilon_{\rm spin}^-$ : arises from the half-spin embedding of the half-spin geometry of  ${\rm Q}^+(2n+1,\mathbb{F}_1);$ 

$$\label{eq:polarization} \begin{split} \Pi := \mathrm{Q}^-(2n+1,\mathbb{F}) \text{: orthogonal polar space of rank } n \geq 2 \text{ of elliptic type arising from a non-singular quadratic form of Witt index } n \end{split}$$

 $\Delta = DQ^{-}(2n+1, \mathbb{F}): \text{ dual of } \Pi.$ Aut( $\Delta$ )<sub>0</sub> = P $\Omega^{-}(2n+2, \mathbb{F})$ .

 $\varepsilon_{spin}^-: \mathrm{DQ}^-(2n+1,\mathbb{F}) \to \mathrm{PG}(2^n-1,\mathbb{F}):$  spin embedding of  $\Delta$ 

 $\varepsilon_{\rm spin}^-:$  arises from the half-spin embedding of the half-spin geometry of  ${\rm Q}^+(2n+1,\mathbb{F}_1);$ 

 $\varepsilon_{\rm spin}^-:$  full projective polarized homogeneous embedding of  $\Delta.$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

$$\label{eq:polarization} \begin{split} \Pi := \mathrm{Q}^-(2n+1,\mathbb{F}) \text{: orthogonal polar space of rank } n \geq 2 \text{ of elliptic type arising from a non-singular quadratic form of Witt index } n \end{split}$$

 $\Delta = DQ^{-}(2n+1,\mathbb{F}): \text{ dual of } \Pi.$ Aut( $\Delta$ )<sub>0</sub> = P $\Omega^{-}(2n+2,\mathbb{F})$ .

 $\varepsilon_{spin}^-$ :  $\mathrm{DQ}^-(2n+1,\mathbb{F}) \to \mathrm{PG}(2^n-1,\mathbb{F})$ : *spin embedding* of  $\Delta$ 

 $\varepsilon_{\rm spin}^-:$  arises from the half-spin embedding of the half-spin geometry of  ${\rm Q}^+(2n+1,\mathbb{F}_1);$ 

 $\varepsilon_{\rm spin}^- :$  full projective polarized homogeneous embedding of  $\Delta.$ 

 $arepsilon_{ ext{spin}}^-$  is the universal and minimal full polarized embedding of  $\Delta$ 

イロト イポト イラト イラト 一日

## Embedding $DH(2n-1, \mathbb{F}_0^2)$

 $\Pi := \mathrm{H}(2n - 1, \mathbb{F}_0^2): \text{ hermitian polar space of rank } n \ge 2$ arising from a non-singular hermitian form of Witt index n;  $\mathbb{F}_0$  is the subfield of  $\mathbb{F} = \mathbb{F}_0^2$  fixed by an involutory automorphism of  $\mathbb{F}$ .

# Embedding $DH(2n-1, \mathbb{F}_0^2)$

$$\begin{split} \Pi &:= \mathrm{H}(2n-1, \mathbb{F}_0^2): \text{ hermitian polar space of rank } n \geq 2\\ & \text{ arising from a non-singular hermitian}\\ & \text{ form of Witt index } n;\\ & \mathbb{F}_0 \text{ is the subfield of } \mathbb{F} = \mathbb{F}_0^2 \text{ fixed by an}\\ & \text{ involutory automorphism of } \mathbb{F}. \end{split}$$

 $\Delta = \mathrm{DH}(2n-1,\mathbb{F}_0^2): \text{ dual of } \Pi.$ 

# Embedding $DH(2n-1, \mathbb{F}_0^2)$

$$\begin{split} \Pi &:= \mathrm{H}(2n-1, \mathbb{F}_0^2): \text{ hermitian polar space of rank } n \geq 2\\ & \text{ arising from a non-singular hermitian}\\ & \text{ form of Witt index } n;\\ & \mathbb{F}_0 \text{ is the subfield of } \mathbb{F} = \mathbb{F}_0^2 \text{ fixed by an}\\ & \text{ involutory automorphism of } \mathbb{F}. \end{split}$$

$$\begin{split} &\Delta = \mathrm{DH}(2n-1,\mathbb{F}_0^2) \text{: dual of } \Pi.\\ &\mathrm{Aut}(\Delta)_0 = \mathrm{PSU}(2n,\mathbb{F}_0^2). \end{split}$$

# Embedding $DH(2n-1, \mathbb{F}_0^2)$

$$\begin{split} \Pi &:= \mathrm{H}(2n-1, \mathbb{F}_0^2): \text{ hermitian polar space of rank } n \geq 2\\ & \text{ arising from a non-singular hermitian}\\ & \text{ form of Witt index } n;\\ & \mathbb{F}_0 \text{ is the subfield of } \mathbb{F} = \mathbb{F}_0^2 \text{ fixed by an}\\ & \text{ involutory automorphism of } \mathbb{F}. \end{split}$$

$$\begin{split} &\Delta = \mathrm{DH}(2n-1,\mathbb{F}_0^2): \text{ dual of } \Pi.\\ &\mathrm{Aut}(\Delta)_0 = \mathrm{PSU}(2n,\mathbb{F}_0^2). \end{split}$$

 $W_n := \bigwedge^n V(2n, \mathbb{F}_0), \dim(W_n) = \binom{2n}{n} =: N$ 

# Embedding $DH(2n-1, \mathbb{F}_0^2)$

$$\begin{split} \Pi &:= \mathrm{H}(2n-1, \mathbb{F}_0^2): \text{ hermitian polar space of rank } n \geq 2\\ & \text{ arising from a non-singular hermitian}\\ & \text{ form of Witt index } n;\\ & \mathbb{F}_0 \text{ is the subfield of } \mathbb{F} = \mathbb{F}_0^2 \text{ fixed by an}\\ & \text{ involutory automorphism of } \mathbb{F}. \end{split}$$

$$\begin{split} &\Delta = \mathrm{DH}(2n-1,\mathbb{F}_0^2): \text{ dual of } \Pi.\\ &\mathrm{Aut}(\Delta)_0 = \mathrm{PSU}(2n,\mathbb{F}_0^2). \end{split}$$

 $W_n := \bigwedge^n V(2n, \mathbb{F}_0), \dim(W_n) = \binom{2n}{n} =: N$  $\varepsilon_{gr}^H : \mathrm{DH}(2n-1, \mathbb{F}_0^2) \to \mathrm{PG}(W_n):$  grassmann embedding

# Embedding $DH(2n-1, \mathbb{F}_0^2)$

$$\begin{split} \Pi &:= \mathrm{H}(2n-1, \mathbb{F}_0^2): \text{ hermitian polar space of rank } n \geq 2 \\ & \text{ arising from a non-singular hermitian} \\ & \text{ form of Witt index } n; \\ & \mathbb{F}_0 \text{ is the subfield of } \mathbb{F} = \mathbb{F}_0^2 \text{ fixed by an} \\ & \text{ involutory automorphism of } \mathbb{F}. \end{split}$$

$$\begin{split} &\Delta = \mathrm{DH}(2n-1,\mathbb{F}_0^2): \text{ dual of } \Pi.\\ &\mathrm{Aut}(\Delta)_0 = \mathrm{PSU}(2n,\mathbb{F}_0^2). \end{split}$$

 $W_n := \bigwedge^n V(2n, \mathbb{F}_0), \dim(W_n) = \binom{2n}{n} =: N$  $\varepsilon_{gr}^H : \mathrm{DH}(2n-1, \mathbb{F}_0^2) \to \mathrm{PG}(W_n): \text{ grassmann embedding}$ 

 $\varepsilon_{gr}^{H}$  arises from the embedding of the grassmannian of *n*-subspaces of  $V(2n, \mathbb{F})$  in  $PG(N - 1, \mathbb{F})$ , via the choice of a suitable Baer subgeometry  $PG(W_n)$  of  $PG(N - 1, \mathbb{F})$ .

# Embedding $DH(2n-1, \mathbb{F}_0^2)$

$$\begin{split} \Pi &:= \mathrm{H}(2n-1, \mathbb{F}_0^2): \text{ hermitian polar space of rank } n \geq 2 \\ & \text{ arising from a non-singular hermitian} \\ & \text{ form of Witt index } n; \\ & \mathbb{F}_0 \text{ is the subfield of } \mathbb{F} = \mathbb{F}_0^2 \text{ fixed by an} \\ & \text{ involutory automorphism of } \mathbb{F}. \end{split}$$

 $\Delta = \mathrm{DH}(2n - 1, \mathbb{F}_0^2)$ : dual of  $\Pi$ . Aut $(\Delta)_0 = \mathrm{PSU}(2n, \mathbb{F}_0^2)$ .

 $W_n := \bigwedge^n V(2n, \mathbb{F}_0), \dim(W_n) = \binom{2n}{n} =: N$ 

 $\varepsilon_{gr}^{H}$ : DH $(2n - 1, \mathbb{F}_{0}^{2}) \rightarrow PG(W_{n})$ : grassmann embedding

 $\varepsilon_{gr}^{H}$  arises from the embedding of the grassmannian of *n*-subspaces of  $V(2n, \mathbb{F})$  in  $PG(N - 1, \mathbb{F})$ , via the choice of a suitable Baer subgeometry  $PG(W_n)$  of  $PG(N - 1, \mathbb{F})$ .

 $\varepsilon_{gr}^{H}$ : full projective polarized homogeneous embedding of  $\Delta$ 

$$\Delta = \mathrm{DH}(2n-1,\mathbb{F}), \ \mathbb{F} = \mathbb{F}_0^2$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

$$\Delta = \mathrm{DH}(2n-1,\mathbb{F}), \ \mathbb{F} = \mathbb{F}_0^2$$

・ロン ・回 と ・ ヨ と ・ ヨ と

$$\Delta = \mathrm{DH}(2n-1,\mathbb{F}), \ \mathbb{F} = \mathbb{F}_0^2$$

 $\mathbb{F}_0 \neq \mathbb{F}_2$ : \*  $\varepsilon_{gr}^H$  is the universal projective embedding of  $\Delta$ .

$$\Delta = \mathrm{DH}(2n-1,\mathbb{F}), \ \mathbb{F} = \mathbb{F}_0^2$$

 $\mathbb{F}_0 \neq \mathbb{F}_2$ : \*  $\varepsilon_{gr}^H$  is the universal projective embedding of  $\Delta$ .

$$\mathbb{F}_0 = \mathbb{F}_2$$
: \*  $\varepsilon_{gr}^H$  is not the universal projective embedding of  $\Delta$ .

$$\Delta = \mathrm{DH}(2n-1,\mathbb{F}), \ \mathbb{F} = \mathbb{F}_0^2$$

$$\mathbb{F}_0 \neq \mathbb{F}_2$$
: \*  $\varepsilon_{gr}^H$  is the universal projective embedding of  $\Delta$ .

$$\mathbb{F}_0 = \mathbb{F}_2$$
: \*  $\varepsilon_{gr}^H$  is not the universal projective embedding of Δ.  
\* dim( $\varepsilon_{univ}$ ) = (4<sup>n</sup> + 2)/3

・ロン ・回 と ・ ヨ と ・ ヨ と

The dual polar space  $DH(2n, \mathbb{F})$ 

#### $DH(2n, \mathbb{F})$ can NOT be PROJECTIVELY embedded

・ロト ・回ト ・ヨト ・ヨト

The dual polar space  $DH(2n, \mathbb{F})$ 

#### $\mathrm{DH}(2n,\mathbb{F})$ can NOT be PROJECTIVELY embedded

Since  $DH(4, \mathbb{F})$  can not be embedded in any projective space

・ロト ・回ト ・ヨト ・ヨト

The dual polar space  $DH(2n, \mathbb{F})$ 

#### $\mathrm{DH}(2n,\mathbb{F})$ can NOT be PROJECTIVELY embedded

Since  $\mathrm{DH}(4,\mathbb{F})$  can not be embedded in any projective space  $\downarrow$ 

 $\mathrm{DH}(2n,\mathbb{F})$  can not be embedded in any projective space

イロン イヨン イヨン イヨン

### Embedding $DW(2n-1, \mathbb{F})$

 $\Pi := \mathrm{W}(2n-1,\mathbb{F}): \text{ symplectic polar space of rank } n \geq 2$ arising from a non-singular alternating form of Witt index *n* 

 $\Pi := \mathrm{W}(2n-1,\mathbb{F}): \text{ symplectic polar space of rank } n \geq 2$ arising from a non-singular alternating form of Witt index *n* 

 $\Delta = DW(2n - 1, \mathbb{F})$ : dual of  $\Pi$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

 $\Pi := \mathrm{W}(2n-1,\mathbb{F}): \text{ symplectic polar space of rank } n \geq 2$ arising from a non-singular alternating form of Witt index *n* 

 $\Delta = \mathrm{DW}(2n-1,\mathbb{F})$ : dual of  $\Pi$ 

 $\operatorname{Aut}(\Delta)_0 = \operatorname{PSp}(2n, \mathbb{F}).$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

 $\Pi := \mathrm{W}(2n-1,\mathbb{F}): \text{ symplectic polar space of rank } n \geq 2$ arising from a non-singular alternating form of Witt index *n* 

 $\Delta = \mathrm{DW}(2n-1,\mathbb{F})$ : dual of  $\Pi$ 

 $\operatorname{Aut}(\Delta)_0 = \operatorname{PSp}(2n, \mathbb{F}).$ 

 $W_n := \bigwedge^n V(2n, \mathbb{F})$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

 $\Pi := \mathrm{W}(2n-1,\mathbb{F}): \text{ symplectic polar space of rank } n \geq 2$ arising from a non-singular alternating form of Witt index *n* 

 $\Delta = DW(2n - 1, \mathbb{F}): \text{ dual of } \Pi$ Aut( $\Delta$ )<sub>0</sub> = PSp(2*n*,  $\mathbb{F}$ ).

$$\begin{split} \mathcal{W}_n &:= \bigwedge^n \mathcal{V}(2n, \mathbb{F}) \\ & \varepsilon_{gr} : \mathrm{DW}(2n-1, \mathbb{F}) \to \mathrm{PG}(\mathcal{W}_n) \text{: grassmann embedding} \\ & \langle v_1, ..., v_n \rangle \mapsto \langle v_1 \wedge ... \wedge v_n \rangle \end{split}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

 $\Pi := \mathrm{W}(2n-1,\mathbb{F}): \text{ symplectic polar space of rank } n \geq 2$ arising from a non-singular alternating form of Witt index *n* 

 $\Delta = DW(2n - 1, \mathbb{F}): \text{ dual of } \Pi$ Aut( $\Delta$ )<sub>0</sub> = PSp(2n,  $\mathbb{F}$ ).

$$\begin{split} \mathcal{W}_n &:= \bigwedge^n \mathcal{V}(2n, \mathbb{F}) \\ & \varepsilon_{gr} : \mathrm{DW}(2n-1, \mathbb{F}) \to \mathrm{PG}(\mathcal{W}_n) \text{: grassmann embedding} \\ & \langle v_1, ..., v_n \rangle \mapsto \langle v_1 \wedge ... \wedge v_n \rangle \end{split}$$

 $\varepsilon_{gr}$ : full projective polarized homogeneous embedding

 $\Pi := \mathrm{W}(2n-1,\mathbb{F}): \text{ symplectic polar space of rank } n \geq 2$ arising from a non-singular alternating form of Witt index *n* 

$$\begin{split} \Delta &= \mathrm{DW}(2n-1,\mathbb{F}): \text{ dual of } \Pi\\ \mathrm{Aut}(\Delta)_0 &= \mathrm{PSp}(2n,\mathbb{F}). \end{split}$$

$$\begin{split} \mathcal{W}_n &:= \bigwedge^n \mathcal{V}(2n, \mathbb{F}) \\ & \varepsilon_{gr} : \mathrm{DW}(2n-1, \mathbb{F}) \to \mathrm{PG}(\mathcal{W}_n): \text{ grassmann embedding} \\ & \langle v_1, ..., v_n \rangle \mapsto \langle v_1 \wedge ... \wedge v_n \rangle \end{split}$$

 $\varepsilon_{gr}$ : full projective polarized homogeneous embedding  $\dim(\varepsilon_{gr}) = \binom{2n}{n} - \binom{2n}{n-2}.$ 

### The universal embedding of $DW(2n-1, \mathbb{F})$

$$\Delta = \mathrm{DW}(2n-1,\mathbb{F})$$

Ilaria Cardinali An outline of polar spaces: basics and advances Part 3

・ロン ・回と ・ヨン・

æ

### The universal embedding of $DW(2n-1, \mathbb{F})$

$$\Delta = \mathrm{DW}(2n-1,\mathbb{F})$$

 $char(\mathbb{F}) \neq 2 \text{ or } \mathbb{F}_2 \neq \mathbb{F} = \mathbb{F}_{2^e}$ , : \*  $\varepsilon_{gr}$  is the universal embedding.

### The universal embedding of $DW(2n-1, \mathbb{F})$

$$\Delta = \mathrm{DW}(2n-1,\mathbb{F})$$

 $char(\mathbb{F}) \neq 2 \text{ or } \mathbb{F}_2 \neq \mathbb{F} = \mathbb{F}_{2^e}$ , : \*  $\varepsilon_{gr}$  is the universal embedding.

$$\mathbb{F} = \mathbb{F}_2$$
: \*  $\varepsilon_{gr}$  is not universal.

### The universal embedding of $DW(2n-1, \mathbb{F})$

$$\Delta = \mathrm{DW}(2n-1,\mathbb{F})$$

 $char(\mathbb{F}) \neq 2 \text{ or } \mathbb{F}_2 \neq \mathbb{F} = \mathbb{F}_{2^e}$ , : \*  $\varepsilon_{gr}$  is the universal embedding.

$$\begin{array}{|c|c|} \hline \mathbb{F} = \mathbb{F}_2 \end{array} : & \ast \ \varepsilon_{gr} \text{ is not universal.} \\ & \ast \ \dim(\varepsilon_{univ}) = (2^n + 1)(2^n - 1)/3 \end{array}$$
Projective embedding of dual polar spaces Embeddings of Classical thick dual polar spaces

#### The universal embedding of $DW(2n-1, \mathbb{F})$

$$\Delta = \mathrm{DW}(2n-1,\mathbb{F})$$

 $char(\mathbb{F}) \neq 2 \text{ or } \mathbb{F}_2 \neq \mathbb{F} = \mathbb{F}_{2^e}$ , : \*  $\varepsilon_{gr}$  is the universal embedding.

$$\begin{array}{|c|} \hline \ensuremath{\mathbb{F}} = \ensuremath{\mathbb{F}}_2 \end{array} : & \ast \ensuremath{\varepsilon_{gr}} \text{ is not universal.} \\ & \ast \ensuremath{\dim}(\ensuremath{\varepsilon_{univ}}) = (2^n + 1)(2^n - 1)/3. \end{array}$$

 $\operatorname{char}(\mathbb{F}) = 2, \mathbb{F}_2 \neq \mathbb{F}$  arbitrary : \*  $\varepsilon_{gr}$  is universal.

Projective embedding of dual polar spaces Embeddings of Classical thick dual polar spaces

### The minimal embedding of $DW(2n-1, \mathbb{F})$

 $\varepsilon_{min} = \varepsilon_{gr}/R$  where  $R \subseteq W_n$  is the nucleus of  $\varepsilon_{gr}$ .

Projective embedding of dual polar spaces Embeddings of Classical thick dual polar spaces

### The minimal embedding of $DW(2n-1, \mathbb{F})$

 $\varepsilon_{min} = \varepsilon_{gr}/R$  where  $R \subseteq W_n$  is the nucleus of  $\varepsilon_{gr}$ .

 $\operatorname{char}(\mathbb{F}) = 0 \Rightarrow R = 0$  :  $\varepsilon_{gr}$  is the minimal embedding.

# The minimal embedding of $DW(2n-1, \mathbb{F})$

 $\varepsilon_{min} = \varepsilon_{gr}/R$  where  $R \subseteq W_n$  is the nucleus of  $\varepsilon_{gr}$ .

 $char(\mathbb{F}) = 0 \Rightarrow R = 0$  :  $* \varepsilon_{gr}$  is the minimal embedding.

 $\operatorname{char}(\mathbb{F}) \neq 0 \rightarrow R \neq 0$  in general

# The minimal embedding of $DW(2n-1, \mathbb{F})$

 $\varepsilon_{min} = \varepsilon_{gr}/R$  where  $R \subseteq W_n$  is the nucleus of  $\varepsilon_{gr}$ .

 $\operatorname{char}(\mathbb{F}) = 0 \Rightarrow R = 0$ : \*  $\varepsilon_{gr}$  is the minimal embedding.

 $\operatorname{char}(\mathbb{F}) \neq 0 \to R \neq 0 \text{ in general}$ 

 $char(\mathbb{F}) = 2 : * \dim(R) = \binom{2n}{n} - \binom{2n}{n-2} - 2^n \Rightarrow \dim(\varepsilon_{min}) = 2^n$ 

# The minimal embedding of $DW(2n-1, \mathbb{F})$

 $\varepsilon_{\min} = \varepsilon_{gr}/R$  where  $R \subseteq W_n$  is the nucleus of  $\varepsilon_{gr}$ .

 $\operatorname{char}(\mathbb{F}) = 0 \Rightarrow R = 0$  :  $\varepsilon_{gr}$  is the minimal embedding.

 $\operatorname{char}(\mathbb{F}) \neq 0 \rightarrow R \neq 0$  in general

$$char(\mathbb{F}) = 2 : * \dim(R) = \binom{2n}{n} - \binom{2n}{n-2} - 2^n \Rightarrow \dim(\varepsilon_{min}) = 2^n$$

 $char(\mathbb{F}) = 2$ ,  $\mathbb{F}$  perfect : \*  $\varepsilon_{min} \cong \varepsilon_{spin}$  spin embedding of  $DQ(2n, \mathbb{F})$ 

**char**( $\mathbb{F}$ ) > 2: The dimension dim(R) of R and hence the dimension dim( $\varepsilon_{min}$ ) = dim( $\varepsilon_{gr}/R$ ) of the minimal full polarized embedding can be computed by a recursive formula which indeed describes the dimensions of the modules in the composition series of R as a module for  $PSp(2n, \mathbb{F})$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

char( $\mathbb{F}$ ) > 2: The dimension dim(R) of R and hence the dimension dim( $\varepsilon_{min}$ ) = dim( $\varepsilon_{gr}/R$ ) of the minimal full polarized embedding can be computed by a recursive formula which indeed describes the dimensions of the modules in the composition series of R as a module for  $PSp(2n, \mathbb{F})$ .

A. A. Premet and I. D. Suprunenko. The Weyl modules and the irreducible representations of the symplectic group with the fundamental highest weights. *Comm. Algebra* 11 (1983), 1309–1342

소리가 소문가 소문가 소문가