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If (W,S) is a Vinberg system and A is the Coxeter arrangement of
(W,S), then we set M(W/.S) = M(A).
Note that W acts freely and properly discontinuously on M(W,S).
We set

N(W.,S)=MW,S)/W.
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Theorem (Van der Lek). Let (W, S) be a Vinberg system, and let
I" be the Coxeter graph of the pair (W, S).

Then w1 (N(W,S)) = Ar, mi(M(W,S)) = CAr, and the short
exact sequence associated with the regular covering

M(W,S) — N(W.,S) is

1 CAr Ar 0 w 1.
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Definition. A space X is an Eilenberg MacLane space for a
discrete group G if the fundamental group of X is G and the
universal cover of X is contractible.

We also say that X is aspherical or that it is a K(G, 1) space.
Eilenberg MacLane spaces play a prominent role in cohomology of
groups.

Conjecture (K(m, 1) conjecture). Let (W, S) be a Vinberg
system, and let I be the Coxeter graph of the pair (W, S).
Then N(W,S) is an Eilenberg MacLane space for Ar.
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Example. Consider the symmetric group &, 1 acting on the
vector space V/ = R™! by permutation of the coordinates.
Fori,je{l,....,n+ 1}, i#j, weset H;; ={x €V |x = x}.
Forie {1,...,n}, s = (i,i+ 1) is a reflection with respect to
Hiiv1.

The pair (6,41, S5) is a Vinberg system, and its associated Coxeter
graph is A,.

1 2 3 n-1 n
In this case we have | = | = V.

The set R of reflections coincides with the set of transpositions,
andA:{H,d|1§/<J§n+1}



We identify V x V with C"*' =C® V.



We identify V x V with C"*' =C® V.
Then

M(Spi1,5) =C™ M\ | JC & Hyy
i<j

is the space of ordered configurations of n+ 1 points in C.



We identify V x V with C"*' =C® V.
Then

M(Spi1,5) =C™ M\ | JC & Hyy
i<j

is the space of ordered configurations of n+ 1 points in C.

N(6n+1: 5) = M(6n+1a 5)/6n+1

is the space of (non-ordered) configurations of n+ 1 points in
C.

Theorem (Artin) 71 (N(&py1,S)) = Bata, the braid group on
n+ 1 strands.
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Definition. Let f, g € C[x] be two non-constant polynomials.

Set

f=ax™+ax" 4t a,

g =box" + bix""t 44 by,

The Sylvester matrix of f and g is

a 0 -+ 0 b
ai a - . b
aa - 0
Syv(fg)= |, % b,
0 an ai O
0 0 a.m 0

807é0

by #0.

0 0

bo

b1 0

. . bo

b by
0 by
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Definition. The resultant of f and g is

Res(f, g) = det(Sylv(f, g)) .
Theorem. f and g have a common root if and only if
Res(f,g) = 0.

Corollary. Let f € C[x| be a polynomial of degree d > 2.
Then f has a multiple root if and only if Res(f, ") = 0.

Definition. Res(f, ') is the discriminant of f.
it is denoted by Disc(f).

Example. If f = ax® + bx + c, then Disc(f) = b® — 4ac.
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Definition. C,[x]| is the set of monic polynomials of degree n.
Note that C,[x] ~ C".

Disc : Cp[x] — C is an algebraic function.

Thus

D = {f € Cy[x]; f has a multiple root} = {f € Cp[x]; Disc(f) = 0}

is an algebraic hypersurface.
D is the n-th discriminant.

Proposition. N(&,,S) = C,[x] \ D.
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Proof. Let ® : M(&,) — C,[x] \ D be
(z1,...,2z0) =(x—z1) - (x — z5) ..

Then & is surjective and we have ®(u) = ®(v) if and only if there

exists Y € &, such that v = y u.
Thus Cp[x] \ D ~ M(&,)/6, = N(&,). O
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Theorem. (Fadell, Neuwirth). N(&,) is an Eilenberg MaclLane
space for B,,.

Proof. We need the following three statements.

(1) Let X — Y be a covering map.
Then X is an Eilenberg MacLane space if and only if Y is an
Eilenberg MacLane space.

(2) Let X — B be a locally trivial fibration map with connected
fiber F.
If B and F are both Eilenberg MacLane spaces, then X is an
Eilenberg MaclLane space, too.

(3) Any graph is an Eilenberg MacLane space.
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By (1), in order to prove that N(G&,) is an Eilenberg MacLane
space, it suffices to prove that M(&,) is an Eilenberg MacLane
space.

We show that M(&,) is an Eilenberg MacLane space by induction
on n.

Suppose n = 2.
Then

M(S3) = C?\ {(z1,22) € C? | z1 = 2} ~ C x C*.

C is an Eilenberg MaclLane space because it is contractible.
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The circle is a deformation retract of C*,
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A

thus C* has the same homotopy type as the circle, therefore C* is
an Eilenberg MacLane space by (3).
By (2) we conclude that M(&>) is an Eilenberg MacLane space.
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Suppose that M(&,) is an Eilenberg MacLane space.

M(6n+1) — M(Gn)
(21)"'7Znazn+1) = (Zla‘-'azn)

is a locally trivial fibration.
The fiber above (1,...,n) is

{(1,...,n,zp41) | Zny1 €{1,...,n}} =~ C\{1,...
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There is a graph which is a deformation retract of C\ {1,...,n}.

+++++

p byt
Thus C\ {1,...,n} is an Eilenberg MacLane space by (3).
We conclude by (2) that M(&,41,S) is an Eilenberg MacLane
space.
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[ be a Coxeter graph, and (/. S) be its Coxeter system.

Take an abstract set {e; | s € S5}.

Denote by V/ the real vector space having {e; | s € S} as a basis.
Define B: V x V — R by

—cos(-"—) if mg; # 00

Blewe) ={ ("

if ms: =00
For s € S define p. € GL(V) by
ps(x) =x —2B(x,e5)es, x€ V.

ps is a linear reflection for all s € S.
S — GL(V), s — ps, induces a linear representation
p: W — GL(V).
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V* be the dual space of V.
Recall that any linear map f € GL(V) determines a linear map
ft e GL(V*) defined by

(fi(a), x) = (o, f(x))

The dual representation p* : W — GL(V") of p is defined by

Forse S, weset H; ={a € V* | (a,e) = 0}.
Let B
Co={ae V| (a,e)>0forall sc S}.
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Theorem (Tits, Bourbaki).
(1) p: W — GL(V) and p* : W* — GL(V*) are faithful.
(2) G is a simplicial cone whose walls are Hs, s € S.
p*(s) is a linear reflection whose fixed hyperplane is Hs, for all

seS.
We have p*(w)CoN Gy = 0 for all w € W\ {1}.

In particular, (p*(W), p*(S)) is a Vinberg system whose associated
Coxeter graph is I'.
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I is of spherical type if Wr is finite.

If '1,...,[, are the connected components of I, then

Wr: er X X Wrz.

In particular, T is of spherical type if and only if all its connected
components are of spherical type.

Theorem (Coxeter).

(1) T is of spherical type if and only if the bilinear form
B:V x V — R is positive definite.

(2) The spherical type connected Coxeter graphs are precisely
those listed in the following figure.



l2(p) &> o Pges



Theorem (Deligne). Let (W, S) be a Vinberg system.
If W is finite, then N(W) is an Eilenberg MacLane space.



