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Abraham Wald founded the Decision Theory in Classical Statistics:

Wald, Abraham.:“ Statistical Decision Functions ”, John Wiley &
Sons, Inc., New York, N. Y.; Chapman & Hall, Ltd., London, 1950.

For a more recent account one can see the following:

Ferguson, Thomas S.: “Mathematical Statistics-A Decision
Theoretic Approach”, Probability and Mathematical Statistics, Vol.
1, Academic Press, New York-London, 1967.
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The theory (or equivalently von Neumann’s theory of games) starts with
three basic objects:

(i) Θ, the parameter space for the (joint-) probability distribution or state
of the random variables or observables.

(ii) Ω (the set of decisions), a measure space with
D : X × (mble subset of Ω) 7→ R+, a family of probability measures, with
X being the sample(experiment) space.
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(iii) L : Θ× Ω→ R+, Loss function. Given {Θ, (Ω,D), L}, the Risk
function

R(θ,D) ≡
∫

Ω

L(θ, ω)

∫
X
µθ(dx)D(x , dω)

=

∫
Ω

L(θ, ω)(µθ ◦ D)(dω) (1)

=

∫
X
µθ(dx)

(∫
Ω

L(θ, ω)D(x , dω)

)
≡ Eθ

(
L
(
θ,D(X )

))
, (2)

where X stands for random variable in X , and

Eθ(·) =

∫
X

(·)µθ(dx).
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The associated Baysian Risk function

R(π,D) ≡
∫

Θ

π(dθ)R(θ,D), (3)

where π the ‘prior’ probability measure.

Goal of the Dicision theory:

Minimax Property, viz. Does there exist a “ Decision rule D0” such that

inf
D∈{D}

sup
Θ
R(θ,D) = sup

Θ
R(θ,D0) ?
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Among the set of random variables in X , that is the set of real-valued
measurable functions on X , often one can find (in most cases due to
existence of specific symmetries in the probability distributions involved)
a small subset (often only one) called “sufficient statistic” T , such that
the “conditional probability given T = t” is independent of the parameter
θ ∈ Θ. Equivalently, the joint probability distribution factorizes into

φ(t, θ) · ρt (4)

ρt = conditional probability given equals to T = t,

φ : (range of T )×Θ 7→ R+ is the rest.
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Example (Binomial):

Two i.i.d. {1, 0}- valued Random variables X1,X2 having binomial
p-distribution:

Prob{Xj = xj} = pxj (1− p)1−xj

For 0 < p < 1, the joint p.d.f. is given by

Prob{X1 = x1,X2 = x2} = p(x1+x2)(1− p)1−(x1+x2)

Choose T = X1 + X2, then Prob{X1 = x1,X2 = x2} = φ(t, p)ρt , where

φ(t, p) =

(
2
t

)
pt(1− p)t and ρt =

(
2
t

)−1

is the probability conditional to T = t.
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Here the symmetry is that of the transformation:

This gives two parallel definitions of sufficient statistic T , the first in
terms of the conditional probability, given T = t, being independent of
parameter θ or the joint probability distribution has the “ factorization
property (4)”. It is the second which we adopt in Quantum case.
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Theorem 1.1 (Classical Rao-Blackwell).

Let Ω be a convex subset of Rn, L(θ, ·) be a convex function on Ω and
let T be a sufficient statistic for µθ in (1). Then R(θ,D) ≥ R(θ,DT ),
where DT (t) = E (D(X )|T = t). Furthermore, Eθ(DT ) = Eθ(D(X )).

Proof.

Since L(θ, ·) : Ω→ R+ is convex, then by Jensen’s inequality

R(θ,D) = Eθ (L(θ,D(X ))) =Eθ {E (L(θ,D(X ))|T = t)}
≥Eθ {L(θ,E(D(X )|T = t)}
=Eθ (L(θ,DT (·))) = R(θ,DT ).

Eθ(DT ) = Eθ
(
E
(

D(X )
∣∣T = t

))
=Eθ

(
D(X )

)
.

D(X ) is an unbiased(random) estimator for θ =⇒ the same for
non-random DT .
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As mentioned earlier, we adapt the factorization property of a ‘state’ as
in (4) to be the definition/ starting point for the Quantum theory.

Let

A = (A1,A2, . . . ,An) be a family of bounded commuting self-adjoint
operators (simultaneously measurable observables) in H.

T = T (A) be a self-adjoint operator function of A with the unique
spectral transformation (or diagonalizing unitary map):

U : H →
∫ ⊕

sp(T )

ht ν(dt),
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1 (U f )(t) ≡ ft ∈ ht a.a.(ν)t ∈ sp(T ),

2 (UTf )(t) = tft ∈ ht a.a.(ν)t ∈ sp(T ),

3 〈f , g〉H =
∫
ν(dt)〈ft , gt〉ht , and

4 For B ∈ {A}′,

(UBf )(t) = B(t)ft , a.a.(ν) t ∈ sp(T ) with B(t) ∈ B(ht).
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Definition 2.1.

Let T be as above in H and {τθ}θ∈Θ be a parameterized family of states
on {A}′. Then T is a “quantum sufficient statistic”(QSS) for {τθ} if for
every B ∈ {A}′,

τθ(B) =

∫
ν(dt)φ(t, θ) Trt(B(t)ρt ), (5)

where ρt ∈ B1+(ht), Trt is the B(ht)-trace and φ : sp(T )×Θ→ R+, a
bounded measurable function, satisfying

τθ(I ) =

∫
ν(dt)φ(t, θ) Trt(ρt ) = 1 (6)
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Remark 2.2.

τθ is implemented by a density Matrix ρθ
(5)

=⇒ ρθ commutes with T .
Moreover, ρθ ∈ B1(H) =⇒ the measure ν in (5) have a non-trivial
atomic part.

In the Definition 2.1, the operator ρt ∈ B1+(ht) may be considered as the
“conditional density matrix, given T = t,” (except that Trt(ρt )
non-negative, may not be equal to 1 for a.a.(ν)t).

Note that, if S = {t ∈ sp(T )|Trt(ρt ) = 0}, then in the RHS of (5) and
(6), the integrals has non-zero contributions only from Sc ∩ sp(T ).
Therefore, WLOG, we can assume that S ∩ sp(T ) = ∅.
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The earliest and simplest Quantum version of the decision theory (due to
A.S. Holevo) the parameter space Θ, Decision space Ω remain classical
(i.e. measure spaces), but

the sampling/experiment space X 7→ a separable Hilbert space hs

D: σ- algebra of measurable sets 7→ positive operator-valued
measure (POVM) in hs satisfying

1 Countable additivity:

D

(∞⋃·
1

∆j

)
=
∞∑

j=1

D(∆j ), converging in WOT

2 D(Ω) = I .
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=⇒ Partially Quantum Risk function

R(θ,D) =

∫
Ω

L(θ, ω) τθ
(
D(dω)

)
, (7)

{τθ| θ ∈ Θ} states on {A}′, replaces the probability measure µθ in (1).

The associated partially quantum Baysian risk function (with prior
probability π ):

R(π,D) =

∫
Θ

π(dθ)R(θ,D)

=

∫
Θ×Ω

L(θ, ω) {π(dθ)τθ
(
D(dω)

)
} (8)

Combining Definition 2.1 and equations (7)-(8), leads to partially
quantum Rao-Blackwell theorem.
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Holevo, A. S.:“Statistical decision theory for quantum
systems”, J. Multivariate Anal., 3 (1973), 337–394.

Petz, D.:“Quantum information theory and quantum
statistics”, Theoretical and Mathematical Physics.
Springer-Verlag, Berlin, 2008.

Sinha, K. B.: “A Decision Theory in Non-Commutative
Domain”, Statistics and Applications, 19 (1), 1–8, 2021.
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Theorem 2.3.

Let {Θ,Ω, L,D} be the objects introduced earlier leading to expressions
(7)-(8). Let Ω be a bounded convex subset of Rn, let T be a QSS relative
to {τθ} and let {D(·)} ∈ {A}′. If furthermore, L(θ, ·) is convex, then

R(θ,D) ≥ R(θ,DT ) ≡ τθ(L(θ,DT )),

where DT is a unique bounded self-adjoint operator function of the QSS
T . Moreover,

τθ(DT ) = τθ

(∫
Ω

ωD(dω)

)
.

To prove the above theorem we need following two lemmas:
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Lemma 2.4.

Let A be a bounded self-adjoint operator in H and let σ be a density
matrix. Then for f : R→ R bounded measurable convex function,

Tr
(
σf (A)

)
≥ f
(

Tr(σA)
)
.

The proof of the above lemma follows easily from the spectral theorem
and Jensen’s inequality.

Lemma 2.5.

Let {D(∆)} be a POVM in H over Ω and let the family commute with a
self-adjoint operator T . Then in the spectral representation of T given
earlier, for a.a.(ν)t ∈ sp(T ), the family
{Dt(∆)|∆ measuarble subset of Ω} is a POVM in the decomposition

hs =

∫ ⊕
sp(T )

htν(dt).
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Sketch of proof of Lemma 2.5.

Since 〈f ,D(·)f 〉 is countably based, it suffices to look at the
appropriate countable family {∆k}∞k=1 and

〈f ,D(∆k )f 〉 =

∫
ν(dt) 〈ft ,Dt(∆k )ft〉 ,

where Dt(∆k ) is defined for t ∈ N(∆k )c with ν
(
N(∆k )

)
= 0.

Let {∆j}∞1 be a family of disjoint mble subsets of Ω and let δ be a
ν- mble subset of sp(T ). Then〈

f ,D

∞⋃·
j=1

∆j

Xδ(T )g

〉
=

∫
δ

ν(dt)
∞∑

j=1

〈ft ,Dt(∆j )gt〉t

=

∫
δ

ν(dt)

〈
ft ,Dt

∞⋃·
j=1

∆j

 gt

〉
t

=⇒ Countable additivity for a.a.(ν) t.
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Set N =
∞⋃

k=1

N(∆k ), then ν(N) = 0 and Dt(·) is defined a.a.(ν)t.

Sketch of proof of Theorem 2.3

Definition 2.1 and equation (6) implies that

R(θ,D) =

∫
sp(T )

ν(dt)φ(t, θ)

∫
Ω

L(θ, ω) Trt

(
ρt Dt(dω)

)

Observe that Trt(ρt ) = 0 =⇒ ρt = 0 since ρt ≥ 0.

=⇒ S ≡ {t ∈ sp(T )|Trt(ρt ) = 0}
=⇒ the t− integral in (6) and the above integral is restricted to

Sc ∩ sp(T ), in which case ρt > 0

=⇒ For t ∈ Sc ∩ sp(T ), set σt =
(

Trt(ρt )
)−1

ρt , then σt is a

density matrix in ht and by Lemma 2.4, since L(θ, ·) is convex
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Continue...

=⇒ ∫
Ω

L(θ, ω) Trt

(
σtDt(dω)

)
≥ L

(
θ,

∫
Ω

ωTrt

(
σtDt(dω)

))
=⇒ R(θ,D) ≥

∫
sp(T )

ν(dt)φ(t, θ) Trt(ρt )L(θ,DT (t)),

where

DT (t) =


(

Trt(ρt )
)−1 (∫

Ω
ωTrt

(
σtDt(dω)

))
, t ∈ Sc ∩ sp(T )

0, t ∈ S .

DT (·) is a bounded measurable function, defines a bounded
operator, commuting with QSS T, and

R(θ,D) ≥ τθ
(

L(θ,DT )
)

= R(θ,DT ).
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Continue...

Furthermore,

θ ≡ τθ
(∫

Ω

ωD(dω)

)
=

∫
sp(T )

ν(dt)φ(t, θ) Trt

(
ρt

(∫
Ω

ωDt(dω)
))

=

∫
sp(T )

ν(dt)φ(t, θ) Trt

(
ρt

)
DT (t)

=τθ(DT ),

that is the expectation of “Rao-Blackwell observable” DT in state τθ
is an unbiased estimator for the parameter θ.
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Corollary 2.6 (Partially quantum Baysian Rao-Blackwell theorem).

Under the set of hypothesis of Theorem 2.3, the risk function

R(π,D) ≥ R(π,DT ) =

∫
Θ

π(dθ)R(θ,DT ).

Furthermore,∫
π(dθ)θ =

∫
π(dθ)τθ

(∫
ωD(dω)

)
=

∫
π(dθ)τθ(DT ).

Proof of the above corollary immediate from Theorem 2.3.
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Example 2.7.

Let H = L2(R3),P = (P1,P2,P3)-the momentum operators,

H0 =
3∑

j=1

p2
j = −∆ (as self-adjoint operator in H), L ≡ (L1, L2, L3)-the

angular momentum operators with L2 =
3∑

j=1

L2
j , the total angular

momentum operators.

For the operator H0, the spectral representation is given by the unitary
isomorphism via the Fourier transform : H ' L2(R+; L2(S (2)), 1

2 t1/2dt),
with

(H0f )t = tft ∈ ht ' L2(S (2)) ∀ t, (9)

where S (2) is the unit sphere of 2-dimensions embedded in R3.
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On the other hand, we set ρ̃t = (L2 + 1)−2 in ht∀ t and note that ρ̃t is a
positive trace-class operator in ht

∼= L2(S (2)) and its trace:

Trt(ρ̃t) =
∞∑
`=0

(2`+ 1)

(`(`+ 1) + 1)2
≡ C <∞.

If we set ϕ(t, θ) = (π/16θ3)−1/2 exp(−θt) and normalise ρt = C−1ρ̃t ,
then it is an easy calculation to verify that∫

ϕ(t, θ)(Trtρt)
1

2
t1/2dt = 1. (10)
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Therefore we define the state τθ on A = {H ′0}, the von Neumann algebra
driven by the constants of free motion, generated by the Hamiltonian H0,
as

τθ(B) =

∞∫
0

ϕ(t, θ)Trt(ρtB(t)) · 1

2
t1/2dt, (11)

setting the stage to recognize the self-adjoint operator H0 = T , the
sufficient statistic for this state τθ.

In this example, the symmetry group of rotations in 3-dimensions has
played a role in the background.
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Example 2.8.

The 2-dimensional (spin 1/2) representation of the proper rotation group
O+(3) in R3 leads to the following standard operators in C2:

S = {S1,S2,S3}, S2 =
3∑

j=1

S2
j and the spanning eigenbases for (S2,S3)

given by | 3/4, ↑〉 and | 3/4, ↓〉, in which S2 has 1/2(1/2 + 1) = 3/4 and
S3 has ±1/2 as eigenvalues respectively with ↑ representing +1/2 and ↓
for −1/2.
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Next consider in H = C2 ⊗ C2 ' C4, two such independent spin
systems S (j) (j = 1, 2) be given and we form the new observables:

S = S (1) ⊗ I2 + I1 ⊗ S (2) and corresponding S2 in H.

Then we look for the decomposition of H, corresponding to the
irreducible representations of O+(3): H ' h1 ⊕ h0, where h1 and h0

are spanned by the eigenbases of {S2,S3} of the total system:

for h1 : |2, ↑↑〉,
∣∣∣∣2, ↑↓ + ↓↑√

2

〉
, | 2, ↓↓〉 and for h0 :

∣∣∣∣0, ↑↓ − ↓↑√
2

〉
,

(12)
in which the normalized eigenstates corresponding to the

eigenvalues (1, 0,−1) in h1 and (0) in h0 of S3 respectively are
represented pictorially as above.
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Let the state be given by ρθ = Z−1 exp(−θS (1) · S (2)), where Z is
such that Trρθ = 1.

An easy calculation, using the identity:

S (1) · S (2) = 1/2(S2 − S (1)2

− S (2)2

), leads to the fact that the

operator (S (1) · S (2)) has eigenvalues 1/4 and −3/4 respectively in
each eigenfamilies in h1 and h0 respectively.

Thus ρθ = Z−1(e−θ/4P1 + e3θ/4P0), where P1 and P0 are the
projections onto h1(3− dim) and h0(1− dim) respectively, in H.

This implies that Z = Tr(e−θ/4P1 + e3θ/4P0) = 3e−θ/4 + e3θ/4,
which leads to the following expression for ρθ:

ρθ = (3 + eθ)−1P1 + (1 + 3e−θ)−1P0. (13)
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Therefore, here S2 = (S (1) + S (2))2 is the candidate for “quantum
sufficient statistic” and

ρθ(B) =
1∑

s=0

ϕ(s, θ)Trs(ρsB(s)),

where s(s + 1) are the eigenvalues of S2, and

ϕ(0, θ) = (1 + 3e−θ)−1, ϕ(1, θ) = (3 + eθ)−1;

ρ0 = P0, ρ1 = P1, the orthogonal projections respectively.
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Fully Quantum Rao-Blackwell theorem:

For this part, we shall assume that the QSS T is a bounded self-adjoint
operator in hs (the Hilbert space of observations) with only discrete
spectrum.

Unlike in the previous section, here the Baysian part is quantized =⇒
the Baysian Hilbert space hB and the theory is put in H = hB × hs , Φ is
a density Matrix in H, Ω = [a, b] ⊆ R, L : Ω→ B+(hB ) strongly
continuous, {D(·)} POVM commuting with QSS T in hs .
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Then one has

L · D ≡
∫ b

a
L(ω)D(dω) exists as trong Riemann-Stiltje’s integral on H,

‖L · D‖B(H) ≤ sup
ω
‖L(ω)‖B(hB ).

The fully quantum risk function:

R(Φ,D) = Φ(L · D)

Here

H ' hB ⊗
∫ ⊕

ν(dt)ht '
∫ ⊕

ν(dt)(hB ⊗ ht),

ν is only atomic and Φ '
∫ ⊕

ν(dt)(ΦB (t)⊗ ρt ), ΦB (t) ∈ B1+(hB ),

Tr Φ = 1

∫
ν(dt) TrB (ΦB (t)) Tr(ρt ).
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Fully quantum Rao-Blackwell Theorem II

Assume all that has gone before, and S = {t ∈ sp(T )|ρt = 0} is a mble
set and set DT (t) as before to get a mble bounded function. Let L be
weakly convex, that is. ω 7→ 〈f , L(ω)f 〉 is a positive convex, continuous
function for every f ∈ hB . Then

Φ(L · D) ≥ Φ(L(DT )),

where L(DT )(t) = L(DT (t)) and range of DT (·) ⊆ Ω.

Φ

(∫
Ω

ωD(dω)

)
=

∫
ν(dt) TrB (ΦB (t)).

Tr

(
ρt

∫
ωDt(dω)

)
=

∫
ν(dt) Tr (ΦB (t)⊗ ρt ) DT (t) = Φ(DT ).

More general theory needs the use of the central decomposition of von
Neumann algebras and of states on them.
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