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Sesquilinear Forms

K: a division ring;

σ: anti-automorphism of K; ε ∈ K∗

(1) εσ = ε−1;

(2) tσ
2

= εtε−1.

V: right vector space over K. Then the function

φ : V× V→ K
is a reflexive (σ, ε)-sesquilinear form if

(3) φ(x , yα + zβ) = φ(x , y)α + φ(x , z)β ∀α, β ∈ K, ∀x , y , z ∈ V;

(4) φ(y , x) = φ(x , y)σε, ∀x , y ∈ V.
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Classification Theorems

Consequences:

(5) φ(
∑

i xiαi ,
∑

j yjβj) =
∑

i ,j α
σ
i φ(xi , yj)βj ∀αi , βj ∈ K, ∀xi , yj ∈ V.

(6) φ(x , x) = φ(x , x)σε ∀x ∈ V.

Notation and Terminology

a ⊥ b stands for φ(a, b) = 0 (a, b ∈ V).
a is an isotropic vector if a ⊥ a.
a⊥ := {x ∈ V : x ⊥ a}.

X is totally isotropic if x ⊥ y for every x , y ∈ X ⊆ V.
X⊥ := ∩x∈Xx⊥.
X is totally isotropic iff X ⊆ X⊥.

Rad(φ) := V⊥ = {a : a⊥ = V}: Radical of φ.

φ is degenerate if Rad(φ) 6= {0}.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Let a, b, c ∈ V and X ⊆ V. Then

(i) a ⊥ a, b ⊥ b, c ⊥ c , a ⊥ c , b ⊥ c ⇒ 〈a, b〉 ⊆ c⊥.

(ii) 〈X〉 ⊆ 〈X〉⊥ ⇔ X ⊆ X⊥.

(iii) 〈b〉 6= 〈c〉 and 〈b, c〉 6⊆ a⊥ ⇒ dim(a⊥ ∩ 〈b, c〉) = 1.

(iv) a⊥ 6= V⇒ a⊥ is a hyperplane of V.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Definition

A (σ, ε)-sesquilinear form φ admits a Witt index

if all maximal
totally isotropic subspaces have the same dimension.

If φ admits a Witt index then Rank(φ):=Witt index of φ.

Theorem

Let φ be a (σ, ε)-sesquilinear form. If there exists a maximal totally
isotropic subspace of finite dimension then φ admits a Witt index.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Definition

A (σ, ε)-sesquilinear form φ is trace-valued if

φ(x , x) ∈ {t + εtσ}t∈K ∀x ∈ V.

Theorem

Let φ 6= 0 be a (σ, ε)-sesquilinear form of V and suppose that
there exist isotropic points of V.

Then V is spanned by the isotropic points if and only if

(a) φ is trace-valued;

(b) there exist isotropic points not contained in Rad(φ).
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Proposition

If char(K) 6= 2

or char(K) = 2 and σ|Z(K) 6= id

Then φ is trace-valued.

K: field. The only NON trace-valued (σ, ε)-sesquilinear forms are for
char(K) = 2 and σ = id (⇒ ε = 1)

Rmk: Given a (not null) sesquilinear form φ which is not
trace-valued, it is always possible to consider the associated
non-degenerate trace-valued sesquilinear form φ0.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Lemma

If A is a maximal totally isotropic subspace of V and p 6∈ A is an
isotropic point

then 〈A ∩ p⊥, p〉 is a maximal totally isotropic
subspace.

Theorem

Suppose φ is a trace-valued sesquilinear form of finite Witt index.
Then, for every maximal totally isotropic subspace A of V there
exists a maximal totally isotropic subspace B such that
A ∩ B = Rad(φ).

Corollary

Suppose φ is a trace-valued sesquilinear form of finite Witt index
n. Then 2n ≤ dim(V).
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Examples of non-deg. trace-valued (σ, ε)-sesquilinear forms

Alternating Forms.

char(K) 6= 2 φ: trace-valued (σ, ε)-sesquilinear form is

alternating if (σ, ε) = (id ,−1).

char(K) = 2 φ: trace-valued (σ, ε)-sesquilinear form is

alternating if (σ, ε) = (id , 1) and φ(x , x) = 0∀x ∈ V.

φ is alternating ⇒ all points are isotropic.

Non-deg. alternating forms of Witt index n exist only in vector
spaces of dimension 2n.

The canonical matrix of a non-deg. alternating form is

(
0n In
−In 0n

)
.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Symmetric Forms.

φ: trace-valued (σ, ε)-sesquilinear form is symmetric if (σ, ε) = (id , 1).

K: field such that every element of K is a square.

char(K) 6= 2 : non-degenerate symmetric bilinear forms with finite

Witt index n exist only if dim(V) = 2n or 2n + 1.

char(K) = 2 : the unique non-degenerate trace-valued symmetric

bilinear forms are alternating.
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K: field such that [K : K�] = 2; φ: non-deg. symmetric bilinear form

(a) dim(V) = 2n and the canonical matrix of φ is

(
0n In
In 0n

)
;

(b) dim(V) = 2n + 1 and the canonical matrix of φ is

 0n In 0
In 0n 0
0 0 1

;

(c) dim(V)=2n+2 and the canonical matrix is


0n In 0 0
In 0n 0 0
0 0 1 0
0 0 0 η

 , η=− 6�;

(d) dim(V) ≥ 2n + 2 and the canonical matrix is

 0 In 0
In 0 0
0 0 M0


where −1 =6� and M0 is the identity matrix of rank dim(V)− 2n.
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Hermitian and Anti-Hermitian Forms.

φ: trace-valued (σ, ε)-sesq. form is Hermitian if σ 6= id and ε = 1.

φ: trace-valued (σ, ε)-sesq. form is Anti-Hermitian if σ 6= id and ε = −1.

K = GF (q), q = q2
0 → ε = 1.

If φ is non-degenerate trace-valued (σ, 1)-sesquilinear form with
Witt index n then :

(a) dim(V) = 2n and the canonical matrix of φ is

(
0n In
In 0n

)
;

(b) dim(V) = 2n + 1 and the canonical matrix of φ is

 0n In 0
In 0n 0
0 0 1

 .
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Theorem

If K is a division ring then every trace-valued (σ, ε)-sesquilinear
form

is either symmetric, alternating or proportional to a
Hermitian form.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Kσ,ε := {t − εtσ}t∈K ≤ K

Definition

A function f : V→ K/Kσ,ε is a (σ, ε)-pseudoquadratic form if

(i) f (tx) = tf (x)tσ ∀x ∈ V,∀t ∈ K
(ii) f (x + y) = f (x) + f (y) + (φ(x , y) + Kσ,ε) ∀x , y ∈ V,

φ: suitable (σ, ε)-sesquilinear form called the
sesquilinearization of f .

Theorem

If Kσ,ε 6= K then the sesquilinear form φ is uniquely determined by
the pseudoquadratic form f .
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Theorem

(a) If char(K) 6= 2

then f (x) = φ(x , x)/2 + Kσ,ε, ∀x ∈ V;

(b) If char(K) = 2 and σ|Z(K) 6= id then

f (x) = φ(x , x)/(1 + (tσ/t)2) + Kσ,ε, ∀x ∈ V

where t ∈ Z (K) with tσ 6= t.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

f : (σ, ε)-pseudoquadratic form

φ: sesquilinearization of f

A point p in PG(V) is singular if f (p) = 0.
A subspace S of PG(V) is totally singular if f (x) = 0 ∀x ∈ S .

Theorem

If S is a totally singular subspace for f then S is a totally isotropic
subspace for φ. All points of PG(V) singular for f are isotropic for
φ.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

char(K) 6= 2 or char(K) = 2 and σ|Z(K) 6= id

p is an isotropic point for φ ⇔ p is a singular point for f .

The theory of totally isotropic subspaces for φ
≡

The theory of totally singular subspaces of f

char(K) = 2 and σ|Z(K) = id .

* Many results proved for non-degenerate sesquilinear forms have
an analogue for non singular quadratic forms.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

(P, L): partial linear space.

a ⊥ b stands for a and b collinear, a, b ∈ P.
a⊥ := {p : p ⊥ a} ∪ {a} and if X ⊆ P then X⊥ := ∩x∈X x⊥.

Definition

A partial linear space P = (P, L) is a non-degenerate ordinary
polar space if (∗) P⊥ = ∅;

(∗) |p⊥ ∩ l | = 1 or |p⊥ ∩ l | = |l | ∀p ∈ P, ∀l ∈ L;

(∗) |l | ≥ 3 ∀l ∈ L.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Let P be a non-degenerate ordinary polar space.

S is singular if S ⊆ S⊥.

Theorem

Let P be a non-degenerate ordinary polar space. If there exists one
maximal chain of singular subspaces of P of finite length then
every maximal chain of singular subspaces has finite length and all
maximal chains have the same length.

Definition

Let P be a non-degenerate ordinary polar space admitting a
maximal chain of singular subspaces of finite length. The rank of P
is the length of a maximal chain of non-empty singular subspaces.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Theorem

P = (P, L) : non-degenerate ordinary polar space of finite rank.

Then the following hold

(i) Every singular subspace of P is a projective space.

(ii) If S is a maximal subspace of P and p a point not in S then
p⊥ ∩ S is a hyperplane of S and there exists a unique maximal
subspace S ′ := 〈p⊥ ∩ S , p〉 such that S ∩ S ′ = p⊥ ∩ S and
S ′ ⊇ (p⊥ ∩ S) ∪ {p}.

(iii) Every singular subspace is contained in a maximal singular
subspace.

(iv) There exist two disjoint maximal subspaces.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Examples.
(*) Generalized quadrangles:

polar spaces of rank 2 in which for
any point p and any line l with p 6∈ l there exists a unique point on
l collinear with p.

(*) Projective planes

Theorem

(i) φ : non-degenerate reflexive trace-valued (σ, ε)- sesquilinear
form of finite Witt index over a vector space V. Then the set of all
totally isotropic points and lines of PG(V) with respect to φ forms
a non-degenerate ordinary polar space of finite rank.

(ii) f : non-singular pseudo-quadratic form of finite Witt index over
a vector space V. Then the set of all totally singular points and
lines of PG(V) with respect to f forms a non-degenerate ordinary
polar space of finite rank.
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Definition

A polar space which can be obtained from either a non-degenerate
reflexive trace-valued sesquilinear or a non-singular
pseudo-quadratic form is called a classical polar space.

Symplectic polar space ↔ alternating bilinear form ↔ Sp(2n,K)

Orthogonal polar space ↔ symmetric bilinear form ↔ O(N,K)

Hermitian polar space ↔ hermitian sesquilinear form ↔ U(N,K)
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Are there any non-degenerate ordinary polar spaces of finite rank
which are not classical?

Ilaria Cardinali An outline of polar spaces: basics and advances Part 1



Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Definition

A polar space P = (P, L) is embeddable

if there exists a vector
space V and an injective map ξ : P → PG(V) such that

(i) ξ(l) is a line of PG(V) for every line l ∈ L;

(ii) 〈ξ(P)〉 = PG(V).

Every classical polar space is embeddable

↪→ An embeddable polar space is (necessarily) ordinary and all its
planes are desarguesian.

Theorem

Any embeddable polar space of rank n ≥ 2 is classical.
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Classification Theorems

Theorem

(1) Any ordinary polar space of rank n ≥ 4 is embeddable (hence
classical).

(2) A thick polar space of rank 3 is embeddable if and only if its
planes are Desarguesian.

(3) An ordinary top-thin polar space of rank 3 is embeddable if
and only if its planes are Pascalian.

Moreover

(4) There exists a unique family of non-embeddable thick polar
spaces of rank 3. The planes of these polar spaces are
Moufang planes.

(5) Any ordinary, top-thin polar space of rank 3 is obtained as the
Grassmannian of lines of a projective space PG(3,K).
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Classical Polar Spaces
Abstract Polar Spaces

Classification Theorems

Wedderburn Theorem: Every finite division ring is commutative

Artin and Zorn’s Theorem: Every finite projective plane of
Moufang type is Pascalian.

Corollary

Every ordinary and finite polar space of rank at least 3 is classical.
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