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Representing the quantum operators in terms of X and D

Background

Let X1, X2, . . . , Xd be random variables on (Ω, F , P).

Assume, for all 1 ≤ i ≤ d and p > 0, we have:

E
[
|Xi |p

]
< ∞. (1)

For all n ∈ N ∪ {0}, let:

Fn := {P (X1,X2, . . . ,Xd) | P polyn., deg(P) ≤ n} .

C ≡ F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ L2(Ω,P).
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Background

We define G0 := F0, and for all n ≥ 1:

Gn := Fn ⊖ Fn−1.

Consider the multiplication operator:

P(X1,X2, · · · ,Xd) 7→ XiP(X1,X2, · · · ,Xd).

Lemma

For all 1 ≤ i ≤ d and n ≥ 0, we have:

XiGn ⊥ Gk , (2)

∀k ̸= n − 1, n, n + 1.
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For all n ≥ 0, let:

Pn : L2(Ω,P) → Gn, be orthogonal projection,

and

Pn := Pn|F .

Let I : F → F be the identity operator, where F := ∪n≥0Fn.

For all 1 ≤ i ≤ d , we have:

Xi = IXi I

=

( ∞∑
m=0

Pm

)
Xi

( ∞∑
n=0

Pn

)

=
∞∑

m=0

∞∑
n=0

PmXiPn

=
∑

|m−n|≤1

PmXiPn
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Background

Xi =
∞∑
n=0

Pn+1XiPn +
∞∑
n=0

PnXiPn +
∞∑
n=1

Pn−1XiPn.

Let us define:

a+(i) :=
∞∑
n=0

Pn+1XiPn, (3)

a0(i) :=
∞∑
n=0

PnXiPn, (4)

a−(i) :=
∞∑
n=0

Pn−1XiPn. (5)

Aurel I. Stan The Ohio State University at Marion A study of random variables in terms of their Number Operator



Representing the quantum operators in terms of X and D

Background

For all 1 ≤ i ≤ d and n ≥ 0, we have:

a+(i)Gn ⊆ Gn+1, (6)

a+(i) – creation operator,

a0(i)Gn ⊆ Gn, (7)

a0(i) – preservation operator,

a−(i)Gn ⊆ Gn−1, (8)

a−(i) – annihilation operator
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Background

Theorem

For all 1 ≤ i ≤ d, we have:

Xi = a+(i) + a0(i) + a−(i). (9)

For all f and g ∈ F , and all 1 ≤ i ≤ d :

⟨a+(i)f , g⟩ = ⟨f , a−(i)g⟩, (10)

⟨a0(i)f , g⟩ = ⟨f , a0(i)g⟩. (11)
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Semi-Quantum Operators

Semi-annihilation operators:

Ui = a−(i) +
1

2
a0(i). (12)

Semi-creation operators:

Vi = a+(i) +
1

2
a0(i). (13)

Lemma

For all i ∈ {1, 2, . . . , d}, we have:

Xi = Ui + Vi (14)

and

U∗
i = Vi . (15)
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Number Operator

N : F → F

For all n ∈ N ∪ {0},

N|Gn
= nI|Gn

. (16)

That means, if ∀n ≥ 0, Pn denotes the restriction to F of the projection

of L2 on Gn, then:

N =
∞∑
n=0

nPn. (17)
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Representing the quantum operators in terms of X and D

Universal Commutator Rules

For all 1 ≤ i ≤ d , we have:

[
N, a+(i)

]
= a+(i) (18)

[
a−(i),N

]
= a−(i) (19)

[
N, a0(i)

]
= 0 (20)

[N,Xi ] = a+(i)− a−(i) (21)

= Vi − Ui (22)
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Representing the quantum operators in terms of X and D

Recovering Ui and Vi from N

Solving the system: 
Vi + Ui = Xi

Vi − Ui = [N,Xi ]

,

we get:

Vi =
1

2
(Xi + [N,Xi ]) (23)

and

Ui =
1

2
(Xi − [N,Xi ]) (24)
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Representing the quantum operators in terms of X and D

Recovering a+(i) and a−(i) from N

Since:

[N,Vi ] =
[
N, a+(i)

]
+

1

2

[
N, a0(i)

]
= a+(i) (25)

and by duality:

[Ui ,N] = a−(i), (26)

we have:

a+(i) = [N,Vi ]

=
1

2
([N,Xi ] + [N, [N,Xi ]]) (27)

and by duality:

a−(i) =
1

2
(− [N,Xi ] + [N, [N,Xi ]]) . (28)

Aurel I. Stan The Ohio State University at Marion A study of random variables in terms of their Number Operator



Representing the quantum operators in terms of X and D

Recovering a0(i) from N

We have:

a0(i) = 2
(
Vi − a+(i)

)
= Xi − [N, [N,Xi ]] . (29)

Corollary

The random vector (X1, X2, . . . , Xd) is polynomially symmetric, which

means that for all i1 + i2 + · · ·+ id = 2n − 1, for n ∈ N,

E
[
X i1
1 X

i2
2 · · ·X id

d

]
= 0 (30)

if and only if, for all 1 ≤ i ≤ d, we have:

[N, [N,Xi ]] = Xi . (31)
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Representing the quantum operators in terms of X and D

Let k ∈ Z be fixed. Let T : F → F be a linear operator, such that, for all

n ∈ N ∪ {0}, we have:

TFn ⊆ Fn+k . (32)

Then, there exist {An(X )}n≥0 ⊂ F , such that:

∀n ≥ 0, An has degree at most n + k .

For all f (X ) ∈ F , we have:

Tf (X ) =
∞∑
n=0

An(X )Dnf (X ), (33)

where D : F → F is the differentiation operator, that means:

D
(
anX

n + an−1X
n−1 + · · ·+ a1X + a0

)
(34)

= nanX
n−1 + (n − 1)an−1X

n−1 + · · ·+ a1, (35)

for all n ≥ 0, a1, a2, · · · , an ∈ C.
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In particular:

For T = a−, k = −1. So, there exists {An(X )}n≥1 ⊂ F , such that,

for all n ≥ 1, deg(An) ≤ n − 1, and:

a− =
∞∑
n=1

An(X )Dn. (36)

For T = a0, k = 0. So, there exists {Bn(X )}n≥0 ⊂ F , such that, for

all n ≥ 0, deg(Bn) ≤ n, and:

a0 =
∞∑
n=0

Bn(X )Dn. (37)

For T = a+, k = 1. So, there exists {Cn(X )}n≥0 ⊂ F , such that, for

all n ≥ 0, deg(Cn) ≤ n + 1, and:

a+ =
∞∑
n=0

Cn(X )Dn. (38)

Aurel I. Stan The Ohio State University at Marion A study of random variables in terms of their Number Operator



Representing the quantum operators in terms of X and D

If the position-momentum decomposition of N is:

N =
∞∑
n=1

An(X )Dn, (39)

then:

U =
1

2
(X − [N,X ])

=
1

2
(X − A1(X )) I − 1

2

∞∑
n=2

nAn(X )Dn−1. (40)

Since, for U, all the position left factors must have the degree less than or

equal to the exponent of the momentum right factors, we conclude that:

A1(X ) = X − µ, (41)

and for all n ≥ 2, we have:

An(X ) = cn−1X
n−1 + cn−2X

n−2 + · · · (42)
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Representing the quantum operators in terms of X and D

Random variables for which the number operator is quadratic in D

Let us assume that X is a random variable whose number operator is:

N = (bX + c)D2 + (X − µ)D, (43)

with a, b, and c real numbers. Then, we have:

U =
1

2
(X − [N,X ])

=
1

2
{X − 2(bX + c)D − (X − µ)I}

= −(bX + c)D +
µ

2
I . (44)

For all t in a neighborhood of 0, if we denote the Laplace transform of X ,

by:

φ(t) := E [exp(tX )] . (45)
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Representing the quantum operators in terms of X and D

We have:

φ′(t) = E [X exp(tX )]

= ⟨X exp(tX )1, 1⟩

= ⟨(U + V ) exp(tX )1, 1⟩

= ⟨U exp(tX )1, 1⟩+ ⟨exp(tX )1,U1⟩

= ⟨(−(bX + c)D + (1/2)µ) exp(tX )1, 1⟩

+⟨exp(tX )1, (−(bX + C )D + (1/2)µ)1⟩

= −t⟨(bX + c) exp(tX )1, 1⟩+ µ⟨exp(tX )1, 1⟩

= −btφ′(t) + (µ− ct)φ(t).

Aurel I. Stan The Ohio State University at Marion A study of random variables in terms of their Number Operator



Representing the quantum operators in terms of X and D

This implies:

φ′(t)

φ(t)
=

−ct + µ

bt + 1
. (46)

Thus, the derivative of the Laplace transform of X , on a neighborhood of

0, is a Möbius function.

It is not hard to see from here that up to a re-scaling and translation, X

is a Gamma or Gaussian random variable.
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Solving a quadratic equation in N

Let us consider a polynomially symmetric random variable X , whose

number operator, N, satisfies the equation:

N2 + 2αN =
(
aX 2 + b

)
D2 + 2cXD, (47)

where α, a, b, and c are real numbers.

Let us compete the square in the left, by adding α2I to both sides, and

obtaining:

(N + αI )2 =
(
aX 2 + b

)
D2 + 2cXD + α2I . (48)
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Representing the quantum operators in terms of X and D

Let us commute both sides with X to the right:[
(N + αI )2,X

]
=

[(
aX 2 + b

)
D2 + 2cXD + α2I ,X

]
. (49)

Using Leibniz commutator formula and [D, X ] = I , we have:

[N,X ](N + αI ) + (N + αI )[N,X ] = 2
(
aX 2 + b

)
D + 2cX . (50)

Let us commute now both sides with N to the left:

[N, [N,X ]](N + αI ) + (N + αI )[N, [N,X ]]

= 2
[
N,
(
aX 2 + b

)
D
]
+ 2c [N,X ] . (51)

Since X is polynomially symmetric, we have:

[N, [N,X ]] = X . (52)
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Representing the quantum operators in terms of X and D

Thus, we obtain:

X (N + αI ) + (N + αI )X

= 2
[
N,
(
aX 2 + b

)
D
]
+ 2c [N,X ] . (53)

Let the position-momentum decomposition of N be:

N =
∞∑
n=1

An(X )Dn. (54)

Then, the position-momentum decomposition of N + αI is:

N + αI =
∞∑
n=0

An(X )Dn, (55)

where:

A0(X ) = α. (56)

Substituting N and N + αI into equation (53), applying Leibniz

commutator formula, using the fact that [D, f (X )] = f ′(X ), we get:
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Representing the quantum operators in terms of X and D

∞∑
n=0

(2XAn(X ) + (n + 1)An(X ))Dn

=
∞∑
n=0

(
−2
(
aX 2 + b

)
A′
n(X ) + 4anXAn(X ) + 2an(n + 1)An+1(X )

+2c(n + 1)An+1(X ))Dn.

Equating the left position coefficients of the corresponding Dn, we obtain

(after moving terms from one side to another):

(n + 1)

(
an + c − 1

2

)
An+1(X ) =

(
aX 2 + b

)
A′
n(X ) + (−2an + 1)XAn(X ),

for all n ≥ 0. Since A0(X ) = α and A1(X ) = X , we must have:

c = α+
1

2
. (57)

Since A2(X ) must have the degree strictly less than 2, we must have:

a = 1. (58)
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Dividing both sides of the recursive equation by aX 2 + b = X 2 + b, we

obtain:

(n + 1)(n + α)
1

X 2 + b
An+1(X ) = A′

n(X ) +
−2n + 1

X 2 + b
XAn(X ).

Multiplying both side by the integrating factor ρ(X ) = (X 2 + b)−n+(1/2),

we get:

(n + 1)(n + α)
(
X 2 + b

)−n−1+(1/2)
An+1(X )

=
((

X 2 + b
)−n+(1/2)

An(X )
)′

.

For all n ≥ 0, let us define:

Bn(X ) :=
(
X 2 + b

)−n+(1/2)
An(X ).
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We have the recursive formula:

(n + 1)(n + α)Bn+1(X ) = B ′
n(X ).

Iterating this recursive relation, we obtain in the end:

Bn(X ) =
1

n!α(n)

dn

dX n
B0(X ), (59)

where α(n) := α(α+ 1) · · · (α+ n − 1) is the Pochhammer symbol.

Since B0(X ) = α
√
x2 + b, we obtain:

Bn(X ) =
α

n!α(n)

dn

dX n

(√
X 2 + b

)
, (60)

which means, for all n ≥ 0,

An(X ) =
α

n!α(n)

(
X 2 + b

)n−(1/2) dn

dX n

(√
X 2 + b

)
. (61)
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Thus, the position-momentum decomposition of N is:

N =
∞∑
n=1

α

n!α(n)

(
X 2 + b

)n−(1/2) dn

dX n

(√
X 2 + b

)
Dn. (62)

Using the formula:

a− =
1

2
(X − [N,X ]) ,

we obtain that the position-momentum decomposition of a− is:

a− = −1

2

∞∑
n=1

α

n!α(n+1)

(
X 2 + b

)n+(1/2) dn+1

dX n+1

(√
X 2 + b

)
Dn.

Faà di Bruno’s formula shows that:(
X 2 + b

)n−(1/2) dn

dX n

(√
X 2 + b

)
is a polynomial of degree n − 2, for all n ≥ 2.
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THANK YOU VERY MUCH!
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