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Introduction

Our aim is to present a notion of quantum symmetry of subfactors.
In particular, given a II1 subfactor N ⊂ M of finite index, we prove
the existence of universal Hopf algebras of suitable type acting on
M leaving N fixed. This is a natural quantum analogue of the
Galois group. We also compute this universal Hopf algebra for
several examples, including a generic depth 2 subfactor.



Basics

II1 factors
A von Neumann algebra M is called a factor of type II1 if it has
trivial centre and there is a (unique up to a scalar multiple) faithful
finite trace τ : M → C, i.e., τ(xy) = τ(yx) for all x , y ∈ M.

Definition
An inclusion N ⊂ M of II1 factors is called irreducible if the relative
commutant is trivial, i.e., N ′ ∩ M = C1.

Notation
Let H be a Hilbert space and M ⊂ B(H) be a nondegenerate
embedding. Fix 0 ̸= ξ ∈ H. We denote by Pξ ∈ M and P ′

ξ ∈ M ′ the
projections on the closed linear span of {xξ | x ∈ M ′}, and of
{xξ | x ∈ M}, respectively.



The Coupling Constant

Let H be a Hilbert space and M ⊂ B(H) be a nondegenerate
embedding such that M ′ is again of type II1. Let τ ′ be the trace on
M ′.

Definition
The coupling constant or the dimension of H over M, denoted
dimM(H), is given by the ratio

dimM(H) := τ(Pξ)
τ ′(P ′

ξ) ,

where we use the notation of the previous slide.

Fact
The above ratio does not depend on the choice of ξ.



Index and the Basic Construction

Definition
Given an inclusion N ⊂ M of II1 factors, Vaughan Jones defined its
index to be

[M : N] := dimN(L2(M)),

where L2(M) is the GNS space w.r.t. the unique tracial state on M.

One of the fundamental tools in the theory of subfactors is the
Jones projection and the associated Jones tower construction.

Definition
Let e denote the projection in L2(M) on the closed subspace
spanned by N, and is called the Jones projection. The von
Neumann algebra M1 generated by M and e yields a triple
N ⊂ M ⊂ M1 and is called the basic construction.



Depth of a Subfactor

The basic construction can be iterated to get the Jones tower
N ⊂ M ⊂ M1 ⊂ M2 . . .. Here ek ∈ Mk , k ≥ 1, is the projection
onto Mk−1, so that Mk is the von Neumann algebra generated by
Mk−1 and ek . There is a complete invariant given by Sorin Popa for
a large class of finite index subfactors called ‘amenable’. However,
we do not want to go into further details. We just recall the
definition of depth, in particular subfactors of depth 2.

Definition
Let Ak = N ′ ⋂

Mk . We call the subfactor to be of finite depth if
there is some k such that the central support of ek−1 in Ak equals 1.
The smallest such k is called the depth of the subfactor.



A Theorem of Pimsner and Popa

We recall the following theorem due to Pimsner and Popa.

Theorem
Let N ⊂ M be type II1 von Neumann algebras with finite
dimensional centres and let τM be a faithful normal trace on M for
which N ′ is finite on L2(M, τM). Then
▶ As a right module over N, the algebra M is projective of finite

type.
▶ M1 = {

∑n
j=1 ajeNbj | n ≥ 1, aj , bj ∈ M}.

▶ If α : M → M is a right N-module map, then α extends
uniquely to an element of M1 on L2(M, τM).

▶ If x ∈ M1 then x(M) ⊂ M, where M is viewed as a dense
subspace of L2(M, τM).



Corollary
Let N ⊂ M be a pair of von Neumann algebras of type II1 having
finite dimensional centres and suppose that N is of finite index in M.
Let τM be a faithful normal trace on M with eN and EN defined via
τM . Then

End(MN) ∼= M1 as C-algebras.

By the above Corollary, End(NMN) ∼= N ′ ∩ M1. The fact that
N ⊂ M1 is a finite index pair yields

Proposition
Let N ⊂ M be a pair of finite index II1 factors. Then End(NMN) is
finite dimensional.



Quantum Symmetry of Finite Spaces

Let us now recall Wang’s result (in a dual picture) regarding
universal Hopf action on a finite dimensional semisimple algebra.

Theorem
Let H be a Hopf ∗-algebra and B = ⊕m

k=1Mnk (C). Suppose
▶ B is an H-module ∗-algebra;
▶ H preserves a faithful positive functional ψ on B, i.e., for all

x ∈ B, ψ(h · x) = ε(h)ψ(x).
Then there exists a unique pairing ⟨, ⟩ : H ⊗ Qaut(B, ψ) → C such
that for all h ∈ H, h · ers,j =

∑m
i=1

∑ni
k,l=1 ekl ,i⟨h, akl

rs,ij⟩ holds.

Here, ers,j form a complete set of idempotents of B and akl
rs,ij

generates Qaut(B, ψ) as a CQG Hopf algebra. Thus, the dual of
Qaut(B, ψ), say Q∗

aut(B, ψ), is the universal Hopf ∗-algebra inner
faithfully acting on B and preserves ψ.



The Setup

Definition
Let N ⊂ M be a pair of finite factors. Let C(N ⊂ M) be the
category whose
▶ objects are Hopf ∗-algebras Q admitting an action on M

making it a module ∗-algebra such that N ⊂ MQ , where MQ is
the invariant subalgebra;

▶ morphisms between two objects, say Q and Q′, are Hopf
∗-algebra morphisms ϕ : Q → Q′ such that the following
diagram commutes:

Q ⊗ M Q′ ⊗ M

M

ϕ⊗id

where the unadorned arrows are the respective actions.



(contd.)

Keeping the notations from the previous slide, we define

Definition
We define the quantum Galois group of the inclusion N ⊂ M
denoted QGal(N ⊂ M) to be a terminal object of the category
C(N ⊂ M).

Definition
Let Cτ (N ⊂ M) be the full subcategory of C(N ⊂ M) consisting of
Hopf ∗-algebras admitting a τ -preserving action on M. A terminal
object in this category is denoted as QGalτ (N ⊂ M).



Existence of the Quantum Galois Group

Let H be a Hopf ∗-algebra such that M is an H-module algebra,
with the action being ∗-compatible and N ⊂ MH .

Here MH denotes the fixed point or invariant subalgebra.

Since H leaves N invariant, we get a ∗-representation of H in the
algebra End(NMN) which is a finite dimensional semisimple algebra.
To apply Wang’s result we need the faithful trace to be preserved.

Recall that End(NMN) is a finite dimensional subalgebra of M1,
namely, N ′ ∩ M1.



Invariance of the Trace

We recall the following.

Lemma
The canonical trace on M1, say τ1, has the Markov property:

τ1(eNx) = 1
[M : N]τM(x) ∀x ∈ M.

Proposition
If τM is preserved under the H-action then so is τ1, i.e.,
τ1(h · x) = ε(h)τ1(x), for all x ∈ M1.



Proof of the Proposition, Step 1

First observe that

τ1(
∑

j
ajeNbj) =

∑
j
τ1(eNbjaj) =

∑
j

1
[M : N]τM(bjaj).

The first equality follows from the traciality of τ1. The second from
the Markov property above.



Proof of the Proposition, Step 2

Now, for x , y ∈ M,

τ1(h · (yeNx)) = τ1((h(1) · y)eN(h(2) · x))
= τ1(eN(h(2) · x)(h(1) · y))

= 1
[M : N]τM((h(2) · x)(h(1) · y))

= 1
[M : N]τM((h(1) · y)(h(2) · x))

= 1
[M : N]τM(h · (yx))

= 1
[M : N]ε(h)τM(yx)

= ε(h)τ1(yeNx).

We have used the fact that H acts trivially on eN .



The Main Result

Applying Wang’s result, we obtain

Theorem
Let H be a Hopf ∗-algebra and N ⊂ M is a pair of finite index II1
factors such that
▶ M is an H-module algebra through a ∗-compatible action;
▶ N ⊂ MH , where MH is the invariant subalgebra;
▶ H preserves τM , where τM is the unique normal trace.

Then
▶ the H-action factors through the dual action of a Hopf

∗-subalgebra of the dual Q∗
aut(End(NMN), τ1) of

Qaut(End(NMN), τ1);



The Main Result, contd.

Theorem, contd.
▶ there exists a universal Hopf ∗-algebra, to be denoted by

Q = QGalτ (N ⊂ M), which has a ∗-compatible action on M
such that N is in the invariant subalgebra MQ

▶ this universal Hopf ∗-algebra consists of those elements
h ∈ Q∗

aut(End(NMN), τ1) such that

h · (xy) = (h(1) · x)(h(2) · y)

for all x , y ∈ M.



Explicit Computations

Let us now make some computations of this universal Hopf algebra.
A rich class of the candidates for calculation is the subfactors
obtained by smashed or crossed product by Hopf algebras. In fact,
such examples are essentially generic for depth 2 inclusions.

More precisely, we are interested in action of a finite dimensional
Hopf C∗-algebra H on a type II1 factor A which is outer in the
sense that the centralizer is trivial, i.e.,

A′ ∩ (A ⋊ H) = C.

In this case, A ⊂ M = A ⋊ H is a finite index type II1 subfactor,
which is of depth 2. In fact, a generic (irreducible) depth 2
subfactor arises in this way.



(contd.)

We are able to show that
▶ QGal(A ⊂ A ⋊ H) = H∗, i.e., the dual of H.
▶ QGal(AH ⊂ A) = H, where AH is the invariant subalgebra

w.r.t. the action of H.

We will prove the first one only (later), the other one being similar,
by in some sense a dual argument.

Remark
As the H∗-action preserves the canonical trace of A ⋊ H, it follows
that QGal(N ⊂ M) = QGalτ (N ⊂ M) for an irreducible, depth 2,
finite index subfactor.



Connection with Liu’s Work

Theorem
Let N ⊂ M be an irreducible pair of finite factors with [M : N] < ∞.
Then the action of QGal(N ⊂ M) on M is outer. Furthermore, the
invariant subalgebra MQGal(N⊂M) is a factor with
[M : MQGal(N⊂M)] < ∞.

Proof.
Denote by P the invariant subalgebra MQGal(N⊂M). Thus
N ⊂ P ⊂ M and therefore P ′ ∩ P ⊂ P ′ ∩ M ⊂ N ′ ∩ M = C1M ,
whence the result follows.

This helps to connect our universal Hopf algebras to those
associated with the maximal/minimal intermediate depth 2
subfactors considered by Liu.



(contd.)

Theorem
Let P be the smallest von Neumann algebra s.t. N ⊆ P ⊆ M and
P ⊆ M is depth 2. Then P = MQ, where Q = QGal(N ⊂ M).

Proof.
Clearly, N ⊂ MQ ⊂ M realizes MQ as an intermediate subalgebra
giving depth 2 inclusion. For any such intermediate subfactor
N ⊂ K ⊂ M with K ⊂ M depth 2 and also irreducible and finite
index, so we can write it as K = MH for a suitable (finite
dimensional) Hopf ∗-algebra H acting outerly on M. But then,
N ⊂ MH means H is an object in the category of Galois actions,
hence H ⊆ Q, or, MQ ⊆ MH = K .

Corollary
Let N ⊂ M be an irreducible pair of finite factors with [M : N] < ∞.
Then QGal(N ⊂ M) exists and is isomorphic to QGalτ (N ⊂ M).



Some Remarks

In general, QGalτ (N ⊂ M) will be smaller than QGal(N ⊂ M).

To see this, we consider N ⊂ N ⊗ Mn(C), where n ≥ 2. The
universal Hopf ∗-algebra of “quantum automorphisms” of Mn(C) is
much larger than the corresponding trace-preserving quantum
automorphism group.

This shows that the QGal(N ⊂ N ⊗ Mn(C)) will be strictly bigger
than the trace-preserving quantum Galois group
QGalτ (N ⊂ N ⊗ Mn(C)).



Details of QGal(A ⊂ A ⋊ H) = H∗

Let H be a finite dimensional Hopf C∗-algebra and A be a II1 factor
which is also an H-module algebra. The following is well-known.

Lemma
Let V ∈ HomC(H,A ⋊ H) be the map

V (h) = 1 ⋊ h.

Then V is convolution invertible and “innerifies” the H-action, i.e.,

h · x ⋊ 1 = V (h1)(x ⋊ 1)V −1(h2),

where h ∈ H, x ∈ A, ∆h = h1 ⊗ h2.



(contd.)

Let Q be a Hopf ∗-algebra such that A ⋊ H is Q-module algebra
and A ⊂ (A ⋊ H)Q, where (A ⋊ H)Q is the invariant subalgebra.

Such a Hopf algebra exists; for example, let H∗ be a Hopf algebra
dual to H. By this we mean, H∗ is a Hopf algebra and there is a
nondegenerate pairing

⟨, ⟩ : H∗ ⊗ H → C

satisfying the usual compatibility conditions. For u ∈ H∗, x ∈ A and
h ∈ H, define

u · (x ⋊ h) = x ⋊ (u ⇀ h),

where u ⇀ h = h1⟨u, h2⟩. Then it is clear that the H∗-action is one
such example.



(contd.)
What we show below is that this example is the universal example,
under certain conditions. Recall that by universality, we mean that
there should exist a Hopf algebra morphism ϕ : Q → H∗ such that
the following diagram commutes:

Q ⊗ (A ⋊ H) H∗ ⊗ (A ⋊ H)

A ⋊ H

ϕ⊗1

Observe that, a necessary condition for this to happen is that for
q ∈ Q, h ∈ H,

q · (1 ⋊ h) = ϕ(q) · (1 ⋊ h) = 1 ⋊ h1⟨ϕ(q), h2⟩.

That is Q takes H into H in a very special way. We first achieve
this.



(contd.)

Keeping the above notations, we have the following proposition.

Proposition
Let q ∈ Q, thought of as a map from H → A ⋊ H, h 7→ q · (1 ⋊ h).
Then for each h ∈ H,

V −1q(h) ∈ A′ ∩ (A ⋊ H),

where V −1q is the convolution product, A′ ∩ (A ⋊ H) is the
centralizer of A in A ⋊ H.



Proof of the Proposition

For the proof, let x ∈ A and h ∈ H. We compute

(x ⋊ 1)V −1(h1)q(h2) = V −1(h1)V (h2)(x ⋊ 1)V −1(h3)q(h4)
= V −1(h1)(h2 · x ⋊ 1)q(h3)
= V −1(h1)q · ((h2 · x ⋊ 1)(1 ⋊ h3))
= V −1(h1)q · ((1 ⋊ h2)(x ⋊ 1))
= V −1(h1)q(h2)(x ⋊ 1).

Therefore, we are done.



We have the following

Corollary
Let the extension A → A ⋊ H be irreducible, i.e., A′ ∩ (A ⋊ H) = C
(outer action of H). Then for each q ∈ Q, there exists unique
λq ∈ HomC(H,C) such that

q · (1 ⋊ h) = 1 ⋊ h1λq(h2).

Therefore, Q actually takes H inside H.



Proof of the Corollary

By the previous Proposition, for each q ∈ Q and h ∈ H there exists
λq(h) ∈ C such that V −1q(h) = λq(h)(1 ⋊ 1). Let
Λq ∈ HomC(H,A ⋊ H) be defined as

Λq(h) = 1 ⋊ λq(h)1.

Then V −1q = Λq which implies q = V Λq. So for each h ∈ H,

q · (1⋊ h) = V (h1)Λq(h2) = (1⋊ h1)(1⋊λq(h2)1) = 1⋊ h1λq(h2),

which was to be obtained. Uniqueness follows from applying ε.



Now using this λq, we define a dual pairing between Q and H, from
which universality follows automatically. Define

⟨, ⟩ : Q ⊗ H → C

by
⟨q, h⟩ = λq(h) = (1 ⋊ ε)(q · (1 ⋊ h)).

We show that this defines a dual pairing. We break the proof into
several steps.



Step 1

⟨qq′, h⟩ = ⟨q ⊗ q,∆h⟩ = ⟨q, h1⟩⟨q′, h2⟩

holds. For, by associativity,

qq′ · (1 ⋊ h) = q · (1 ⋊ h1λq′(h2)) = 1 ⋊ h1λq(h2)λq′(h3).

So

⟨qq′, h⟩ = ε(h1)λq(h2)λq′(h3) = λq(h1)λq′(h2) = ⟨q, h1⟩⟨q′, h2⟩.



Step 2

⟨q, hh′⟩ = ⟨q1, h⟩⟨q2, h′⟩

holds. For, since A ⋊ H is a Q-module algebra, we have

q · (1 ⋊ hh′) = q1 · (1 ⋊ h)q2 · (1 ⋊ h′).

Now
q · (1 ⋊ hh′) = 1 ⋊ h1h′

1λq(h2h′
2)

and

q1 · (1⋊h)q2 · (1⋊h′) = h1λq1(h2)h′
1λq2(h′

2) = h1h′
1λq1(h2)λq2(h′

2).

Applying ε yields the result.



Step 3

⟨1, h⟩ = ε(h), ⟨q, 1⟩ = ε(q)

hold which can be seen easily.
The pairing thus defines a bialgebra morphism from Q → H∗. Since
a bialgebra morphism is in fact a Hopf algebra morphism,

⟨q,S(h)⟩ = ⟨S(q), h⟩

holds.



Summarizing all these, we get

Theorem
Let H be a finite dimensional Hopf C∗-algebra acting outerly on a
II1 factor A. Then QGal(A ⊂ A ⋊ H) = H∗.



In the above computation, we investigated inclusions arising from
crossed products by Hopf algebras. As mentioned above, by a result
of Szymański, these are the irreducible depth 2 finite index
inclusions. For a general depth 2 finite index inclusion, a result of
Nikshych-Vainerman says that these arise as crossed products by
weak Hopf algebras. Our techniques need to be modified to cover
this case.

The next example is dual to the previous one in some sense (we
omit the proof).



Invariant Subalgebra

Let H be a finite dimensional Hopf C∗-algebra acting outerly on a
II1 factor A. Let A ⋊ H and AH be the crossed product and the
invariant subalgebra, respectively.

Theorem
Suppose AH ⊂ A ⊂ A ⋊ H is a Jones triple, i.e., A ⊂ A ⋊ H is the
basic construction of AH ⊂ A. Then QGal(AH ⊂ A) = H.



Banica’s Fixed Point Algebras
According to Banica, commuting squares having C in the lower left
corner, i.e., of the form

S X

C P,

⊂

⊂

⊂ ⊂

where S and P are finite dimensional von Neumann algebras, are
isomorphic to one of the following forms

S (P ⊗ (S ⋊ Ĝ))G

C P,

⊂

⊂

⊂ ⊂

and the vertical subfactor associated to the first commuting square
is of the form R ⊂ (P ⊗ (R ⋊ Ĝ))G .



In the above description, G is a compact quantum group of Kac
type, R is the hyperfinite II1-factor. The action of Ĝ on R is outer
and is a product-type action built from the action on S. The action
of G on P is ergodic on the center. Both algebras (P ⊗ (R ⋊ Ĝ))G

and (P ⊗ (S ⋊ Ĝ))G are fixed point algebras in the sense of Banica.
The outerness of the Ĝ-action on R enables us to compute explictly
the quantum Galois group of the inclusion R ⊂ (P ⊗ (R ⋊ Ĝ))G .

Remark
We also note that although R and G are infinite-dimensional, the
finite-dimensionality of P enables us to use the algebraic smash
product rather than the von Neumann crossed product in defining
(P ⊗ (R ⋊ Ĝ))G .



Notation
Let H denote the dense Hopf ∗-algebra O(G) inside C(G) and τ be
the Haar state. Then there exists a conditional expectation E of
P ⊗ R ⋊ Hcop onto (P ⊗ R ⋊ Hcop)Hcop given by

E (b ⊗ a ⋊ h) = b0 ⊗ a ⋊ h2τ(h1S(b1)).

A first description of the quantum Galois group of the Banica
subfactor is the following.

Theorem
QGal(R ⊂ (P ⊗ R ⋊ Hcop)Hcop ) is isomorphic with the universal
Hopf ∗-algebra which acts on E (P ⊗ 1 ⋊ Hcop) and maps each of
the subspaces E (P ⊗ 1 ⋊ h) into itself, for h ∈ H.



We write Ĥ for the subspace of H∗ consisting of functionals of the
form τ(·h) for some h ∈ H. It is well-known that Ĥ is a Hopf
algebra in duality with H. We also recall that Ĥcop is Ĥop.
Therefore we identify Ĥcop with the space consisting of linear
functionals of the form τ(·S(h)) for some h ∈ H.

There is also the canonical action of Ĥcop on P given by
ω ⇀ b = b0ω(b1), which takes the form
b0τ(b1S(h)) = b0τ(hS(b1)) if ω is given by τ(·S(h)). The above
Theorem can then be rewritten as

Theorem
QGal(R ⊂ (P ⊗ R ⋊ Hcop)Hcop ) is isomorphic with the universal
Hopf ∗-algebra which acts on P such that for each ω ∈ Ĥcop

elements of the form ω ⇀ b are mapped to elements of the same
form.



To be more explicit, we introduce some notation.

Lemma
Let Q be a Hopf ∗-algebra and S = S∗ ⊂ Q be a subset. Let
CQ(S) = {q ∈ Q | qs = sq, ∀s ∈ S}. Then there exists a largest
Hopf ∗-subalgebra of Q contained in CQ(S).

Definition
We denote by HCQ(S) the largest Hopf ∗-subalgebra of Q
contained in CQ(S) and call it the Hopf centralizer of S.

For example, if G is a finite group and H is a subgroup, then
HCCG(CH) is CCG(H), the group algebra of the centralizer. Let us
denote the Ĥcop action on B by Λ : Ĥcop → End(P) from now on.
Then with these notations,

Theorem
QGal(R ⊂ (P ⊗ R ⋊ Hcop)Hcop ) ∼= HCQaut(P)(Λ(Ĥcop)).



Thank you!
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