A study of random variables in terms of their Number Operator

Aurel I. Stan

The Ohio State University at Marion
Indian Statistical Institute

Bengaluru, India

January 18, 2022

Outline

- Background
- Representing the linear operators in terms of X and D
- Random variables whose number operator is quadratic in D
- Symmetric random variables whose number operator satisfy a quadratic equation, in which the "constant" term is quadratic in D

Background

Let $X_{1}, X_{2}, \ldots, X_{d}$ be random variables on (Ω, \mathcal{F}, P).
Assume, for all $1 \leq i \leq d$ and $p>0$, we have:

$$
\begin{equation*}
E\left[\left|X_{i}\right|^{p}\right]<\infty . \tag{1}
\end{equation*}
$$

For all $n \in \mathbb{N} \cup\{0\}$, let:

$$
\begin{aligned}
F_{n}:= & \left\{P\left(X_{1}, X_{2}, \ldots, X_{d}\right) \mid P \text { polyn., } \operatorname{deg}(P) \leq n\right\} \\
& \mathbb{C} \equiv F_{0} \subseteq F_{1} \subseteq F_{2} \subseteq \cdots \subseteq L^{2}(\Omega, P)
\end{aligned}
$$

Background

We define $G_{0}:=F_{0}$, and for all $n \geq 1$:

$$
G_{n}:=F_{n} \ominus F_{n-1} .
$$

Consider the multiplication operator:

$$
P\left(X_{1}, X_{2}, \cdots, X_{d}\right) \quad \mapsto \quad X_{i} P\left(X_{1}, X_{2}, \cdots, X_{d}\right) .
$$

Lemma

For all $1 \leq i \leq d$ and $n \geq 0$, we have:

$$
\begin{equation*}
X_{i} G_{n} \perp G_{k}, \tag{2}
\end{equation*}
$$

$\forall k \neq n-1, n, n+1$.

For all $n \geq 0$, let:

$$
\bar{P}_{n}: L^{2}(\Omega, P) \rightarrow G_{n}, \quad \text { be orthogonal projection, }
$$

and

$$
P_{n}:=\bar{P}_{n \mid F} .
$$

Let $I: F \rightarrow F$ be the identity operator, where $F:=\cup_{n \geq 0} F_{n}$.

For all $1 \leq i \leq d$, we have:

$$
\begin{aligned}
X_{i} & =I X_{i} I \\
& =\left(\sum_{m=0}^{\infty} P_{m}\right) X_{i}\left(\sum_{n=0}^{\infty} P_{n}\right) \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} P_{m} X_{i} P_{n} \\
& =\sum_{|m-n| \leq 1} P_{m} X_{i} P_{n}
\end{aligned}
$$

Background

$$
X_{i}=\sum_{n=0}^{\infty} P_{n+1} X_{i} P_{n}+\sum_{n=0}^{\infty} P_{n} X_{i} P_{n}+\sum_{n=1}^{\infty} P_{n-1} X_{i} P_{n}
$$

Let us define:

$$
\begin{align*}
& a^{+}(i):=\sum_{n=0}^{\infty} P_{n+1} X_{i} P_{n}, \tag{3}\\
& a^{0}(i):=\sum_{n=0}^{\infty} P_{n} X_{i} P_{n}, \tag{4}\\
& a^{-}(i):=\sum_{n=0}^{\infty} P_{n-1} X_{i} P_{n} . \tag{5}
\end{align*}
$$

Background

For all $1 \leq i \leq d$ and $n \geq 0$, we have:

$$
\begin{equation*}
a^{+}(i) G_{n} \subseteq G_{n+1}, \tag{6}
\end{equation*}
$$

$a^{+}(i)-$ creation operator,

$$
\begin{equation*}
a^{0}(i) G_{n} \subseteq G_{n}, \tag{7}
\end{equation*}
$$

$a^{0}(i)$ - preservation operator,

$$
\begin{equation*}
a^{-}(i) G_{n} \subseteq G_{n-1}, \tag{8}
\end{equation*}
$$

$a^{-}(i)$ - annihilation operator

Background

Theorem

For all $1 \leq i \leq d$, we have:

$$
\begin{equation*}
X_{i}=a^{+}(i)+a^{0}(i)+a^{-}(i) \tag{9}
\end{equation*}
$$

For all f and $g \in F$, and all $1 \leq i \leq d$:

$$
\begin{align*}
\left\langle a^{+}(i) f, g\right\rangle & =\left\langle f, a^{-}(i) g\right\rangle \tag{10}\\
\left\langle a^{0}(i) f, g\right\rangle & =\left\langle f, a^{0}(i) g\right\rangle \tag{11}
\end{align*}
$$

Semi-Quantum Operators

Semi-annihilation operators:

$$
\begin{equation*}
U_{i}=a^{-}(i)+\frac{1}{2} a^{0}(i) . \tag{12}
\end{equation*}
$$

Semi-creation operators:

$$
\begin{equation*}
V_{i}=a^{+}(i)+\frac{1}{2} a^{0}(i) . \tag{13}
\end{equation*}
$$

Lemma

For all $i \in\{1,2, \ldots, d\}$, we have:

$$
\begin{equation*}
X_{i}=U_{i}+V_{i} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{i}^{*}=V_{i} . \tag{15}
\end{equation*}
$$

Number Operator

$$
N: F \rightarrow F
$$

For all $n \in \mathbb{N} \cup\{0\}$,

$$
\begin{equation*}
N_{\mid G_{n}}=n l_{\mid G_{n}} . \tag{16}
\end{equation*}
$$

That means, if $\forall n \geq 0, P_{n}$ denotes the restriction to F of the projection of L^{2} on G_{n}, then:

$$
\begin{equation*}
N=\sum_{n=0}^{\infty} n P_{n} \tag{17}
\end{equation*}
$$

Universal Commutator Rules

For all $1 \leq i \leq d$, we have:

$$
\begin{equation*}
\left[N, a^{+}(i)\right]=a^{+}(i) \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\left[a^{-}(i), N\right]=a^{-}(i) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\left[N, a^{0}(i)\right]=0 \tag{20}
\end{equation*}
$$

$$
\begin{align*}
{\left[N, X_{i}\right] } & =a^{+}(i)-a^{-}(i) \tag{21}\\
& =V_{i}-U_{i} \tag{22}
\end{align*}
$$

Recovering U_{i} and V_{i} from N

Solving the system:

$$
\left\{\begin{array}{l}
v_{i}+U_{i}=x_{i} \\
v_{i}-U_{i}=\left[N, X_{i}\right]
\end{array}\right.
$$

we get:

$$
\begin{equation*}
V_{i}=\frac{1}{2}\left(X_{i}+\left[N, X_{i}\right]\right) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{i}=\frac{1}{2}\left(X_{i}-\left[N, X_{i}\right]\right) \tag{24}
\end{equation*}
$$

Recovering $a^{+}(i)$ and $a^{-}(i)$ from N

Since:

$$
\begin{align*}
{\left[N, V_{i}\right] } & =\left[N, a^{+}(i)\right]+\frac{1}{2}\left[N, a^{0}(i)\right] \\
& =a^{+}(i) \tag{25}
\end{align*}
$$

and by duality:

$$
\begin{equation*}
\left[U_{i}, N\right]=a^{-}(i), \tag{26}
\end{equation*}
$$

we have:

$$
\begin{align*}
a^{+}(i) & =\left[N, V_{i}\right] \\
& =\frac{1}{2}\left(\left[N, X_{i}\right]+\left[N,\left[N, X_{i}\right]\right]\right) \tag{27}
\end{align*}
$$

and by duality:

$$
\begin{equation*}
a^{-}(i)=\frac{1}{2}\left(-\left[N, X_{i}\right]+\left[N,\left[N, X_{i}\right]\right]\right) \tag{28}
\end{equation*}
$$

Recovering $a^{0}(i)$ from N

We have:

$$
\begin{align*}
a^{0}(i) & =2\left(V_{i}-a^{+}(i)\right) \\
& =X_{i}-\left[N,\left[N, X_{i}\right]\right] . \tag{29}
\end{align*}
$$

Corollary

The random vector $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ is polynomially symmetric, which means that for all $i_{1}+i_{2}+\cdots+i_{d}=2 n-1$, for $n \in \mathbb{N}$,

$$
\begin{equation*}
E\left[X_{1}^{i_{1}} X_{2}^{i_{2}} \cdots X_{d}^{i_{d}}\right]=0 \tag{30}
\end{equation*}
$$

if and only if, for all $1 \leq i \leq d$, we have:

$$
\begin{equation*}
\left[N,\left[N, X_{i}\right]\right]=X_{i} . \tag{31}
\end{equation*}
$$

Let $k \in \mathbb{Z}$ be fixed. Let $T: F \rightarrow F$ be a linear operator, such that, for all $n \in \mathbb{N} \cup\{0\}$, we have:

$$
\begin{equation*}
T F_{n} \subseteq F_{n+k} \tag{32}
\end{equation*}
$$

Then, there exist $\left\{A_{n}(X)\right\}_{n \geq 0} \subset F$, such that:

- $\forall n \geq 0, A_{n}$ has degree at most $n+k$.
- For all $f(X) \in F$, we have:

$$
\begin{equation*}
T f(X)=\sum_{n=0}^{\infty} A_{n}(X) D^{n} f(X) \tag{33}
\end{equation*}
$$

where $D: F \rightarrow F$ is the differentiation operator, that means:

$$
\begin{align*}
& D\left(a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}\right) \tag{34}\\
= & n a_{n} X^{n-1}+(n-1) a_{n-1} X^{n-1}+\cdots+a_{1}, \tag{35}
\end{align*}
$$

for all $n \geq 0, a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{C}$.

In particular:

- For $T=a^{-}, k=-1$. So, there exists $\left\{A_{n}(X)\right\}_{n \geq 1} \subset F$, such that, for all $n \geq 1, \operatorname{deg}\left(A_{n}\right) \leq n-1$, and:

$$
\begin{equation*}
a^{-}=\sum_{n=1}^{\infty} A_{n}(X) D^{n} \tag{36}
\end{equation*}
$$

- For $T=a^{0}, k=0$. So, there exists $\left\{B_{n}(X)\right\}_{n \geq 0} \subset F$, such that, for all $n \geq 0, \operatorname{deg}\left(B_{n}\right) \leq n$, and:

$$
\begin{equation*}
a^{0}=\sum_{n=0}^{\infty} B_{n}(X) D^{n} . \tag{37}
\end{equation*}
$$

- For $T=a^{+}, k=1$. So, there exists $\left\{C_{n}(X)\right\}_{n \geq 0} \subset F$, such that, for all $n \geq 0, \operatorname{deg}\left(C_{n}\right) \leq n+1$, and:

$$
\begin{equation*}
a^{+}=\sum_{n=0}^{\infty} C_{n}(X) D^{n} . \tag{38}
\end{equation*}
$$

If the position-momentum decomposition of N is:

$$
\begin{equation*}
N=\sum_{n=1}^{\infty} A_{n}(X) D^{n} \tag{39}
\end{equation*}
$$

then:

$$
\begin{align*}
U & =\frac{1}{2}(X-[N, X]) \\
& =\frac{1}{2}\left(X-A_{1}(X)\right) I-\frac{1}{2} \sum_{n=2}^{\infty} n A_{n}(X) D^{n-1} \tag{40}
\end{align*}
$$

Since, for U, all the position left factors must have the degree less than or equal to the exponent of the momentum right factors, we conclude that:

$$
\begin{equation*}
A_{1}(X)=X-\mu, \tag{41}
\end{equation*}
$$

and for all $n \geq 2$, we have:

$$
\begin{equation*}
A_{n}(X)=c_{n-1} X^{n-1}+c_{n-2} X^{n-2}+\cdots \tag{42}
\end{equation*}
$$

Random variables for which the number operator is quadratic in \mathbf{D}

Let us assume that X is a random variable whose number operator is:

$$
\begin{equation*}
N=(b X+c) D^{2}+(X-\mu) D \tag{43}
\end{equation*}
$$

with a, b, and c real numbers. Then, we have:

$$
\begin{align*}
U & =\frac{1}{2}(X-[N, X]) \\
& =\frac{1}{2}\{X-2(b X+c) D-(X-\mu) I\} \\
& =-(b X+c) D+\frac{\mu}{2} I . \tag{44}
\end{align*}
$$

For all t in a neighborhood of 0 , if we denote the Laplace transform of X, by:

$$
\begin{equation*}
\varphi(t):=E[\exp (t X)] . \tag{45}
\end{equation*}
$$

We have:

$$
\begin{aligned}
\varphi^{\prime}(t)= & E[X \exp (t X)] \\
= & \langle X \exp (t X) 1,1\rangle \\
= & \langle(U+V) \exp (t X) 1,1\rangle \\
= & \langle U \exp (t X) 1,1\rangle+\langle\exp (t X) 1, U 1\rangle \\
= & \langle(-(b X+c) D+(1 / 2) \mu) \exp (t X) 1,1\rangle \\
& +\langle\exp (t X) 1,(-(b X+C) D+(1 / 2) \mu) 1\rangle \\
= & -t\langle(b X+c) \exp (t X) 1,1\rangle+\mu\langle\exp (t X) 1,1\rangle \\
= & -b t \varphi^{\prime}(t)+(\mu-c t) \varphi(t)
\end{aligned}
$$

This implies:

$$
\begin{equation*}
\frac{\varphi^{\prime}(t)}{\varphi(t)}=\frac{-c t+\mu}{b t+1} . \tag{46}
\end{equation*}
$$

Thus, the derivative of the Laplace transform of X, on a neighborhood of 0 , is a Möbius function.

It is not hard to see from here that up to a re-scaling and translation, X is a Gamma or Gaussian random variable.

Solving a quadratic equation in N

Let us consider a polynomially symmetric random variable X, whose number operator, N, satisfies the equation:

$$
\begin{equation*}
N^{2}+2 \alpha N=\left(a X^{2}+b\right) D^{2}+2 c X D \tag{47}
\end{equation*}
$$

where α, a, b, and c are real numbers.

Let us compete the square in the left, by adding $\alpha^{2} /$ to both sides, and obtaining:

$$
\begin{equation*}
(N+\alpha I)^{2}=\left(a X^{2}+b\right) D^{2}+2 c X D+\alpha^{2} I . \tag{48}
\end{equation*}
$$

Let us commute both sides with X to the right:

$$
\begin{equation*}
\left[(N+\alpha I)^{2}, X\right]=\left[\left(a X^{2}+b\right) D^{2}+2 c X D+\alpha^{2} I, X\right] . \tag{49}
\end{equation*}
$$

Using Leibniz commutator formula and $[D, X]=I$, we have:

$$
\begin{equation*}
[N, X](N+\alpha I)+(N+\alpha I)[N, X]=2\left(a X^{2}+b\right) D+2 c X \tag{50}
\end{equation*}
$$

Let us commute now both sides with N to the left:

$$
\begin{align*}
& {[N,[N, X]](N+\alpha I)+(N+\alpha I)[N,[N, X]] } \\
= & 2\left[N,\left(a X^{2}+b\right) D\right]+2 c[N, X] . \tag{51}
\end{align*}
$$

Since X is polynomially symmetric, we have:

$$
\begin{equation*}
[N,[N, X]]=X \tag{52}
\end{equation*}
$$

Thus, we obtain:

$$
\begin{align*}
& X(N+\alpha I)+(N+\alpha I) X \\
= & 2\left[N,\left(a X^{2}+b\right) D\right]+2 c[N, X] . \tag{53}
\end{align*}
$$

Let the position-momentum decomposition of N be:

$$
\begin{equation*}
N=\sum_{n=1}^{\infty} A_{n}(X) D^{n} \tag{54}
\end{equation*}
$$

Then, the position-momentum decomposition of $N+\alpha I$ is:

$$
\begin{equation*}
N+\alpha I=\sum_{n=0}^{\infty} A_{n}(X) D^{n} \tag{55}
\end{equation*}
$$

where:

$$
\begin{equation*}
A_{0}(X)=\alpha \tag{56}
\end{equation*}
$$

Substituting N and $N+\alpha l$ into equation (53), applying Leibniz commutator formula, using the fact that $[D, f(X)]_{\sim}=f^{\prime}(X)$, we get:

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(2 X A_{n}(X)+(n+1) A_{n}(X)\right) D^{n} \\
= & \sum_{n=0}^{\infty}\left(-2\left(a X^{2}+b\right) A_{n}^{\prime}(X)+4 a n X A_{n}(X)+2 a n(n+1) A_{n+1}(X)\right. \\
& \left.\quad+2 c(n+1) A_{n+1}(X)\right) D^{n}
\end{aligned}
$$

Equating the left position coefficients of the corresponding D^{n}, we obtain (after moving terms from one side to another):
$(n+1)\left(a n+c-\frac{1}{2}\right) A_{n+1}(X)=\left(a X^{2}+b\right) A_{n}^{\prime}(X)+(-2 a n+1) X A_{n}(X)$,
for all $n \geq 0$. Since $A_{0}(X)=\alpha$ and $A_{1}(X)=X$, we must have:

$$
\begin{equation*}
c=\alpha+\frac{1}{2} . \tag{57}
\end{equation*}
$$

Since $A_{2}(X)$ must have the degree strictly less than 2 , we must have:

$$
\begin{equation*}
a=1 \tag{58}
\end{equation*}
$$

Dividing both sides of the recursive equation by $a X^{2}+b=X^{2}+b$, we obtain:

$$
(n+1)(n+\alpha) \frac{1}{X^{2}+b} A_{n+1}(X)=A_{n}^{\prime}(X)+\frac{-2 n+1}{X^{2}+b} X A_{n}(X)
$$

Multiplying both side by the integrating factor $\rho(X)=\left(X^{2}+b\right)^{-n+(1 / 2)}$, we get:

$$
\begin{aligned}
& (n+1)(n+\alpha)\left(X^{2}+b\right)^{-n-1+(1 / 2)} A_{n+1}(X) \\
= & \left(\left(X^{2}+b\right)^{-n+(1 / 2)} A_{n}(X)\right)^{\prime}
\end{aligned}
$$

For all $n \geq 0$, let us define:

$$
B_{n}(X):=\left(X^{2}+b\right)^{-n+(1 / 2)} A_{n}(X)
$$

We have the recursive formula:

$$
(n+1)(n+\alpha) B_{n+1}(X)=B_{n}^{\prime}(X) .
$$

Iterating this recursive relation, we obtain in the end:

$$
\begin{equation*}
B_{n}(X)=\frac{1}{n!\alpha_{(n)}} \frac{d^{n}}{d X^{n}} B_{0}(X), \tag{59}
\end{equation*}
$$

where $\alpha_{(n)}:=\alpha(\alpha+1) \cdots(\alpha+n-1)$ is the Pochhammer symbol.

Since $B_{0}(X)=\alpha \sqrt{x^{2}+b}$, we obtain:

$$
\begin{equation*}
B_{n}(X)=\frac{\alpha}{n!\alpha_{(n)}} \frac{d^{n}}{d X^{n}}\left(\sqrt{X^{2}+b}\right) \tag{60}
\end{equation*}
$$

which means, for all $n \geq 0$,

$$
\begin{equation*}
A_{n}(X)=\frac{\alpha}{n!\alpha_{(n)}}\left(X^{2}+b\right)^{n-(1 / 2)} \frac{d^{n}}{d X^{n}}\left(\sqrt{X^{2}+b}\right) \tag{61}
\end{equation*}
$$

Thus, the position-momentum decomposition of N is:

$$
\begin{equation*}
N=\sum_{n=1}^{\infty} \frac{\alpha}{n!\alpha_{(n)}}\left(X^{2}+b\right)^{n-(1 / 2)} \frac{d^{n}}{d X^{n}}\left(\sqrt{X^{2}+b}\right) D^{n} . \tag{62}
\end{equation*}
$$

Using the formula:

$$
a^{-}=\frac{1}{2}(X-[N, X])
$$

we obtain that the position-momentum decomposition of a^{-}is:

$$
a^{-}=-\frac{1}{2} \sum_{n=1}^{\infty} \frac{\alpha}{n!\alpha_{(n+1)}}\left(X^{2}+b\right)^{n+(1 / 2)} \frac{d^{n+1}}{d X^{n+1}}\left(\sqrt{X^{2}+b}\right) D^{n} .
$$

Faà di Bruno's formula shows that:

$$
\left(X^{2}+b\right)^{n-(1 / 2)} \frac{d^{n}}{d X^{n}}\left(\sqrt{X^{2}+b}\right)
$$

is a polynomial of degree $n-2$, for all $n \geq 2$.

THANK YOU VERY MUCH!

