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Definition. S a finite set.
Coxeter matrix on S is M = (ms ¢)s tes such that:

(a) mss=1forall seS;
(b) mss=mes € {2,3,4,...} U{oo} forall s,t € S, s # t.

Definition. Coxeter graph, [ = ['(M).

Labelled graph defined as follows.

(a) S is the set of vertices of T.

(b) Two vertices s, t € S are connected by an edge if ms; > 3.
(c) This edge is labelled by ms ; if ms ¢ > 4.
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M =

N W=
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Its Coxeter graph:
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Definition. Coxeter system of I'is (W,S) = (W, S), where

we— (s s2=1forallses
r= (st)ymst=1foralls,t €S, s#t, ms;# oo

The group Wt is called Coxeter group of T.
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Example. The Coxeter graph A, :

The Coxeter group:

si2:1for1§i§n
<51,...,s,, (sisiy1)3=1for1<i<n-—1 >

(sisj)? =1 for |i — j| > 2

W = &,41, symmetric group, where s; is (i,i + 1).
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Definition. If a, b are two letters and m is an integer > 2, we set

(ab)? if m is even

I_l N b: = m—
(2.b:m) { (ab)Tla if mis odd

Lemma 1. Let I be a Coxeter graph.
Then Wr has the following presentation.

s2=1forallseS
Wr = <S M(s,t:mse) =M(t,s: ms;) foralls,t €S, >
SF# t, Mgt # 00
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Proof. It suffices to prove that the relation (st)™ = 1 is equivalent
to the relation MN(s, t : m) =I(t,s : m) modulo the relations
s?=1forallseS.

We prove that for m = 2 and for m = 3.

Assume m = 2.

(st =stst=1 < st=t ‘st =ts & N(s,t:2) =MN(t,s:2).

Assume m = 3.

(st)® =ststst =1 & sts =t 1s 17! = tst

< MN(s,t:3)=MN(t,s:3).
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Definition. Let > = {05 | s € S}.
The Artin system of I'is (A, X) = (Ar, X), where

Ar = (X | N(os,0¢ : ms,t) = MN(ot, 05 : msﬂt)
foralls,te S, s#t, ms; # 00)

The group Ar is called Artin group of T'.

Thanks to Lemma 1, the map X — S, 05 > s, induces an
epimorphism ¢ : Ar — W,

The kernel of § is the colored Artin group of I and is denoted by
CAr.
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The Artin group:

<O’1,...,0‘n

0i0j410] = 0j4+100j+1 for 1 < i <n-— 1
oioj = ojoj for |i — j| > 2
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Example. The Coxeter graph A, :

The Artin group:

<O’1,...,0’n

This is the braid group 5,1 on n+ 1 strands.
The colored Artin group is the pure braid group P53, 1.

0i0i+10; = 0j410i0j41 for 1 <i<n—1
oioj = ogjoj for |i — j| > 2
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Open questions.

(1) Are the Artin groups torsion free?
(2) How is the center of an Artin group?
(3) Have Artin groups solvable word problem?
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Definition. / is a nonempty open convex cone in a finite

dimensional real vector space V.
A hyperplane arrangement in [ is a family A of linear

hyperplanes of V satisfying

(a) HN I #( for all H € A;

(b) Ais locally finite in /, that is, for all x € /, there is an open
neighborhood Uy of x in | such that the set
{H e A| Hn Uyx # 0} is finite.
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Definition. V be a finite dimensional real vector space.
A reflection on V is a linear transformation on V of order 2 which
fixes a hyperplane.

Definition. Let C; be a closed convex polyhedral cone in V with
nonempty interior.

Let Cy be the interior of Co.

A wall of Cy is the support of a (codimensional 1) face of Co, that
is, a hyperplane of V generated by that face.
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Definition. Let Hi..... H, be the walls of C.

For each i € {1,...,n} we take a reflection s; which fixes H;, and
we denote by I/ the subgroup of GL(V') generated by
S={s1,...,sn}

The pair (W, S) is called a Vinberg system if wCy N Cy = () for
allwe W {1}.

In that case, the group W is called reflection group in Vinberg
sense, S is called canonical generating system for W, and G is
called fundamental chamber of (W, S).
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Theorem (Vinberg). Let (W, S) be a Vinberg system. We set

= wt.
weW
Then the following statements hold.
(1) (W,S) is a Coxeter system.

(2) 1 is a convex cone with nonempty interior.

(3) The interior | of [ is stable under the action of W, and W
acts properly discontinuously on /.

(4) Let x € | be such that W, ={w € W | w(x) = x} is
different from {1}. Then there exists a reflection r in W such
that r(x) = x.
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Remark.

(1) There is a difference in the theorem between the pair (W, S),
viewed as a Vinberg system, and the pair (W, S), viewed a
Coxeter system.

In the first case, W is some specific subgroup of a linear
group, while, in the second case, W is just an abstract group.

(2) Any Coxeter system appears as a Vinberg system (this is due
to Tits), but this representation is not unique in general.

Definition. The above cone [ is called Tits cone of the Vinberg
system (W, S).

Denote by R the set of reflections belonging to W.

For r € R we denote by H, the fixed hyperplane of r, and we set
A ={H, | r € R}. By the theorem, A is a hyperplane
arrangement in the Tits cone /.

It is called Coxeter arrangement of (W, S).
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Example. Consider the symmetric group &, 1 acting on the
space V = R by permutations of the coordinates.
Let

Co={xeV|xx<xx<- <xpp1}.

Fori,je{l,...,n+1},i#j weset H;; ={xe V|x = xj}.
Then G is a convex polyhedral cone whose walls are
Hip,Ho3, ..., Hyng.

Forie {1,...,n}, s; = (i,i+ 1) is a reflection whose fixed
hyperplane is H; ;1.

Then (&py1,{s1,...,5n}) is a Vinberg system.

In this case we have

| = U wC=V.

weS i1

So, | =V, too.
The set R of reflections coincides with the set of transpositions,
thUS.A:{H,'J ’ 1<i<j< n—l—l}.
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s is the orthogonal affine reflection with respect to Dy, and s, is
the orthogonal affine reflection with respect to D.

I/ the subgroup of the orthogonal affine group of E? generated by
{Sk,s | k € Z}.

We have

2 12 72
W:<50751750 51\50 =si=5 =5 =1,

(s050)° = (s051)° = (s150)° = (s151)° = 1)



s is the orthogonal affine reflection with respect to Dy, and s, is
the orthogonal affine reflection with respect to D.

I/ the subgroup of the orthogonal affine group of E? generated by
{Sk,s | k € Z}.

We have

2 12 12
W = (sp,51,50,5] | s6 =s2 =sp" =s," =1,

(s050) = (s0s1) = (s150)° = (s151)% = 1) .
This is the Coxeter group of

o0 o0

o Py P o

50 s1 6 s
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We embed [E? in R3 via the map (x,y) + (x,y,1), and we denote
by Aff(IE?) the affine group of E2.

Recall that, for f € Aff(E?), there are a unique linear
transformation fy € GL(R?) and a unique vector u € R? such that
f = T,ofy, where T, is the translation relative to u.

Recall also that there is an embedding Aff(E?) — GL(R3) defined

by
fo u
f— <O 1) .
In this way, the group W can be regarded as a subgroup of
GL(R3).
We denote by Hj the linear plane of R3 generated by Dy, and we
denote by H the linear plane generated by D .

Then sy is a linear reflection whose fixed hyperplane is Hy, and s,
is a linear reflection whose fixed hyperplane is H, .
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This is a closed convex polyhedral cone whose walls are

Ho, Hu, H, H,.

Observe that wCy N Gy = () for all w € W \ {1}, thus (W,S) is a
Vinberg system, where S = {sp, s1, 54, 51 }-

We have

T=|J wG={(xy.2) eR*| 2> 0} U{(0,0,0)},
weWw

thus
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On the other hand,

A:{Hk,HL’kEZ}.



