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Organization

Part 1. Background.
@ Classical Polar Spaces
@ Abstract Polar Spaces

o Classification Theorems

Part 2.
@ Polar spaces of infinite rank

@ Embeddings of polar spaces in groups

Part 3.

o Classical Dual Polar Spaces and their embeddings
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Classical Polar Spaces

Sesquilinear Forms

K: a division ring; o: anti-automorphism of K; ¢ € K*

(1) 7 =7
(2) t°" = ete .

V: right vector space over K. Then the function
¢:Vx VK
is a reflexive (o, €)-sesquilinear form if
(3) ¢(x,ya +zf8) = ¢(x,y)a+ ¢(x,2)8 Vo, € K, Vx,y,z €V,
(4) o(y,x) = d(x,y)%, Vx,y €V.
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(5) o> xicvi, 32 yilBy) = D21 o d(xi, y;) B Ve, B € K, Vxi,y; € V.
(6) o(x,x) = @(x,x)%c Vx e V.

Notation and Terminology

a L b stands for ¢(a,b) =0 (a,b € V).
a is an isotropic vector if a L a.
at:={xeV:xla}.

X is totally isotropic if x L y for every x,y € X C V.
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Classical Polar Spaces

Consequences:
(5) o> xicvi, 32 yilBy) = D21 o d(xi, y;) B Ve, B € K, Vxi,y; € V.
(6) o(x,x) = @(x,x)%c Vx e V.

Notation and Terminology

a L b stands for ¢(a,b) =0 (a,b € V).
a is an isotropic vector if a L a.
at:={xeV:xla}.

X is totally isotropic if x L y for every x,y € X C V.
X+ = ﬁxexxl.
X is totally isotropic iff X C X

Rad(¢) := V+ = {a: a* = V}: Radical of ¢.
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Classical Polar Spaces

Consequences:
(5) o> xicvi, 32 yilBy) = D21 o d(xi, y;) B Ve, B € K, Vxi,y; € V.
(6) o(x,x) = @(x,x)%c Vx e V.

Notation and Terminology

a L b stands for ¢(a,b) =0 (a,b € V).
a is an isotropic vector if a L a.
at:={xeV:xla}.

X is totally isotropic if x L y for every x,y € X C V.
X+ = ﬁxexxl.
X is totally isotropic iff X C X
Rad(¢) := V+ = {a: a* = V}: Radical of ¢.
¢ is degenerate if Rad(¢) # {0}.
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Let a,b,c € Vand X CV. Then
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Classical Polar Spaces

Let a,b,c € Vand X CV. Then
(i))alablbclcalcblc=(ab)Cct
(i) (X) C (X)+ & X C Xt

(i) (b) # (c) and (b, c) Z a*t = dim(a* N (b,c)) = 1.

(iv) at #V = at is a hyperplane of V.
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Classical Polar Spaces

Definition

A (o, €)-sesquilinear form ¢ admits a Witt index
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A (o, e)-sesquilinear form ¢ admits a Witt index if all maximal
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If ¢ admits a Witt index then Rank(¢):=Witt index of ¢.
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Classical Polar Spaces

Definition

A (o, e)-sesquilinear form ¢ admits a Witt index if all maximal
totally isotropic subspaces have the same dimension.
If ¢ admits a Witt index then Rank(¢):=Witt index of ¢.

Let ¢ be a (o, e)-sesquilinear form. If there exists a maximal totally
isotropic subspace of finite dimension then ¢ admits a Witt index.
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Definition

A (o, )-sesquilinear form ¢ is trace-valued if
d(x,x) € {t+et?}ex Vx € V.
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Classical Polar Spaces

A (o, e)-sesquilinear form ¢ is trace-valued if
d(x,x) € {t+et?}ex Vx € V.

Theorem

Let ¢ # 0 be a (o, £)-sesquilinear form of V and suppose that
there exist isotropic points of V.
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A (o, e)-sesquilinear form ¢ is trace-valued if
d(x,x) € {t+et?}ex Vx € V.

Theorem

Let ¢ # 0 be a (o, £)-sesquilinear form of V and suppose that
there exist isotropic points of V.

Then V is spanned by the isotropic points if and only if
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Classical Polar Spaces

A (o, e)-sesquilinear form ¢ is trace-valued if
d(x,x) € {t+et?}ex Vx € V.

Theorem

| A

Let ¢ # 0 be a (o, £)-sesquilinear form of V and suppose that
there exist isotropic points of V.

Then V is spanned by the isotropic points if and only if

(a) ¢ is trace-valued;
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Classical Polar Spaces

A (o, e)-sesquilinear form ¢ is trace-valued if
d(x,x) € {t+et?}ex Vx € V.

Theorem

| A

Let ¢ # 0 be a (o, £)-sesquilinear form of V and suppose that
there exist isotropic points of V.

Then V is spanned by the isotropic points if and only if

(a) ¢ is trace-valued;

(b) there exist isotropic points not contained in Rad(¢).
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Classical Polar Spaces

Proposition

If | char(K) # 2| or | char(K) = 2 and 0|7k # id
(K)

Then ¢ is trace-valued.

K: field.

llaria Cardinali An outline of polar spaces: basics and advances Part 1



Classical Polar Spaces

Proposition

If | char(K) # 2| or | char(K) = 2 and 0|7k # id
(K)

Then ¢ is trace-valued.

K: field. The only NON trace-valued (o, ¢)-sesquilinear forms are for

llaria Cardinali An outline of polar spaces: basics and advances Part 1



Classical Polar Spaces

Proposition

If | char(K) # 2| or | char(K) = 2 and 0|7k # id
(K)

Then ¢ is trace-valued.
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Classical Polar Spaces

Proposition

If | char(K) # 2| or | char(K) = 2 and 0|7k # id
(K)

Then ¢ is trace-valued.

K: field. The only NON trace-valued (o, ¢)-sesquilinear forms are for
char(K) =2and o = id (= ¢ =1)
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Classical Polar Spaces

Proposition

If | char(K) # 2| or | char(K) = 2 and 0|7k # id
(K)

Then ¢ is trace-valued.

K: field. The only NON trace-valued (o, ¢)-sesquilinear forms are for
char(K) =2and o = id (= ¢ =1)

Rmk: Given a (not null) sesquilinear form ¢ which is not
trace-valued, it is always possible to consider the associated
non-degenerate trace-valued sesquilinear form ¢yg.
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Classical Polar Spaces

If A is a maximal totally isotropic subspace of V and p &€ A is an
isotropic point
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Classical Polar Spaces

If A is a maximal totally isotropic subspace of V and p &€ A is an
isotropic point then (AN p*, p) is a maximal totally isotropic
subspace.
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Classical Polar Spaces

Lemma

If A is a maximal totally isotropic subspace of V and p & A is an
isotropic point then (AN p*, p) is a maximal totally isotropic
subspace.

| A

Theorem
Suppose ¢ is a trace-valued sesquilinear form of finite Witt index.
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Classical Polar Spaces

Lemma

If A is a maximal totally isotropic subspace of V and p & A is an
isotropic point then (AN p*, p) is a maximal totally isotropic
subspace.

| A

Theorem

Suppose ¢ is a trace-valued sesquilinear form of finite Witt index.
Then, for every maximal totally isotropic subspace A of V there
exists a maximal totally isotropic subspace B such that
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Classical Polar Spaces

Lemma

If A is a maximal totally isotropic subspace of V and p & A is an
isotropic point then (AN p*, p) is a maximal totally isotropic
subspace.

Theorem

| A

Suppose ¢ is a trace-valued sesquilinear form of finite Witt index.
Then, for every maximal totally isotropic subspace A of V there
exists a maximal totally isotropic subspace B such that

AN B = Rad(¢).
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Classical Polar Spaces

Lemma

If A is a maximal totally isotropic subspace of V and p & A is an
isotropic point then (AN p*, p) is a maximal totally isotropic
subspace.

Theorem

Suppose ¢ is a trace-valued sesquilinear form of finite Witt index.
Then, for every maximal totally isotropic subspace A of V there
exists a maximal totally isotropic subspace B such that

AN B = Rad(¢).

Corollary

Suppose ¢ is a trace-valued sesquilinear form of finite Witt index
n.
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Classical Polar Spaces

Lemma

If A is a maximal totally isotropic subspace of V and p & A is an
isotropic point then (AN p*, p) is a maximal totally isotropic
subspace.

Theorem

Suppose ¢ is a trace-valued sesquilinear form of finite Witt index.
Then, for every maximal totally isotropic subspace A of V there
exists a maximal totally isotropic subspace B such that

AN B = Rad(¢).

Corollary

Suppose ¢ is a trace-valued sesquilinear form of finite Witt index
n. Then 2n < dim(V).
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Classical Polar Spaces

Examples of non-deg. trace-valued (o, €)-sesquilinear forms

Alternating Forms.
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alternating if (0,¢) = (id, —1).
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Alternating Forms.

char(K) # 2| ¢: trace-valued (o, ¢)-sesquilinear form is

alternating if (0,¢) = (id, —1).

char(K) = 2| ¢: trace-valued (o, ¢)-sesquilinear form is
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Classical Polar Spaces

Examples of non-deg. trace-valued (o, €)-sesquilinear forms

Alternating Forms.

char(K) # 2| ¢: trace-valued (o, ¢)-sesquilinear form is

alternating if (0,¢) = (id, —1).

char(K) = 2| ¢: trace-valued (o, ¢)-sesquilinear form is

alternating if (o,¢) = (id, 1)
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Classical Polar Spaces

Examples of non-deg. trace-valued (o, €)-sesquilinear forms

Alternating Forms.

char(K) # 2| ¢: trace-valued (o, ¢)-sesquilinear form is

alternating if (0,¢) = (id, —1).

char(K) = 2| ¢: trace-valued (o, ¢)-sesquilinear form is

alternating if (0,¢) = (id, 1) and ¢(x,x) =0Vx € V.
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Classical Polar Spaces

Examples of non-deg. trace-valued (o, €)-sesquilinear forms

Alternating Forms.

char(K) # 2| ¢: trace-valued (o, ¢)-sesquilinear form is

alternating if (0,¢) = (id, —1).

char(K) = 2| ¢: trace-valued (o, ¢)-sesquilinear form is

alternating if (0,¢) = (id, 1) and ¢(x,x) =0Vx € V.

¢ is alternating = all points are isotropic.
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Classical Polar Spaces

Examples of non-deg. trace-valued (o, €)-sesquilinear forms

Alternating Forms.

char(K) # 2| ¢: trace-valued (o, ¢)-sesquilinear form is

alternating if (0,¢) = (id, —1).

char(K) = 2| ¢: trace-valued (o, ¢)-sesquilinear form is

alternating if (0,¢) = (id, 1) and ¢(x,x) =0Vx € V.
¢ is alternating = all points are isotropic.

Non-deg. alternating forms of Witt index n exist only in vector
spaces of dimension 2n.
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Classical Polar Spaces

Examples of non-deg. trace-valued (o, €)-sesquilinear forms

Alternating Forms.

char(K) # 2| ¢: trace-valued (o, ¢)-sesquilinear form is

alternating if (0,¢) = (id, —1).

char(K) = 2| ¢: trace-valued (o, ¢)-sesquilinear form is

alternating if (0,¢) = (id, 1) and ¢(x,x) =0Vx € V.
¢ is alternating = all points are isotropic.

Non-deg. alternating forms of Witt index n exist only in vector
spaces of dimension 2n.

: : . . /
The canonical matrix of a non-deg. alternating form is < O"l 0” > .
—In n
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Classical Polar Spaces

Symmetric Forms.
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Symmetric Forms.

¢: trace-valued (o, £)-sesquilinear form is symmetric
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Symmetric Forms.

¢: trace-valued (o, €)-sesquilinear form is symmetric if (o,2) = (id,1).
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Classical Polar Spaces

Symmetric Forms.
¢: trace-valued (o, €)-sesquilinear form is symmetric if (o,2) = (id,1).

K: field such that every element of K is a square.

llaria Cardinali An outline of polar spaces: basics and advances Part 1



Classical Polar Spaces

Symmetric Forms.
¢: trace-valued (o, €)-sesquilinear form is symmetric if (o,2) = (id,1).

K: field such that every element of K is a square.

char(K) # 2 |: non-degenerate symmetric bilinear forms with finite

Witt index n exist only if dim(V) = 2n or 2n+ 1.
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Classical Polar Spaces

Symmetric Forms.
¢: trace-valued (o, €)-sesquilinear form is symmetric if (o,2) = (id,1).
K: field such that every element of K is a square.

char(K) # 2|: non-degenerate symmetric bilinear forms with finite
Witt index n exist only if dim(V) = 2n or 2n+ 1.

char(K) = 2|: the unique non-degenerate trace-valued symmetric
bilinear forms are alternating.

llaria Cardinali An outline of polar spaces: basics and advances Part 1



Classical Polar Spaces

K: field such that [K: KD] = 2; ¢: non-deg. symmetric bilinear form
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Classical Polar Spaces

K: field such that [K: KD] = 2; ¢: non-deg. symmetric bilinear form

(a) dim(V) = 2n and the canonical matrix of ¢ is ( ?" (I)" ) ;
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Classical Polar Spaces

K: field such that [K: KD] = 2; ¢: non-deg. symmetric bilinear form

(a) dim(V) = 2n and the canonical matrix of ¢ is ( On I ) ;

In On
0, In O
(b) dim(V) =2n+ 1 and the canonical matrix of ¢pis | I, 0, 0 |;
0 0 1
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Classical Polar Spaces

K: field such that [K: KD] = 2; ¢: non-deg. symmetric bilinear form

(a) dim(V) = 2n and the canonical matrix of ¢ is ( On Iy ) ;

I, 0,
0p Ih O
(b) dim(V) =2n+ 1 and the canonical matrix of ¢pis | I, 0, 0 |;

0 0 1
0p Inh 00
. . . I, 0, 0 O

(c) dim(V)=2n+2 and the canonical matrix is 0o 0 1 0 |1 2;

0 0 0 7
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Classical Polar Spaces

K: field such that [K: KD] = 2; ¢: non-deg. symmetric bilinear form

(a) dim(V) = 2n and the canonical matrix of ¢ is ( On Iy ) ;

In On
0, In O
(b) dim(V) =2n+ 1 and the canonical matrix of ¢pis | I, 0, 0 |;
0 0 1
0 I 0O
(c) dim(V)=2n+2 and the canonical matrix is (I)” 8” (1) 8 ,n=—"07
0 0 0 n
0 /b O
(d) dim(V) > 2n+ 2 and the canonical matrixis [ /, 0 0
0 0 M

where —1 =[/ and My is the identity matrix of rank dim(V) — 2n.
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Classical Polar Spaces

Hermitian and Anti-Hermitian Forms.
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Classical Polar Spaces

Hermitian and Anti-Hermitian Forms.

¢: trace-valued (o,¢)-sesq. form is Hermitian
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Classical Polar Spaces

Hermitian and Anti-Hermitian Forms.

¢: trace-valued (o,¢)-sesq. form is Hermitian if o # id and ¢ = 1.
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Classical Polar Spaces

Hermitian and Anti-Hermitian Forms.

¢: trace-valued (o,¢)-sesq. form is Hermitian if o # id and ¢ = 1.

¢: trace-valued (o,¢)-sesq. form is Anti-Hermitian
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Classical Polar Spaces

Hermitian and Anti-Hermitian Forms.

¢: trace-valued (o,¢)-sesq. form is Hermitian if o # id and ¢ = 1.

¢: trace-valued (o, ¢)-sesq. form is Anti-Hermitian if o # id and ¢ = —1.
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Classical Polar Spaces

Hermitian and Anti-Hermitian Forms.

¢: trace-valued (o,¢)-sesq. form is Hermitian if o # id and ¢ = 1.

¢: trace-valued (o, ¢)-sesq. form is Anti-Hermitian if o # id and ¢ = —1.

K= GF(q), g=q3 —e=1.
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Classical Polar Spaces

Hermitian and Anti-Hermitian Forms.

¢: trace-valued (o,¢)-sesq. form is Hermitian if o # id and ¢ = 1.

¢: trace-valued (o, ¢)-sesq. form is Anti-Hermitian if o # id and ¢ = —1.

K= GF(q), g=q3 —e=1.

If ¢ is non-degenerate trace-valued (o, 1)-sesquilinear form with
Witt index n then :
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Classical Polar Spaces

Hermitian and Anti-Hermitian Forms.

¢: trace-valued (o,¢)-sesq. form is Hermitian if o # id and ¢ = 1.

¢: trace-valued (o, ¢)-sesq. form is Anti-Hermitian if o # id and ¢ = —1.

K= GF(q), g=q3 —e=1.

If ¢ is non-degenerate trace-valued (o, 1)-sesquilinear form with
Witt index n then :

(a) dim(V) = 2n and the canonical matrix of ¢ is < (I)” é” >;
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Classical Polar Spaces

Hermitian and Anti-Hermitian Forms.

¢: trace-valued (o,¢)-sesq. form is Hermitian if o # id and ¢ = 1.

¢: trace-valued (o, ¢)-sesq. form is Anti-Hermitian if o # id and ¢ = —1.

K= GF(q), g=q3 —e=1.

If ¢ is non-degenerate trace-valued (o, 1)-sesquilinear form with
Witt index n then :

(a) dim(V) = 2n and the canonical matrix of ¢ is < On 1o >;

In On
0p In O
(b) dim(V) =2n+ 1 and the canonical matrix of ¢pis | [, 0, 0
0 0 1
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Classical Polar Spaces

If K is a division ring then every trace-valued (o, €)-sesquilinear
form
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Classical Polar Spaces

If K is a division ring then every trace-valued (o, €)-sesquilinear
form is either symmetric,
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Classical Polar Spaces

If K is a division ring then every trace-valued (o, €)-sesquilinear
form is either symmetric, alternating
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Classical Polar Spaces

If K is a division ring then every trace-valued (o, €)-sesquilinear
form is either symmetric, alternating or proportional to a
Hermitian form.
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Classical Polar Spaces

KO’,& = {t — €tg}t€K < K
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Classical Polar Spaces

KO’,& = {t — €tg}t€K < K

A function f: V — K/K, . is a (o, €)-pseudoquadratic form if
(i) f(tx) = tf(x)t° Vx e V,Vt e K
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Classical Polar Spaces

KO’,& = {t — €tg}t€K < K

Definition

A function f: V — K/K, . is a (o, €)-pseudoquadratic form if
(i) f(tx) = tf(x)t° Vx e V,Vt e K
(i) fix+y) = () +(y) +(¢(x,y) + Koe) Vx,y €V,
¢: suitable (o, €)-sesquilinear form called the
sesquilinearization of f.

llaria Cardinali An outline of polar spaces: basics and advances Part 1



Classical Polar Spaces

KO’,& = {t — €tg}t€K < K
A function f: V — K/K, . is a (o, €)-pseudoquadratic form if
(i) f(tx) = tf(x)t° Vx e V,Vt e K
(i) fix+y) = () +(y) +(¢(x,y) + Koe) Vx,y €V,

¢: suitable (o, €)-sesquilinear form called the
sesquilinearization of f.

If K, # K then the sesquilinear form ¢ is uniquely determined by
the pseudoquadratic form f.
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Classical Polar Spaces

(a) If char(K) # 2
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Classical Polar Spaces

(a) If char(K) # 2 then f(x) = ¢(x,x)/2 + Ky, Vx€V;
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Classical Polar Spaces

(a) If char(K) # 2 then f(x) = ¢(x,x)/2 + Ky, Vx€V;
(b) If char(K) = 2 and o|zx) # id

llaria Cardinali An outline of polar spaces: basics and advances Part 1



Classical Polar Spaces

(a) If char(K) # 2 then f(x) = ¢(x,x)/2 + Ky, Vx€V;
(b) If char(K) = 2 and o|zx) # id then

f(x) = d(x, x) /(L + (t7/t)) + Kpe, YxEV

where t € Z(K) with t7 # t.
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Classical Polar Spaces

f: (o,¢e)-pseudoquadratic form
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Classical Polar Spaces

f: (o,¢e)-pseudoquadratic form
¢: sesquilinearization of f
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Classical Polar Spaces

f: (o,¢e)-pseudoquadratic form
¢: sesquilinearization of f

A point p in PG(V) is singular if f(p) = 0.
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Classical Polar Spaces

f: (o,¢e)-pseudoquadratic form
¢: sesquilinearization of f

A point p in PG(V) is singular if f(p) = 0.
A subspace S of PG(V) is totally singular if f(x) =0 Vx € S.
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Classical Polar Spaces

f: (o,¢e)-pseudoquadratic form
¢: sesquilinearization of f

A point p in PG(V) is singular if f(p) = 0.
A subspace S of PG(V) is totally singular if f(x) =0 Vx € S.

If S is a totally singular subspace for f
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Classical Polar Spaces

f: (o,¢e)-pseudoquadratic form
¢: sesquilinearization of f

A point p in PG(V) is singular if f(p) = 0.
A subspace S of PG(V) is totally singular if f(x) =0 Vx € S.

If S is a totally singular subspace for f then S is a totally isotropic
subspace for ¢.

llaria Cardinali An outline of polar spaces: basics and advances Part 1



Classical Polar Spaces

f: (o,¢e)-pseudoquadratic form
¢: sesquilinearization of f

A point p in PG(V) is singular if f(p) = 0.
A subspace S of PG(V) is totally singular if f(x) =0 Vx € S.

If S is a totally singular subspace for f then S is a totally isotropic
subspace for ¢. All points of PG(V) singular for f are isotropic for

0.
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Classical Polar Spaces

char(K) # 2 or char(K) = 2 and o|zx) # id
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Classical Polar Spaces

char(K) # 2 or char(K) = 2 and o|zx) # id

p is an isotropic point for ¢ <
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Classical Polar Spaces

char(K) # 2 or char(K) = 2 and o|zx) # id

p is an isotropic point for ¢ < p is a singular point for f.
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Classical Polar Spaces

char(K) # 2 or char(K) = 2 and o|zx) # id

p is an isotropic point for ¢ < p is a singular point for f.

The theory of totally isotropic subspaces for ¢

The theory of totally singular subspaces of f
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Classical Polar Spaces

char(K) # 2 or char(K) = 2 and o|zx) # id

p is an isotropic point for ¢ < p is a singular point for f.

The theory of totally isotropic subspaces for ¢

The theory of totally singular subspaces of f

char(K) = 2 and 0|z = id.
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Classical Polar Spaces

char(K) # 2 or char(K) = 2 and o|zx) # id

p is an isotropic point for ¢ < p is a singular point for f.

The theory of totally isotropic subspaces for ¢

The theory of totally singular subspaces of f

char(K) = 2 and 0|z = id.

* Many results proved for non-degenerate sesquilinear forms have
an analogue for non singular quadratic forms.
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Abstract Polar Spaces

(P, L): partial linear space.
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Abstract Polar Spaces

(P, L): partial linear space.
a | b stands for a and b collinear, a, b € P.
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Abstract Polar Spaces

(P, L): partial linear space.
a | b stands for a and b collinear, a, b € P.
at = {p: p La}uU{a} and if X C P then X+ := Nyexxt.
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Abstract Polar Spaces

(P, L): partial linear space.
a | b stands for a and b collinear, a, b € P.
at = {p: p La}uU{a} and if X C P then X+ := Nyexxt.

Definition

A partial linear space P = (P, L)
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Abstract Polar Spaces

(P, L): partial linear space.
a | b stands for a and b collinear, a, b € P.
at = {p: p La}uU{a} and if X C P then X+ := Nyexxt.

Definition

A partial linear space P = (P, L) is a non-degenerate ordinary
polar space
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Abstract Polar Spaces

(P, L): partial linear space.
a | b stands for a and b collinear, a, b € P.
at = {p: p La}uU{a} and if X C P then X+ := Nyexxt.

Definition

A partial linear space P = (P, L) is a non-degenerate ordinary
polar space if (*) P+ = {);
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Abstract Polar Spaces

(P, L): partial linear space.
a | b stands for a and b collinear, a, b € P.
at = {p: p La}uU{a} and if X C P then X+ := Nyexxt.

Definition

A partial linear space P = (P, L) is a non-degenerate ordinary
polar space if (*) P+ = {);

() lptnilj=1lor|ptnl|=|l| Vpe P, VI€ L
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Abstract Polar Spaces

(P, L): partial linear space.
a | b stands for a and b collinear, a, b € P.
at = {p: p La}uU{a} and if X C P then X+ := Nyexxt.

Definition

A partial linear space P = (P, L) is a non-degenerate ordinary
polar space if (*) P+ = {);

() lptnilj=1lor|ptnl|=|l| Vpe P, VI€ L
(*) /| >3 Vel
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Abstract Polar Spaces

Let P be a non-degenerate ordinary polar space.
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Abstract Polar Spaces

Let P be a non-degenerate ordinary polar space.
S is singular if S C S+.
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Abstract Polar Spaces

Let P be a non-degenerate ordinary polar space.
S is singular if S C S+.

Let ‘P be a non-degenerate ordinary polar space.
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Abstract Polar Spaces

Let P be a non-degenerate ordinary polar space.
S is singular if S C S+.

Let P be a non-degenerate ordinary polar space. If there exists one
maximal chain of singular subspaces of P of finite length then
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Abstract Polar Spaces

Let P be a non-degenerate ordinary polar space.
S is singular if S C S+.

Let P be a non-degenerate ordinary polar space. If there exists one
maximal chain of singular subspaces of P of finite length then
every maximal chain of singular subspaces has finite length
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Abstract Polar Spaces

Let P be a non-degenerate ordinary polar space.
S is singular if S C S+.

Let P be a non-degenerate ordinary polar space. If there exists one
maximal chain of singular subspaces of P of finite length then
every maximal chain of singular subspaces has finite length and all
maximal chains have the same length.
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Abstract Polar Spaces

Let P be a non-degenerate ordinary polar space.
S is singular if S C S+.

Theorem

Let P be a non-degenerate ordinary polar space. If there exists one
maximal chain of singular subspaces of P of finite length then
every maximal chain of singular subspaces has finite length and all
maximal chains have the same length.

Definition

| A

Let P be a non-degenerate ordinary polar space admitting a
maximal chain of singular subspaces of finite length.
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Abstract Polar Spaces

Let P be a non-degenerate ordinary polar space.
S is singular if S C S+.

Theorem

Let P be a non-degenerate ordinary polar space. If there exists one
maximal chain of singular subspaces of P of finite length then
every maximal chain of singular subspaces has finite length and all
maximal chains have the same length.

Definition

| A

Let P be a non-degenerate ordinary polar space admitting a
maximal chain of singular subspaces of finite length. The rank of P
is the length of a maximal chain of non-empty singular subspaces.

V.
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Abstract Polar Spaces

P = (P, L) : non-degenerate ordinary polar space of finite rank.

llaria Cardinali An outline of polar spaces: basics and advances Part 1



Abstract Polar Spaces

P = (P, L) : non-degenerate ordinary polar space of finite rank.
Then the following hold
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Abstract Polar Spaces

P = (P, L) : non-degenerate ordinary polar space of finite rank.
Then the following hold

(i) Every singular subspace of P is a projective space.
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Abstract Polar Spaces

Theorem

P = (P, L) : non-degenerate ordinary polar space of finite rank.
Then the following hold

(i) Every singular subspace of P is a projective space.

(i) If S is a maximal subspace of P
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Abstract Polar Spaces

Theorem

P = (P, L) : non-degenerate ordinary polar space of finite rank.
Then the following hold

(i) Every singular subspace of P is a projective space.

(i) If S is a maximal subspace of P and p a point not in S
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Abstract Polar Spaces

Theorem

P = (P, L) : non-degenerate ordinary polar space of finite rank.
Then the following hold

(i) Every singular subspace of P is a projective space.

(i) If S is a maximal subspace of P and p a point not in S then
pt NS is a hyperplane of S and there exists a unique maximal
subspace S' := (p~ NS, p) such that SNS' = p* NS and
S'2(ptnS)u{p}.
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Abstract Polar Spaces

Theorem

P = (P, L) : non-degenerate ordinary polar space of finite rank.
Then the following hold

(i) Every singular subspace of P is a projective space.

(i) If S is a maximal subspace of P and p a point not in S then
pt NS is a hyperplane of S and there exists a unique maximal
subspace S' := (p~ NS, p) such that SNS' = p* NS and
S'2(ptnS)u{p}.

(iii) Every singular subspace is contained in a maximal singular
subspace.
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Abstract Polar Spaces

Theorem

P = (P, L) : non-degenerate ordinary polar space of finite rank.
Then the following hold

(i) Every singular subspace of P is a projective space.

(i) If S is a maximal subspace of P and p a point not in S then
pt NS is a hyperplane of S and there exists a unique maximal
subspace S' := (p~ NS, p) such that SNS' = p* NS and
S'2(ptnS)u{p}.

(iii) Every singular subspace is contained in a maximal singular
subspace.

(iv) There exist two disjoint maximal subspaces.
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Abstract Polar Spaces

Examples.
(*) Generalized quadrangles:

llaria Cardinali An outline of polar spaces: basics and advances Part 1



Abstract Polar Spaces

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for
any point p and any line /| with p & | there exists a unique point on
| collinear with p.
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Abstract Polar Spaces

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for
any point p and any line /| with p & | there exists a unique point on
| collinear with p.

(*) Projective planes
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Abstract Polar Spaces

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for
any point p and any line /| with p & | there exists a unique point on
| collinear with p.

(*) Projective planes

Theorem

(i) ¢ : non-degenerate reflexive trace-valued (o, €)- sesquilinear
form of finite Witt index over a vector space V.
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Abstract Polar Spaces

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for
any point p and any line /| with p & | there exists a unique point on
| collinear with p.

(*) Projective planes

Theorem

(i) ¢ : non-degenerate reflexive trace-valued (o, €)- sesquilinear
form of finite Witt index over a vector space V. Then the set of all
totally isotropic points and lines of PG(V) with respect to ¢
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Abstract Polar Spaces

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for
any point p and any line /| with p & | there exists a unique point on
| collinear with p.

(*) Projective planes

Theorem

(i) ¢ : non-degenerate reflexive trace-valued (o, €)- sesquilinear
form of finite Witt index over a vector space V. Then the set of all
totally isotropic points and lines of PG(V) with respect to ¢ forms
a non-degenerate ordinary polar space of finite rank.
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Abstract Polar Spaces

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for
any point p and any line /| with p & | there exists a unique point on
| collinear with p.

(*) Projective planes

Theorem

(i) ¢ : non-degenerate reflexive trace-valued (o, €)- sesquilinear
form of finite Witt index over a vector space V. Then the set of all
totally isotropic points and lines of PG(V) with respect to ¢ forms
a non-degenerate ordinary polar space of finite rank.

(ii) f: non-singular pseudo-quadratic form of finite Witt index over
a vector space V.
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Abstract Polar Spaces

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for
any point p and any line /| with p & | there exists a unique point on
| collinear with p.

(*) Projective planes

Theorem

(i) ¢ : non-degenerate reflexive trace-valued (o, €)- sesquilinear
form of finite Witt index over a vector space V. Then the set of all
totally isotropic points and lines of PG(V) with respect to ¢ forms
a non-degenerate ordinary polar space of finite rank.

(ii) f: non-singular pseudo-quadratic form of finite Witt index over
a vector space V. Then the set of all totally singular points and
lines of PG(V) with respect to f
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Abstract Polar Spaces

Examples.

(*) Generalized quadrangles: polar spaces of rank 2 in which for
any point p and any line /| with p & | there exists a unique point on
| collinear with p.

(*) Projective planes

Theorem

(i) ¢ : non-degenerate reflexive trace-valued (o, €)- sesquilinear
form of finite Witt index over a vector space V. Then the set of all
totally isotropic points and lines of PG(V) with respect to ¢ forms
a non-degenerate ordinary polar space of finite rank.

(ii) f: non-singular pseudo-quadratic form of finite Witt index over
a vector space V. Then the set of all totally singular points and
lines of PG(V) with respect to f forms a non-degenerate ordinary
polar space of finite rank.
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Abstract Polar Spaces

Definition

A polar space which can be obtained from either a non-degenerate
reflexive trace-valued sesquilinear or a non-singular
pseudo-quadratic form is called a classical polar space.
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Abstract Polar Spaces

Definition

A polar space which can be obtained from either a non-degenerate
reflexive trace-valued sesquilinear or a non-singular
pseudo-quadratic form is called a classical polar space.

Symplectic polar space « alternating bilinear form < Sp(2n, K)
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Abstract Polar Spaces

Definition

A polar space which can be obtained from either a non-degenerate
reflexive trace-valued sesquilinear or a non-singular
pseudo-quadratic form is called a classical polar space.

Symplectic polar space « alternating bilinear form < Sp(2n, K)

Orthogonal polar space <+ symmetric bilinear form < O(N,K)
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Abstract Polar Spaces

Definition

A polar space which can be obtained from either a non-degenerate
reflexive trace-valued sesquilinear or a non-singular
pseudo-quadratic form is called a classical polar space.

Symplectic polar space « alternating bilinear form < Sp(2n, K)
Orthogonal polar space <+ symmetric bilinear form < O(N,K)

Hermitian polar space < hermitian sesquilinear form < U(N, K)
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Abstract Polar Spaces

Are there any non-degenerate ordinary polar spaces of finite rank
which are not classical?
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Classification Theorems

Definition
A polar space P = (P, L) is embeddable
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Classification Theorems

Definition

A polar space P = (P, L) is embeddable if there exists a vector
space V
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Classification Theorems

Definition

A polar space P = (P, L) is embeddable if there exists a vector
space V and an injective map : P — PG(V) such that
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Classification Theorems

Definition

A polar space P = (P, L) is embeddable if there exists a vector
space V and an injective map : P — PG(V) such that

(i) &(1) is a line of PG(V) for every line | € L;
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Classification Theorems

Definition

A polar space P = (P, L) is embeddable if there exists a vector
space V and an injective map : P — PG(V) such that

(i) &(1) is a line of PG(V) for every line | € L;
(i) (£(P)) = PG(V).
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Classification Theorems

Definition

A polar space P = (P, L) is embeddable if there exists a vector
space V and an injective map : P — PG(V) such that

(i) &(1) is a line of PG(V) for every line | € L;
(i) (£(P)) = PG(V).

Every classical polar space is embeddable
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Every classical polar space is embeddable

< An embeddable polar space is (necessarily) ordinary and all its
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Classification Theorems

Definition

A polar space P = (P, L) is embeddable if there exists a vector
space V and an injective map : P — PG(V) such that

(i) &(1) is a line of PG(V) for every line | € L;
(i) (£(P)) = PG(V).

Every classical polar space is embeddable

< An embeddable polar space is (necessarily) ordinary and all its
planes are desarguesian.

Any embeddable polar space of rank n > 2 is classical.

llaria Cardinali An outline of polar spaces: basics and advances Part 1



Classification Theorems

An ordinary polar space of rank n is
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Classification Theorems

An ordinary polar space of rank n is thick
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Classification Theorems

Definition

An ordinary polar space of rank n is thick if every singular subspace
of dimension n — 2 is contained in at least three maximal singular
subspaces.
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Classification Theorems

Definition

An ordinary polar space of rank n is thick if every singular subspace
of dimension n — 2 is contained in at least three maximal singular
subspaces.

A polar space of rank n is
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Classification Theorems

Definition

An ordinary polar space of rank n is thick if every singular subspace
of dimension n — 2 is contained in at least three maximal singular
subspaces.

A polar space of rank n is top-thin
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Classification Theorems

Definition

An ordinary polar space of rank n is thick if every singular subspace
of dimension n — 2 is contained in at least three maximal singular
subspaces.

A polar space of rank n is top-thin if every singular subspace of
dimension n — 2 is contained in exactly two maximal singular
subspaces.
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Classification Theorems

(1) Any ordinary polar space of rank n > 4 is embeddable (hence
classical).
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Classification Theorems

(1) Any ordinary polar space of rank n > 4 is embeddable (hence
classical).

thick polar space of ran IS embeddable It and only IT Its
2) A thick pol f rank 3 i beddable if and only if i
planes are Desarguesian.
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(1) Any ordinary polar space of rank n > 4 is embeddable (hence
classical).

thick polar space of ran IS embeddable It and only IT Its
2) A thick pol f rank 3 i beddable if and only if i
planes are Desarguesian.

(3) An ordinary top-thin polar space of rank 3 is embeddable if
and only if its planes are Pascalian.
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Classification Theorems

(1) Any ordinary polar space of rank n > 4 is embeddable (hence
classical).

thick polar space of ran IS embeddable It and only IT Its
2) A thick pol f rank 3 i beddable if and only if i
planes are Desarguesian.

(3) An ordinary top-thin polar space of rank 3 is embeddable if
and only if its planes are Pascalian.

Moreover
(4) There exists a unique family of non-embeddable thick polar

spaces of rank 3. The planes of these polar spaces are
Moufang planes.
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Classification Theorems

(1)
()
(3)

Any ordinary polar space of rank n > 4 is embeddable (hence
classical).

A thick polar space of rank 3 is embeddable if and only if its
planes are Desarguesian.

An ordinary top-thin polar space of rank 3 is embeddable if
and only if its planes are Pascalian.

Moreover

There exists a unique family of non-embeddable thick polar
spaces of rank 3. The planes of these polar spaces are
Moufang planes.

Any ordinary, top-thin polar space of rank 3 is obtained as the
Grassmannian of lines of a projective space PG(3, K).
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Classification Theorems

Wedderburn Theorem: Every finite division ring is commutative
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Classification Theorems

Wedderburn Theorem: Every finite division ring is commutative

Artin and Zorn's Theorem: Every finite projective plane of
Moufang type is Pascalian.
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Classification Theorems

Wedderburn Theorem: Every finite division ring is commutative

Artin and Zorn's Theorem: Every finite projective plane of
Moufang type is Pascalian.

Every ordinary and finite polar space of rank at least 3 is classical.
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