Quantum Galois Groups of Subfactors

Debashish Goswami

Statistics and Mathematics Unit
Indian Statistical Institute, Kolkata
goswamid@isical.ac.in
January 19, 2022

Joint work with
Suvrajit Bhattacharjee and Alexandru Chirvasitu To appear in International Journal of Mathematics

Outline

Introduction

Subfactor Preliminaries

Existence of a Universal Galois-type Action on Subfactors

Examples

Introduction

Our aim is to present a notion of quantum symmetry of subfactors. In particular, given a II_{1} subfactor $N \subset M$ of finite index, we prove the existence of universal Hopf algebras of suitable type acting on M leaving N fixed. This is a natural quantum analogue of the Galois group. We also compute this universal Hopf algebra for several examples, including a generic depth 2 subfactor.

Basics

II_{1} factors

A von Neumann algebra M is called a factor of type II_{1} if it has trivial centre and there is a (unique up to a scalar multiple) faithful finite $\operatorname{trace} \tau: M \rightarrow \mathbb{C}$, i.e., $\tau(x y)=\tau(y x)$ for all $x, y \in M$.

Definition

An inclusion $N \subset M$ of II_{1} factors is called irreducible if the relative commutant is trivial, i.e., $N^{\prime} \cap M=\mathbb{C} 1$.

Notation

Let H be a Hilbert space and $M \subset B(H)$ be a nondegenerate embedding. Fix $0 \neq \xi \in H$. We denote by $P_{\xi} \in M$ and $P_{\xi}^{\prime} \in M^{\prime}$ the projections on the closed linear span of $\left\{x \xi \mid x \in M^{\prime}\right\}$, and of $\{x \xi \mid x \in M\}$, respectively.

The Coupling Constant

Let H be a Hilbert space and $M \subset B(H)$ be a nondegenerate embedding such that M^{\prime} is again of type I_{1}. Let τ^{\prime} be the trace on M^{\prime}.

Definition

The coupling constant or the dimension of H over M, denoted $\operatorname{dim}_{M}(H)$, is given by the ratio

$$
\operatorname{dim}_{M}(H):=\frac{\tau\left(P_{\xi}\right)}{\tau^{\prime}\left(P_{\xi}^{\prime}\right)}
$$

where we use the notation of the previous slide.
Fact
The above ratio does not depend on the choice of ξ.

Index and the Basic Construction

Definition

Given an inclusion $N \subset M$ of II_{1} factors, Vaughan Jones defined its index to be

$$
[M: N]:=\operatorname{dim}_{N}\left(L^{2}(M)\right)
$$

where $L^{2}(M)$ is the GNS space w.r.t. the unique tracial state on M.
One of the fundamental tools in the theory of subfactors is the Jones projection and the associated Jones tower construction.

Definition

Let e denote the projection in $L^{2}(M)$ on the closed subspace spanned by N, and is called the Jones projection. The von Neumann algebra M_{1} generated by M and e yields a triple $N \subset M \subset M_{1}$ and is called the basic construction.

Depth of a Subfactor

The basic construction can be iterated to get the Jones tower $N \subset M \subset M_{1} \subset M_{2} \ldots$. Here $e_{k} \in M_{k}, k \geq 1$, is the projection onto M_{k-1}, so that M_{k} is the von Neumann algebra generated by M_{k-1} and e_{k}. There is a complete invariant given by Sorin Popa for a large class of finite index subfactors called 'amenable'. However, we do not want to go into further details. We just recall the definition of depth, in particular subfactors of depth 2.

Definition

Let $A_{k}=N^{\prime} \cap M_{k}$. We call the subfactor to be of finite depth if there is some k such that the central support of e_{k-1} in A_{k} equals 1 . The smallest such k is called the depth of the subfactor.

A Theorem of Pimsner and Popa

We recall the following theorem due to Pimsner and Popa.
Theorem
Let $N \subset M$ be type II_{1} von Neumann algebras with finite dimensional centres and let τ_{M} be a faithful normal trace on M for which N^{\prime} is finite on $L^{2}\left(M, \tau_{M}\right)$. Then

- As a right module over N, the algebra M is projective of finite type.
- $M_{1}=\left\{\sum_{j=1}^{n} a_{j} e_{N} b_{j} \mid n \geq 1, a_{j}, b_{j} \in M\right\}$.
- If $\alpha: M \rightarrow M$ is a right N-module map, then α extends uniquely to an element of M_{1} on $L^{2}\left(M, \tau_{M}\right)$.
- If $x \in M_{1}$ then $x(M) \subset M$, where M is viewed as a dense subspace of $L^{2}\left(M, \tau_{M}\right)$.

Corollary

Let $N \subset M$ be a pair of von Neumann algebras of type II_{1} having finite dimensional centres and suppose that N is of finite index in M. Let τ_{M} be a faithful normal trace on M with e_{N} and E_{N} defined via τ_{M}. Then

$$
\operatorname{End}\left(M_{N}\right) \cong M_{1} \quad \text { as } \mathbb{C} \text {-algebras. }
$$

By the above Corollary, $\operatorname{End}\left({ }_{N} M_{N}\right) \cong N^{\prime} \cap M_{1}$. The fact that $N \subset M_{1}$ is a finite index pair yields

Proposition

Let $N \subset M$ be a pair of finite index II_{1} factors. Then $\operatorname{End}\left({ }_{N} M_{N}\right)$ is finite dimensional.

Quantum Symmetry of Finite Spaces

Let us now recall Wang's result (in a dual picture) regarding universal Hopf action on a finite dimensional semisimple algebra.

Theorem

Let H be a Hopf $*$-algebra and $B=\oplus_{k=1}^{m} M_{n_{k}}(\mathbb{C})$. Suppose

- B is an H-module $*$-algebra;
- H preserves a faithful positive functional ψ on B, i.e., for all $x \in B, \psi(h \cdot x)=\varepsilon(h) \psi(x)$.
Then there exists a unique pairing $\langle\rangle:, H \otimes Q_{\text {aut }}(B, \psi) \rightarrow \mathbb{C}$ such that for all $h \in H, h \cdot e_{r s, j}=\sum_{i=1}^{m} \sum_{k, l=1}^{n_{i}} e_{k l, i}\left\langle h, a_{r s, i j}^{k l}\right\rangle$ holds.

Here, $e_{r s, j}$ form a complete set of idempotents of B and $a_{r s, i j}^{k l}$ generates $Q_{\text {aut }}(B, \psi)$ as a CQG Hopf algebra. Thus, the dual of $Q_{\text {aut }}(B, \psi)$, say $Q_{\text {aut }}^{*}(B, \psi)$, is the universal Hopf $*$-algebra inner faithfully acting on B and preserves ψ.

The Setup

Definition

Let $N \subset M$ be a pair of finite factors. Let $\mathrm{C}(N \subset M)$ be the category whose

- objects are Hopf $*$-algebras Q admitting an action on M making it a module $*$-algebra such that $N \subset M^{Q}$, where M^{Q} is the invariant subalgebra;
- morphisms between two objects, say Q and Q^{\prime}, are Hopf *-algebra morphisms $\phi: Q \rightarrow Q^{\prime}$ such that the following diagram commutes:

where the unadorned arrows are the respective actions.

(contd.)

Keeping the notations from the previous slide, we define
Definition
We define the quantum Galois group of the inclusion $N \subset M$ denoted $\mathrm{QGal}(N \subset M)$ to be a terminal object of the category $\mathrm{C}(N \subset M)$.

Definition
Let $\mathrm{C}_{\tau}(N \subset M)$ be the full subcategory of $\mathrm{C}(N \subset M)$ consisting of Hopf $*$-algebras admitting a τ-preserving action on M. A terminal object in this category is denoted as $\mathrm{QGal}_{\tau}(N \subset M)$.

Existence of the Quantum Galois Group

Let H be a Hopf $*$-algebra such that M is an H-module algebra, with the action being $*$-compatible and $N \subset M^{H}$.

Here M^{H} denotes the fixed point or invariant subalgebra.
Since H leaves N invariant, we get a $*$-representation of H in the algebra $\operatorname{End}\left({ }_{N} M_{N}\right)$ which is a finite dimensional semisimple algebra. To apply Wang's result we need the faithful trace to be preserved.

Recall that $\operatorname{End}\left({ }_{N} M_{N}\right)$ is a finite dimensional subalgebra of M_{1}, namely, $N^{\prime} \cap M_{1}$.

Invariance of the Trace

We recall the following.
Lemma
The canonical trace on M_{1}, say τ_{1}, has the Markov property:

$$
\tau_{1}\left(e_{N} x\right)=\frac{1}{[M: N]} \tau_{M}(x) \quad \forall x \in M
$$

Proposition

If τ_{M} is preserved under the H-action then so is τ_{1}, i.e.,
$\tau_{1}(h \cdot x)=\varepsilon(h) \tau_{1}(x)$, for all $x \in M_{1}$.

Proof of the Proposition, Step 1

First observe that

$$
\tau_{1}\left(\sum_{j} a_{j} e_{N} b_{j}\right)=\sum_{j} \tau_{1}\left(e_{N} b_{j} a_{j}\right)=\sum_{j} \frac{1}{[M: N]} \tau_{M}\left(b_{j} a_{j}\right)
$$

The first equality follows from the traciality of τ_{1}. The second from the Markov property above.

Proof of the Proposition, Step 2

Now, for $x, y \in M$,

$$
\begin{aligned}
\tau_{1}\left(h \cdot\left(y e_{N} x\right)\right) & =\tau_{1}\left(\left(h_{(1)} \cdot y\right) e_{N}\left(h_{(2)} \cdot x\right)\right) \\
& =\tau_{1}\left(e_{N}\left(h_{(2)} \cdot x\right)\left(h_{(1)} \cdot y\right)\right) \\
& =\frac{1}{[M: N]} \tau_{M}\left(\left(h_{(2)} \cdot x\right)\left(h_{(1)} \cdot y\right)\right) \\
& =\frac{1}{[M: N]} \tau_{M}\left(\left(h_{(1)} \cdot y\right)\left(h_{(2)} \cdot x\right)\right) \\
& =\frac{1}{[M: N]} \tau_{M}(h \cdot(y x)) \\
& =\frac{1}{[M: N]} \varepsilon(h) \tau_{M}(y x) \\
& =\varepsilon(h) \tau_{1}\left(y e_{N} x\right) .
\end{aligned}
$$

We have used the fact that H acts trivially on e_{N}.

The Main Result

Applying Wang's result, we obtain
Theorem
Let H be a Hopf $*$-algebra and $N \subset M$ is a pair of finite index II_{1} factors such that

- M is an H-module algebra through a *-compatible action;
- $N \subset M^{H}$, where M^{H} is the invariant subalgebra;
- H preserves τ_{M}, where τ_{M} is the unique normal trace.

Then

- the H-action factors through the dual action of a Hopf *-subalgebra of the dual $Q_{\text {aut }}^{*}\left(\operatorname{End}\left({ }_{N} M_{N}\right), \tau_{1}\right)$ of $Q_{\text {aut }}\left(\operatorname{End}\left({ }_{N} M_{N}\right), \tau_{1}\right)$;

The Main Result, contd.

Theorem, contd.

- there exists a universal Hopf *-algebra, to be denoted by $Q=\mathrm{QGal}_{\tau}(N \subset M)$, which has a $*$-compatible action on M such that N is in the invariant subalgebra M^{Q}
- this universal Hopf $*$-algebra consists of those elements $h \in Q_{\text {aut }}^{*}\left(\operatorname{End}\left({ }_{N} M_{N}\right), \tau_{1}\right)$ such that

$$
h \cdot(x y)=\left(h_{(1)} \cdot x\right)\left(h_{(2)} \cdot y\right)
$$

for all $x, y \in M$.

Explicit Computations

Let us now make some computations of this universal Hopf algebra.
A rich class of the candidates for calculation is the subfactors obtained by smashed or crossed product by Hopf algebras. In fact, such examples are essentially generic for depth 2 inclusions.
More precisely, we are interested in action of a finite dimensional Hopf C^{*}-algebra H on a type II_{1} factor A which is outer in the sense that the centralizer is trivial, i.e.,

$$
A^{\prime} \cap(A \rtimes H)=\mathbb{C} .
$$

In this case, $A \subset M=A \rtimes H$ is a finite index type II_{1} subfactor, which is of depth 2. In fact, a generic (irreducible) depth 2 subfactor arises in this way.

(contd.)

We are able to show that

- $\operatorname{QGal}(A \subset A \rtimes H)=H^{*}$, i.e., the dual of H.
- $\operatorname{QGal}\left(A^{H} \subset A\right)=H$, where A^{H} is the invariant subalgebra w.r.t. the action of H.

We will prove the first one only (later), the other one being similar, by in some sense a dual argument.

Remark

As the H^{*}-action preserves the canonical trace of $A \rtimes H$, it follows that $\mathrm{QGal}(N \subset M)=\mathrm{QGal}_{\tau}(N \subset M)$ for an irreducible, depth 2, finite index subfactor.

Connection with Liu's Work

Theorem

Let $N \subset M$ be an irreducible pair of finite factors with $[M: N]<\infty$. Then the action of $\mathrm{QGal}(N \subset M)$ on M is outer. Furthermore, the invariant subalgebra $M^{\mathrm{QGal}(N \subset M)}$ is a factor with
$\left[M: M^{\text {QGal }(N \subset M)}\right]<\infty$.
Proof.
Denote by P the invariant subalgebra $M^{\mathrm{QGal}(N \subset M)}$. Thus $N \subset P \subset M$ and therefore $P^{\prime} \cap P \subset P^{\prime} \cap M \subset N^{\prime} \cap M=\mathbb{C} 1_{M}$, whence the result follows.

This helps to connect our universal Hopf algebras to those associated with the maximal/minimal intermediate depth 2 subfactors considered by Liu.

(contd.)

Theorem

Let P be the smallest von Neumann algebra s.t. $N \subseteq P \subseteq M$ and $P \subseteq M$ is depth 2. Then $P=M^{Q}$, where $Q=\operatorname{QGal}(N \subset M)$.

Proof.
Clearly, $N \subset M^{Q} \subset M$ realizes M^{Q} as an intermediate subalgebra giving depth 2 inclusion. For any such intermediate subfactor $N \subset K \subset M$ with $K \subset M$ depth 2 and also irreducible and finite index, so we can write it as $K=M^{H}$ for a suitable (finite dimensional) Hopf $*$-algebra H acting outerly on M. But then, $N \subset M^{H}$ means H is an object in the category of Galois actions, hence $H \subseteq Q$, or, $M^{Q} \subseteq M^{H}=K$.

Corollary
Let $N \subset M$ be an irreducible pair of finite factors with $[M: N]<\infty$. Then $\mathrm{QGal}(N \subset M)$ exists and is isomorphic to $\mathrm{QGal}_{\tau}(N \subset M)$.

Some Remarks

In general, $\mathrm{QGal}_{\tau}(N \subset M)$ will be smaller than $\mathrm{QGal}(N \subset M)$.
To see this, we consider $N \subset N \otimes M_{n}(\mathbb{C})$, where $n \geq 2$. The universal Hopf $*$-algebra of "quantum automorphisms" of $M_{n}(\mathbb{C})$ is much larger than the corresponding trace-preserving quantum automorphism group.

This shows that the $\mathrm{QGal}\left(N \subset N \otimes M_{n}(\mathbb{C})\right)$ will be strictly bigger than the trace-preserving quantum Galois group $\mathrm{QGal}_{\tau}\left(N \subset N \otimes M_{n}(\mathbb{C})\right)$.

Details of $\operatorname{QGal}(A \subset A \rtimes H)=H^{*}$

Let H be a finite dimensional Hopf C^{*}-algebra and A be a II_{1} factor which is also an H-module algebra. The following is well-known.

Lemma
Let $V \in \operatorname{Hom}_{\mathbb{C}}(H, A \rtimes H)$ be the map

$$
V(h)=1 \rtimes h
$$

Then V is convolution invertible and "innerifies" the H-action, i.e.,

$$
h \cdot x \rtimes 1=V\left(h_{1}\right)(x \rtimes 1) V^{-1}\left(h_{2}\right)
$$

where $h \in H, x \in A, \Delta h=h_{1} \otimes h_{2}$.

(contd.)

Let Q be a Hopf *-algebra such that $A \rtimes H$ is Q-module algebra and $A \subset(A \rtimes H)^{Q}$, where $(A \rtimes H)^{Q}$ is the invariant subalgebra.

Such a Hopf algebra exists; for example, let H^{*} be a Hopf algebra dual to H. By this we mean, H^{*} is a Hopf algebra and there is a nondegenerate pairing

$$
\langle,\rangle: H^{*} \otimes H \rightarrow \mathbb{C}
$$

satisfying the usual compatibility conditions. For $u \in H^{*}, x \in A$ and $h \in H$, define

$$
u \cdot(x \rtimes h)=x \rtimes(u \rightharpoonup h)
$$

where $u \rightharpoonup h=h_{1}\left\langle u, h_{2}\right\rangle$. Then it is clear that the H^{*}-action is one such example.

(contd.)

What we show below is that this example is the universal example, under certain conditions. Recall that by universality, we mean that there should exist a Hopf algebra morphism $\phi: Q \rightarrow H^{*}$ such that the following diagram commutes:

$$
Q \otimes(A \rtimes H) \xrightarrow{\phi \otimes 1} H^{*} \otimes \underset{A \rtimes H}{(A \rtimes H)}
$$

Observe that, a necessary condition for this to happen is that for $q \in Q, h \in H$,

$$
q \cdot(1 \rtimes h)=\phi(q) \cdot(1 \rtimes h)=1 \rtimes h_{1}\left\langle\phi(q), h_{2}\right\rangle .
$$

That is Q takes H into H in a very special way. We first achieve this.

(contd.)

Keeping the above notations, we have the following proposition.
Proposition
Let $q \in Q$, thought of as a map from $H \rightarrow A \rtimes H, h \mapsto q \cdot(1 \rtimes h)$.
Then for each $h \in H$,

$$
V^{-1} q(h) \in A^{\prime} \cap(A \rtimes H),
$$

where $V^{-1} q$ is the convolution product, $A^{\prime} \cap(A \rtimes H)$ is the centralizer of A in $A \rtimes H$.

Proof of the Proposition

For the proof, let $x \in A$ and $h \in H$. We compute

$$
\begin{aligned}
(x \rtimes 1) V^{-1}\left(h_{1}\right) q\left(h_{2}\right) & =V^{-1}\left(h_{1}\right) V\left(h_{2}\right)(x \rtimes 1) V^{-1}\left(h_{3}\right) q\left(h_{4}\right) \\
& =V^{-1}\left(h_{1}\right)\left(h_{2} \cdot x \rtimes 1\right) q\left(h_{3}\right) \\
& =V^{-1}\left(h_{1}\right) q \cdot\left(\left(h_{2} \cdot x \rtimes 1\right)\left(1 \rtimes h_{3}\right)\right) \\
& =V^{-1}\left(h_{1}\right) q \cdot\left(\left(1 \rtimes h_{2}\right)(x \rtimes 1)\right) \\
& =V^{-1}\left(h_{1}\right) q\left(h_{2}\right)(x \rtimes 1) .
\end{aligned}
$$

Therefore, we are done.

We have the following

Corollary

Let the extension $A \rightarrow A \rtimes H$ be irreducible, i.e., $A^{\prime} \cap(A \rtimes H)=\mathbb{C}$ (outer action of H). Then for each $q \in Q$, there exists unique $\lambda_{q} \in \operatorname{Hom}_{\mathbb{C}}(H, \mathbb{C})$ such that

$$
q \cdot(1 \rtimes h)=1 \rtimes h_{1} \lambda_{q}\left(h_{2}\right) .
$$

Therefore, Q actually takes H inside H.

Proof of the Corollary

By the previous Proposition, for each $q \in Q$ and $h \in H$ there exists $\lambda_{q}(h) \in \mathbb{C}$ such that $V^{-1} q(h)=\lambda_{q}(h)(1 \rtimes 1)$. Let $\Lambda_{q} \in \operatorname{Hom}_{\mathbb{C}}(H, A \rtimes H)$ be defined as

$$
\Lambda_{q}(h)=1 \rtimes \lambda_{q}(h) 1
$$

Then $V^{-1} q=\Lambda_{q}$ which implies $q=V \Lambda_{q}$. So for each $h \in H$, $q \cdot(1 \rtimes h)=V\left(h_{1}\right) \wedge_{q}\left(h_{2}\right)=\left(1 \rtimes h_{1}\right)\left(1 \rtimes \lambda_{q}\left(h_{2}\right) 1\right)=1 \rtimes h_{1} \lambda_{q}\left(h_{2}\right)$, which was to be obtained. Uniqueness follows from applying ε.

Now using this λ_{q}, we define a dual pairing between Q and H, from which universality follows automatically. Define

$$
\langle,\rangle: Q \otimes H \rightarrow \mathbb{C}
$$

by

$$
\langle q, h\rangle=\lambda_{q}(h)=(1 \rtimes \varepsilon)(q \cdot(1 \rtimes h)) .
$$

We show that this defines a dual pairing. We break the proof into several steps.

Step 1

$$
\left\langle q q^{\prime}, h\right\rangle=\langle q \otimes q, \Delta h\rangle=\left\langle q, h_{1}\right\rangle\left\langle q^{\prime}, h_{2}\right\rangle
$$

holds. For, by associativity,

$$
q q^{\prime} \cdot(1 \rtimes h)=q \cdot\left(1 \rtimes h_{1} \lambda_{q^{\prime}}\left(h_{2}\right)\right)=1 \rtimes h_{1} \lambda_{q}\left(h_{2}\right) \lambda_{q^{\prime}}\left(h_{3}\right) .
$$

So

$$
\left\langle q q^{\prime}, h\right\rangle=\varepsilon\left(h_{1}\right) \lambda_{q}\left(h_{2}\right) \lambda_{q^{\prime}}\left(h_{3}\right)=\lambda_{q}\left(h_{1}\right) \lambda_{q^{\prime}}\left(h_{2}\right)=\left\langle q, h_{1}\right\rangle\left\langle q^{\prime}, h_{2}\right\rangle .
$$

Step 2

$$
\left\langle q, h h^{\prime}\right\rangle=\left\langle q_{1}, h\right\rangle\left\langle q_{2}, h^{\prime}\right\rangle
$$

holds. For, since $A \rtimes H$ is a Q-module algebra, we have

$$
q \cdot\left(1 \rtimes h h^{\prime}\right)=q_{1} \cdot(1 \rtimes h) q_{2} \cdot\left(1 \rtimes h^{\prime}\right)
$$

Now

$$
q \cdot\left(1 \rtimes h h^{\prime}\right)=1 \rtimes h_{1} h_{1}^{\prime} \lambda_{q}\left(h_{2} h_{2}^{\prime}\right)
$$

and
$q_{1} \cdot(1 \rtimes h) q_{2} \cdot\left(1 \rtimes h^{\prime}\right)=h_{1} \lambda_{q_{1}}\left(h_{2}\right) h_{1}^{\prime} \lambda_{q_{2}}\left(h_{2}^{\prime}\right)=h_{1} h_{1}^{\prime} \lambda_{q_{1}}\left(h_{2}\right) \lambda_{q_{2}}\left(h_{2}^{\prime}\right)$.
Applying ε yields the result.

Step 3

$$
\langle 1, h\rangle=\varepsilon(h), \quad\langle q, 1\rangle=\varepsilon(q)
$$

hold which can be seen easily.
The pairing thus defines a bialgebra morphism from $Q \rightarrow H^{*}$. Since a bialgebra morphism is in fact a Hopf algebra morphism,

$$
\langle q, S(h)\rangle=\langle S(q), h\rangle
$$

holds.

Summarizing all these, we get
Theorem
Let H be a finite dimensional Hopf C^{*}-algebra acting outerly on a II_{1} factor A. Then $\operatorname{QGal}(A \subset A \rtimes H)=H^{*}$.

In the above computation, we investigated inclusions arising from crossed products by Hopf algebras. As mentioned above, by a result of Szymański, these are the irreducible depth 2 finite index inclusions. For a general depth 2 finite index inclusion, a result of Nikshych-Vainerman says that these arise as crossed products by weak Hopf algebras. Our techniques need to be modified to cover this case.

The next example is dual to the previous one in some sense (we omit the proof).

Invariant Subalgebra

Let H be a finite dimensional Hopf C^{*}-algebra acting outerly on a II_{1} factor A. Let $A \rtimes H$ and A^{H} be the crossed product and the invariant subalgebra, respectively.

Theorem
Suppose $A^{H} \subset A \subset A \rtimes H$ is a Jones triple, i.e., $A \subset A \rtimes H$ is the basic construction of $A^{H} \subset A$. Then $\mathrm{QGal}\left(A^{H} \subset A\right)=H$.

Banica's Fixed Point Algebras

According to Banica, commuting squares having \mathbb{C} in the lower left corner, i.e., of the form

where S and P are finite dimensional von Neumann algebras, are isomorphic to one of the following forms

$$
\begin{array}{ccc}
S & \subset & (P \otimes(S \rtimes \hat{G}))^{G} \\
\cup & & \cup \\
\mathbb{C} & \subset & P
\end{array}
$$

and the vertical subfactor associated to the first commuting square is of the form $\mathcal{R} \subset(P \otimes(\mathcal{R} \rtimes \hat{G}))^{G}$.

In the above description, G is a compact quantum group of Kac type, \mathcal{R} is the hyperfinite II_{1}-factor. The action of \hat{G} on \mathcal{R} is outer and is a product-type action built from the action on S. The action of G on P is ergodic on the center. Both algebras $(P \otimes(\mathcal{R} \rtimes \hat{G}))^{G}$ and $(P \otimes(S \rtimes \hat{G}))^{G}$ are fixed point algebras in the sense of Banica. The outerness of the \hat{G}-action on \mathcal{R} enables us to compute explictly the quantum Galois group of the inclusion $\mathcal{R} \subset(P \otimes(\mathcal{R} \rtimes \hat{G}))^{G}$.

Remark

We also note that although \mathcal{R} and G are infinite-dimensional, the finite-dimensionality of P enables us to use the algebraic smash product rather than the von Neumann crossed product in defining $(P \otimes(\mathcal{R} \rtimes \hat{G}))^{G}$.

Notation

Let H denote the dense Hopf $*$-algebra $\mathcal{O}(G)$ inside $C(G)$ and τ be the Haar state. Then there exists a conditional expectation E of
$P \otimes \mathcal{R} \rtimes H^{c o p}$ onto $\left(P \otimes \mathcal{R} \rtimes H^{c o p}\right)^{H^{c o p}}$ given by

$$
E(b \otimes a \rtimes h)=b_{0} \otimes a \rtimes h_{2} \tau\left(h_{1} S\left(b_{1}\right)\right) .
$$

A first description of the quantum Galois group of the Banica subfactor is the following.

Theorem
$\operatorname{QGal}\left(\mathcal{R} \subset\left(P \otimes \mathcal{R} \rtimes H^{c o p}\right)^{H^{c o p}}\right)$ is isomorphic with the universal Hopf $*$-algebra which acts on $E\left(P \otimes 1 \rtimes H^{c o p}\right)$ and maps each of the subspaces $E(P \otimes 1 \rtimes h)$ into itself, for $h \in H$.

We write \widehat{H} for the subspace of H^{*} consisting of functionals of the form $\tau(\cdot h)$ for some $h \in H$. It is well-known that \widehat{H} is a Hopf algebra in duality with H. We also recall that $\widehat{H^{c o p}}$ is $\widehat{H^{o p}}$. Therefore we identify $\widehat{H^{C O P}}$ with the space consisting of linear functionals of the form $\tau(\cdot S(h))$ for some $h \in H$.
There is also the canonical action of $\widehat{H^{C O P}}$ on P given by $\omega \rightharpoonup b=b_{0} \omega\left(b_{1}\right)$, which takes the form $b_{0} \tau\left(b_{1} S(h)\right)=b_{0} \tau\left(h S\left(b_{1}\right)\right)$ if ω is given by $\tau(\cdot S(h))$. The above Theorem can then be rewritten as

Theorem

$\operatorname{QGal}\left(\mathcal{R} \subset\left(P \otimes \mathcal{R} \rtimes H^{c o p}\right)^{H^{c o p}}\right)$ is isomorphic with the universal Hopf $*$-algebra which acts on P such that for each $\omega \in \widehat{H^{\text {cop }}}$ elements of the form $\omega \rightharpoonup b$ are mapped to elements of the same form.

To be more explicit, we introduce some notation.

Lemma

Let Q be a Hopf $*$-algebra and $S=S^{*} \subset Q$ be a subset. Let $\mathrm{C}_{Q}(S)=\{q \in Q \mid q s=s q, \forall s \in S\}$. Then there exists a largest Hopf $*$-subalgebra of Q contained in $\mathrm{C}_{Q}(S)$.

Definition

We denote by $\mathcal{H C}_{Q}(S)$ the largest Hopf $*$-subalgebra of Q contained in $\mathrm{C}_{Q}(S)$ and call it the Hopf centralizer of S.

For example, if G is a finite group and H is a subgroup, then $\mathcal{H}_{\mathbb{C} G}(\mathbb{C H})$ is $\mathbb{C} C_{G}(H)$, the group algebra of the centralizer. Let us denote the $\widehat{H^{C O P}}$ action on B by $\Lambda: \widehat{H^{C O P}} \rightarrow \operatorname{End}(P)$ from now on. Then with these notations,

Theorem
$\operatorname{QGal}\left(\mathcal{R} \subset\left(P \otimes \mathcal{R} \rtimes H^{c o p}\right)^{H^{c o p}}\right) \cong \mathcal{H} \mathrm{C}_{Q_{\text {aut }}(P)}\left(\Lambda\left(\widehat{\left.H^{\text {cop }}\right)}\right)\right.$.

Thank you!

