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S5* the free monoid on S.

Let we W. Aword u =s;---s; € S* is an expression of w if the
equality w = s; -+ - sp holds in W.

The length of w, lg(w), is the minimal length of an expression of
w.

An expression p = s ---sp of w is reduced if £ = lg(w).
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Let u, ' € S*.
We say that there is an elementary M-transformation joining
to p if there exist v1,10 € $* and s,t € S such that mg; # oo,

p=v1MN(s,t:mst)vo, and p =viMN(t,s: msyt)ro.

Theorem (Tits). Let w € W, and let p, i/ be two reduced
expressions of w.
Then there is a finite sequence of elementary M-transformations

joining pu to p'.
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Let (A, %) be the Artin system of T
Recall the epimorphism 0 : A — W which sends o5 to s for all
seSs.
We define a set-section 7 : W — A of 6 as follows.
Let w € W. Choose a reduced expression p = s1 - -- sy of w.
Set

T(w) =0s -0, .

The definition of 7(w) does not depend on the choice of the
reduced expression.
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Definition. Let X C S.
(3) My = (ms7t)s,t€X-
(b) I'x is the Coxeter graph of Mx.

(c) Wy is the subgroup of W = W, generated by X. It is called
Standard parabolic subgroup.

Theorem (Bourbaki). (Wx, X) is the Coxeter system of I'x.
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Example. Consider the Coxeter graph [ = By.

B4.4—0—0—. BZUAI.L. °
1 2 3 4 1 2 a

Set S = {s1,%,53,5}.

Let X = {s1,52,51}.

Then I is the Coxeter graph By LI Aq.

2_ 2 _ 4
Wx = (s1,s0,58 | s =55 =5, =1,

(s12)* = (s194)* = (254)° = 1)

Definition. Let X, Y be two subsets of S.
We say that an element w € W is (X, Y)-minimal if it is of
minimal length in the double-coset WxwWy .
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Proposition (Bourbaki). Let (W, S) be a Coxeter system.

(1)

(2)

Let X, Y be two subsets of S, and let w € W.

Then there exists a unique (X, Y)-minimal element lying in
WxwWy .

Let X C S, and let w e W.

Then w is (0, X)-minimal if and only if 1g(ws) > lg(w) for all
se X.

Let X C S, and let w € W.

Then w is (0, X)-minimal if and only if

lg(wu) = 1g(w) + lg(u) for all u e Wx.
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Definition. An (abstract) simplicial complex is a pair
T =(S,A), where S is a set, called set of vertices, and A is a set
of subsets of S, called set of simplices, satisfying:

(a) 0 is not a simplex, and all the simplices are finite.
(b) All the singletons are simplices.

(c) Any nonempty subset of a simplex is a simplex.
Definition. Let T = (S, A) be a simplicial complex.
Take B ={es | s € S}.

V' is the real vector space having B as a basis.
For A = {sp,51,...,55} in A, we set

p
|A| = {toes, +treq+ - +tpes, |0<to, t1,..., 5, <1and ¥ t;=1}.
i=0

Note that |A| is a (geometric) simplex of dimension p.
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The geometric realization of T is defined to be the following

subset of V.
T = 1Al
A€cA

We endow |T| with the weak topology.

Example. If (E, <) is a partially ordered set, then the nonempty
finite chains of E form a simplicial complex, called derived
complex of (E, <) and denoted by £/ = (E, <)'.
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Definition. S” = {X C S| Wy is finite}.
Lemma. Let < be the relation on W x S* defined by

(u, X) <X (v, Y)

XCcY,viue Wy, and v iuis (0, X)-minimal.

Then < is a (partial) ordering relation.
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Definition. The Salvetti complex of I', denoted by Sal(l"), is the
geometric realization of the derived complex of (W x ST, <).
Note that the action of W on W x S defined by

w - (u, X) = (wu, X) preserves the ordering.

Hence, it induces an action of W on Sal(T).

Theorem (Charney, Davis). Take a Vinberg system (W, S) and
denote by I' the Coxeter graph of (W, S).

Then there exists a homotopy equivalence f : Sal(l') — M(W,S)
equivariant under the actions of W and that induces a homotopy
equivalence f : Sal(I')/W — M(W,S)/W = N(W,S).
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Corollary (Charney, Davis). The homotopy type of N(W,S) (resp.
M(W,S)) depends only on the Coxeter graph T.

Sal(l') and Sal(l)/W = Sal(I") have “cellular decompositions”
whose k-skeletons for k = 0,1,2 can be described as follows.

0-skeleton.

The 0O-skeleton of Sal(I") is a set {x(w) | w € W}.

The 0-skeleton of Sal(I") is reduced to a point that we denote by
X0-
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1-skeleton. With (u,s) € W x S is associated an edge a(u, s) of
Sal(T") from x(u) to x(us).

So, for u,v € W, if v = us with s € S, there is an edge a(u, s)
going from x(u) to x(v), and there is another edge a(v, s) going
from x(v) to x(u).

a(u, s)
x(u) X

a(v,s) X0

There is no edge joining x(u) and x(v) if v is not of the form
v = us with s € S. o
For each s € S there is an arrow 3 in Sal(") from xg to xo.
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2-skeleton. Let s, t € S, s # t.

Note that {s, t} € S if and only if mg, # cc.

Assume m = ms ; # oo.

With every u € W is associated a 2-cell of Sal(I"), B(u. {s,t}),
whose boundary is

a(u,s)a(us,t)---a(ut,s)"ta(u, t)~?

for such a pair {s, t} is associated a 2-cell B({s, t}) of Sal(I")
whose boudary is

3:3; -3, -3, t = N(3s,3; : m)M(3,3s : m)~L.



x(us) a(us, t)x(ust)
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Theorem. We have 71(Sal(l), xo) = Ar, m1(Sal(l), x(1)) = CAr.
The exact sequence associated with the regular covering
Sal(l") — Sal(I) is
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Corollary (Van der Lek). Let (W,S) be a Vinberg system.
Let I' be the Coxeter graph of (W, S).

Then 7T1(N(W, 5)) = Ar, Wl(M(W,S)) = CAr.

The exact sequence associated with the regular covering
M(W,S) — N(W,S) is

1 CAr Ar 2w 1
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Definition. The Artin monoid of I is the monoid AF“ defined by

A—ri_ = <Z | ﬂ(as,at . ms7t) = I_I(O't,O's . msﬂt)
foralls,t €S, s#t, msy # 00)"

Theorem (P.). The natural homomorphism Al — Ar is injective.
Recall the natural epimorphism ¢ : Ar — Wr

This eplmorphlsm extends to a map R AP X St — W x SF.
And § extends to the universal cover Sal(I") — Sal(T).
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Definition. We set 5§1+(r) the subcomplex of Sal(I') generated
by Af x ST.
Theorem (P.) églJr(F) is contractible.

Definition. T is of spherical type if Wr is finite.

Corollary (not obvious but true). Sal(I") is an Eilenberg MacLane
space if [ is of spherical type.
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Theorem (Godelle, P.). Let ' be a Coxeter graph, let S be its set
of vertices, and let X be a subset of S.

Recall that ['x denotes the full subgraph of ' generated by X.
Then there are “natural” maps tx : Sal(l'x) — Sal(I') and

mx : Sal(l") — Sal(lx) such that mx o tx = Id.

Description of 1x. Recall Wy is the subgroup of W generated by
X.

(Wx, X) is the Coxeter system of I'x.

Set SL = {Y C X | Wy is finite}.

The inclusion Wy x S)f( — W x § induces an embedding

tx @ Salr, — Sal(I).
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Description of wx. Let (u, Y) € W x S*.
We write v = uguy, where ug € Wx and uy is (X, 0)-minimal.
Let Yo =X NupYuyt.
We set
Wx(u, Y) = (U()7 Yo)

Note that, since Wy, C uy Wyufl, the group Wy, is finite, thus
Yo € S;

Then 7x @ Sal(l') — Sal(l'x) is induced by

WxiWXSf—> WXxS)f(.
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Corollary (Godelle, P.). Let I be a Coxeter graph, let S be its set
of vertices, and let X be a subset of S.

If Sal(I") is an Eilenberg MacLane space, then Sal(l'x) is also an
Eilenberg MacLane space.

Corollary (Van der Lek). Let [ be a Coxeter graph, let S be its set
of vertices, and let X be a subset of S.

Let ox : Ary, — Ar the natural homomorphism which sends o5 to
os for all s € X.

Then px is injective.



