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Outline of the talk

1. Examples: Lots of symmetrical geometric objects/toys are here.

2. Definitions: Some necessary definitions are here.

3. Results: Here I present some results related to my works.

4. Open Problems: Some open problems are stated here.

5. References: Few references are here.

6. Acknowledgements:



Examples Definitions Results Open Problems References Acknowledgements

Five Platonic Solids

Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron
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Platonic Solids

The tetrahedron, cube and octahedron occur in nature as crystals (of various substances,

such as sodium salphantimoniate, common salt, and chrome alum, respectively). The

dodecahedron, icosahedron occur as skeletons of microscopic sea animals called radiolaria,

the most perfect examples being Circogonia icosahedra and Circorrhegma dodecahedra.

Circogonia icosahedra, Circorrhegma dodecahedra

Excavations on Monte Loffa, near Padua, have revealed an Etruscan dodecahedron which

shows that this figure was enjoyed as a toy at least 2500 years ago. These were built up by

Plato (about 400 B.C) and before him by the earliest Pythagoreans.
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Thirteen Archimedean Solids
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Archimedean Solids

The Archimedean solids take their name from Archimedes, who
discussed them in a now-lost work. Pappus refers to it, stating that
Archimedes listed 13 polyhedra. During the Renaissance, artists and
mathematicians valued pure forms with high symmetry, and by around
1620 Kepler had completed the rediscovery of the 13 polyhedra, as well
as defining the prisms, antiprisms.

In geometry, Archimedean solids are the semi-regular convex polyhedra
composed of regular polygons meeting in identical vertices, excluding
the 5 Platonic solids and excluding the prisms and antiprisms.

“Identical vertices” means that each pair of vertices are symmetric to
each other: A global isometry of the entire solid takes one vertex to the
other while laying the solid directly on its initial position. Such a solid
is now called a vertex-transitive solid. We will discuss this later.
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Prisms/Drums, Antiprisms

Two series of vertex-transitive maps on the 2-sphere.

Triangular-, Hexagonal-, Octagonal-, Decagonal-prism

Triangular-, Pentagonal-, Octagonal-, Octagonal-antiprism
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Vertex-transitive Tilings on Torus

Torus is one object known to all. We also know various regular tilings
on the torus. Here we consider few. We will discuss more on this later.

Maps of types [36], [4, 82], [63], [44], [3, 122], [4, 6, 12]
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Eight non-regular Archimedean tilings on the plane

We all like symmetrical tilings. The following eight are such tilings on the plane. These are

vertex-transitive. Grünbaum (1987) calls such tilings Archimedean in parallel to the

Archimedean solids. There are 3 more. We will discuss these later.
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Uniform Tilings on the Hyperbolic Plane

In hyperbolic geometry, a uniform hyperbolic tiling is an edge-to-edge filling of the

hyperbolic plane/disk which has regular polygons as faces and is vertex-transitive. It

follows that all vertices are congruent, and the tiling has a high degree of rotational and

translational symmetry. Some examples are given here.

Maps of types [37], [73], [510], [4, 102], [45], [54], [7, 82], [6, 102]
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Some more Uniform Tiling on the Hyperbolic Plane

Maps of types [34, 7], [34, 8], [4, 8, 10], [4, 5, 4, 5], [4, 8, 16], [4, 10, 12], [5, 6, 5, 6], [3, 4, 7, 4]

Semi-regular maps on surfaces Basudeb Datta Indian Institute of Science
12 /
36



Examples Definitions Results Open Problems References Acknowledgements

Rhombicuboctahedron, Pseudo-rhombicuboctahedron

Grünbaum (2009) observed that a 14th polyhedron, the pseudo-rhombicuboctahedron,

meets a weaker definition (namely, semi-regular) of an Archimedean solid, in which

“identical vertices” means merely that the faces surrounding each vertex are of the same

types.

Rhombicuboctahedron and Pseudo-rhombicuboctahedron

Grünbaum pointed out a frequent error in which authors define Archimedean solids using

this local definition but omit the 14th polyhedron. If only 13 polyhedra are to be listed, the

definition must use global symmetries of the polyhedron rather than local neighborhoods.
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Maps or Tiling on a Surface

It is now time to give some definitions.

Definition (Map/Tiling)

If a (simple) graph G is embedded on a surface S then the closure of the

components of S \G are called faces. If all the faces are 2-disks and

intersection of any two intersecting faces is either a vertex or an edge of G

then G together with the collection of faces is called a map or tiling on S.

Vertices (resp. edges) of G are called vertices (resp. edges) of the map.

Types of vertices: {[34], [32, 4]}, {[38], [36], [34]}, {[3, 43]}, {[37]}
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Semi-regular and vertex-transitive maps

Definition (Type of a vertex of a map)

For a vertex u in a map X, the faces containing u form a cycle (called the

face-cycle at u) Cu in the dual graph of M . By grouping neighbouring

polygons with the same number of vertices, the cycle Cu can be decomposed

in the form P1- · · · -Pk-F1,1, where Pi = Fi,1- · · · -Fi,ni is a path consisting of

pi-gons, pi 6= pi+1 (addition is mod k). We say that u is of type [pn1
1 , . . . , pnk

k ].

Definition (Semi-regular map)

A map X is called semi-regular (or semi-equivelar) if types of all the
vertices are same. If [pn1

1 , . . . , pnk
k ] is the type of all the vertices then we

say X is of type [pn1
1 , . . . , pnk

k ].

Definition (Vertex-transitive map)

A map X is called vertex-transitive if the automorphism group of X
acts transitively on the set of vertices of X.

Semi-regular maps on surfaces Basudeb Datta Indian Institute of Science
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Semi-regular maps on the 2-sphere

Clearly, a vertex-transitive map is semi-regular.

In general the converse is not true.

All vertex-transitive maps on the 2-sphere S2 are known. These are the
boundaries of Platonic solids, Archimedean solids and two infinite
families of polytopes (prisms and anti-prisms) ([10], [19]). Other than
these there exists a non vertex-transitive semi-regular map on S2,
namely the boundary of pseudo-rhombicuboctahedron ([18]).

Theorem
Let X be a semi-regular map on S2. Then, up to isomorphism, X is
the boundary of a Platonic solid, the boundary of an Archimedean
solid, the boundary of pseudo-rhombicuboctahedron, a map of type
[42, r1] for some r = 3 or ≥ 5 (boundary of a prism) or a map of type
[33, s1] for some s ≥ 4 (boundary of an anti-prism).

Semi-regular maps on surfaces Basudeb Datta Indian Institute of Science
16 /
36



Examples Definitions Results Open Problems References Acknowledgements

Semi-regular maps on the 2-sphere

Clearly, a vertex-transitive map is semi-regular.

In general the converse is not true.

All vertex-transitive maps on the 2-sphere S2 are known. These are the
boundaries of Platonic solids, Archimedean solids and two infinite
families of polytopes (prisms and anti-prisms) ([10], [19]). Other than
these there exists a non vertex-transitive semi-regular map on S2,
namely the boundary of pseudo-rhombicuboctahedron ([18]).

Theorem
Let X be a semi-regular map on S2. Then, up to isomorphism, X is
the boundary of a Platonic solid, the boundary of an Archimedean
solid, the boundary of pseudo-rhombicuboctahedron, a map of type
[42, r1] for some r = 3 or ≥ 5 (boundary of a prism) or a map of type
[33, s1] for some s ≥ 4 (boundary of an anti-prism).

Semi-regular maps on surfaces Basudeb Datta Indian Institute of Science
16 /
36



Examples Definitions Results Open Problems References Acknowledgements

Semi-regular maps on the 2-sphere

Clearly, a vertex-transitive map is semi-regular.

In general the converse is not true.

All vertex-transitive maps on the 2-sphere S2 are known. These are the
boundaries of Platonic solids, Archimedean solids and two infinite
families of polytopes (prisms and anti-prisms) ([10], [19]). Other than
these there exists a non vertex-transitive semi-regular map on S2,
namely the boundary of pseudo-rhombicuboctahedron ([18]).

Theorem
Let X be a semi-regular map on S2. Then, up to isomorphism, X is
the boundary of a Platonic solid, the boundary of an Archimedean
solid, the boundary of pseudo-rhombicuboctahedron, a map of type
[42, r1] for some r = 3 or ≥ 5 (boundary of a prism) or a map of type
[33, s1] for some s ≥ 4 (boundary of an anti-prism).

Semi-regular maps on surfaces Basudeb Datta Indian Institute of Science
16 /
36



Examples Definitions Results Open Problems References Acknowledgements

Semi-regular maps on the real projective plane RP2

It is known that quotients of ten centrally symmetric vertex-transitive
maps on S2 (namely, the boundaries (i) icosahedron, (ii) dodecahedron, (iii)

truncated octahedron, (iv) icosidodecahedron, (v) small

rhombicuboctahedron, (vi) great rhombicuboctahedron, (vii) small

rhombicosidodecahedron, (viii) great rhombicosidodecahedron, (ix) truncated

dodecahedron and (x) truncated icosahedron) are all the vertex-transitive
maps on RP2 ([10]).

Recently, we have observed that these are also all
the semi-regular maps on RP2 ([6]). More explicitly

Theorem
Let Y be a semi-regular map on RP2. Then, the type of Y is [53], [35],
[41, 62], [31, 51, 31, 51], [31, 43], [41, 61, 81], [31, 41, 51, 41], [41, 61, 101],
[31, 102] or [51, 62] and in each case, there exists a unique map on RP2

up to isomorphism. In particular, Y is vertex-transitive.

Semi-regular maps on surfaces Basudeb Datta Indian Institute of Science
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Eleven Archimedean tilings on the plane
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Uniqueness of Archimedean tilings

There are infinitely many semi-regular map on the plane R2. If X is a
semi-regular map on R2 of type [pn1

1 , . . . , pnk
k ] then

∑k
i=1

ni(pi−2)
pi

≥ 2. If

X is an Archimedean tiling then
∑k

i=1
ni(pi−2)

pi
= 2. We prove ([4], [5]):

Theorem
Let X be a semi-regular map on a surface of type [pn1

1 , . . . , pnk
k ]. If∑k

i=1
ni(pi−2)

pi
= 2 then [pn1

1 , . . . , pnk
k ] = [36], [63], [44], [34, 61], [33, 42],

[32, 41, 31, 41], [31, 61, 31, 61], [31, 41, 61, 41], [31, 122], [41, 82] or
[41, 61, 121].

Theorem
Let X be a semi-regular map on the plane R2 of type [pn1

1 , . . . , pnk
k ]. If∑k

i=1
ni(pi−2)

pi
= 2 then X is (isomorphic to) an Archimedean tiling. In

particular, X is vertex-transitive.
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Semi-regular Tilings on Torus

Let X is a semi-regular map on the torus of type [pn1
1 , . . . , pnk

k ]. Since

Euler characteristic of the torus is 0, it follows that
∑k

i=1
ni(pi−2)

pi
= 2.

Thus, [pn1
1 , . . . , pnk

k ] = [36], [63], [44], [34, 61], [33, 42], [32, 41, 31, 41],
[31, 61, 31, 61], [31, 41, 61, 41], [31, 122], [41, 82] or [41, 61, 121].

It is known that for each of the 11 types, there exists a vertex-transitive
map of that type on the torus. In particular, there are exactly 11 types
of semi-regular maps on the torus. It is also know that for each types,
there are infinitely many maps on the torus ([7], [8], [10], [11], [23]).

We have seen six vertex-transitive maps on the torus. Now we present
examples of the other five different types of semi-regular maps on the
torus.
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We have seen six vertex-transitive maps on the torus. Now we present
examples of the other five different types of semi-regular maps on the
torus.
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Semi-regular Tilings on Torus

Maps of types [33, 42], [34, 6], [3, 4, 6, 4], [3, 6, 3, 6], [32, 4, 3, 4]
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Semi-regular maps on the torus

All the known semi-regular maps on the torus are quotients of Archimedean

tilings. For some types, all the known semi-regular maps are

vertex-transitive. We prove ([4], [5], [8]):

Theorem
All semi-regular maps on the torus and the Klein bottle are quotients of
Archimedean tilings.

Theorem
Let X be a semi-regular map on the torus. If the type of X is [36], [63],
[44] or [33, 42] then X is vertex-transitive.

Theorem
If [pn1

1 , . . . , pnk
k ] = [32, 41, 31, 41], [34, 61], [31, 61, 31, 61], [31, 41, 61, 41],

[31, 122], [41, 82] or [41, 61, 121] then there exists a semi-regular map of
type [pn1

1 , . . . , pnk
k ] on the torus which is not vertex-transitive.
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Semi-regular maps on the torus

Thus, there are examples (infinitely many) of semi-regular maps on the
torus of seven types in which vertices form more than one orbits under
the automorphism group. In [5], we prove

Theorem
Let X be a semi-regular map on the torus. Let the vertices of X form
m Aut(X)-orbits. (a) If the type of X is [32, 41, 31, 41] or [41, 82] then
m ≤ 2. (b) If the type of X is [34, 61], [31, 61, 31, 61], [31, 41, 61, 41] or
[31, 122] then m ≤ 3. (c) If the type of X is [41, 61, 121] then m ≤ 6.

Theorem
(a) If [pn1

1 , . . . , pnk
k ] = [34, 61], [31, 61, 31, 61], [31, 41, 61, 41] or [31, 122]

then there exists a semi-regular map M of type [pn1
1 , . . . , pnk

k ] on the
torus with three Aut(M)-orbits of vertices. (b) There exists a
semi-regular map N of type [41, 61, 121] on the torus with exactly six
Aut(N)-orbits of vertices.
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Semi-regular maps on the Klein Bottle

For Klein bottle the story is simple. In [4], we prove the following:

Theorem
Let X be a semi-regular map on the Klein bottle. (a) Then the type of
X is [36], [63], [44], [33, 42], [32, 41, 31, 41], [31, 61, 31, 61], [31, 41, 61, 41],
[31, 122], [41, 82] or [41, 61, 121]. (b) In each of the ten types there exists
a semi-regular map on the Klein bottle which is not vertex-transitive.
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Semi-regular maps on negatively curved surfaces

Let X be a semi-regular map of type [pn1
1 , . . . , pnk

k ] on a closed surface
S. Then the Euler characteristic χ(S) of S is > 0 (resp. = 0, < 0) if

and only if
∑k

i=1
ni(pi−2)

pi
< 2 (resp. = 2, > 2). We know about such

maps X. We also know maps X where
∑k

i=1
ni(pi−2)

pi
= 2 and S = R2.

For
∑k

i=1
ni(pi−2)

pi
> 2 the picture is far from complete and there are

several open questions.
Let X be a semi-regular map of type [pn1

1 , . . . , pnk
k ] on a surface S. If∑k

i=1
ni(pi−2)

pi
> 2 then we say X is a hyperbolic semi-regular map or

hyperbolic semi-regular tiling. For closed surfaces we know the
following form [11]:

Theorem
Let S be a closed surface with χ(S) < 0. Then the number of
semi-regular maps on S is at most −84χ(S).
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Semi-regular Tiling on Hyperbolic Plane

Earlier we have seen 16 types of vertex-transitive hyperbolic tilings.
Let us consider 8 more here.

Maps of types [32, 4, 3, 5], [32, 5, 3, 6], [32, 6, 3, 6], [32, 7, 3, 7], [33, 4, 3, 4], [35, 4], [43, 6], [43, 6]

Semi-regular maps on surfaces Basudeb Datta Indian Institute of Science
26 /
36



Examples Definitions Results Open Problems References Acknowledgements

Semi-regular maps on the Hyperbolic Plane

There are infinitely many types of hyperbolic tilings on the plane. In
fact, there exists semi-regular map of type [pq] on the plane whenever
q(p−2)

p > 2 ([13], [15]). Let us first state some recent results of ours.

Theorem ([3])

There exists a hyperbolic tiling of type [p, q, r] if and only if one of the
following hold:
(i) p = q = r ≥ 7, or (ii) p is even, p 6= r, and 2

p + 1
r <

1
2 .

Theorem (In preparation)

There exists a hyperbolic tiling of type [3, p, q, r] if and only if one of
the following hold:
(i) q 6= p = r > 3, (ii) q = 3 and p = r > 6, or (iii) p = q = r ≥ 5.
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Semi-regular maps on the Hyperbolic Plane

In [3], we are able to construct several hyperbolic tilings under some
extra hypothesis.

Theorem
There exists a hyperbolic tiling of type [p1, p2, ..., pd] if
(i)

∑d
i=1

pi−2
pi

> 2, (ii) xy appears in [p1, ..., pd] implies yx appears in
[p1, ..., pd], (iii) xy and yz appear in [p1, ..., pd] implies xyz appears in
[p1, ..., pd], (iv) d ≥ 4, and each pi ≥ 4.

Theorem
There exists a hyperbolic tiling of type [p1, p2, ..., pd] if
(i)

∑d
i=1

pi−2
pi

> 2, (ii) xy appears in [p1, ..., pd] implies yx appears in
[p1, ..., pd], (iii) xy and yz appear in [p1, ..., pd] implies xyz appears in
[p1, ..., pd], (iv) x3y and 3yz appear in [p1, ..., pd] implies x3yz appears
in [p1, ..., pd], (v) d ≥ 6.
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Semi-regular maps on the Hyperbolic Plane

We have also shown, in the previous two theorems, that if any two
consecutive elements [p1, p2, ..., pd] uniquely determine [p1, p2, ..., pd]
then the map is unique. Observe that [43, 6] does not satisfy this. And
we have more example for this.
As a corollary we get

Corollary

A semi-regular tiling of the hyperbolic plane of type [pq] is unique, that
is, any pair of such tilings are related by an orientation-preserving
isometry of the hyperbolic plane, that takes vertices and edges of one to
those of the other.
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A Technical Lemma

In [4], we prove this technical lemma. This is used to find necessary
conditions on [pn1

1 , . . . , pnk
k ] for the existence of semi-regular maps of

type [pn1
1 , . . . , pnk

k ].

Lemma: If [pn1
1 , . . . , pnk

k ] satisfies any of the following three properties
then [pn1

1 , . . . , pnk
k ] can not be the type of any semi-equivelar map on a

surface.

(i) There exists i such that ni = 2, pi is odd and pj 6= pi for all j 6= i.

(ii) There exists i such that ni = 1, pi is odd, pj 6= pi for all j 6= i and
pi−1 6= pi+1.

(iii) There exists i such that ni = 1, pi is odd, pi−1 6= pj for all
j 6= i− 1 and pi+1 6= p` for all ` 6= i+ 1.

(Here, addition in the subscripts are modulo k.)
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Some open problems

Problem 1: Classify all [pn1
1 , . . . , pnk

k ] such that there exists a
semi-regular hyperbolic tiling of type [pn1

1 , . . . , pnk
k ].

Conjecture 1: There exists a semi-regular hyperbolic tiling of type

[pn1
1 , . . . , pnk

k ] if and only if
∑k

i=1
ni(pi−2)

pi
> 2 and [pn1

1 , . . . , pnk
k ] does

not satisfy any of the three properties in the previous lemma.

Problem 2: Classify all [pn1
1 , . . . , pnk

k ] such that there exists a
vertex-transitive hyperbolic tiling of type [pn1

1 , . . . , pnk
k ].

Conjecture 2: For each [pn1
1 , . . . , pnk

k ] with
∑k

i=1
ni(pi−2)

pi
> 2, there

exists a unique vertex-transitive hyperbolic tiling of type [pn1
1 , . . . , pnk

k ].

Problem 3: Similar questions for each closed surface of negative
Euler characteristic.

I do not have any conjecture for this problem!
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