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White Noise Functionals and Operators

The mathematical framework of the white noise theory is a Gelfand triple:

(E )⊂ L2(E ∗R,µ)⊂ (E )∗

based on a underline Gelfand triple E ⊂ H ⊂ E ∗, where H is a separable
Hilbert space and E is a nuclear space which is densely and continuously
embedded into H.
Here µ is the standard Gaussian measure on E ∗R which is uniquely
determined by its characteristic function given by

exp

(
−1

2
|ξ |2H

)
=
∫
E ∗R

e i〈x ,ξ 〉µ(dx), ξ ∈ ER,

where ER is a real nuclear space such that E = ER + iER. The probability
space (E ∗R,µ) is called the Gaussian space. We denote by L2(E ∗R,µ) the
complex Hilbert space of µ-square integrable functions on E ∗R.
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Theorem

The Hilbert space L2(E ∗R,µ) and the Boson Fock space Γ(H) over H are
unitarily equivalent by the Wiener–Itô–Segal isomorphism whose
correspondence is given by

Γ(H) 3 φξ :=

(
1,ξ , · · · , ξ⊗n

n!
, · · ·
)
↔ φξ (x) := e〈x ,ξ 〉−

1
2 〈ξ ,ξ 〉 ∈ (L2)

for ξ ∈ H, where φξ is called an exponential vector (or coherent vector)
associated with ξ ∈ E .

Then we have a Gelfand triple:

(E )⊂ Γ(H)⊂ (E )∗

Let L (X,Y) be the space of all continuous linear operators from a locally
convex space X into another locally convex space Y. An element of
L ((E ),(E )∗) is called a white noise operator .
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Let {at ,a∗t}t be the quantum white noise, i.e. the pair of pointwisely
defined annihilation and creation operators. Then the annihilation operator
a(x) and creation operator a∗(y) are presented by

a(x) =
∫

x(t)atdt, a∗(y) =
∫

y(t)a∗tdt.

The quadratic operators of quantum white noise:

∆G =
∫

a2
t dt, N = Λ(I ) =

∫
a∗tatdt

are called the Gross Laplacian and the number (conservation) operator,
respectively. Then the adjoint operator ∆∗G of ∆G with respect to the
canonical bilinear form 〈〈·, ·〉〉 on (E )∗× (E ) is represented by

∆∗G =
∫

(a∗t )2dt.
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More generally, consider an operator K ∈L (E ,E ∗), and then there exists
a unique τK ∈ E ∗⊗E ∗ such that

〈τK , η⊗ξ 〉= 〈Kξ , η〉 , η ,ξ ∈ E

(kernel theorem), and then we have the white noise operators:

∆G(K ) =
∫ ∫

τK (s, t)asatdsdt, Λ(K ) =
∫ ∫

τK (s, t)a∗satdsdt,

which are called the generalized Gross Laplacian and the conservation
operator, respectively, and then we have

∆∗G(K ) =
∫ ∫

τK (s, t)a∗sa
∗
tdsdt

Note Let K ,S ∈L (E ∗,E ∗). Then we have∫
E ∗R

φξ (Ky +Sx)dµ(y) = e
1
2 〈(SS

∗+KK ∗−I )ξ ,ξ 〉
φS∗ξ (x)

= Γ(S∗)e
1
2 ∆G(SS∗+KK ∗−I )

φξ (x).
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Introduction (Transforms and Weyl Operators)

(Cameron & Martin (1945, 1947): Fourier-Wiener transform)

FW (f )(x) : =
∫

C
f (y + ix)dw(y),

FW √
2f (x) : =

∫
C
f (
√

2y + ix)dw(y),

and then we have

FW = Γ(iI )e−
1
2 ∆G , FW √

2 = Γ(iI ).

(Hida (1970): Gauss transform)

G T f (x) :=
∫

C
f (iy + x)dw(y),

which is represented as in the operator form by

G T = e−
1
2 ∆G .
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(Cameron and Storvick (1976): analytic Fourier-Feynmann transform)
For q > 0,

FF f (x) := lim
λ>0;λ→−iq

∫
C
f (λ

−1/2y + x)dw(y),

which has an operator representation:

FF = e
i

2q ∆G .

(Kubo & Takenaka (1980): S-transform)

(Sϕ)(ξ ) =
∫
E ∗R∗

ϕ(y + ξ )dµ(y) =
∫
E ∗R∗

ϕ(y)e〈y ,ξ 〉−
1
2 |ξ |

2
Hdµ(y)

=
〈〈

ϕ, φξ

〉〉
,

and then S-transform is represented by

S = e
1
2 ∆G .
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(Lee (1982): integral transforms)

I T a,bf (x) =
∫
B
f (ay +bx)dµ(y),

where a,b ∈ C, which is represented by

I T a,b = Γ(bI )e
1
2 (a2+b2−1)∆G

and called the Fourier-Gauss transform.

(Kuo (1982): Fourier transform) For Φ ∈ (E )∗,

K FΦ(ξ ) =
∫
ER∗

e−i〈y ,ξ 〉Φ(y)dµ(y),

which is represented by

K F =
(

Γ(−iI )e−
1
2 ∆G
)∗

and called the Kuo’s Fourier transform.
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(Kuo (1983; 1991): Fourier-Mehler transform) For Φ ∈ (E )∗,

Fθ Φ(ξ ) = S(Φ)(e iθ ξ )e
i
2 e

iθ sinθ〈ξ ,ξ 〉 =
〈〈

Φ, φe iθ ξ

〉〉
e

i
2 e

iθ sinθ〈ξ ,ξ 〉,

which is represented by

Fθ =
(

Γ(e iθ I )e
i
2 e

iθ sinθ∆G
)∗

and called the Kuo’s Fourier-Mehler transform. Then it has been
proved that {Fθ}θ∈R is a differentiable one-parameter group with the
infinitesimal generator

(
iN + i

2 ∆G
)∗

.
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(Bogachev & Röckner & Schmuland (1996): generalized Mehler
semigroups)

pt f (x) =
∫
B
f (Ttx−y)νt(dy) = (νt ∗ f )(Ttx), t ≥ 0,

where B is a Banach space, {Tt}t≥0 is a strongly continuous
semigroup on B and {νt}t≥0 are probability measures such that

νt+s =
(
νt ◦T−1

s

)
∗νs for all s, t ≥ 0.

(Chung & J (1998): Fourier -Gauss and -Mehler transforms)

Gα,β = Γ(β I )eα∆G , Fa,b = G ∗
α,β = eα∆∗GΓ(β I ), α,β ∈ C

with the characterization of all one-parameter groups induced by the
transforms.
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(Chung & J (1997): generalized Fourier -Gauss and -Mehler
transforms)

GK ,S = Γ(S)e∆G(K), FK ,S = G ∗K ,S = eα∆∗G(K)Γ(S∗)

for K ∈L (E ,E ∗) and S ∈L (E ,E ).

(Chung & J (2000): transformation groups) For α = (α1, · · · ,α5) ∈ C,

Gα = α1e
α5a

∗(ζ )Γ(α4I )e
α3∆G eα2a(ζ ),

Fα = G ∗α = α1e
α2a

∗(ζ )eα3∆∗G Γ(α4I )e
α5a(ζ )

with the characterization of all one-parameter groups induced by the
transformations.
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(van Neerven (2000): Gaussian Mehler semigroups) With
one-parameter family {νt}t≥0 of Gaussian measures νt with mean 0
and the covariance operator Qt ∈L (B∗,B) (where B is a reflexive
real Banach space). Then it has been proved that Qt is given by

Qt =
∫ t

0
TsQT

∗
s ds

for some positive, symmetric operator Q ∈L (B∗,B).

Note. In the white noise theory, the Gaussian Mehler semigroup
{pt}t≥0 is represented by

pt f (x) =
∫
E
f (Ttx−y)νt(dy) = (νt ∗ f )(Ttx)

= Γ(Tt)e
∆G(Qt)f (x), t ≥ 0.
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(Lee & J (2021): shifted Gaussian Mehler semigroup)

ps
t = Γ(Tt)e

∆G(Qt)ea(ηt),

(ps
t)
∗ = ea

∗(ηt)e∆∗G(Qt)Γ(T ∗t ), t ≥ 0,

where {ηt}t≥0 ⊂ E ∗.

(Parthasarathy-book: Weyl Operators) For unitary operator U on H
and ζ ∈ H,

WU,ζ φξ = e−
1
2 |ζ |

2
H−〈ζ |Uξ 〉

φUξ +ζ , φξ ∈ Γ(H),

and then

WU,ζ = e−
1
2 |ζ |

2
H ea

∗(ζ )Γ(U)ea(U∗ζ ).

Quantum Laplacians have been studied by several authors, e.g.,
Accardi & Barhoumi & Ouerdiane (2006), Obata, Saito, Ettaieb,
Turki Khalifa, Rguigui and J.
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Purposes of This Talk

We discuss transformations:

Gα,ζ ,K ,S ,η = αea
∗(ζ )Γ(S)e∆G (K)ea(η),

Fα,ζ ,K ,S ,η = G ∗
α,ζ ,K ,S ,η = αea

∗(η)e∆∗G (K)Γ(S∗)ea
∗(ζ )

with characterizing all differentiable one parameter semigroups induced by
the transformations, and their quantum extensions:

G Q
α,ζ ,K ,S ,η

(Ξ) = Gα,ζ ,K ,S ,η ΞG ∗
α,ζ ,K ,S ,η , Ξ ∈L ((E )∗,(E ))

F Q
α,ζ ,K ,S ,η

(Ξ) = Fα,ζ ,K ,S ,η ΞF ∗
α,ζ ,K ,S ,η , Ξ ∈L ((E ),(E )∗)

since Gα,ζ ,K ,S ,η ∈L ((E ),(E )) and G ∗
α,ζ ,K ,S ,η ∈L ((E )∗,(E )∗).

Then we discuss invariant white noise functionals for and invariant white
noise operators for the quantum extensions of the transformation
semigroups.
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Transformation Groups for White Noise Functionals

We recall the Gelfand triples:

(E )⊂ Γ(H)∼= L2(E ∗R,µ)⊂ (E )∗, E ⊂ H ⊂ E ∗.

For each α ∈ C, ζ ∈ E , η ∈ E ∗, K ∈Lsym(E ,E ∗) and S ∈L (E ,E ), there
exists a unique white noise operator, denoted by Gα,ζ ,K ,S ,η , such that

Gα,ζ ,K ,S ,η = αea
∗(ζ )Γ(S)e∆G (K)ea(η) ∈L ((E ),(E )).

For each αi ∈ C, ζi ∈ E , ηi ∈ E ∗, Ki ∈Lsym(E ,E ∗) and Si ∈L (E ,E ) for
i = 1,2, we have

Gα2,ζ2,K2,S2,η2
Gα1,ζ1,K1,S1,η1

= G
α2α1e

〈η2,ζ1〉+〈K2ζ1,ζ1〉,S2ζ1+ζ2,K1+S∗1K2S1,S2S1,η1+S∗1 (η2+2K2ζ1)
.

Consider a group G defined by

G := C∗×E ×Lsym(E ,E ∗)×GL(E )×E ∗,
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and then

{Gα,ζ ,K ,S ,η : (α,ζ ,K ,S ,η) ∈ G}

is a subgroup of GL((E )).
The adjoint of Gα,ζ ,K ,S ,η is denoted by Fα,ζ ,K ,S ,η , i.e.

Fα,ζ ,K ,S ,η :=
(
Gα,ζ ,K ,S ,η

)∗
= αea

∗(η)e∆∗G (K)Γ(S∗)ea(ζ ),

and then

{Fα,ζ ,K ,S ,η : (α,ζ ,K ,S ,η) ∈ G}

is a subgroup of GL((E )∗).
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One-parameter Semigroups

We now consider a one-parameter family {Gt}t≥0 ⊂L ((E ),(E )) defined
by

Gt := Gα(t),ζ (t),K(t),S(t),η(t),

where

(α,ζ ,K ,S ,η) : = {(α(t),ζ (t),K (t),S(t),η(t))}t≥0

⊂ G = C∗×E ×Lsym(E ,E ∗)×GL(E )×E ∗.

Then it is obvious that G0 = I if and only if α(0) = 1, S(0) = I ,
ζ (0) = η(0) = 0 and K (0) = 0.
For each t ≥ 0, the adjoint of Gt ∈L ((E ),(E )) is denoted by Ft , i.e
Ft = G ∗t and then we have Ft ∈L ((E )∗,(E )∗). Then we have

Ft = G ∗t = (Gα(t),ζ (t),K(t),S(t),η(t))∗

= α(t)ea
∗(η(t))e∆∗G(K(t))Γ(S(t)∗)ea(ζ (t)).
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Theorem

Let (α,ζ ,K ,S ,η) : [0,∞)→ G be differentiable functions such that
{St}t≥0 has the infinitesimal generator S ∈L (E ,E ). Then {Gt}t≥0 is a
differentiable one-parameter semigroup of operators in L ((E ),(E )) if and
only if

K (t) =
∫ t

0
S(s)∗KS(s)ds, K := K ′(0),

ζ (t) =
∫ t

0
S(s)ζds, ζ := ζ

′(0),

η(t) =
∫ t

0
S(s)∗ (η + 2Kζ (s))ds, η := η

′(0), K = K ′(0),

α(t) = exp

{
αt +

∫ t

0
〈η(s), ζ 〉ds

}
, α := α

′(0), ζ = ζ
′(0).

In this case, the infinitesimal generator of {Gt}t≥0 is given by

αI +a∗(ζ ) + Λ(S) + ∆G(K ) +a(η).
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Theorem

Let the function (α,ζ ,K ,S ,η) : [0,∞)→ G be given as in previous
theorem. Then {Ft}t≥0 is a differentiable one-parameter semigroup of
operators in L ((E )∗,(E )∗) with the infinitesimal generator

αI +a(ζ ) + Λ(S∗) + ∆∗G(K ) +a∗(η).

Theorem

Let (α,ζ ,K ,S ,η) ∈ G be given. Then the transformation Gα,ζ ,K ,S ,η has a
unitary extension to Γ(H) if and only if K = 0, S has a unitary extension
to H,

α = e−
1
2 |ζ |

2
0 and η =−S∗ζ .
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We put

O(E ;H) = {g ∈ GL(E ) : |gξ |0 = |ξ |0 for all ξ ∈ E},

which is called the infinite dimensional rotation group. For each
S ∈ O(E ;H), Γ(S) can be extended to Γ(H) as a unitary operator and
then we identify Γ(S) with its unitary extension to Γ(H).
For each (S ,ζ ) ∈ O(E ;H)×E , we put

WS ,ζ = G
e−

1
2 |ζ |

2
0 ,ζ ,0,S ,−S∗ζ

= e−
1
2 |ζ |

2
0ea

∗(ζ )Γ(S)e−a(S∗ζ ),

which (its extension) is a Weyl operator.
For a one-parameter family {(S(t),ζ (t))}t≥0 ⊂ O(E ;H)×E , we put

Wt := WS(t),ζ (t).
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Theorem

Let {(S(t),ζ (t))}t≥0 ⊂ O(E ;H)×E be a family such that {S(t)}t≥0 is
differentiable with the infinitesimal generator S ∈L (E ,E ). Suppose that

for any s, t ≥ 0,
〈
S(s)∗ζ (s), ζ (t)

〉
is real. Then the one-parameter

semigroup {Wt}t≥0 of unitary operators Wt on Γ(H) is differentiable and
whose infinitesimal generator is given by

a∗(ζ ) + Λ(S)−a(ζ ).

In this case, the one-parameter semigroup {W ∗
t }t≥0 is differentiable and

whose infinitesimal generator is given by

a(ζ ) + Λ(S∗)−a∗(ζ ).
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Invariant White Noise Distributions

A complex measure ν on E ∗R is called a Hida complex measure if
(E )⊂ L1(ν) and the linear functional

ϕ 7→
∫
E ∗R

ϕ(x)dν(x)

is continuous on (E ). The Hida complex measure ν induces a white noise
distribution Φν ∈ (E )∗ such that

〈〈Φν , ϕ〉〉=
∫
E ∗R

ϕ(x)dν(x)

for any ϕ ∈ (E ). A Hida complex measure is called a Hida measure if it is
a measure. A white noise distribution Φ in (E )∗ is said to be positive if
〈〈Φ, ϕ〉〉 ≥ 0 for all nonnegative test functions ϕ ∈ (E ). A distribution
Φ ∈ (E )∗ is induced by a Hida measure if and only if Φ is positive.

Un Cig Ji (CBNU) Quantum Extension of Transformations 22 / 30



A (complex) measure ν on E ∗R is said to be invariant for a one-parameter
semigroup {Tt}t≥0 ⊂L ((E ),(E )) if (E )⊂ L1(ν) and∫

E ∗R

Ttϕ(x)dν(x) =
∫
E ∗R

ϕ(x)dν(x)

for all t ≥ 0 and ϕ ∈ (E ). If Φν ∈ (E )∗ is induced by a complex Hida
measure ν which is invariant for {Tt}t≥0, then we have

〈〈Φν , ϕ〉〉=
∫
E ∗R

ϕ(x)dν(x) =
∫
E ∗R

Ttϕ(x)dν(x) = 〈〈Φν , Ttϕ〉〉= 〈〈T ∗t Φν , ϕ〉〉

for all ϕ ∈ (E ).

Theorem

Let ν be a Hida complex measure corresponding to Φν ∈ (E )∗. Then ν is
invariant for a one-parameter semigroup {Tt}t≥0 ⊂L ((E ),(E )) if and
only if Φν is invariant for the one-parameter semigroup
{T ∗t }t≥0 ⊂L ((E )∗,(E )∗).

Un Cig Ji (CBNU) Quantum Extension of Transformations 23 / 30



Theorem

Let (α,ζ ,K ,S ,η) : [0,∞)→ G be differentiable functions such that
{St}t≥0 has the infinitesimal generator S ∈L (E ,E ). Suppose that
(α,ζ ,K ,η) are explicitly given such that {Gt}t≥0 is a differentiable
one-parameter semigroup, and

(α) α∞ := limt→∞ α(t) exists in C such that α∞ 6= 0,

(K) K∞ := limt→∞K (t) exists in L (E ,E ∗),

(η) η∞ := limt→∞ η(t) exists in E ∗.

Then the following assertions are equivalent:

(i) there exists Φ ∈ (E )∗ such that Φ is invariant for {G ∗t }t≥0,

(ii) there exists Ψ ∈ (E )∗ such that the limit
Ψ := limt→∞ Γ(S(t)∗)ea(ζ (t))Ψ exists in (E )∗.

In this case, the invariant vector Φ for {G ∗t }t≥0 is explicitly given by

Φ = α∞Ψ�ΨK∞
�φη∞

, ΨK∞
=

(
τ
⊗̂n
K∞

n!

)
, φη∞

=

(
η⊗̂n∞

n!

)
.
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Quantum Extension of One Parameter Semigroups

We recall the Gelfand triples:

(E )⊂ Γ(H)∼= L2(E ∗R,µ)⊂ (E )∗, E ⊂ H ⊂ E ∗.

Then L ((E ),(E )∗) is the space of all white noise operators, and then we
can consider the subspaces:

L (X,Y), X,Y = (E ),Γ(H),(E )∗.

The quantum extensions of Gα,ζ ,K ,S ,η -transform and Fα,ζ ,K ,S ,η -transform,

denoted by G Q
α,ζ ,K ,S ,η

and F Q
α,ζ ,K ,S ,η

, are defined by

G Q
α,ζ ,K ,S ,η

(Ξ) = Gα,ζ ,K ,S ,η Ξ(Gα,ζ ,K ,S ,η )∗, Ξ ∈L ((E )∗,(E )),

F Q
α,ζ ,K ,S ,η

(Ξ) = Fα,ζ ,K ,S ,η Ξ(Fα,ζ ,K ,S ,η )∗, Ξ ∈L ((E ),(E )∗),

respectively.
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Theorem

For each

(α,ζ ,K ,S ,η) ∈ C×E ×Lsym(E ,E ∗)×L (E ,E )×E ∗,

the operators G Q
α,ζ ,K ,S ,η

and F Q
α,ζ ,K ,S ,η

are continuous linear operators

acting on L ((E )∗,(E )) and L ((E ),(E )∗), respectively.

For a given function

(α,ζ ,K ,S ,η) : = {(α(t),ζ (t),K (t),S(t),η(t))}t≥0

⊂ G := C∗×E ×Lsym(E ,E ∗)×GL(E )×E ∗,

the quantum extensions of Gt and Ft are denoted by G Q
t and F Q

t , i.e.,
G Q
t and F Q

t are operators acting on L ((E )∗,(E )) and L ((E ),(E )∗),
respectively, and defined by

G Q
t (Ξ) = GtΞG ∗t = GtΞFt , Ξ ∈L ((E )∗,(E )),

F Q
t (Ξ) = FtΞF ∗

t = FtΞGt , Ξ ∈L ((E ),(E )∗).
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Theorem

Let (α,ζ ,K ,S ,η) : [0,∞)→ G be differentiable functions such that
{St}t≥0 has the infinitesimal generator S ∈L (E ,E ). Suppose that
(α,ζ ,K ,η) are explicitly given such that {Gt}t≥0 is a differentiable

one-parameter semigroup. Then
{
G Q
t

}
t≥0

is a differentiable

one-parameter semigroup of operators acting on L ((E )∗,(E )) with the
infinitesimal generator LQ, where L = αI +a∗(ζ ) + Λ(S) + ∆G(K ) +a(η) is
the infinitesimal generator of {Gt}t≥0 and LQ is the quantum extension of
L, i.e.

LQ(Ξ) = LΞ + ΞL∗, Ξ ∈L ((E )∗,(E )).

Also,
{
F Q

t

}
t≥0

is a differentiable one-parameter semigroup of operators

acting on L ((E ),(E )∗) with the infinitesimal generator (L∗)Q, where
(L∗)Q is the quantum extension of L∗, i.e.

(L∗)Q(Ξ) = L∗Ξ + ΞL, Ξ ∈L ((E ),(E )∗).
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Invariant White Noise Operators

Theorem

Let (α,ζ ,K ,S ,η) : [0,∞)→ G be differentiable functions as in previous
theorem. Suppose that

(α) α∞ := limt→∞ α(t) exists in C such that α∞ 6= 0,

(K) K∞ := limt→∞K (t) exists in L (E ,E ∗),

(η) η∞ := limt→∞ η(t) exists in E ∗.

There exists Ξ ∈L ((E ),(E )∗) such that Ξ is invariant for {F Q
t }t≥0 if and

only if there exists Υ ∈L ((E ),(E )∗) such that the limit

Υ := lim
t→∞

Γ(S(t)∗)ea(ζ (t))Υea
∗(ζ (t))Γ(S(t)) ∈L ((E ),(E )∗).

In this case, an invariant operator Ξ for {F Q
t }t≥0 is explicitly given by

Ξ = α∞Υ�GK∞,η∞
, GK∞,η∞

= ea
∗(η∞)+∆∗G(K∞)e∆G(K∞)+a(η∞).
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Transformations on White Noise Operators

Consider the Gelfand triple:

E ⊂ H ⊂ E ∗

for a Hilbert space H. It is well-known that

Γ(H⊕H)∼= Γ(H)⊗Γ(H) (unitarily isomorphic),

and then we can see that (E ⊕E )∗ ∼= (E )∗⊗ (E )∗ ∼= L ((E ),(E )∗) and
then by applying canonical topological isomorphisms (U and V ), we can
study (general including entangled) transformations F on white noise
operators as the following diagram:

L ((E ),(E )∗)
U−−−−→ (E )∗⊗ (E )∗

V−−−−→ (E ⊕E )∗

F

y y yF=G ∗

L ((E ),(E )∗) ←−−−−
U −1

(E )∗⊗ (E )∗ ←−−−−
V −

(E ⊕E )∗
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Thank you very much!
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