Towards a classification of multi-faced independences

Malte Gerhold (joint work with Takahiro Hasebe and Michaël Ulrich)

University of Greifswald

17 January 2022

QP42

Bengaluru – Moeckow

Overview

Universal Products

2 Representing universal products

3 Multi-faced independences

Products of rep's and universal lifts

Representing UPs

lulti-faced independences

Products of rep's and universal lifts

Classification

Overview

Universal Products

- 2 Representing universal products
- 3 Multi-faced independences
- Products of rep's and universal lifts

Representing UP:

/lulti-faced independences

Products of rep's and universal lifts

Classification

Non-commutative independence

Fix product operation for linear functionals on *-algebras

$$\underset{i}{\times}B_{i}' \ni (\varphi_{i})_{i} \mapsto \bigodot_{i} \varphi_{i} \in \left(\bigsqcup_{i} B_{i}\right)'$$

Def: \odot -independence of random variables $j_i: B_i \to \mathcal{A}$ $\Phi \circ \bigsqcup_i j_i = \bigodot_i (\Phi \circ j_i)$ joint distribution = product of marginals

Representing UPs

/lulti-faced independences

Products of rep's and universal lifts

Classification

uau-products

Def: universal product, Ben Ghorbal & Schürmann '05

 $B_1' \times B_2' \ni (\varphi_1, \varphi_2) \mapsto \varphi_1 \odot \varphi_2 \in (B_1 \sqcup B_2)'$

product operation (for arbitrary algebras B_1, B_2) which is

- unital in the sense that $0 \odot \varphi = \varphi = \varphi \odot 0$
- associative
- universal in the sense that (for hom's $j_i: B_i \to A_i$)

$$(\varphi_1 \odot \varphi_2) \circ (j_1 \sqcup j_2) = (\varphi_1 \circ j_1) \odot (\varphi_2 \circ j_2)$$

Examples

tensor, free, monotone, anti-monotone, Boolean

M. Gerhold

Representing UPs

/lulti-faced independences

Products of rep's and universal lifts

Classification

uau-products

Def: universal product, Ben Ghorbal & Schürmann '05

 $B_1' \times B_2' \ni (\varphi_1, \varphi_2) \mapsto \varphi_1 \odot \varphi_2 \in (B_1 \sqcup B_2)'$

product operation (for arbitrary algebras B_1, B_2) which is

- unital in the sense that $0 \odot \varphi = \varphi = \varphi \odot 0$
- associative
- universal in the sense that (for hom's $j_i: B_i \to A_i$)

 $(\varphi_1 \odot \varphi_2) \circ (j_1 \sqcup j_2) = (\varphi_1 \circ j_1) \odot (\varphi_2 \circ j_2)$

Theorem: classification (Muraki 2002, 2013)

positivity or double normalization \implies no other examples

Representing UPs

/lulti-faced independences

Products of rep's and universal lifts

Classification

Overview

2 Representing universal products

- 3 Multi-faced independences
- Products of rep's and universal lifts

Representing UPs

/lulti-faced independences

Products of rep's and universal lifts

Classification

Joint representations on $H_1 \otimes H_2$

Example: monotone product

Observation

For
$$\varphi_k = \langle \Omega, \pi_k(\cdot)\Omega \rangle$$
, $\pi_k: A_k \to L(H)$, $H_k = \mathbb{C}\Omega \oplus \hat{H}_k$:

 $\varphi_1 \odot \varphi_2 = \langle \Omega, (\pi_1 \odot \pi_2)(\cdot) \Omega \rangle, \text{ where }$

$$\pi_{1} \odot \pi_{2}(a) = \begin{cases} \pi_{1}(a) \otimes \mathrm{id} & a \in A_{1}, \odot \in \{\otimes, \triangleleft\} \\ \pi_{1}(a) \otimes P_{\Omega} & a \in A_{1}, \odot \in \{\diamond, \triangleright\} \\ \mathrm{id} \otimes \pi_{2}(a) & a \in A_{2}, \odot \in \{\otimes, \triangleright\} \\ P_{\Omega} \otimes \pi_{2}(a) & a \in A_{2}, \odot \in \{\diamond, \triangleleft\} \end{cases}$$

M. Gerhold

Representing UPs

Vulti-faced independences

Products of rep's and universal lifts

Classification

Joint representations on $H_1 \star H_2$

Def: free product of spaces

$$H_1 \star H_2 \coloneqq \bigoplus_{\varepsilon_1 \neq \ldots \neq \varepsilon_n} \hat{H}_{\varepsilon_1} \otimes \cdots \otimes \hat{H}_{\varepsilon_n}$$

Observation

For
$$\varphi_k = \langle \Omega, \pi_k(\cdot)\Omega \rangle$$
, $\pi_k: A_k \to L(H)$, $H_k = \mathbb{C}\Omega \oplus \hat{H}_k$:

$$\varphi_{1} \star \varphi_{2} = \langle \Omega, (\pi_{1} \star_{\ell} \pi_{2})(\cdot)\Omega \rangle = \langle \Omega, (\pi_{1} \star_{r} \pi_{2})(\cdot)\Omega \rangle$$

$$\varphi_{1} \diamond \varphi_{2} = \langle \Omega, (\pi_{1} \diamond \pi_{2})(\cdot)\Omega \rangle$$

where

$$\pi_1 \star_{\ell} \pi_2(a) = \begin{cases} \pi_1(a) \otimes \mathrm{id} & a \in A_1 \\ \pi_2(a) \otimes \mathrm{id} & a \in A_2 \end{cases}, \quad \pi_1 \star_r \pi_2(a) = \begin{cases} \mathrm{id} \otimes \pi_1(a) & a \in A_1 \\ \mathrm{id} \otimes \pi_2(a) & a \in A_2 \end{cases}$$
$$\pi_1 \diamond \pi_2(a) = \pi_k(a) \otimes P_\Omega \quad a \in A_k \end{cases}$$

M. Gerhold

Representing UPs

lulti-faced independence

Products of rep's and universal lifts

Classification

Benefits of a joint representation

Observation

- \bullet tensor, boolean, monotone and antimonotone product can be represented on $H_1 \otimes H_2$
- free and boolean product can be represented on $H_1 \star H_2$
- joint representation helps to prove positivity
- joint representation helps to prove associativity

Associativity of monotone product (Franz)

Multi-faced independences

Overview

Multi-faced independences

M Gerhold

Towards a classification of multi-faced independences

Representing UPs

Multi-faced independences

Products of rep's and universal lifts

Classification

Independence

Fix product operation for *m*-faced algebras $B_i = B_i^{(1)} \sqcup \cdots \sqcup B_i^{(m)}$

$$\underset{i}{\times} B_i' \ni (\varphi_i)_i \mapsto \bigodot_i \varphi_i \in \left(\bigsqcup_i B_i\right)'$$

Def: \odot -independence of *m*-faced rv's $j_i: B_i \to \mathcal{A}$

$$\Phi \circ \bigsqcup_{i} j_{i} = \bigodot_{i} (\Phi \circ j_{i})$$

joint distribution = product of marginals

Representing UPs

Multi-faced independences

Products of rep's and universal lifts

Classification

Multi-faced uau-products

Def: *m*-faced universal product (Manzel & Schürmann 2017)

$$B_1' \times B_2' \ni (\varphi_1, \varphi_2) \mapsto \varphi_1 \odot \varphi_2 \in (B_1 \sqcup B_2)'$$

product operation (for arbitrary *m*-faced algebras B_1, B_2) which is

- unital in the sense that $0 \odot \varphi = \varphi = \varphi \odot 0$
- associative
- universal in the sense that (for *m*-faced hom's $j_i: B_i \rightarrow A_i$)

$$(\varphi_1 \odot \varphi_2) \circ (j_1 \sqcup j_2) = (\varphi_1 \circ j_1) \odot (\varphi_2 \circ j_2)$$

M. Gerhold

Representing UPs

Multi-faced independences

Products of rep's and universal lifts

Classification

Positivity

Def: restricted state

 $\varphi {:} \, B \to \mathbb{C}$ on a *-algebra B whose unitalization is a state

Def: positive universal product

universal product \odot s.t.

 φ_1, φ_2 rest. states $\implies \varphi_1 \odot \varphi_2$ rest. state

Representing UPs

Multi-faced independences

Products of rep's and universal lifts

Classification

Examples from joint representations

Observation

- **9** \exists positive 4-faced universal product represented on $H_1 \otimes H_2$
- **2** \exists positive 3-faced universal product represented on $H_1 \star H_2$

All previous positive examples included

- bimonotone II (G; Gu, Skoufranis & Hasebe): restriction of 1
- bifreeness (Voiculescu): restriction of case 2
- free-boolean, free-free-boolean (Liu): (restriction of) 2
- biboolean, bimonotone I (Gu & Skoufranis + Hasebe): ≱

Representing UPs

lulti-faced independences

Products of rep's and universal lifts

Classification

Overview

Universal Products

- 2 Representing universal products
- 3 Multi-faced independences
- Products of rep's and universal lifts

Representing UPs

lulti-faced independences □□□□ Products of rep's and universal lifts

Classification

Universal products of representations

Def: universal product of *-rep's for $\boxtimes \in \{\otimes, \star\}$

*-rep
$$(B_1)$$
 × *-rep (B_2) \ni $(\pi_1, \pi_2) \mapsto \pi_1 \odot \pi_2 \in$ *-rep $(B_1 \sqcup B_2)$

product operation which is unital, associative, algebraically universal and **spatially universal**, i.e.

Theorem (G, Hasebe & Ulrich) *m*-faced UP of *-rep's \sim positive *m*-faced UP of functionals

Representing UPs

Aulti-faced independences

Products of rep's and universal lifts

Classification

Universal lifts I

Def: left universal lift

family of *-hom's $\lambda_{H_1,H_2}: L(H_1) \rightarrow L(H_1 \boxtimes H_2)$ s.t.

- left restriction property: $\lambda_{H_1,H_2}(T) \upharpoonright H_1 = T$
- left associativity: $\lambda_{H_1,H_2\boxtimes H_3} = \lambda_{H_1\boxtimes H_2,H_3} \circ \lambda_{H_1,H_2}$
- left spatial universality:

$$\begin{array}{cccc} H_1 \xrightarrow{T^{(*)}} H_1 & H_1 \boxtimes H_2 \xrightarrow{\lambda_{H_1,H_2}(T)} H_1 \boxtimes H_2 \\ w_1 & \downarrow & \downarrow W_1 \implies W_{1 \boxtimes W_2} \downarrow & \downarrow W_{1 \boxtimes W_2} \\ G_1 \xrightarrow{S^{(*)}} G_1 & G_1 \boxtimes G_2 \xrightarrow{\lambda_{G_1,G_2}(S)} G_1 \boxtimes G_2. \end{array}$$

Representing UPs

/ulti-faced independences

Products of rep's and universal lifts

Classification

Universal lifts II

Def: right universal lift

family of *-hom's $\rho_{H_1,H_2}: L(H_2) \rightarrow L(H_1 \boxtimes H_2)$ s.t.

- right restriction property: $\rho_{H_1,H_2}(T) \upharpoonright H_2 = T$
- right associativity: $\rho_{H_1 \boxtimes H_2, H_3} = \rho_{H_1, H_2 \boxtimes H_3} \circ \rho_{H_2, H_3}$
- right spatial universality:

$$\begin{array}{cccc} H_2 \xrightarrow{T^{(*)}} H_2 & H_1 \boxtimes H_2 \xrightarrow{\rho_{H_1,H_2}(T)} H_1 \boxtimes H_2 \\ W_2 & \downarrow & \downarrow W_2 \implies W_1 \boxtimes W_2 \\ G_2 \xrightarrow{S^{(*)}} G_2 & G_1 \boxtimes G_2 \xrightarrow{\rho_{G_1,G_2}(S)} G_1 \boxtimes G_2. \end{array}$$

Representing UPs

/ulti-faced independences

Products of rep's and universal lifts

Classification

Universal lifts III

Def: universal lift

pair (λ, ρ) of left and right universal lift to \boxtimes s.t.

• middle associativity: $\rho_{H_1,H_2 \boxtimes H_3} \circ \lambda_{H_2,H_3} = \lambda_{H_1 \boxtimes H_2,H_3} \circ \rho_{H_1,H_2}$

Theorem (G, Hasebe & Ulrich)

The following objects are in 1-to-1 correspondence:

- *m*-faced UP's of *-rep's for \boxtimes
- ② *m*-tuples of 1-faced UP's of *-rep's for ⊠
- \bigcirc *m*-tuples of universal lifts to ⊠

Representing UPs

lulti-faced independences

Products of rep's and universal lifts

Classification

Overview

Universal Products

- 2 Representing universal products
- 3 Multi-faced independences
- 4 Products of rep's and universal lifts

Representing UP

lulti-faced independences □□□□ Products of rep's and universal lifts

Classification

A universal deformation

Definition

For
$$T \in L(H)$$
, $H = \mathbb{C}\Omega \oplus \hat{H}$ and $\gamma \in \mathbb{T} \cup \{0\}$:
• decompose $T = \begin{pmatrix} \tau & (t')^* \\ t & \hat{T} \end{pmatrix}$ with $\tau \in \mathbb{C}$; $t, t' \in \hat{H}$; $\hat{T} \in L(\hat{H})$
• define $T_{\gamma} := \begin{pmatrix} |\gamma|\tau & \overline{\gamma}(t')^* \\ \gamma t & |\gamma|\hat{T} \end{pmatrix}$

Lemma

$T \mapsto T_{\gamma}$ is a *-homomorphism

Representing UF

lulti-faced independences

Products of rep's and universal lifts

Classification

Lifts to the tensor product

Theorem (G, Hasebe & Ulrich)

Every universal lift to \otimes is of the form $(\lambda^{\gamma}, \rho^{\delta})$ where

•
$$\lambda^{\gamma}(T) = T \otimes P_{\Omega} + T_{\gamma} \otimes P_{\Omega}$$

•
$$\rho^{\delta}(S) = P_{\Omega} \otimes S + P_{\Omega^{\perp}} \otimes S_{\delta}$$

• either $\gamma = \delta \in \mathbb{T}$, or at least one parameter equals zero.

Corollary

 \exists uncountably many 2-faced independences represented on \otimes

Representing UP

ulti-faced independence

Products of rep's and universal lifts

Classification

Lifts to the tensor product – example

Representing UPs

lulti-faced independences

Products of rep's and universal lifts

Classification

2-faced independences represented on $H_1 \otimes H_2$

Parameters that determine the 2-faced universal product $\frac{\gamma_2}{\gamma_1} \otimes \otimes_{\delta_1}^{\delta_2}$

face 2	tensor	antimonotone	monotone	boolean
face 1	$(\gamma_2 = \delta_2 \in \mathbb{T})$	$(\gamma_2 \in \mathbb{T}, \delta_2 = 0)$	$(\gamma_2 = 0, \delta_2 \in \mathbb{T})$	$(\gamma_2 = \delta_2 = 0)$
tensor	0/1 2/2	0/1 2/2	S. 5-	a
$(\gamma_1 = \delta_1 \in \mathbb{T})$	7172	7172	0102	Ø
antimonotone	0/1 2/2	0/1 2/2	au 5-	a
$(\gamma_1 \in \mathbb{T}, \delta_1 = 0)$	/1//2	7172	77102	Ø
monotone	5. 5.	8.00	S. 5-	a
$(\gamma_1 = 0, \delta_1 \in \mathbb{T})$	0102	01 /2	0102	Ø
boolean	a	Ø	Ø	a
$(\gamma_1 = \delta_1 = 0)$		٧		

Representing UP

Aulti-faced independence

Products of rep's and universal lifts

Classification

Lifts to the free product

Theorem (G, Hasebe & Ulrich)

Every universal lift to \star is one of the following:

$$(\vec{\lambda}^{\gamma}, \vec{\rho}^{\delta}) \text{ with } \gamma, \delta \in \mathbb{T}$$

2
$$(\lambda^{\gamma}, \overleftarrow{
ho}^{\delta})$$
 with $\gamma, \delta \in \mathbb{T}$

$$\vec{\mathbf{a}} \quad (\vec{\lambda}^0, \vec{\rho}^0) = (\vec{\lambda}^0, \vec{\rho}^0)$$

where

$$\vec{\lambda}_{H_1,H_2}^{\gamma}(T) = T \otimes P_{\Omega} + T_{\gamma} \otimes P_{\Omega^{\perp}}$$
$$\vec{\rho}_{H_1,H_2}^{\delta}(S) = S \otimes P_{\Omega} + S_{\delta} \otimes P_{\Omega^{\perp}}$$

and $\overleftarrow{\lambda}_{H_1,H_2}^{\gamma},\overleftarrow{\rho}_{H_1,H_2}^{\delta}$ analogously from the right.

Representing UPs

1ulti-faced independence

Products of rep's and universal lifts

Classification

2-faced independences represented on $H_1 \star H_2$

Parameters that determine the 2-faced UP's $\gamma_1 \stackrel{\gamma_2}{\star} \stackrel{\rightarrow}{\star} \stackrel{\delta_2}{\delta_1}$ and $\gamma_2 \stackrel{\gamma_2}{\star} \stackrel{\rightarrow}{\star} \stackrel{\delta_2}{\delta_1}$

face 2	left free $(\vec{\lambda}, \vec{\rho})$	right free $(\overleftarrow{\lambda},\overleftarrow{ ho})$	boolean
face 1	$(\gamma_2, \delta_2 \in \mathbb{T})$	$(\gamma_2, \delta_2 \in \mathbb{T})$	$(\gamma_2 = \delta_2 = 0)$
left free $(\vec{\lambda}, \vec{\rho})$	5 5 5 5		a
$(\gamma_1, \delta_1 \in \mathbb{T})$	$\gamma_1\gamma_2, o_1o_2$	$\gamma_1 o_2, o_1 \gamma_2$	Ø
boolean	ø	Ø	a
$(\gamma_1 = \delta_1 = 0)$			

Representing UPs

Iulti-faced independences

Products of rep's and universal lifts

Classification

Open problems

Are there more positive 2-faced independences?

Varšo's combinatorial approach allows

- tensor-free independence
- parameters of modulus < 1

positivity unknown!

Positive UP \rightarrow UP of *-rep's?

- other representation spaces besides $H_1 \otimes H_2$, $H_1 \star H_2$?
- more general theory without fixing product of spaces?

Understanding the new independences

- concise mixed-moment and moment-cumulant formulae
- understand limit distributions

Representing UP

Multi-faced independences

Products of rep's and universal lifts

