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White Noise Functionals and Operators

The mathematical framework of the white noise theory is a Gelfand triple:
(E) C L*(Eg,u) C (E)*

based on a underline Gelfand triple E C H C E*, where H is a separable
Hilbert space and E is a nuclear space which is densely and continuously
embedded into H.

Here u is the standard Gaussian measure on Eg which is uniquely
determined by its characteristic function given by

1 )
ow(—5180) = [ Ou@).  gek,
2 E:
where Eg is a real nuclear space such that E = Eg + iEg. The probability
space (Eg, 1) is called the Gaussian space. We denote by L2(Ej, 1) the
complex Hilbert space of u-square integrable functions on Ep.
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Theorem

The Hilbert space L?(E, 1) and the Boson Fock space I'(H) over H are
unitarily equivalent by the Wiener—It6—Segal isomorphism whose
correspondence is given by

r(H)9¢§;:<175,...,iﬁ",...) o Ge(x)im e E-AED ¢ (12)

for & € H, where ¢¢ is called an exponential vector (or coherent vector)
associated with & € E.

Then we have a Gelfand triple:
(E) cT(H)C (E)

Let .Z(X,2)) be the space of all continuous linear operators from a locally
convex space X into another locally convex space ). An element of
Z((E),(E)*) is called a white noise operator.
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Let {a¢,a}}: be the quantum white noise, i.e. the pair of pointwisely
defined annihilation and creation operators. Then the annihilation operator
a(x) and creation operator a*(y) are presented by

a(x) = / x(t)ardt, a*(y) = / y(t)a'dt.
The quadratic operators of quantum white noise:
Ag :/afdt, N=A() :/atatdt

are called the Gross Laplacian and the number (conservation) operator,
respectively. Then the adjoint operator Aj; of Ag with respect to the
canonical bilinear form ((-, -)) on (E)* x (E) is represented by

AL = /(a:)2dt.
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More generally, consider an operator K € .Z(E,E*), and then there exists
a unique Tk € E*® E* such that

<TK717®€>:<K€7”>7 77756E
(kernel theorem), and then we have the white noise operators:
AG(K) = / / Ti(s, t)asardsde, A(K) = / / Tx(s, t)ata;dsdt,

which are called the generalized Gross Laplacian and the conservation
operator, respectively, and then we have

A*G(K)://IK(s,t)a:a’;dsdt

Note Let K,S € .Z(E*,E*). Then we have

[ 9e(Ky+Sx)du(y) = e (S5 Do (x)
R

_ r(s*)e%Ag(SS*-i-KK*—I)(P5 (X)
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Introduction (Transforms and Weyl Operators)

o (Cameron & Martin (1945, 1947): Fourier-Wiener transform)
FH () = [ ly+idw(y).
FW ()i = [ F(V2y+ix)aw(y).
and then we have
FW =T(il)e 28, FW 5=T(il).
e (Hida (1970): Gauss transform)
G T(x) ::Aﬂf(iy+x)dw(y),
which is represented as in the operator form by

4T = e 380,
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@ (Cameron and Storvick (1976): analytic Fourier-Feynmann transform)
For g > 0,

FFF(x):=  lim /f(rl/2y+x)dw(y),
A>0A——iqJ¥

which has an operator representation:
FF = e’
o (Kubo & Takenaka (1980): S-transform)
/ o(y+E&)duly / o(y)e &2 lidu(y)
= <<<p, 9))

and then S-transform is represented by

1
S =e280,
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o (Lee (1982): integral transforms)

I T apf(x) = /B f(ay + bx)du(y),
where a, b € C, which is represented by
jya,b — r(bl)e%(a2+b2—1)AG

and called the Fourier-Gauss transform.
o (Kuo (1982): Fourier transform) For ® € (E)*,

HTOE) = /E (e Eo(y)duy).

which is represented by
HT = (F(—il)e’%AG)*

and called the Kuo's Fourier transform.
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o (Kuo (1983; 1991): Fourier-Mehler transform) For ® € (E)*,

Fo®(E) = S(0)(708)ere sN0EL) = (0, g0, )) e3¢ 5MOCE),
which is represented by
Fo = (r(e"el)e%emSi”eAG)*

and called the Kuo's Fourier-Mehler transform. Then it has been
proved that {Zp}ecr is a differentiable one-parameter group with the
infinitesimal generator (iN+ éAg)*.
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o (Bogachev & Rockner & Schmuland (1996): generalized Mehler
semigroups)

pef / F(Tex—y)ve(dy) = (ve F)(Tex), ¢ >0,

where B is a Banach space, { T:}+>0 is a strongly continuous
semigroup on B and {V;}+>( are probability measures such that

Vigs = (vto T;l)*vs for all s,t > 0.
(Chung & J (1998): Fourier -Gauss and -Mehler transforms)
Gop=T(B1)e™0, Fop=9,5=e"T(Bl), a,BeC

with the characterization of all one-parameter groups induced by the
transforms.
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o (Chung & J (1997): generalized Fourier -Gauss and -Mehler
transforms)

G5 =T(S)et ) Fy s =G s = e®AalKIr(57)

for Ke Z(E,E*) and S € Z(E,E).
@ (Chung & J (2000): transformation groups) For o = (0, ,05) € C,
Gy = o157 O () ) %P6 %2(6)
Fo =9 = 1% (6)eBAG (g 1)e%(6)

with the characterization of all one-parameter groups induced by the
transformations.
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@ (van Neerven (2000): Gaussian Mehler semigroups) With
one-parameter family {V;}+>o of Gaussian measures v; with mean 0
and the covariance operator Q; € .Z(B*,B) (where B is a reflexive
real Banach space). Then it has been proved that Q; is given by

t
Qt:/ T.QT: ds
0

for some positive, symmetric operator Q € .Z(B*, B).

Note. In the white noise theory, the Gaussian Mehler semigroup
{pt}t>0 is represented by

pef / F(Tox—y)ve(dy) = (Ve * F)(Tex)
=T(Ty)e®s(@)f(x), t>0.
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o (Lee & J (2021): shifted Gaussian Mehler semigroup)
pi — r( -,_t)eAG(Qf)ea(nl’)7
(pi)* _ ea*(nt)eAé(Qt)r( T;F)7 t>0,

where {N¢}>0 C E*.

o (Parthasarathy-book: Weyl Operators) For unitary operator U on H
and { € H,

WU,C% — e—%\C\ﬁ—<C\U§>¢Ué+§’ 0: € [(H),
and then

@ Quantum Laplacians have been studied by several authors, e.g.,
Accardi & Barhoumi & Ouerdiane (2006), Obata, Saito, Ettaieb,
Turki Khalifa, Rguigui and J.
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Purposes of This Talk

We discuss transformations:

ga,C,K,S,n — (Xe"*(C)r(S)eAG(K)ea(n)’
:g(LC,K?SJ" = g&i;K,s’TI — aea*(n)eAZ(K)r(S*)ea*(g)

with characterizing all differentiable one parameter semigroups induced by
the transformations, and their quantum extensions:

go%c,K,s,n( ) =Yt k5sn=Y0cksn =€ZLE)(E))
93C7K757n(:) :‘/agK,s,n:‘/aCK’S7n7 E "%((E) (E)*)

since 9o ¢ ks €L ((E),(E)) and & ¢ 5 € L((E)",(E)").

Then we discuss invariant white noise functlonals for and invariant white
noise operators for the quantum extensions of the transformation
semigroups.
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Transformation Groups for White Noise Functionals

We recall the Gelfand triples:
(E) CT(H) = L*(Ej,pu) C (E)', ECHCE"

Foreacha € C, (€ E, n € E*, K€ ZLym(E,E*) and S € Z(E,E), there
exists a unique white noise operator, denoted by ¥, ¢ ks, such that

Gog sy = ae” OT(S)ete eV e 2((E), (E)).

For each a; € C, {i € E, ni € E*, Ki € Lym(E,E*) and S; € Z(E,E) for
i=1,2, we have

gaz7C27K27527n2g0!17<§17f<1751Jh

ooy el ) (Kb &) 5281482, K14+ 57 K2 51,5251, m+ 55 (n2+2K201)

Consider a group G defined by

G =C"xXEXZLym(E,E")x GL(E)x E*,
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and then

{ga,C,K,S,n : (a7C7K757n) € G}

is a subgroup of GL((E)).
The adjoint of ¥, ¢ k s is denoted by F, ¢ i 5. i.€.

Facksm = Gucksy) =ae” MersFr(s57)exd),
and then

{Zacksy (a,f,K,S,n)e G}

is a subgroup of GL((E)*).
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One-parameter Semigroups

We now consider a one-parameter family {¥4;}+>0 C Z((E),(E)) defined
by

Ge = Go(1).£(1).K(2).5()) (1)

where

(Ol, Ca K>57TI) L= {(a(t)7C(t)a K(t)vs(t)an(t))}tzo
C G=C"x Ex Zym(E,E*) x GL(E) x E*.

Then it is obvious that % =/ if and only if a(0) =1, S(0) =1,
£(0) =n(0) =0 and K(0) = 0.

For each t > 0, the adjoint of % € Z((E),(E)) is denoted by .%;, i.e
Fr=9%9; and then we have .Z; € Z((E)*,(E)*). Then we have

yt:

GE = Ga(n).4(0.K0.5(0)m(0)
= a(t)ea*(n(t))eA*G(K(t))r(S(t)*)ea(C(t))'
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Theorem

Let (a,§,K,S,n):[0,00) — G be differentiable functions such that
{St}t=0 has the infinitesimal generator S € L (E,E). Then {¥;}+>0 is a
differentiable one-parameter semigroup of operators in £ ((E),(E)) if and
only if
t
K(t) = / S(s)*KS(s)ds, K := K'(0),
0
t
(0= [ S(e)ds, :=¢0),
t
n(e)= [ S(s) (M+2KE(s)ds, n:=n'0). K=K(0),
t
a() = {ar+ ['ne). Qo) ama0), £=0)
In this case, the infinitesimal generator of {¢;}+>o is given by

al+a*(§)+A(S)+ Ac(K) +a(n).
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Theorem

Let the function (o, §,K,S,n) : [0,00) — G be given as in previous
theorem. Then {.%;}>¢ is a differentiable one-parameter semigroup of
operators in L ((E)*,(E)*) with the infinitesimal generator

ol +a(8)+N(S*)+AG(K)+a*(n).

Theorem

| A\

Let (a,C,K,S,n) € G be given. Then the transformation 4, ¢ i s has a

unitary extension to I'(H) if and only if K =0, S has a unitary extension
to H,

a=e 256 and n=-S¢.

\
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We put

O(E;H)={g € GL(E):|g&lo=1&o for all § € E},

which is called the infinite dimensional rotation group. For each
Se O(E;H), T(S) can be extended to ['(H) as a unitary operator and
then we identify '(S) with its unitary extension to I'(H).
For each (5,8) € 0(E; H) x E, we put
1 2 ¥a

Vse=9 318 o557 = e 21tk (Or(s5)e2(>0)

)

which (its extension) is a Weyl operator.
For a one-parameter family {(S(t),{(t))}t=0 C O(E; H) x E, we put

W= Ws().L(e):
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Theorem

Let {(S(t),8(t))}t>0 C O(E; H) x E be a family such that {S(t)}:>0 is
differentiable with the infinitesimal generator S € £ (E,E). Suppose that

for any s,t > 0, <5(5)*C(s)7 C(t)> is real. Then the one-parameter

semigroup {#4}+>0 of unitary operators #; on I'(H) is differentiable and
whose infinitesimal generator is given by

a* () +A(S) - a({).

In this case, the one-parameter semigroup {#{}+>o is differentiable and
whose infinitesimal generator is given by

a(§)+A(S7) = a"(2).
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Invariant White Noise Distributions

A complex measure v on Ey is called a Hida complex measure if
(E) C LY(v) and the linear functional

0 [ 0()av()

is continuous on (E). The Hida complex measure v induces a white noise
distribution ®,, € (E)* such that

(&, @) = | ¢(x)dv(x)

for any @ € (E). A Hida complex measure is called a Hida measure if it is
a measure. A white noise distribution ¢ in (E)* is said to be positive if
((®, @)) > 0 for all nonnegative test functions ¢ € (E). A distribution

® € (E)* is induced by a Hida measure if and only if ® is positive.
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A (complex) measure v on Ej is said to be invariant for a one-parameter
semigroup { T;}s>0 C Z((E),(E)) if (E) c L}(v) and

/Tgp )dv(x /(p )dv(x

forall t >0 and ¢ € (E). If &, € (E)* is induced by a complex Hida
measure v which is invariant for { T;};>0, then we have

(@00 = [ 00aVx) = [ Tep()dv() = (@1, Tew) = (T v, 0)

for all @ € (E).

Let v be a Hida complex measure corresponding to ®, € (E)*. Then v is
invariant for a one-parameter semigroup { T;}+>0 C Z((E),(E)) if and
only if ®, is invariant for the one-parameter semigroup

{T¢} =0 € Z((E)", (E)).
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Theorem

Let (a,§,K,S,n):[0,00) — G be differentiable functions such that
{St}t>0 has the infinitesimal generator S € £ (E,E). Suppose that
(a,8,K,m) are explicitly given such that {¥;}>o is a differentiable
one-parameter semigroup, and

(0) Ot := im0 0(t) exists in C such that 0. # 0,
(K) Kw:=lim¢ . K(t) exists in £(E,E*),
(M) Moo :=limien(t) exists in E*.
Then the following assertions are equivalent:
(i) there exists ® € (E)* such that ® is invariant for {¥; }+>o,
(ii) there exists W € (E)* such that the limit
V= limy e T(S(1)") eV exists in (E)*.

In this case, the invariant vector ® for {94 }+>0 is explicitly given by

o (e _(n2r
S = VolWy ooy, Vi = SR On.. = c
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Quantum Extension of One Parameter Semigroups

We recall the Gelfand triples:
(E) CT(H)= L*(E},u) C(E)", ECHCE"

Then Z((E),(E)*) is the space of all white noise operators, and then we
can consider the subspaces:

g(%7@)7 XY= (E)7 r(H)7(E)*

The quantum extensions of 4, ¢ k s n-transform and %, ¢ k s p-transform,

denoted by go?,C,K,S,n and Q’SC’K’&”, are defined by

G2 ksnE) =Yarksn=Gasksa)s =€ZL((E),(E)),

go?757}(757n(£) = fa,;K,S,nE(ﬂa,C,K,S,n)*a -€ g((E),(E)*),

respectively.
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Theorem

For each
$,K,5,n) e Cx ExZLym(E,E*) x Z(E,E) x E7,

are continuous linear operators

(o

the operators %Q CK.Sm and fQ CK.Sn
acting on £ ((E ) (E ) and .,Sf((E ,(E

For a given function

)*), respectively.

(a,8,K,5,m):={(a(t),{(t),K(t),S5(t),n(t))} =0
CG:=C"xXExXZym(E,E")x GL(E) x E*,
the quantum extensions of %; and .%; are denoted by %Q and ﬂtQ i.e.,
E),(E

4 and .Z2 are operators acting on .Z((E)*,(E)) and Z((E),(E)*),
respectively, and defined by

G2) =429 =4=F., =€ ZL((E).(F)),
th(E) — L%_Eﬁf — thgt,

Quantum Extension of Transformations
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Theorem

Let (a,§,K,S,n):[0,00) — G be differentiable functions such that
{St}t=0 has the infinitesimal generator S € £ (E,E). Suppose that
(a,8,K,n) are explicitly given such that {<,;}+>o is a differentiable

one-parameter semigroup. Then {%Q} o is a differentiable
t

one-parameter semigroup of operators acting on Z((E)*,(E)) with the
infinitesimal generator Ly, where L= ol +a*({)+A(S)+ Ag(K) +a(n) is
the infinitesimal generator of {¥:},~ and Lq is the quantum extension of
L, ie.

Lo(E) = L=+=L*, =e L((E),(E)).

Also, {ﬂtQ} o is a differentiable one-parameter semigroup of operators
t>

acting on Z((E),(E)*) with the infinitesimal generator (L*)q, where
(L¥)q is the quantum extension of L*, i.e.

(L)o(E) = L*=+=L, =€ ZL((E),(E)).
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Invariant White Noise Operators

Theorem

Let (o, ,K,S,n) :[0,00) — G be differentiable functions as in previous
theorem. Suppose that

(&) O :=lim;_e (t) exists in C such that ot # 0,
(K) Ke:=lim . K(t) exists in L(E,E*),
(M) Nw:=limisen(t) exists in E*.

There exists = € L((E),(E)*) such that = is invariant for {Z2} =0 if and
only if there exists T € L ((E),(E)*) such that the limit

T = lim F(S(t)")e*¢NTe? COI(S(1)) € 2((E), (E)").

In this case, an invariant operator = for {F2} >0 is explicitly given by

= TGy, Gy, = e ()8R gha(Ka) Ha(il-),
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Transformations on White Noise Operators

Consider the Gelfand triple:
ECHCE"
for a Hilbert space H. It is well-known that
MHeH)=T(H)®I(H) (unitarily isomorphic),

and then we can see that (E® E)* = (E)* ®(E)* = Z((E),(E)*) and
then by applying canonical topological isomorphisms (% and ¥'), we can
study (general including entangled) transformations § on white noise
operators as the following diagram:

Z((E).(E)) —%— (Ey®(E)* —— (E®E)

Z((E).(E)) < (E)®(E)" «— (EDE)
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Thank you very much!
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