Sufficient Statistic, Rao-Blackwell Theorem in Quantum Probability

Kalyan B. Sinha

Indian Statistical Institute,
Indian Institute of Science,
\&

J. N. Centre For Advanced Scientific Research, Bangalore, India

QP-42 Conference,
 Indian Statistical Institute, Bangalore, India

January 17-20, 2022

Overview

(1) Introduction: Decision theory in Classical Statistics, Sufficient Statistic and Rao-Blackwell Theorem
(2) Quantum Theory of Sufficient Statistic and Decision
(3) Concluding Remarks

Abraham Wald founded the Decision Theory in Classical Statistics:
嗇 Wald, Abraham.: " Statistical Decision Functions ", John Wiley \& Sons, Inc., New York, N. Y.; Chapman \& Hall, Ltd., London, 1950.

For a more recent account one can see the following:
Rerguson, Thomas S.: "Mathematical Statistics-A Decision Theoretic Approach", Probability and Mathematical Statistics, Vol. 1, Academic Press, New York-London, 1967.

The theory (or equivalently von Neumann's theory of games) starts with three basic objects:
(i) Θ, the parameter space for the (joint-) probability distribution or state of the random variables or observables.
(ii) Ω (the set of decisions), a measure space with
$D: \mathcal{X} \times($ mble subset of $\Omega) \mapsto \mathbb{R}_{+}$, a family of probability measures, with \mathcal{X} being the sample(experiment) space.
(iii) L : $\Theta \times \Omega \rightarrow \mathbb{R}_{+}$, Loss function. Given $\{\Theta,(\Omega, D), L\}$, the Risk function

$$
\begin{align*}
\mathcal{R}(\theta, D) & \equiv \int_{\Omega} L(\theta, \omega) \int_{\mathcal{X}} \mu_{\theta}(d x) D(x, d \omega) \\
& =\int_{\Omega} L(\theta, \omega)\left(\mu_{\theta} \circ D\right)(d \omega) \tag{1}\\
& =\int_{\mathcal{X}} \mu_{\theta}(d x)\left(\int_{\Omega} L(\theta, \omega) D(x, d \omega)\right) \equiv \mathbb{E}_{\theta}(L(\theta, D(X))), \tag{2}
\end{align*}
$$

where X stands for random variable in \mathcal{X}, and

$$
\mathbb{E}_{\theta}(\cdot)=\int_{\mathcal{X}}(\cdot) \mu_{\theta}(d x) .
$$

The associated Baysian Risk function

$$
\begin{equation*}
\mathcal{R}(\pi, D) \equiv \int_{\Theta} \pi(d \theta) \mathcal{R}(\theta, D) \tag{3}
\end{equation*}
$$

where π the 'prior' probability measure.

Goal of the Dicision theory:

Minimax Property, viz. Does there exist a " Decision rule D_{0} " such that

$$
\inf _{D \in\{D\}} \sup _{\Theta} \mathcal{R}(\theta, D)=\sup _{\Theta} \mathcal{R}\left(\theta, D_{0}\right) ?
$$

Among the set of random variables in \mathcal{X}, that is the set of real-valued measurable functions on \mathcal{X}, often one can find (in most cases due to existence of specific symmetries in the probability distributions involved) a small subset (often only one) called "sufficient statistic" T, such that the "conditional probability given $T=t$ " is independent of the parameter $\theta \in \Theta$. Equivalently, the joint probability distribution factorizes into

$$
\begin{equation*}
\phi(t, \theta) \cdot \rho_{t} \tag{4}
\end{equation*}
$$

- $\rho_{t}=$ conditional probability given equals to $T=t$,
- ϕ : (range of $T) \times \Theta \mapsto \mathbb{R}_{+}$is the rest.

Example (Binomial):

Two i.i.d. $\{1,0\}$ - valued Random variables X_{1}, X_{2} having binomial p-distribution:

$$
\operatorname{Prob}\left\{X_{j}=x_{j}\right\}=p^{x_{j}}(1-p)^{1-x_{j}}
$$

For $0<p<1$, the joint p.d.f. is given by

$$
\operatorname{Prob}\left\{X_{1}=x_{1}, X_{2}=x_{2}\right\}=p^{\left(x_{1}+x_{2}\right)}(1-p)^{1-\left(x_{1}+x_{2}\right)}
$$

Choose $T=X_{1}+X_{2}$, then $\operatorname{Prob}\left\{X_{1}=x_{1}, X_{2}=x_{2}\right\}=\phi(t, p) \rho_{t}$, where

$$
\phi(t, p)=\binom{2}{t} p^{t}(1-p)^{t} \text { and } \rho_{t}=\binom{2}{t}^{-1}
$$

is the probability conditional to $T=t$.

Here the symmetry is that of the transformation:

This gives two parallel definitions of sufficient statistic T, the first in terms of the conditional probability, given $T=t$, being independent of parameter θ or the joint probability distribution has the " factorization property (4)". It is the second which we adopt in Quantum case.

Theorem 1.1 (Classical Rao-Blackwell).

Let Ω be a convex subset of $\mathbb{R}^{n}, L(\theta, \cdot)$ be a convex function on Ω and let T be a sufficient statistic for μ_{θ} in (1). Then $\mathcal{R}(\theta, D) \geq \mathcal{R}\left(\theta, D_{T}\right)$, where $D_{T}(t)=\mathbb{E}(D(X) \mid T=t)$. Furthermore, $\mathbb{E}_{\theta}\left(D_{T}\right)=\mathbb{E}_{\theta}(D(X))$.

Proof.

Since $L(\theta, \cdot): \Omega \rightarrow \mathbb{R}_{+}$is convex, then by Jensen's inequality

$$
\begin{aligned}
\mathcal{R}(\theta, D)=\mathbb{E}_{\theta}(L(\theta, D(X))) & =\mathbb{E}_{\theta}\{\mathbb{E}(L(\theta, D(X)) \mid T=t)\} \\
& \geq \mathbb{E}_{\theta}\{L(\theta, \mathbb{E}(D(X) \mid T=t)\} \\
& =\mathbb{E}_{\theta}\left(L\left(\theta, D_{T}(\cdot)\right)\right)=\mathcal{R}\left(\theta, D_{T}\right) . \\
\mathbb{E}_{\theta}\left(D_{T}\right)=\mathbb{E}_{\theta}(\mathbb{E}(D(X) \mid T=t)) & =\mathbb{E}_{\theta}(D(X)) .
\end{aligned}
$$

$D(X)$ is an unbiased(random) estimator for $\theta \Longrightarrow$ the same for non-random D_{T}.

As mentioned earlier, we adapt the factorization property of a 'state' as in (4) to be the definition/ starting point for the Quantum theory.

Let

- $\underline{A}=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ be a family of bounded commuting self-adjoint operators (simultaneously measurable observables) in \mathcal{H}.
- $T=T(\underline{A})$ be a self-adjoint operator function of \underline{A} with the unique spectral transformation (or diagonalizing unitary map):

$$
\mathcal{U}: \mathcal{H} \rightarrow \int_{\text {sp }(T)}^{\oplus} \mathfrak{h}_{t} \nu(d t)
$$

- (Uf) $(t) \equiv f_{t} \in \mathfrak{h}_{t} \quad$ a.a. $(\nu) t \in \operatorname{sp}(T)$,
- $(\mathcal{U} T f)(t)=t f_{t} \in \mathfrak{h}_{t} \quad$ a.a. $(\nu) t \in s p(T)$,
- $\langle f, g\rangle_{\mathcal{H}}=\int \nu(d t)\left\langle f_{t}, g_{t}\right\rangle_{\mathfrak{h}_{t}}, \quad$ and
- For $B \in\{\underline{A}\}^{\prime}$,
$(\mathcal{U B f})(t)=B(t) f_{t}, \quad$ a.a. $(\nu) t \in \operatorname{sp}(T)$ with $B(t) \in \mathcal{B}\left(\mathfrak{h}_{t}\right)$.

Definition 2.1.

Let T be as above in \mathcal{H} and $\left\{\tau_{\theta}\right\}_{\theta \in \Theta}$ be a parameterized family of states on $\{\underline{A}\}^{\prime}$. Then T is a "quantum sufficient statistic" (QSS) for $\left\{\tau_{\theta}\right\}$ if for every $B \in\{\underline{A}\}^{\prime}$,

$$
\begin{equation*}
\tau_{\theta}(B)=\int \nu(d t) \phi(t, \theta) \operatorname{Tr}_{t}\left(B(t) \rho_{t}\right), \tag{5}
\end{equation*}
$$

where $\rho_{t} \in \mathcal{B}_{1+}\left(\mathfrak{h}_{t}\right), \operatorname{Tr}_{t}$ is the $\mathcal{B}\left(\mathfrak{h}_{t}\right)$-trace and $\phi: s p(T) \times \Theta \rightarrow \mathbb{R}_{+}$, a bounded measurable function, satisfying

$$
\begin{equation*}
\tau_{\theta}(I)=\int \nu(d t) \phi(t, \theta) \operatorname{Tr}_{t}\left(\rho_{t}\right)=1 \tag{6}
\end{equation*}
$$

Remark 2.2.

τ_{θ} is implemented by a density Matrix $\rho_{\theta} \stackrel{(5)}{\Longrightarrow} \rho_{\theta}$ commutes with T. Moreover, $\rho_{\theta} \in \mathcal{B}_{1}(\mathcal{H}) \Longrightarrow$ the measure ν in (5) have a non-trivial atomic part.

In the Definition 2.1, the operator $\rho_{t} \in \mathcal{B}_{1+}\left(\mathfrak{h}_{t}\right)$ may be considered as the "conditional density matrix, given $T=t$," (except that $\operatorname{Tr}_{t}\left(\rho_{t}\right)$ non-negative, may not be equal to 1 for a.a. $(\nu) t)$.

Note that, if $S=\left\{t \in s p(T) \mid \operatorname{Tr}_{t}\left(\rho_{t}\right)=0\right\}$, then in the RHS of (5) and (6), the integrals has non-zero contributions only from $S^{c} \cap \operatorname{sp}(T)$. Therefore, WLOG, we can assume that $S \cap \operatorname{sp}(T)=\emptyset$.

The earliest and simplest Quantum version of the decision theory (due to A.S. Holevo) the parameter space Θ, Decision space Ω remain classical (i.e. measure spaces), but

- the sampling/experiment space $\mathcal{X} \mapsto$ a separable Hilbert space \mathfrak{h}_{s}
- $D: \sigma$ - algebra of measurable sets \mapsto positive operator-valued measure (POVM) in \mathfrak{h}_{s} satisfying
(1) Countable additivity:

$$
D\left(\bigcup_{1}^{\infty} \Delta_{j}\right)=\sum_{j=1}^{\infty} D\left(\Delta_{j}\right), \text { converging in WOT }
$$

(2) $D(\Omega)=1$.

\Longrightarrow Partially Quantum Risk function

$$
\begin{equation*}
\mathcal{R}(\theta, D)=\int_{\Omega} L(\theta, \omega) \tau_{\theta}(D(d \omega)), \tag{7}
\end{equation*}
$$

$\left\{\tau_{\theta} \mid \theta \in \Theta\right\}$ states on $\{\underline{A}\}^{\prime}$, replaces the probability measure μ_{θ} in (1).
The associated partially quantum Baysian risk function (with prior probability π):

$$
\begin{align*}
\mathcal{R}(\pi, D) & =\int_{\Theta} \pi(d \theta) \mathcal{R}(\theta, D) \\
& =\int_{\Theta \times \Omega} L(\theta, \omega)\left\{\pi(d \theta) \tau_{\theta}(D(d \omega))\right\} \tag{8}
\end{align*}
$$

Combining Definition 2.1 and equations (7)-(8), leads to partially quantum Rao-Blackwell theorem.

嗇 Holevo, A. S.: "Statistical decision theory for quantum systems", J. Multivariate Anal., 3 (1973), 337-394.

Petz, D.: "Quantum information theory and quantum statistics", Theoretical and Mathematical Physics. Springer-Verlag, Berlin, 2008.

國 Sinha, K. B.: "A Decision Theory in Non-Commutative Domain", Statistics and Applications, 19 (1), 1-8, 2021.

Theorem 2.3.

Let $\{\Theta, \Omega, L, D\}$ be the objects introduced earlier leading to expressions (7)-(8). Let Ω be a bounded convex subset of \mathbb{R}^{n}, let T be a QSS relative to $\left\{\tau_{\theta}\right\}$ and let $\{D(\cdot)\} \in\{\underline{A}\}^{\prime}$. If furthermore, $L(\theta, \cdot)$ is convex, then

$$
\mathcal{R}(\theta, D) \geq \mathcal{R}\left(\theta, D_{T}\right) \equiv \tau_{\theta}\left(L\left(\theta, D_{T}\right)\right),
$$

where D_{T} is a unique bounded self-adjoint operator function of the QSS
T. Moreover,

$$
\tau_{\theta}\left(D_{T}\right)=\tau_{\theta}\left(\int_{\Omega} \omega D(d \omega)\right) .
$$

To prove the above theorem we need following two lemmas:

Lemma 2.4.

Let A be a bounded self-adjoint operator in \mathcal{H} and let σ be a density matrix. Then for $f: \mathbb{R} \rightarrow \mathbb{R}$ bounded measurable convex function,

$$
\operatorname{Tr}(\sigma f(A)) \geq f(\operatorname{Tr}(\sigma A))
$$

The proof of the above lemma follows easily from the spectral theorem and Jensen's inequality.

Lemma 2.5.

Let $\{D(\Delta)\}$ be a POVM in \mathcal{H} over Ω and let the family commute with a self-adjoint operator T. Then in the spectral representation of T given earlier, for a.a. $(\nu) t \in s p(T)$, the family
$\left\{D_{t}(\Delta) \mid \Delta\right.$ measuarble subset of $\left.\Omega\right\}$ is a POVM in the decomposition

$$
\mathfrak{h}_{s}=\int_{\operatorname{sp}(T)}^{\oplus} \mathfrak{h}_{t} \nu(d t) .
$$

Sketch of proof of Lemma 2.5.

- Since $\langle f, D(\cdot) f\rangle$ is countably based, it suffices to look at the appropriate countable family $\left\{\Delta_{k}\right\}_{k=1}^{\infty}$ and

$$
\left\langle f, D\left(\Delta_{k}\right) f\right\rangle=\int \nu(d t)\left\langle f_{t}, D_{t}\left(\Delta_{k}\right) f_{t}\right\rangle,
$$

where $D_{t}\left(\Delta_{k}\right)$ is defined for $t \in N\left(\Delta_{k}\right)^{c}$ with $\nu\left(N\left(\Delta_{k}\right)\right)=0$.

- Let $\left\{\Delta_{j}\right\}_{1}^{\infty}$ be a family of disjoint mble subsets of Ω and let δ be a ν - mble subset of $s p(T)$. Then

$$
\begin{aligned}
\left\langle f, D\left(\bigcup_{j=1}^{\infty} \Delta_{j}\right) \mathcal{X}_{\delta}(T) g\right\rangle & =\int_{\delta} \nu(d t) \sum_{j=1}^{\infty}\left\langle f_{t}, D_{t}\left(\Delta_{j}\right) g_{t}\right\rangle_{t} \\
& =\int_{\delta} \nu(d t)\left\langle f_{t}, D_{t}\left(\bigcup_{j=1}^{\infty} \Delta_{j}\right) g_{t}\right\rangle_{t}
\end{aligned}
$$

\Longrightarrow Countable additivity for a.a.(ν) t.

Set $N=\bigcup_{k=1}^{\infty} N\left(\Delta_{k}\right)$, then $\nu(N)=0$ and $D_{t}(\cdot)$ is defined a.a. $(\nu) t$.

Sketch of proof of Theorem 2.3

Definition 2.1 and equation (6) implies that

$$
\mathcal{R}(\theta, D)=\int_{s p(T)} \nu(d t) \phi(t, \theta) \int_{\Omega} L(\theta, \omega) \operatorname{Tr}_{t}\left(\rho_{t} D_{t}(d \omega)\right)
$$

- Observe that $\operatorname{Tr}_{t}\left(\rho_{t}\right)=0 \Longrightarrow \rho_{t}=0$ since $\rho_{t} \geq 0$.
- $\Longrightarrow S \equiv\left\{t \in \operatorname{sp}(T) \mid \operatorname{Tr}_{t}\left(\rho_{t}\right)=0\right\}$
- \Longrightarrow the t - integral in (6) and the above integral is restricted to $S^{c} \cap \operatorname{sp}(T)$, in which case $\rho_{t}>0$
- \Longrightarrow For $t \in S^{c} \cap s p(T)$, set $\sigma_{t}=\left(\operatorname{Tr}_{t}\left(\rho_{t}\right)\right)^{-1} \rho_{t}$, then σ_{t} is a density matrix in \mathfrak{h}_{t} and by Lemma 2.4, since $L(\theta, \cdot)$ is convex

Continue...

- \Longrightarrow

$$
\begin{aligned}
& \int_{\Omega} L(\theta, \omega) \operatorname{Tr}_{t}\left(\sigma_{t} D_{t}(d \omega)\right) \geq L\left(\theta, \int_{\Omega} \omega \operatorname{Tr}_{t}\left(\sigma_{t} D_{t}(d \omega)\right)\right) \\
\Longrightarrow & \mathcal{R}(\theta, D) \geq \int_{s p(T)} \nu(d t) \phi(t, \theta) \operatorname{Tr}_{t}\left(\rho_{t}\right) L\left(\theta, D_{T}(t)\right)
\end{aligned}
$$

where

$$
D_{T}(t)= \begin{cases}\left(\operatorname{Tr}_{t}\left(\rho_{t}\right)\right)^{-1}\left(\int_{\Omega} \omega \operatorname{Tr}_{t}\left(\sigma_{t} D_{t}(d \omega)\right)\right), & t \in S^{c} \cap \operatorname{sp}(T) \\ 0, & t \in S\end{cases}
$$

- $D_{T}(\cdot)$ is a bounded measurable function, defines a bounded operator, commuting with QSS T, and

$$
\mathcal{R}(\theta, D) \geq \tau_{\theta}\left(L\left(\theta, D_{T}\right)\right)=\mathcal{R}\left(\theta, D_{T}\right)
$$

Continue...

- Furthermore,

$$
\begin{aligned}
\theta \equiv \tau_{\theta}\left(\int_{\Omega} \omega D(d \omega)\right) & =\int_{s p(T)} \nu(d t) \phi(t, \theta) \operatorname{Tr}_{t}\left(\rho_{t}\left(\int_{\Omega} \omega D_{t}(d \omega)\right)\right) \\
& =\int_{s p(T)} \nu(d t) \phi(t, \theta) \operatorname{Tr}_{t}\left(\rho_{t}\right) D_{T}(t) \\
& =\tau_{\theta}\left(D_{T}\right)
\end{aligned}
$$

that is the expectation of "Rao-Blackwell observable" D_{T} in state τ_{θ} is an unbiased estimator for the parameter θ.

Corollary 2.6 (Partially quantum Baysian Rao-Blackwell theorem).

Under the set of hypothesis of Theorem 2.3, the risk function

$$
\mathcal{R}(\pi, D) \geq \mathcal{R}\left(\pi, D_{T}\right)=\int_{\Theta} \pi(d \theta) \mathcal{R}\left(\theta, D_{T}\right)
$$

Furthermore,

$$
\int \pi(d \theta) \theta=\int \pi(d \theta) \tau_{\theta}\left(\int \omega D(d \omega)\right)=\int \pi(d \theta) \tau_{\theta}\left(D_{T}\right) .
$$

Proof of the above corollary immediate from Theorem 2.3.

Example 2.7.

Let $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right), \underline{P}=\left(P_{1}, P_{2}, P_{3}\right)$-the momentum operators, $H_{0}=\sum_{j=1}^{3} p_{j}^{2}=-\Delta($ as self-adjoint operator in $\mathcal{H}), \underline{L} \equiv\left(L_{1}, L_{2}, L_{3}\right)$-the angular momentum operators with $\underline{L}^{2}=\sum_{j=1}^{3} L_{j}^{2}$, the total angular momentum operators.

For the operator H_{0}, the spectral representation is given by the unitary isomorphism via the Fourier transform : $\mathcal{H} \simeq L^{2}\left(\mathbb{R}_{+} ; L^{2}\left(S^{(2)}\right), \frac{1}{2} t^{1 / 2} d t\right)$, with

$$
\begin{equation*}
\left(H_{0} f\right)_{t}=t f_{t} \in \mathfrak{h}_{t} \simeq L^{2}\left(S^{(2)}\right) \forall t, \tag{9}
\end{equation*}
$$

where $S^{(2)}$ is the unit sphere of 2-dimensions embedded in \mathbb{R}^{3}.

On the other hand, we set $\tilde{\rho}_{t}=\left(\underline{L}^{2}+1\right)^{-2}$ in $\mathfrak{h}_{t} \forall t$ and note that $\tilde{\rho}_{t}$ is a positive trace-class operator in $\mathfrak{h}_{t} \cong L^{2}\left(S^{(2)}\right)$ and its trace:

$$
\operatorname{Tr}_{t}\left(\tilde{\rho}_{t}\right)=\sum_{\ell=0}^{\infty} \frac{(2 \ell+1)}{(\ell(\ell+1)+1)^{2}} \equiv C<\infty .
$$

If we set $\varphi(t, \theta)=\left(\pi / 16 \theta^{3}\right)^{-1 / 2} \exp (-\theta t)$ and normalise $\rho_{t}=C^{-1} \tilde{\rho}_{t}$, then it is an easy calculation to verify that

$$
\begin{equation*}
\int \varphi(t, \theta)\left(\operatorname{Tr}_{t} \rho_{t}\right) \frac{1}{2} t^{1 / 2} d t=1 \tag{10}
\end{equation*}
$$

Therefore we define the state τ_{θ} on $\mathcal{A}=\left\{H_{0}^{\prime}\right\}$, the von Neumann algebra driven by the constants of free motion, generated by the Hamiltonian H_{0}, as

$$
\begin{equation*}
\tau_{\theta}(B)=\int_{0}^{\infty} \varphi(t, \theta) \operatorname{Tr}_{t}\left(\rho_{t} B(t)\right) \cdot \frac{1}{2} t^{1 / 2} d t \tag{11}
\end{equation*}
$$

setting the stage to recognize the self-adjoint operator $H_{0}=T$, the sufficient statistic for this state τ_{θ}.

In this example, the symmetry group of rotations in 3-dimensions has played a role in the background.

Example 2.8.

The 2-dimensional (spin 1/2) representation of the proper rotation group $O^{+}(3)$ in \mathbb{R}^{3} leads to the following standard operators in \mathbb{C}^{2} : $\underline{S}=\left\{S_{1}, S_{2}, S_{3}\right\}, \underline{S}^{2}=\sum_{j=1}^{3} S_{j}^{2}$ and the spanning eigenbases for $\left(\underline{S}^{2}, S_{3}\right)$ given by $|3 / 4, \uparrow\rangle$ and $|3 / 4, \downarrow\rangle$, in which $\underline{S^{2}}$ has $1 / 2(1 / 2+1)=3 / 4$ and S_{3} has $\pm 1 / 2$ as eigenvalues respectively with \uparrow representing $+1 / 2$ and \downarrow for $-1 / 2$.

- Next consider in $\mathcal{H}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \simeq \mathbb{C}^{4}$, two such independent spin systems $\underline{S}^{(j)}(j=1,2)$ be given and we form the new observables: $\underline{S}=\underline{S}^{(1)} \otimes I_{2}+I_{1} \otimes \underline{S}^{(2)}$ and corresponding \underline{S}^{2} in \mathcal{H}.
- Then we look for the decomposition of \mathcal{H}, corresponding to the irreducible representations of $O^{+}(3): \mathcal{H} \simeq \mathfrak{h}_{1} \oplus \mathfrak{h}_{0}$, where \mathfrak{h}_{1} and \mathfrak{h}_{0} are spanned by the eigenbases of $\left\{\underline{S}^{2}, S_{3}\right\}$ of the total system:

$$
\text { for } \mathfrak{h}_{1}:|2, \uparrow \uparrow\rangle,\left|2, \frac{\uparrow \downarrow+\downarrow \uparrow}{\sqrt{2}}\right\rangle,|2, \downarrow \downarrow\rangle \text { and for } \mathfrak{h}_{0}:\left|0, \frac{\uparrow \downarrow-\downarrow \uparrow}{\sqrt{2}}\right\rangle,
$$

in which the normalized eigenstates corresponding to the eigenvalues $(1,0,-1)$ in \mathfrak{h}_{1} and (0) in \mathfrak{h}_{0} of S_{3} respectively are represented pictorially as above.

- Let the state be given by $\rho_{\theta}=Z^{-1} \exp \left(-\theta \underline{S}^{(1)} \cdot \underline{S}^{(2)}\right)$, where Z is such that $\operatorname{Tr} \rho_{\theta}=1$.
- An easy calculation, using the identity: $\underline{S}^{(1)} \cdot \underline{S}^{(2)}=1 / 2\left(\underline{S}^{2}-\underline{S}^{(1)^{2}}-\underline{S}^{(2)^{2}}\right)$, leads to the fact that the operator $\left(\underline{S}^{(1)} \cdot \underline{S}^{(2)}\right)$ has eigenvalues $1 / 4$ and $-3 / 4$ respectively in each eigenfamilies in \mathfrak{h}_{1} and \mathfrak{h}_{0} respectively.
- Thus $\rho_{\theta}=Z^{-1}\left(e^{-\theta / 4} P_{1}+e^{3 \theta / 4} P_{0}\right)$, where P_{1} and P_{0} are the projections onto $\mathfrak{h}_{1}(3-\operatorname{dim})$ and $\mathfrak{h}_{0}(1-\operatorname{dim})$ respectively, in \mathcal{H}.
- This implies that $Z=\operatorname{Tr}\left(e^{-\theta / 4} P_{1}+e^{3 \theta / 4} P_{0}\right)=3 e^{-\theta / 4}+e^{3 \theta / 4}$, which leads to the following expression for ρ_{θ} :

$$
\begin{equation*}
\rho_{\theta}=\left(3+e^{\theta}\right)^{-1} P_{1}+\left(1+3 e^{-\theta}\right)^{-1} P_{0} . \tag{13}
\end{equation*}
$$

- Therefore, here $\underline{S}^{2}=\left(\underline{S}^{(1)}+\underline{S}^{(2)}\right)^{2}$ is the candidate for "quantum sufficient statistic" and

$$
\rho_{\theta}(B)=\sum_{s=0}^{1} \varphi(s, \theta) \operatorname{Tr}_{s}\left(\rho_{s} B(s)\right),
$$

where $s(s+1)$ are the eigenvalues of \underline{S}^{2}, and

$$
\varphi(0, \theta)=\left(1+3 e^{-\theta}\right)^{-1}, \varphi(1, \theta)=\left(3+e^{\theta}\right)^{-1} ;
$$

$\rho_{0}=P_{0}, \rho_{1}=P_{1}$, the orthogonal projections respectively.

Fully Quantum Rao-Blackwell theorem:

For this part, we shall assume that the QSS T is a bounded self-adjoint operator in \mathfrak{h}_{s} (the Hilbert space of observations) with only discrete spectrum.

Unlike in the previous section, here the Baysian part is quantized \Longrightarrow the Baysian Hilbert space \mathfrak{h}_{B} and the theory is put in $\mathcal{H}=\mathfrak{h}_{B} \times \mathfrak{h}_{s}, \Phi$ is a density Matrix in $\mathcal{H}, \Omega=[a, b] \subseteq \mathbb{R}, L: \Omega \rightarrow \mathcal{B}_{+}\left(\mathfrak{h}_{B}\right)$ strongly continuous, $\{D(\cdot)\}$ POVM commuting with QSS T in \mathfrak{h}_{s}.

Then one has
$L \cdot D \equiv \int_{a}^{b} L(\omega) D(d \omega)$ exists as trong Riemann-Stiltje's integral on \mathcal{H},

$$
\|L \cdot D\|_{\mathcal{B}(\mathcal{H})} \leq \sup _{\omega}\|L(\omega)\|_{\mathcal{B}\left(\mathfrak{h}_{\mathcal{B}}\right)} .
$$

The fully quantum risk function:

$$
\mathcal{R}(\Phi, D)=\Phi(L \cdot D)
$$

Here

$$
\mathcal{H} \simeq \mathfrak{h}_{B} \otimes \int^{\oplus} \nu(d t) \mathfrak{h}_{t} \simeq \int^{\oplus} \nu(d t)\left(\mathfrak{h}_{B} \otimes \mathfrak{h}_{t}\right),
$$

ν is only atomic and $\Phi \simeq \int{ }^{\oplus} \nu(d t)\left(\Phi_{B}(t) \otimes \rho_{t}\right), \Phi_{B}(t) \in \mathcal{B}_{1+}\left(\mathfrak{h}_{B}\right)$,

$$
\operatorname{Tr} \Phi=1 \int \nu(d t) \operatorname{Tr}_{B}\left(\Phi_{B}(t)\right) \operatorname{Tr}\left(\rho_{t}\right) .
$$

Fully quantum Rao-Blackwell Theorem II

Assume all that has gone before, and $S=\left\{t \in s p(T) \mid \rho_{t}=0\right\}$ is a mble set and set $D_{T}(t)$ as before to get a mble bounded function. Let L be weakly convex, that is. $\omega \mapsto\langle f, L(\omega) f\rangle$ is a positive convex, continuous function for every $f \in \mathfrak{h}_{B}$. Then

$$
\Phi(L \cdot D) \geq \Phi\left(L\left(D_{T}\right)\right)
$$

where $L\left(D_{T}\right)(t)=L\left(D_{T}(t)\right)$ and range of $D_{T}(\cdot) \subseteq \Omega$.

$$
\begin{aligned}
& \Phi\left(\int_{\Omega} \omega D(d \omega)\right)=\int \nu(d t) \operatorname{Tr}_{B}\left(\Phi_{B}(t)\right) . \\
& \operatorname{Tr}\left(\rho_{t} \int \omega D_{t}(d \omega)\right)=\int \nu(d t) \operatorname{Tr}\left(\Phi_{B}(t) \otimes \rho_{t}\right) D_{T}(t)=\Phi\left(D_{T}\right) .
\end{aligned}
$$

More general theory needs the use of the central decomposition of von Neumann algebras and of states on them.

(You

