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Schwarz Lemma: Let f : B(0,1) — B|0, 1] be holomorphic with f(0) = 0,
where B(0,1) = {z € C: |z| <1} and B[0,1] = {z € C: |z| < 1}. Then

() |f(2)| < |z| for all z € B(0,1) and |f'(0)] < 1;

(B) if there exists zg € B(0,1)\{0} such that |f(z0)| = |20 or if |f'(0)] =1,
then f has the form f(z) = cz for all z € B(0, 1), where |c| = 1.

Proof: The function

_ | I(2)/z z € B(0,1)\{0}
g(Z) T { f/(O), =0

has a removable singularity at 0. Hence g is holomorphic on B(0,1). For
|z| < r < 1, we infer from the weak maximum principle:

o [ 1
9(2) < sup (gl = sp {0 <

and letting » — 1_, we get |g(2)] < 1. Clearly, |f'(0)| < 1.

In each of the two cases in (), |g| assumes its supremum in B(0,1). So, by
the maximum modulus theorem, g is a constant. (]

Theorem: For a fixed o € B(0,1), the fractional linear transformation
¢a(z) := {=£ is a one-one map, which maps the unit circle T onto T, and

B(0,1) onto B(0,1) and « to 0. The inverse of ¢, is ¢_,. We also have

pa(0) =1~ lal, ¢h(a) = (1~ o)~

Proof: The map ¢, is holomorphic in the whole plane except for z = 1/a
which is outside B[0,1]. We see that ¢_4(va(2)) = z. Thus ¢, is one-one
and ¢_, is its inverse. Since for real ¢,

it

et — o it

e —«

e~ — g

1 — qett

vq maps T onto T. The same is true of ¢_, hence ¢, (T) = T. Now, maxi-
mum modulus principle shows that ¢, (B(0,1)) C B(0,1).
B(0,1).

Suppose o € B(0,1). How large can |f'(«)| be if f : B(0,1) — B(0,1) is
holomorphic?

Sois p_o(B(0,1)) C



Put g = g o f o g,, where f(a) = 3. Since ¢ and ¢, map B(0,1) onto
itself, we see that ¢ is a holomorphic map from B(0, 1) into B(0,1). Also,
g(0) = 0. Thus |¢’(0)| < 1. But, using chain rule, we have

9'(0) = 3(8) f'(a) ¥ 4(0)
which then gives the inequality
1—[f(a)f

1—laf?

[f(a)l <

Equality occurs in this inequality if and only if g(z) = ¢z, for some ¢ : |¢| = 1.

A remarkable feature: Thus the extremal solution F, g to the problem
sup{|f'(a)| |f : B(0,1) — B(0,1) is holomorphic and f(a) = 3},

Fo5(z) = ¢_p(cpalz)), is a rational function, although, no continuity as-
sumption was made on f near the boundary.

Let Hol(B(0,1)) denote the space of all holomorphic functions defined on
the open unit disc B(0,1).

Theorem: Suppose f is in Hol(B(0, 1)), it is one to one, and onto, f(a) =0
for some a € B(0,1). Then there exists a constant ¢ : |c| = 1 such that

f(z) = cpalz), z€ B(0,1).

Proof: Let g be the inverse of f, defined by ¢(f(z)) = 2z, z € B(0,1).
Since f is one-one, f’ has no zero in B(0,1), so g € Hol (B(0,1)). By
the chain rule, ¢’(0) f'(o) = 1. We have |f'(a)] < ﬁ,
lg'(0)] <1 —|af? Since ¢’(0) f'(a) = 1, it follows that equality must hold
in these inequalities. As in the previous problem (with § = 0) this forces f
to be of the form ¢ .

and therefore

Lemma: Let f : B(0,1) — B(0,1) be holomorphic. Then for any a,b €
B(0,1).

a—>
1—ab

f(a);f(b)
1— f(a)f(b)

<

In particular, 1lﬁ}(fg)||2 < 1—12\2 for all z € B(0,1).
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Proof: The function,

WP ED
) (1—f'(b)f(2)> ate
is defined on B(0,1)\{b} is holomorphic at b as well. As in the usual Schwarz

z—b
1-bz

Lemma, |g| < 1 on B(0,1) by the maximum principle, since — 1 as

2] — 1, while ”)( <1 for all z € B(0,1).

1 f 0
Riemannian Metric: Put on D, the Riemannian metric ds = ¢(z)|dz],
¢ > 0 and twice continuously differentiable. If f : B(0,1) — B(0,1) is
holomorphic, then define the pull-back of ds = ¢(z)|dz| under f to be the
metric

fr(p(2)ldz]) = |f'(2)|(¢ 0 f)(2)]dz]

Then the Schwarz Lemma amounts to saying: A holomorphic map f :

B(0,1) — B(0,1) is distance decreasing, that is, f*(ds) < ds, where ds =
|dz]

1—[2]%"

Ahlfors Lemma: Let us start with a computation. For a holomorphic
function f on an open set Q C C with |f(z)| < M,

2

. 0
Alog(M? — |f})71 = —4—*Tog(M* | f[?)

0 ff
- 432( |f2>

:4f/<M2Ji LT )

ViARCVEETiDE
(M |fE 4 fP
= 4 '2< GF — [7P)? >

(MY
- M2 —|f]2)
Near points where [’ # 0, log|f’| is harmonic, that is, Alog|f’| = 0. Hence

M|f| MIf]\?
Alog 3 e =4 (M? = |f|2>

on the open set {z: f'(z) # 0}.



In particular,

(ii) Alogll_fi/| = 4( llf/‘ )2 on B(0,1)\{z : f'(z) # 0} for any holomor-
0,1) — B(0,1).

Definition: The Gaussian curvature of a metric ds = ¢|dz|, with ¢ > 0
and twice continuously differentiable on an open set Q C R? = C is defined
to be

K(z,0) = —p(2) 72 Alogp(2).

Thus any holomorphic function f : Q — B(0, M) = {z : |z| < M} provides
a metric of constant negative curvature on Q\{z : f(z)/ = 0}, namely

MFE)
A2 11 ()

The basic observation of Ahlfors is the following.

Lemma: Let ¢ > 0 be a continuous function on B(0,1) = {z : |z| < 1}
which is twice differentiable on the open set D, := {2 : ¢(z) > 0}. Suppose
Alog ¢ > 4¢? on D,. Then

1
o(z) < T for all z € B(0,1).

Proof: Fixa € B(0,1), and let r € (Ja|,1). Put p,(2) = ﬁ on B(0,r) =
{z : |z| < r}. Since p,(z) — oo as |z| — r and ¢ is continuous on {|z| < 7},
it is clear that v := pi; attain its maximum on B(0,7) at some g € B(0,1),.
If (q) =0, then ¢ = 0. Hence we may assume that ¢ € D,. Then ¢ is also

a local maximum of log, hence Alogy < 0 at q. Now, at ¢:

0> Alogy = Alogy — Alogp,
> Ae* - p)),

that is, ¥(q) < 1. Thus ¢ < p, on D,. Letting r T 1, we conclude that
pla) < ﬁ as observed.

To get some immediate corollaries of the Ahlfors’ Lemma, it is convenient
to have the following Definition.



Definition: Let 2 C C be an open set. Then NC(Q) denotes the set of
continuous functions ¢ > 0 on €2 such that ¢ is twice continuously differ-
entiable on Dy, := {z : ¢(2z) > 0} and Alogy > 4¢* on D,. Thus NC(Q)
consists of ¢ > 0 such that ¢|dz| is a metric whose Gaussian curvature is
bounded by —4.

Remark: Let f: Q — Q' be a holomorphic maps of open sets in C. Then
e € NC(V) implies |f'| ¢(f) € NC(2). Ahlfors’ Lemma has the following
Corollaries.

Corollary: NC(C) = {0}.
Proof: Let ¢ € NC(C). Fix a € C. Then for any r > |a|, Ahlfors’ Lemma

yields ¢(a) < ﬁ Letting r — oo, we get p(a) = 0 as asserted.

Corollary: Let NC(€2) # {0}. Then every holomorphic map f: C — Q is
constant.

Taking Q@ = B(0,1), we get Liouville’s theorem. Thus to prove Picard’s
theorem, for example, we need only show NC(2) # {0} for @ = C\{0,1}.
This is rather easy to do. Consider

p(2) = |22 = 2P (4 2P (A + | - 1)

for 6 > 0.
A straight-forward computation using the fact that
4|2
Alog(1+|f*) = =
(L+[fP)?

whenever f is a holomorphic function shows that ¢ € NC(C\{0,1}) for
0< < % Thus we have proved Picard’s theorem by elementary calculus!!

Here is another version of Ahlfors’ Lemma which is easy to prove.

Ahlfors’ Lemma Let f: B(0,1) — Q be a holomorphic function. Suppose
0 is a metric on § with K(z,0) < —4. Then

oI = F(@)(:) < T for = € B(O.1)

The following Proposition guarantees the existence of a metric in ¢ €
NC(C\{0,1}) with some additional properties which are essential to prove
the Big Picard Theorem.



Proposition: There exists a metric g on C\{0, 1} with the following prop-
erties:

(i) o has curvature at most - 1.
(ii) 0 > co for some constant ¢ > 0, where o(z) = (1 + |2]?)72.

Proof:

2

0
) = 4 log(1 @
Alog(1+21%) = 4" log(1+|2I7), =€ C\{0}

o %Za/Qflzfaﬂ
= 4 (1 e , z € C\{0}

0z
o |2]*7?
o ————, 2z € C\{0}.
T+ e * €0
Since Alog|z|? =0, z € C, we have
1+ [z]* oy |22
Al = , z € C\{0}.
B = W P €M
Similarly,
1 — 1l -1 a—2
Alog L= _ o 1]

EES R TS E
for = € C\{1}.

We consider the metric

4z 1tz -1
Taﬁ(z) - ‘Z‘a ’2_1’5

for z € C\{0, 1}.

Then the curvature K(z,73) is

a+26-2 |Z o 1|26
K - _ 2 ’Z‘
(7o) = O (T - 1)
) |z _ 1|a+2ﬂ—2 |Z|2B

(T4 lz = 1)t (14 [z[*)*

For a = 1/3 and 8 = 5/6, we see that
(i) K(z,7) <0 for all z € C\{0,1}
(ii) hl% K(z,7)=-1/36

(iii) lirri K(z,7)=-1/36



(iv) Zlgglo K(z,7) = —0.
Also,
(1) lim 7(2)/0(2) —

z|—o00

Combining, (ii), (iii) and (iv) with the fact that K(z,7) < 0, which is (i),
we find that there is a constant k£ > 0 such that

K(z,7) < —k for z € C\{0,1}.

Thus if we define o(z) = VE7 then K(p,2z) < —1. From (1), we see that
hm 0(z)/o(z) = oo, which is the second property.

Chain Rule:
U0 = G )+ 5L 5
Diroa) = o) L+ Loy L)
Suppose [ is holomorphic and non-zero.
Moglfft = 45T tog] s
2D gy 2y
= 0.

Proposition: If 2; and Qs are two planar domains, and h : 23 — Qs is a
conformal map, (h’' # 0) then

K(z,h*o) = K(h(z),0), z € Qu,
where ¢ is a metric on Q9.

Proof: We need to calculate:
« v Alogle(h(z)|h'(2)])
e P ONIBE
_ Alogo(h(z)) — Alog |F'(2)|
o(h(2))%W (2)[?
 Alogo(h(z)) |W'(2)?
o(h(2))? [P/ (2)[?
_Alogo(h(z)) _ ;
FrE




Schottky’s theorem: To each M > 0 and r € (0,1), there exists C' > 0
with the following property:

If f: B(0,1) — C is holomorphic, f omits any two values, and |f(0)] < M
then

sup | f(2)] < C for |z| <.
Proof: If f omits the two values a, b then consider F(z) = (f(z)—a)/(b—a)

and assume without loss of generality, a = 0, b = 1. Let o be the metric on
C\{0, 1} we have constructed with K(z, ) < —4. By Ahlfors’ Lemma:

CLf*o(z) < C7\(2), z € B(0,1).

Let 0(z) = z(1 + |2[*)~! be a metric on C with K(z,0) = 1. Now, recall
that

0(z)/0(z) — oo as |z| — o0
and ¢ > co on C\{0,1}. So,
fro) < et f (o) <t
that is,
A+ P < et 1=z 2 € B(0,1).

So, lﬁf((z))"Q < C1, z € B(0,1), where C; = ¢ (1 —72)~!. Since f never
takes the value zero, ¢ — f(tz) is differentiable for any fixed z € B(0,r),

and

d |f'(t2)]z]
dt(arctan\f(tzﬂ)‘ < W < ey.

So,

&.‘g‘

larctan f(z) — arctan f(0 / (arctan f(tz)])|dt.
0

Therefore, it follows that

arctan|f(z)| c1 + arctan|f(0)]

c1 +arctan M.



This proves the theorem with ¢ = ¢; + arctan M.

Picard’s theorem: If a holomorphic function f has an essential singularity
then the range of f omits at most one complex number.

Proof: Assume that the singularity is at 0 and f is holomorphic on B(0, ¢*™)\{0}.

Case-1: If |f(2)| — oo as z — 0 then there is nothing to prove since 0 is a
pole.

Case-II: There exists z, such that z, — 0 and |f(z,)| is bounded as n — oo,
say |f(zn)| < M for all n.

Passing to a subsequence, assume
1> |z > ... > |zn] > |2ng1] ... — 0.
For a fixed n, consider F, : & — f(2,e?™%).

Then F), is holomorphic on B(0, 1), omits the values {0,1} and |F,(0)] =
|f(zn)| < M. Thus there exists ¢ > 0 such that

[Fa(O] = |f (z0e™™)] < C for £ € B(0,1/2).
In particular,
|Fo(t)| < C forall t € [-1/2,1/2].
Thus f is bounded by M on {z : |z| = |z,|}. It follows that f is bounded

on B(0,|z1])\{0}. This will force 0 to be a removable singularity which is a
contradiction.

Bi-holomorphic equivalence: For w € 2 C C™, let us define the tangent
space of 2 at w to be

Tw(Q) = {(w,v) :w e QueCm} =C™.

Let Hol(€2, B0, 1]) be the set of holomorphic functions defined on @ C C™
which take values in the closed unit disc B[0, 1]. Define the Caratheodory
metric Cq for Q as

Co(w,v) = sup{|Df(w)-v| : f € Hol(Q, B[0, 1]), f(w) = 0}, (w,v) € T,,(2).
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For nay holomorphic function f : w — €, define the push-forward of the
tangent vector (w,v) in T,,(€2) under the function f to be (f(w), Df(w)-v)
in Tf(w) (Q/)

Proposition : Suppose ¢ : Q — Q' is holomorphic. Then
C’Q/(cp(w), (p*(’U)> < CQ(’UJ, U)? (w7 U) € Tw(Q)
that is, Dp(w) : Ty(2) — Ty (') is a distance decreasing —

Car(p(w), Dp(w) - v) < Ca(v).

Proof: By the definition of the Caratheodory metric, we have

Car (p(w), (0+(v)) = sup{|(Df)(p(w)) - pu(v)] : f € Hol(Y', B(0,1)), f(ep(w)) = 0}.

Now,

(Df)(p(w))) - (Dp(w) -v) = [Df(p(w))Dp(w)]-v
= (D(fop)(w))-v
Since
0 % p
¢\ R
Q/

it follows that

{fop : f € Hol(, B(0,1)), f(p(w)) =0} € {g: g € Hol(2, B(0,1)), g(w) = 0}

Remark: If ¢ is also invertible then

Cale™ (p(w)), (¢™):(Dp(w) - v)) < Co(p(w), (Dp(w) - v).

But

Dy~ (p(w)) Dp(w) - v

= .

¢ (Dp(w) - v)

Therefore,

Ca(w,v) < Caprime(p(w), Do(w)v) < Co(w,v).
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Thus
CQ(U}, U) = CQ/((,O(’LU), D(p(w) : ’U).
This is the same as saying

De(w) : T () = (C™, Ca(w) — (C™, Cor(p(w)) = Ty ()

is an isometry.

Lemma: Suppose 2 = {a € C™ : ||a|| < 1} for some choice of a norm || - ||
on C™. Then Cq(0,v) = ||v|.

Proof: For |v|| <1, let us define g, : B(0,1) — Q by g,(z) = z-v. Then
f o gy defines a holomorphic map from B(0, 1) to itself with f o g,(0) = 0.
Therefore, |(f 0 ¢g,) (0)] < 1 and we have

(f ©90)'(0) = f'(95(0))g,,(0) = £'(0) - v.

Hence
sup{|Df(0) -v| : f € Hol(Q2, B(0,1)), f(0) =0} < 1.

Thus the linear map Df(0) : T,,(2) = C™ — C = Tp(B(0,1)) is in the unit
ball of the dual space (C™, || - ||)*.

Now, pick a linear functional ¢ on (C™, || - ||), which is of norm at most 1,
that is, £ € (C™,|| - |)i. Then ¢ : Q@ — B(0,1) by definition. Therefore
D¢(0) = ¢. In otherwords,

{Df(0)| f € Hol(2, B(0,1)), f(0) =0} =(C™, |- |)7.

Let B™ := {z € C™ : |21/ + -+ |zm|*> < 1} be the Euclidean ball and
(B(0,1))™ be the m— fold cartesian product of the open unit disc B(0,1).
Suppose there exists a bi-holomorphic function ¢ : B™ — (B(0,1))™. Then
we may assume without loss of generality that ¢(0) = 0. This will force
Dy(0) to be an isometry which is a contradiction.
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