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Schwarz Lemma: Let f : B(0, 1) → B[0, 1] be holomorphic with f(0) = 0,
where B(0, 1) = {z ∈ C : |z| < 1} and B[0, 1] = {z ∈ C : |z| ≤ 1}. Then

(α) |f(z)| ≤ |z| for all z ∈ B(0, 1) and |f ′(0)| ≤ 1;

(β) if there exists z0 ∈ B(0, 1)\{0} such that |f(z0)| = |z0| or if |f ′(0)| = 1,
then f has the form f(z) = cz for all z ∈ B(0, 1), where |c| = 1.

Proof: The function

g(z) :=
{

f(z)/z, z ∈ B(0, 1)\{0}
f ′(0), z = 0

has a removable singularity at 0. Hence g is holomorphic on B(0, 1). For
|z| < r < 1, we infer from the weak maximum principle:

|g(z)| ≤ sup
|w|=r

{|g(w)|} = sup
|w|=r

{ |f(w)|
r

}
≤ 1

r
,

and letting r → 1−, we get |g(z)| ≤ 1. Clearly, |f ′(0)| ≤ 1.

In each of the two cases in (β), |g| assumes its supremum in B(0, 1). So, by
the maximum modulus theorem, g is a constant. ¤

Theorem: For a fixed α ∈ B(0, 1), the fractional linear transformation
ϕα(z) := z−α

1−ᾱz is a one-one map, which maps the unit circle T onto T, and
B(0, 1) onto B(0, 1) and α to 0. The inverse of ϕα is ϕ−α. We also have

ϕ′α(0) = 1− |α|2, ϕ′α(α) = (1− |α|2)−1.

Proof: The map ϕα is holomorphic in the whole plane except for z = 1/ᾱ
which is outside B[0, 1]. We see that ϕ−α(ϕα(z)) = z. Thus ϕα is one-one
and ϕ−α is its inverse. Since for real t,

∣∣∣∣
eit − α

1− ᾱeit

∣∣∣∣ =
∣∣∣∣

eit − α

e−it − ᾱ

∣∣∣∣ = 1;

ϕα maps T onto T. The same is true of ϕ−α hence ϕα(T) = T. Now, maxi-
mum modulus principle shows that ϕα(B(0, 1)) ⊆ B(0, 1). So is ϕ−α(B(0, 1)) ⊆
B(0, 1).

Suppose α ∈ B(0, 1). How large can |f ′(α)| be if f : B(0, 1) → B(0, 1) is
holomorphic?
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Put g = ϕβ ◦ f ◦ ϕα, where f(α) = β. Since ϕβ and ϕα map B(0, 1) onto
itself, we see that g is a holomorphic map from B(0, 1) into B(0, 1). Also,
g(0) = 0. Thus |g′(0)| ≤ 1. But, using chain rule, we have

g′(0) = ϕ′β(β) f ′(α) ϕ′−α(0)

which then gives the inequality

|f ′(α)| ≤ 1− |f(α)|2
1− |α|2 .

Equality occurs in this inequality if and only if g(z) = cz, for some c : |c| = 1.

A remarkable feature: Thus the extremal solution Fα,β to the problem

sup{|f ′(α)| |f : B(0, 1) → B(0, 1) is holomorphic and f(α) = β},

Fα,β(z) = ϕ−β(cϕα(z)), is a rational function, although, no continuity as-
sumption was made on f near the boundary.

Let Hol(B(0, 1)) denote the space of all holomorphic functions defined on
the open unit disc B(0, 1).

Theorem: Suppose f is in Hol(B(0, 1)), it is one to one, and onto, f(α) = 0
for some α ∈ B(0, 1). Then there exists a constant c : |c| = 1 such that

f(z) = c ϕα(z), z ∈ B(0, 1).

Proof: Let g be the inverse of f , defined by g(f(z)) = z, z ∈ B(0, 1).
Since f is one-one, f ′ has no zero in B(0, 1), so g ∈ Hol (B(0, 1)). By
the chain rule, g′(0) f ′(α) = 1. We have |f ′(α)| ≤ 1

1−|α|2 , and therefore
|g′(0)| ≤ 1 − |α|2. Since g′(0) f ′(α) = 1, it follows that equality must hold
in these inequalities. As in the previous problem (with β = 0) this forces f
to be of the form c ϕα.

Lemma: Let f : B(0, 1) → B(0, 1) be holomorphic. Then for any a, b ∈
B(0, 1).

∣∣∣∣∣
f(a)− f(b)
1− f(a)f(b)

∣∣∣∣∣ ≤
∣∣∣∣

a− b

1− āb

∣∣∣∣ .

In particular, |f ′(z)|
1−|f(z)|2 ≤ 1

1−|z|2 for all z ∈ B(0, 1).
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Proof: The function,

g(z) :=

(
f(z)− f(b)
1− f(b)f(z)

)
/

(
z − b

1− b̄z

)

is defined on B(0, 1)\{b} is holomorphic at b as well. As in the usual Schwarz
Lemma, |g| ≤ 1 on B(0, 1) by the maximum principle, since

∣∣∣ z−b
1−b̄z

∣∣∣ → 1 as

|z| → 1, while
∣∣∣f(z)−f(b)

1−f(b)z

∣∣∣ ≤ 1 for all z ∈ B(0, 1).

Riemannian Metric: Put on D, the Riemannian metric ds = ϕ(z)|dz|,
ϕ > 0 and twice continuously differentiable. If f : B(0, 1) → B(0, 1) is
holomorphic, then define the pull-back of ds = ϕ(z)|dz| under f to be the
metric

f∗(ϕ(z)|dz|) = |f ′(z)|(ϕ ◦ f)(z)|dz|
Then the Schwarz Lemma amounts to saying: A holomorphic map f :
B(0, 1) → B(0, 1) is distance decreasing, that is, f∗(ds) ≤ ds, where ds =
|dz|

1−|z|2 .

Ahlfors Lemma: Let us start with a computation. For a holomorphic
function f on an open set Ω ⊆ C with |f(z)| ≤ M ,

∆ log(M2 − |f |2)−1 = −4
∂2

∂z̄∂z
‘ log(M2 − |f |2)

= 4
∂

∂z̄

(
f̄f ′

M2 − |f |2
)

= 4f ′
(

f̄ ′

M2 − |f |2 +
f̄ f f̄ ′

(M2 − |f |2)2
)

= 4|f ′|2
(

M2 − |f |2 + |f |2
(M2 − |f |2)2

)

= 4
(

M |f ′|
M2 − |f |2

)2

.

Near points where f ′ 6= 0, log |f ′| is harmonic, that is, ∆ log |f ′| = 0. Hence

∆ log
M |f ′|

M2 − |f |2 = 4
(

M |f ′|
M2 − |f |2

)2

on the open set {z : f ′(z) 6= 0}.
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In particular,

(i) ∆ log r
r2−|z|2 = 4

(
r

r2−|z|2
)2

on B(0, r);

(ii) ∆ log |f ′|
1−|f |2 = 4

( |f ′|
(1−|f |2)

)2
on B(0, 1)\{z : f ′(z) 6= 0} for any holomor-

phic function f : B(0, 1) → B(0, 1).

Definition: The Gaussian curvature of a metric ds = ϕ|dz|, with ϕ > 0
and twice continuously differentiable on an open set Ω ⊆ R2 ∼= C is defined
to be

K(z, ϕ) = −ϕ(z)−2 ∆log ϕ(z).

Thus any holomorphic function f : Ω → B(0,M) = {z : |z| < M} provides
a metric of constant negative curvature on Ω\{z : f (z)′ = 0}, namely

M |f ′(z)|
M2 − |f(z)|2 |dz|.

The basic observation of Ahlfors is the following.

Lemma: Let ϕ ≥ 0 be a continuous function on B(0, 1) = {z : |z| < 1}
which is twice differentiable on the open set Dϕ := {z : ϕ(z) > 0}. Suppose
∆ log ϕ ≥ 4ϕ2 on Dϕ. Then

ϕ(z) ≤ 1
1− |z|2 , for all z ∈ B(0, 1).

Proof: Fix α ∈ B(0, 1), and let r ∈ (|α|, 1). Put pr(z) = r
r2−|z|2 on B(0, r) =

{z : |z| < r}. Since pr(z) →∞ as |z| → r and ϕ is continuous on {|z| < r},
it is clear that ψ := ϕ

pr
attain its maximum on B(0, r) at some q ∈ B(0, 1)r.

If ϕ(q) = 0, then ϕ ≡ 0. Hence we may assume that q ∈ Dϕ. Then q is also
a local maximum of log ψ, hence ∆ log ψ ≤ 0 at q. Now, at q:

0 ≥ ∆log ψ = ∆ log ϕ−∆ log pr

≥ 4(ϕ2 − p2
r),

that is, ψ(q) ≤ 1. Thus ϕ ≤ pr on Dr. Letting r ↑ 1, we conclude that
ϕ(α) ≤ 1

1−|α|2 as observed.

To get some immediate corollaries of the Ahlfors’ Lemma, it is convenient
to have the following Definition.
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Definition: Let Ω ⊆ C be an open set. Then NC(Ω) denotes the set of
continuous functions ϕ ≥ 0 on Ω such that ϕ is twice continuously differ-
entiable on Dϕ := {z : ϕ(z) > 0} and ∆ log ϕ ≥ 4ϕ2 on Dϕ. Thus NC(Ω)
consists of ϕ ≥ 0 such that ϕ|dz| is a metric whose Gaussian curvature is
bounded by −4.

Remark: Let f : Ω → Ω′ be a holomorphic maps of open sets in C. Then
ϕ ∈ NC(Ω′) implies |f ′| ϕ(f) ∈ NC(Ω). Ahlfors’ Lemma has the following
Corollaries.

Corollary: NC(C) = {0}.

Proof: Let ϕ ∈ NC(C). Fix a ∈ C. Then for any r > |a|, Ahlfors’ Lemma
yields ϕ(a) ≤ r

r2−|a|2 . Letting r →∞, we get ϕ(a) = 0 as asserted.

Corollary: Let NC(Ω) 6= {0}. Then every holomorphic map f : C→ Ω is
constant.

Taking Ω = B(0, 1), we get Liouville’s theorem. Thus to prove Picard’s
theorem, for example, we need only show NC(Ω) 6= {0} for Ω = C\{0, 1}.
This is rather easy to do. Consider

ϕ(z) = |z|β/2−1|1− z|β/2−1(1 + |z|β)(1 + |z − 1|)β

for β > 0.

A straight-forward computation using the fact that

∆ log(1 + |f |2) =
4|f ′|2

(1 + |f |2)2
whenever f is a holomorphic function shows that ϕ ∈ NC(C\{0, 1}) for
0 < β < 2

7 . Thus we have proved Picard’s theorem by elementary calculus!!

Here is another version of Ahlfors’ Lemma which is easy to prove.

Ahlfors’ Lemma Let f : B(0, 1) → Ω be a holomorphic function. Suppose
% is a metric on Ω with K(z, %) ≤ −4. Then

%(f(z))|f ′(z)| = f∗(%)(z) ≤ 1
1− |z|2 for z ∈ B(0, 1).

The following Proposition guarantees the existence of a metric in ϕ ∈
NC(C\{0, 1}) with some additional properties which are essential to prove
the Big Picard Theorem.
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Proposition: There exists a metric % on C\{0, 1} with the following prop-
erties:
(i) % has curvature at most - 1.
(ii) % ≥ cσ for some constant c > 0, where σ(z) = (1 + |z|2)−2.

Proof:

∆log(1 + |z|α) = 4
∂2

∂z∂z̄
log(1 + |z|α), z ∈ C\{0}

= 4
∂

∂z̄

(
α
2 zα/2−1z−α/2

1 + |z|α
)

, z ∈ C\{0}

= α2 |z|α−2

(1 + |z|α)2
, z ∈ C\{0}.

Since ∆ log |z|β = 0, z ∈ C, we have

∆ log
1 + |z|α
|z|β = α2 |z|α−2

(1 + |z|α)2
, z ∈ C\{0}.

Similarly,

∆ log
1 + |z − 1|α
|z − 1|β = α2 |z − 1|α−2

(1 + |z − 1|α)2

for z ∈ C\{1}.

We consider the metric

ταβ(z) =
1 + |z|α
|z|α

1 + |z − 1|α
|z − 1|β for z ∈ C\{0, 1}.

Then the curvature K(z, ταβ) is

K(z, ταβ) = −α2 |z|α+2β−2

(1 + |z|α)4
|z − 1|2β

(1 + |z − 1|α)2

−α2 |z − 1|α+2β−2

(1 + |z − 1|α)4
|z|2β

(1 + |z|α)2
.

For α = 1/3 and β = 5/6, we see that
(i) K(z, τ) < 0 for all z ∈ C\{0, 1}
(ii) lim

z→0
K(z, τ) = −1/36

(iii) lim
z→1

K(z, τ) = −1/36
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(iv) lim
z→∞ K(z, τ) = −∞.

Also,
(1) lim

|z|→∞
τ(z)/σ(z) →∞.

Combining, (ii), (iii) and (iv) with the fact that K(z, τ) < 0, which is (i),
we find that there is a constant k > 0 such that

K(z, τ) ≤ −k for z ∈ C\{0, 1}.
Thus if we define %(z) =

√
kτ then K(%, z) ≤ −1. From (1), we see that

lim
z→∞ %(z)/σ(z) = ∞, which is the second property.

Chain Rule:
∂

∂z
(f ◦ g)(z) =

∂f

∂z
(g(z))

∂g

∂z
(z) +

∂f

∂z̄
(g(z))

∂ḡ

∂z
(z)

∂

∂z̄
(f ◦ g)(z) =

∂f

∂z
(g(z))

∂g

∂z̄
(z) +

∂f

∂z̄
(g(z))

∂ḡ

∂z̄
(z).

Suppose f is holomorphic and non-zero.

∆ log |f |2 = 4
∂2

∂z ∂z̄
log |f |2

= 4
∂

∂z

∂

∂z̄
log f + 4

∂

∂z̄

∂

∂z
log f

= 0.

Proposition: If Ω1 and Ω2 are two planar domains, and h : Ω1 → Ω2 is a
conformal map, (h′ 6= 0) then

K(z, h∗%) = K(h(z), %), z ∈ Ω1,

where % is a metric on Ω2.

Proof: We need to calculate:

K(z, h∗%) = −∆log(%(h(z)|h′(z)|)
(%(h(z))|h′(z)|)2

= −∆log %(h(z))−∆log |h′(z)|
%(h(z))2|h′(z)|2

= −∆log %(h(z)) |h′(z)|2
%(h(z))2 |h′(z)|2

= −∆log %(h(z))
%(h(z))2

= K(h(z), %).
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Schottky’s theorem: To each M > 0 and r ∈ (0, 1), there exists C > 0
with the following property:

If f : B(0, 1) → C is holomorphic, f omits any two values, and |f(0)| ≤ M
then

sup |f(z)| ≤ C for |z| ≤ r.

Proof: If f omits the two values a, b then consider F (z) = (f(z)−a)/(b−a)
and assume without loss of generality, a = 0, b = 1. Let % be the metric on
C\{0, 1} we have constructed with K(z, %) ≤ −4. By Ahlfors’ Lemma:

C−1f∗%(z) ≤ C−1λ(z), z ∈ B(0, 1).

Let σ(z) = z(1 + |z|2)−1 be a metric on C with K(z, σ) = 1. Now, recall
that

%(z)/σ(z) →∞ as |z| → ∞
and % ≥ cσ on C\{0, 1}. So,

f∗(σ) ≤ c−1f∗(%) ≤ c−1λ,

that is,

(1 + |f(z)|2)−1|f ′(z)| ≤ c−1(1− |z|2)−1, z ∈ B(0, 1).

So, |f ′(z)|
1+|f(z)|2 ≤ C1, z ∈ B(0, 1)r where C1 = c−1(1 − r2)−1. Since f never

takes the value zero, t → f(tz) is differentiable for any fixed z ∈ B(0, r),
and

∣∣∣∣
d

dt
(arc tan |f(tz)|)

∣∣∣∣ ≤
|f ′(tz)||z|

1 + |f(tz)|2 ≤ c1.

So,

|arc tan f(z)− arc tan f(0)| ≤
1∫

0

| d
dt

(arc tan f(tz)|)|dt.

Therefore, it follows that

arc tan |f(z)| ≤ c1 + arc tan |f(0)|
≤ c1 + arc tanM.
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This proves the theorem with c = c1 + arc tanM .

Picard’s theorem: If a holomorphic function f has an essential singularity
then the range of f omits at most one complex number.

Proof: Assume that the singularity is at 0 and f is holomorphic on B(0, e2π)\{0}.

Case-1: If |f(z)| → ∞ as z → 0 then there is nothing to prove since 0 is a
pole.

Case-II: There exists zn such that zn → 0 and |f(zn)| is bounded as n →∞,
say |f(zn)| ≤ M for all n.

Passing to a subsequence, assume

1 > |z1| > . . . > |zn| > |zn+1| . . . → 0.

For a fixed n, consider Fn : ξ 7→ f(zne2πiξ).

Then Fn is holomorphic on B(0, 1), omits the values {0, 1} and |Fn(0)| =
|f(zn)| ≤ M . Thus there exists c > 0 such that

|Fn(ξ)| = |f(zne2πiξ)| ≤ C for ξ ∈ B(0, 1/2).

In particular,

|Fn(t)| ≤ C for all t ∈ [−1/2, 1/2].

Thus f is bounded by M on {z : |z| = |zn|}. It follows that f is bounded
on B(0, |z1|)\{0}. This will force 0 to be a removable singularity which is a
contradiction.

Bi-holomorphic equivalence: For w ∈ Ω ⊆ Cm, let us define the tangent
space of Ω at w to be

Tw(Ω) := {(w, v) : w ∈ Ω v ∈ Cm} ∼= Cm.

Let Hol(Ω, B[0, 1]) be the set of holomorphic functions defined on Ω ⊆ Cm

which take values in the closed unit disc B[0, 1]. Define the Caratheodory
metric CΩ for Ω as

CΩ(w, v) = sup{|Df(w)·v| : f ∈ Hol(Ω, B[0, 1]), f(w) = 0}, (w, v) ∈ Tw(Ω).
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For nay holomorphic function f : ω → Ω′, define the push-forward of the
tangent vector (w, v) in Tw(Ω) under the function f to be (f(w), Df(w) · v)
in Tf(w)(Ω′).

Proposition : Suppose ϕ : Ω → Ω′ is holomorphic. Then

CΩ′(ϕ(w), ϕ∗(v)) ≤ CΩ(w, v), (w, v) ∈ Tw(Ω)

that is, Dϕ(w) : Tw(Ω) → Tϕ(w)(Ω′) is a distance decreasing –

CΩ′(ϕ(w), Dϕ(w) · v) ≤ CΩ(v).

Proof: By the definition of the Caratheodory metric, we have

CΩ′(ϕ(w), (ϕ∗(v)) = sup{|(Df)(ϕ(w)) · ϕ∗(v)| : f ∈ Hol(Ω′, B(0, 1)), f(ϕ(w)) = 0}.

Now,

((Df)(ϕ(w))) · (Dϕ(w) · v) = [Df(ϕ(w))Dϕ(w)] · v
= (D(f ◦ ϕ)(w)) · v

Since
Ω

f◦ϕ−→ D
ϕ ↘ ↗f

Ω′
,

it follows that

{f◦ϕ : f ∈ Hol(Ω′, B(0, 1)), f(ϕ(w)) = 0} ⊆ {g : g ∈ Hol(Ω, B(0, 1)), g(w) = 0}

Remark: If ϕ is also invertible then

CΩ(ϕ−1(ϕ(w)), (ϕ−1)∗(Dϕ(w) · v)) ≤ CΩ′(ϕ(w), (Dϕ(w) · v).

But

ϕ−1
∗ (Dϕ(w) · v) = Dϕ−1(ϕ(w)) Dϕ(w) · v

= v.

Therefore,

CΩ(w, v) ≤ CΩprime(ϕ(w), Dϕ(w)v̇) ≤ CΩ(w, v).
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Thus

CΩ(w, v) = CΩ′(ϕ(w), Dϕ(w) · v).

This is the same as saying

Dϕ(w) : Tw(Ω) ∼= (Cm, CΩ(w) → (Cm, CΩ′(ϕ(w)) ∼= Tϕ(w)(Ω
′)

is an isometry.

Lemma: Suppose Ω = {α ∈ Cm : ‖α‖ < 1} for some choice of a norm ‖ · ‖
on Cm. Then CΩ(0, v) = ‖v‖.

Proof: For ‖v‖ ≤ 1, let us define gv : B(0, 1) → Ω by gv(z) = z · v. Then
f ◦ gv defines a holomorphic map from B(0, 1) to itself with f ◦ gv(0) = 0.
Therefore, |(f ◦ gv)′(0)| ≤ 1 and we have

(f ◦ gv)′(0) = f ′(gv(0))g′v(0) = f ′(0) · v.

Hence
sup{|Df(0) · v| : f ∈ Hol(Ω, B(0, 1)) , f(0) = 0} ≤ 1.

Thus the linear map Df(0) : Tw(Ω) ∼= Cm → C ∼= T0(B(0, 1)) is in the unit
ball of the dual space (Cm, ‖ · ‖)∗.

Now, pick a linear functional ` on (Cm, ‖ · ‖), which is of norm at most 1,
that is, ` ∈ (Cm, ‖ · ‖)∗1. Then ` : Ω → B(0, 1) by definition. Therefore
D`(0) = `. In otherwords,

{Df(0) | f ∈,Hol(Ω, B(0, 1)), f(0) = 0} = (Cm, ‖ · ‖)∗1.

Let Bm := {z ∈ Cm : |z1|2 + · · · |zm|2 < 1} be the Euclidean ball and
(B(0, 1))m be the m− fold cartesian product of the open unit disc B(0, 1).
Suppose there exists a bi-holomorphic function ϕ : Bm → (B(0, 1))m. Then
we may assume without loss of generality that ϕ(0) = 0. This will force
Dϕ(0) to be an isometry which is a contradiction.
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