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1 Lecture 1

The initial stages of this course will be devoted to defining and investigating
the properties of complex-analytic functions. Let us begin with a definition:

Definition 1.1 Let Ω be an open set in C and f : Ω → C a complex-valued
function. We say that f is C-differentiable at a point a ∈ Ω if the limit

lim
h→0

f(a + h)− f(a)

h
(1)

exists. If it exists, we denote the limit by f ′(a). We say that f is C-
differentiable on Ω.

Remark 1.2 Note that whereas the limit (1) looks no different from that of
the usual (R)-derivative of calculus, there is a major difference: h is allowed
to approach 0 unrestrictedly. Note that if we wrote

z = x + iy, x, y ∈ R
f(z) = u(x, y) + iv(x, y), u, v : Ω → R

and restricted h → 0 along the x-axis, the resultant limit, if it existed, would
be

lim
R3h→0

f(a + h)− f(a)

h
=

∂u

∂x
(a) + i

∂v

∂x
(a).

However, as → 0 unrestrictedly, we can say a lot more.

One immediate impact of allowing h → 0 unrestrictedly is as follows. It
is possible to construct functions f : Ω → C such that ∃a ∈ Ω such that

∗ ∂u

∂x
(a),

∂u

∂y
(a),

∂v

∂x
(a),

∂v

∂x
(a) exist; but

∗ f is not even continuous at z = a.

(EXERCISE: Construct a f : Ω → C as above.) In contrast, if the limit (1)
exists, we have the following proposition.

Proposition 1.3 If f : Ω → C is C-differentiable at a ∈ Ω, then f is
continuous at a.
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Proof: We need to show that limz→a f(z) = f(a). Note that

0 ≤ lim
z→a

|f(z)− f(a)| =
(

lim
z→a

|f(z)− f(a)|
|z − a|

) (
lim
z→a

|z − a|
)

.

The first equality is justified by the fact that — owing to C-differentiability
at z = a — each of the limits forming the product exists. Hence lim

z→a
(f(z)−

f(a)) = 0, which establishes continuity. ∗∗
All this raises the following question. We have; via Definition 1.1, in-

vented a new notion of differentiability; but why is this at all interesting?
There could be several answers to the question, some of which are:

(a) If f : Ω → C is C-differentiable on Ω, then f is conformal on Ω\(f ′)−1{0}.
Conformality is a real-variables notion, and is of considerable impor-
tance in many areas of mathematics and science. But when Ω ⊆ C (or,
in general, Ω is an orientable 2-manifold), conformality is closely linked
to complex analysis.

(b) If the open set Ω ⊂ C is simply connected, then any harmonic func-
tion h — i.e. a real function h : Ω → R such that h satisfies the
partial differential equation 4h = 0 on Ω — is the real part of some
C-differentiable function on Ω. This leads to a very fruitful interplay
between two related areas.

(c) Despite the restrictiveness of Definition 1.1, a rich theory of C-differentiable
functions can be developed which is interesting in its own right. In
this lecture, we plan to show that there are many examples of C-
differentiable functions. Constructing such functions relies on the fol-
lowing simple lemma.

Lemma 1.4 Let Ω be an open subset of C and let f, g : Ω → C be C-
differentiable on Ω. Then

(cf)′ = cf ′, c ∈ C
(f + g)′ = f ′ + g′

(fg)′ = f ′g + fg′

(f/g)′(z) =
f ′(z)g(z)− f(z)g′(z)

g(z)2
∀ z ∈ Ω where g(z) 6= 0.
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The proof of the above is formally the same as its analogue in real dif-
ferentiation. Before presenting the C-differentiation analogue of the Chain
Rule, let us give a definition and introduce some notation:

Definition 1.5 Let Ω be an open set in C and f : Ω → C. We say that f
is complex-analytic, or holomorphic, on Ω if f is C-differentiable on Ω and
f ′ is continuous on Ω. We will denote the set of all functions on Ω that are
holomorphic by O(Ω).

Theorem 1.6 (The Chain Rule) Let f and g be holomorphic on Ω1 and Ω2

respectively, and suppose f(Ω1) ⊂ Ω2. Then:

(g ◦ f)′(z) = g′[f(z)] f ′(z) ∀ z ∈ Ω1.

In particular, g ◦ f ∈ O(Ω1).

Proof: Let us fix a z0 ∈ Ω1. We must show that:

lim
z→z0

g[f(z)]− g[f(z0)]

z − z0

= g′[f(z0)] f ′(z0).

The proof of this falls into two cases:

CASE 1: f ′(z0) 6= 0.

EXERCISE: Show from the definition of f ′(z0) that, if f ′(z0) 6= 0, then ∃ r0 > 0
sufficiently small such that |z − z0| < r0 ⇒ z ∈ Ω1, and

f(z) 6= f(z0) ∀ z : 0 < |z − z0| < r0.

In what follows, we will use the notation:

D(z0; r0) := the disc in C with centre z0 and radius r0,

D(z0; r0)
∗ := the punctured disc D(z0; r0)\{z0}.

By the above exercise, we can write

lim
D(z0;r0)∗3z→z0

g[f(z)]− g[f(z0)]

z − z0

= lim
D(z0;r0)∗3z→z0

g[f(z)]− g[f(z0)]

f(z)− f(z0)
· f(z)− f(z0)

z − z0

=

[
lim

D(z0;r0)∗3z→z0

g[f(z)]− g[f(z0)]

f(z)− f(z0)

] [
lim

D(z0;r0)∗3z→z0

f(z)− f(z0)

z − z0

]
. (2)
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The last equality is justified because each individual limit exists. The ex-
istence of the first factor relies on Proposition 1.3. By hypothesis, f is R-
differentiable, hence continuous. Thus

lim
D(z0;r0)∗3z→z0

[f(z)− f(z0)] = 0,

where

lim
D(z0;r0)∗3z→z0

g[f(z)]− g[f(z0)]

f(z)− f(z0)
= g′[f(z0)]. (3)

Combining (2) and (3), we get

lim
D(z0;r0)3z→z0

g[f(z)]− g[f(z0)]

z − z0

= g[f(z0)] f ′(z0).

CASE 2: f ′(z0) = 0.
Since the limit

lim
w→f(z0)

g(w)− g[(z0)]

w − f(z0)

exists, ∃ C > 0 and ε > 0 such that∣∣∣∣g(w)− g[f(z0)]

w − f(z0)

∣∣∣∣ ≤ C ∀ w : 0 < |w − f(z0)| < ε. (4)

By continuity of f, ∃r1 > 0 such that |z − z0| < r1 ⇒ |f(z) − f(z0) < ε.
Applying this to (4), we see that

lim
D(z0;r1)∗3z→z0

∣∣∣∣g[(z)]− g[f(z0)]

z − z0

∣∣∣∣ ≤ lim
D(z0;r1)∗3z→z0

C

∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ = 0.

Hence:

lim
z→z0

g[f(z)]− g[f(z0)]

z − z0

= 0 = g′[f(z0)] f ′(z0).

From Cases 1 and 2, and the fact that z0 was completely arbitrary, the result
follows. ∗∗

Example 1.7 By the application of the binomial theorem, it is elementary
to check that f(z) := zm, m ∈ N, is complex-analytic in C.
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In general, even if one is explicitly provided a f : Ω → C, it could be hard
to check where (1) exists. Is there a checkable criterion for holomorphicity ?
This is answered by the next result.

Theorem 1.8 (The Cauchy-Riemann Conditions) Let Ω be an open set in
C and let f : Ω → C. Express f as

f(x + iy) = u(x, y) + iv(x, y),

where u and v are the real and imaginary parts of f , and assume u and v
have continuous partial derivatives. Then, f is complex-analytic on Ω if and
only if:

∂u

∂x
(x, y) =

∂v

∂y
(x, y)

∂u

∂y
(x, y) = −∂v

∂x
(x, y) ∀ x + iy ∈ Ω (5)

Remark 1.9 The equations (5) are called the Cauchy-Riemann equations.

Proof: Let us first assume that f is complex-analytic. From the calculation
in Remark 1.2, we see that

f ′(z) =
∂u

∂x
(z) + i

∂v

∂x
(z) ∀ z ∈ Ω. (6)

However, let us now let h → 0 along the imaginary axis. This gives us

f ′(z) = lim
h→0

f(z + ih)− f(z)

ih

= lim
h→0

u(x, y + h)− u(x, y)

ih
+ i

v(x, y + h)− v(x, y)

ih

= −i
∂u

∂y
(z) +

∂v

∂y
(z). (7)

Comparing real and imaginary parts of (6) and (7) gives the Cauchy-Riemann
equations.

Let us now assume that f satisfies (5). Let us write h = s + it. We
express

u(x + s, y + t)− u(x, y) = [u(x + s, y + t)− u(x, y + t)] + [u(x, y + t)− u(x, y)].
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By applying the Mean Value Theorem to the univariate functions u(·, y + t)
and u(x, ·) respectively, we see that ∃ σ : |σ| < |s| and ∃ τ : |τ | < |t| so that

u(x + s, y + t)− u(x, y + t) = ux(x + σ, y + t)s
u(x, y + t)− u(x, y) = uy(x, y + τ)t.

(8)

If we define Φ(s, t) := [u(x + s, y + t) − u(x, y)] − [ux(x, y)s + uy(x, y)t], we
get, by applying (8

Φ(s, t)

h
=

s

s + it
[ux(x + σ, y + t)− ux(x, y)] +

t

s + it
[uy(x, y + τ)− uy(x, y)].

Now, as |σ| < |s| and |τ | < |t|, h → 0 ⇒ (σ + iτ) → 0. We now use the
continuity of ux and uy to get

lim
h→0

Φ(s, t)

h
= 0. (9)

By a similar argument, if we define

Ψ(s, t) := [v(x + s, y + t)− v(x, y)]− [vx(x, y)s + vy(x, y)t],

we get:

lim
h→0

Ψ(s, t)h = 0. (10)

From (9) and (10), we have

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

ux(x, y)s + uy(x, y)t + Φ(s, t)

h

+ lim
h→0

i
ux(x, y)s + vy(x, y)t + Ψ(s, t)

h

= lim
h→0

(s + it)ux(x, y) + i(s + it)vx(x, y)

h
= ux(x, y) + ivx(x, y).

The second equality above follows from the Cauchy-Riemann conditions.

We have just shown that the C-derivative of f exists at each z ∈ Ω. But
we have also shown that

f ′(z) =
∂u

∂x
(z) + i

∂v

∂x
(x, y).

By our hypothesis on u and v, f ′ ∈ C(Ω). Hence, the function f is complex-
analytic on Ω. ∗∗
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2 Lecture 2

From the material in Lecture 1, we see that any polynomial in z, z ∈ C, is
holomorphic in C. But are there other examples of holomorphic (i.e. complex
analytic) functions ? For this purpose, we consider power series. A power
series is formally a series of the form

∑∞
n=0 cn(z − a)n, where a ∈ C and

cn ∈ C, n ∈ N. To determine a function

f : z 7−→
∞∑

n=0

cn(z − a)n

on some set Ω ⊂ C, Ω 6= ∅, we must ensure that the series at z = z0 is
absolutely convergent for each z0 ∈ Ω. To determine when this is possible,
we need to recall:

THE ROOT TEST: For the series
∑∞

n=0 an of complex numbers, define

α := lim sup
n→∞

|αn|1/n.

(a) If α < 1, then the series converges absolutely.

(b) If α > 1, then the series diverges.

(c) If α = 1, then the test provides no information.

Remark 2.1 It is easy to see that the Root Test may be used to find a
disc D(a; R) with the property that, provided R > 0, the given power-series
converges absolutely at each z ∈ D(a; R), and diverges at each z ∈ C \
D(a; R). Associated to each

∞∑
n=0

cn(z−a)n, there is a unique such R associated

to it, which is called its radius of convergence.

EXERCISE: Define

R =

{
lim sup

n→∞
|cn|1/n

}−1

.

Show that
∑∞

n=0 cn(z − a)n converges absolutely at each z : |z − a| < R and
diverges at each z : |z− a| > R. Also show that for any r ∈ (0, R), the series
is uniformly convergent on D(a; r).
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We remind the reader that if X is a compact metric space and C(X; C) :=
the class of all complex-valued continuous functions on X, then ‖f‖X :=
supx∈X |f(x)| , f ∈ C(X; C), is a norm on C(X; C). We say that {fn}n∈N ⊂
C(X; C) converges uniformly to f if limn→∞ ‖fn − f‖X = 0. Thus, a series

∞∑
n=0

fn, fn ∈ C(X; C),

is said to converge uniformly if the partial sums

SN :=
N∑

n=0

fn −→
∞∑

n=0

fn uniformly as N →∞.

We now have the ingredients to show that any power series having a
positive radius of convergence is holomorphic on its disc of convergence. This
needs the following proposition.

Proposition 2.2 Let f(z) =
∑∞

n=0 Cn(z− a)n, z ∈ D(a; R), where R is the
radius of convergence of the R.H.S. and R > 0. Then, the series

∞∑
n=1

ncn(z − a)n−1

also has radius of convergence R. Furthermore, f is C-differentiable on
D(a; R) and

f ′(z) =
∞∑

n=1

ncn(z − a)n−1.

Proof: For the first part of this proposition, we would be done if we showed
that

lim sup
n→∞

{n|cn|}1/(n−1) = 1/R.

We already know that lim
n→∞

n1/(n−1) = 1. Thus, it suffices to show that

lim sup
n→∞

|cn|1/(n−1) = 1/R
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Let ρ := The radius of convergence of

∞∑
n=1

cn(z − a)n−1 =
f(z)− f(a)

z − a
.

It is quite evident that

(a)
∑∞

n=1 cn(z− a)n−1 converges absolutely at each z : |z− a| < R, whence
ρ ≥ R; and

(b)
∑∞

n=1 cn(z − a)n−1 diverges at each z : |z − a| > R, whence ρ ≤ R.

This tells us that
lim sup

n→∞
|cn|1/(n−1) = 1/ρ = 1/R,

which proves the first part of this proposition.

As for the second part, for z such that |z − a| < R, set

g(z) :=
∞∑

n=1

ncn(z − a)n−1,

SN(z) :=
N∑

n=0

cn(z − a)n,

f(z) ≡ SN(z) + RN(z) ∀ z ∈ D(a; R).

Then, if we fix a w ∈ D(a; R), we can write:

f(z)− f(w)

z − w
− g(w) =

{
SN(z)− SN(w)

z − w
− S ′

N(w)

}
+ {S ′

N(w)− g(w)}

+

{
RN(z)−RN(w)

z − w

}
(11)

Note that if we select an r ∈ (0, R) such that z, w ∈ D(a; r), we have∣∣∣∣RN(Z)−RN(w)

z − w

∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

n−1∑
k=0

cn(z − a)k(w − a)n−1−k

∣∣∣∣∣ <
∞∑

n=N+1

n|cn|rn−1.
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Suppose we are given an ε > 0. Owing to the first part of this proposition,
∃N1 ≡ N1(ε) ∈ N such that:∣∣∣∣RN(z)−RN(w)

z − w

∣∣∣∣ <
∞∑

n=N+1

|cn|rn−1 <
ε

3
∀N ≥ N1. (12)

Furthermore:

|S ′
N(w)− g(w)| =

∣∣∣∣∣
∞∑

n=N+1

ncn(w − a)n−1

∣∣∣∣∣ ≤
∞∑

n=N+1

n|cn|rn−1

<
ε

3
∀N ≥ N1. (13)

Finally, since we know that polynomials are C-differentiable, if we fix an
N0 ≥ N1(ε), ∃δ ≡ δ(ε, w) such that

0 < |z − w| < δ ⇒
∣∣∣∣SN0(z)− SN0(w)

z − w
− S ′

N0
(w)

∣∣∣∣ <
ε

3
. (14)

Putting (11) and (12)–(13) together, with N = N0 ≥ N1(ε), we have∣∣∣∣f(z)− f(w)

z − w
− g(w)

∣∣∣∣ < 3× ε

3
whenever 0 < |z − w| < δ.

But this is simply the restatement of

lim
z→w

{
f(z)− f(w)

z − w
− g(w)

}
= 0,

which proves the second part of this proposition. ∗∗
But the above proposition establishes the following important fact.

Theorem 2.3 Let the power-series
∑∞

n=0 cn(z − a)n have radius of conver-
gence R > 0. Then, if we define

f(z) :=
∞∑

n=0

cn(z − a)n, z ∈ D(a; R),

then f ∈ O(D(a; R)).
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Proof: We have already established that f is C-differentiable in Proposition
2.2. So, we must show that f ′ is continuous at each z0 ∈ D(a; R). But since
each z0 ∈ D(a : r) for some r ∈ (O,R), we must just show that f ′|D(a;r) ∈
C(D(a; r); C). From the first part of the previous proposition, and the exercise
in Remark 2.1, we have

N∑
n=1

ncn(z − a)n−1 −→ f ′ uniformly on D(a, r),

and since C(D(a; r); C) is complete in the uniform norm, f ′|D(a;r) is continu-

ous. Thus f ∈ O(D(a; R)). ∗∗
We remark that from this point onwards, we shall abbreviate the ex-

pression “f is complex-analytic/holomorphic on Ω” by f ∈ O(Ω). We have
already used this notation in Theorem 2.3. This theorem tells us, among
other things, that the following functions

ez :=
∞∑

n=0

zn

n!
,

cos z :=
eiz + e−iz

2
,

sin z :=
eiz − e−iz

2
,

are all holomorphic on C.

2.4 The logarithm: This section illustrates the difficulties in defining
inverse functions so that they are analytic. Suppose we want to define log(z)
to be the inverse of ez, then if we write log(z) = u(z)+iv(z), u, v real-valued,
then we have

exp[u(z) + iv(z)] = z.

Suppose, we write z = |z|eiArg(z), where we choose the argument so that
Arg(z) ∈ [−π, π). Then

|z| = eu(z)|eiv(z)| = eu(z),

whence u(z) = log |z|. But there is no unique choice for v(z) since the above
calculation actually reveals:

{w ∈ C : ew = z} = {log |z|+ i(Arg(z) + 2πk) : k ∈ Z}.
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Suppose we make a choice of k ∈ Z to define v(z) and set, for instance:

log(z) := log |z|+ iArg(z) ∀z ∈ C \ {0}, (15)

we are led to the question: Is log ∈ O(C \ {0}) ? Unfortunately, log de-
fined in (15) is not even continuous! To see this, note that whereas, by the
definition of Arg,

log(−1) = −iπ,

lim
t→0+

log(−1 + it) = lim
t→0+

{
log

√
1 + t2 + i cos−1

(
−1√
1 + t2

)}
= +iπ 6= log(−1).

This problem arises because the argument is multiple-valued. The prob-
lem is solved if we restrict Arg to take values in (−π, π) (note the open inter-
val). This amounts to restricting z to G0 := C \ (−∞, 0]. Let the logarithm
restricted to G0 be denoted by Log, i.e.

Log(z) := log |z|+ iArg(z) ∀z ∈ G0 := C \ (−∞, 0].

Log is known as the the principal analytic branch of the logarithm. Certainly
Log ∈ C(G0; C), but why is it analytic? Continuity, it turns out; is the crucial
property, from which analyticity follows in view of the following:

EXERCISE: Let Ω1, Ω2 ⊂ C be open subsets. Let f ∈ C(Ω1; C), g ∈ O(Ω2), and
f(Ω1) ⊂ Ω2. Suppose

g[f(z)] = z ∀z ∈ Ω1,

and g′(w) 6= 0∀w ∈ Ω2. Then f ∈ O(Ω1) and

f ′(z) =
1

g′[f(z)]
∀z ∈ Ω1.

Each choice of v(z) in the definition of log(z) in (15) leads to a different
inverse of ez. These different choices of the logarithm are called the branches
of the logarithm. We then have the following result.

Proposition 2.5 Let Ω ⊂ C be an open and connected set, and let F, G ∈
O(Ω) be two analytic branches of the logarithm. Then, ∃k0 ∈ Z such that
F (z) = G(z) + 2πik0 ∀z ∈ Ω.
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Proof: Let us define the function

ν(z) :=
F (z)−G(z)

2πi
∀z ∈ Ω.

Since {w ∈ C : ew = z} = {log |z| + i(Arg(z) + 2πk) : k ∈ Z}, we see that
ν(z) ∈ Z ∀z ∈ Ω. But ν is clearly continuous. Hence, as Ω is connected,
∃k0 ∈ Z such that ν(Ω) = {k0}. Hence

F (z)−G(z) = 2πik0 ∀z ∈ Ω. ∗ ∗
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3 Lecture 3

This lecture will be dedicated to developing the concept of the line integral of
a complex-valued function. To begin with, let us describe the class of paths
along which we shall perform integration. For this, we need a definition.

Definition 3.1 Let [a, b] ⊂ R be a closed, bounded interval. A function
γ : [a, b] → C is called a piecewise smooth path if we can find points

a = T0 < T1 < · · · < TM = b,

M ≥ 1 such that

• γ|(Tj−1,Tj) is differentiable on (Tj−1, Tj), j = 1, . . . ,M, with [γ|(Tj−1,Tj)]
′ ∈

C((Tj−1, Tj); C); and

• [γ|(Tj−1,Tj)]
′ extends to a continuous function on [Tj−1, Tj], j = 1, 2, . . . ,M .

The above is the class of paths to which we shall restrict attention. We
shall often refer to the image of a path γ : [a, b] → C as a path too. We shall
denote the image, i.e. γ([a, b]), by 〈γ〉.

To motivate the concept of a complex line integral, let us recall the con-
cept of the work done by a vector field. Let Ω be an open set in R2 and
let F = (P, Q) : Ω → R2 be a continuous vector field. The work done by F
along a piecewise smooth path γ : [a, b] → Ω is defined as the following limit
of Riemann sums

work = lim
‖P‖→0

N∑
j=1

〈F(γ(τj)), γ(tj)− γ(tj−1)〉, (16)

provided this limit exists. In (16), 〈, 〉 represents the standard inner product
on R2 — the “dot product” — while P denotes any partition

P : a = t0 < t1 < . . . < tN = b,

with the mesh of this partition ‖P‖ := maxj≤N(tj − tj−1). Also τj denotes
any point such that τj ∈ [tj−1, tj]. Now, if we write γ = (γ1, γ2), then the
R.H.S. (16) simplifies to

work = lim
‖P‖→0

{
N∑

j=1

P (γ(τj))[γ1(tj)− γ1(tj−1)] +
N∑

j=1

Q(γ2(tj)− γ2(tj−1)]

}
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By the theory of the Riemann integral, if P and Q are continuous, then
the above limit will exist, and:

I) This limit does not depend on the choice of τj ∈ [tj−1, tj]. Furthermore;

II) If the limit in (16) exists, it will be unchanged if P is replaced by the
refinement P∗

γ := P ∪ {T1, . . . , TN−1}.

The fact that the limit in (16) exists can be justified exactly as when one
shows that a continuous function on [a, b] is Riemann integrable. Given this
fact, let us exploit (I) and (II) to compute a value for the limit in (16), which
we denote as

work =

∫
γ

F · dr.

By Mean Value Theorem (recall our second hypothesis on γ), ∃τ 1j, τ 2j ∈
(tj−1, tj) such that

γk(tj)− γk(tj−1) = γ′(τ kj)∆tj, k = 1, 2,

(provided there is no Tµ ∈ (tj−1, tj), which is why we will have to now replace
P by P∗

γ). By (I) and (II), therefore:

∫
γ

F · dr = lim
‖P∗γ‖→0

{
N∗∑
j=1

P (γ(τ 1j))γ′1(τ
1j)∆tj +

N∗∑
j=1

Q(γ(τ 2j))γ′2(τ
2j)∆tj

}
,

(17)
where we relabel P∗

γ as P∗
γ : a = t0 < t1 < · · · < tN∗ = b.

Now, by our hypothesis on γ, the functions (P ◦ γ) · γ′1 and (Q ◦ γ) · γ′2
are Riemann integrable on [Tk−1, Tk] ⊂ [a, b]. Applying this to (17), we get∫

γ

F · dr =
M∑

k=1

∫ Tk

Tk−1

{P ◦ γ(t)γ′1(t) + Q ◦ γ(t)γ′2(t)} dt.

If we are now given Ω ⊂ C and a complex-valued function f ∈ C(Ω; C),
and a piecewise smooth path γ : [a, b] → Ω, we define the line integral of f
along γ, written as ∫

γ

f(z)dz

16



in a very similar manner to (16). The essential difference is that, rather
than the inner product on R2, we utilise the product on C. Thus, given
f ∈ C(Ω; C), we define∫

γ

f(z)dz = lim
‖P‖→0

N∑
j=1

f(γ(τj))(γ(tj)− γ(tj−1)), (18)

where, as before P is a partition

P : a = t0 < t1 < · · · < tN = b,

and τj ∈ [tj−1, tj]. The proof that the limit on the right-hand side above
exists is exactly the same as the existence of the limit in (16). In fact, the
reader may verify that the real and imaginary parts of the right-hand side
of (18) are just real integrals of the form we discussed earlier. This last fact
allows us to imitate the calculations above and obtain:∫

γ

f(z)dz =
M∑

k=1

∫ Tk

Tk−1

f(γ(t))γ′(t)dt (19)

Notice that (19) seems to suggest that if (γ) had a different parametrisation,
say σ : [c, d] → Ω such that σ([c, d]) = 〈γ〉, then∫

γ

f(z)dz =

∫
σ

f(z)dz (with γ 6= σ)

is not necessarily true. To address the truth or the falsity of this, we need to
rigourously define what we mean by a reparametrisation.

Definition 3.2 Let γ : [a, b] → C and σ : [c, d] → C be two piecewise
smooth paths. We say that σ is a reparametrisation of γ if ∃φ : [c, d] → [a, b]
such that φ is strictly increasing, continuously differentiable (with φ′(c) and
φ′(d) being defined via right- and left-limits respectively) on [c, d] such that
σ = γ ◦ φ.

A question that arises is why we require φ to be strictly increasing. If,
in our chosen class of paths, we write γ ∼ σ ⇔ σ is a reparametrisation of
γ, and we allow non-strictly-increasing φ : [c, d] → [a, b], then ∼ is not an
equivalence relation.

17



EXERCISE: Show that if we replace “φ is strictly increasing” in Definition 3.2
by “φ is non-decreasing”, then ∼ will not be an equivalence relation.

This discussion shows that in the quantity∫
γ

f(z)dz,

it is not enough to merely know the point-set 〈γ〉. The path γ : [a, b] → Ω,
i.e. information on how 〈γ〉 is traversed, is crucial. However, regarding two
paths that are reparametrisations of each other, we have the following result.

Proposition 3.3 Let Ω be an open subset in C and f ∈ C(Ω; C). Let γ :
[a, b] → Ω and σ : [c, d] → Ω be piecewise smooth curves such that σ is a
reparametrisation of γ. Then∫

γ

f(z)dz =

∫
σ

f(z)dz.

Proof: By hypothesis, ∃φ : [c, d] → [a, b] that is strictly increasing, contin-
uosly differentiable and such that σ = γ ◦ φ. Clearly, if S ∈ [a, b] is a point
where γ fails to be differentiable, it is of the form φ(T ), where T ∈ [c, d] is a
point where σ fails to be differentiable. So let

c = T0 < T1, < . . . < TM = d

be such that σ|[Tj−1,Tj ] ∈ C1([Tj−1, Tj]). Then

∫
σ

f(z)dz =
M∑

j=1

∫ Tj

Tj−1

f [σ(t)]σ′(t)dt

=
M∑

j=1

∫ Tj

Tj−1

f [γ ◦ φ(t)]γ′(φ(t))φ′(t)dt

=
M∑

j=1

∫ φ(Tj)

φ(Tj−1

f [γ(u)]γ′(u)du

=

∫
γ

f(z)dz,

18



where the third equality follows from the change-of-variables formula — recall
that by definition φ′ > 0 — with u = φ(t). ∗∗

In the end, we mention the following, which should be obvious: the line
integral is linear in the integrand, i.e. if γ : [a, b] → Ω is a piecewise smooth
curve and f, g ∈ C(Ω; C), then∫

γ

(αf + βg)(z)dz = α

∫
γ

f(z)dz + β

∫
γ

g(z),

for constants α, β ∈ C.
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4 Lecture 4

This lecture is devoted to proving two powerful results about the behaviour
of holomorphic functions. Our first result is Cauchy’s integral fheorem. Our
second result is a form of converse of Theorem 2.3. Namely: if Ω is an open
set in C and a ∈ Ω, then any f ∈ O(Ω) can be expressed, in some disc
around a, as a convergent power series. To appreciate how special this result
is, we remind the reader that there exist functions F ∈ C∞(Ω, C) such that
the Taylor series of F around a ∈ Ω does not converge to F . We begin with
Cauchy’s theorem.

4.1 Cauchy’s integral formula: Let Ω be an open set in C and let f ∈
O(Ω). Let D ⊂ Ω be any subdomain of Ω such that D ⊂ Ω, and ∂D is
piecewise smooth. Then

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw ∀ z ∈ D. (20)

Before embarking on a proof we need to make two observations.

Remark 4.2 As a point set, ∂D is a union of disjoint closed curves. But,
as the discussion in Lecture 3 shows, we need to specify parametrisations
for each component of ∂D. By Proposition 3.3, it would suffice to prescribe
directions of traversal — i.e. orientations — for each component of ∂D.
For (20) to be true, we require ∂D to be positively oriented with respect to
∂D, i.e. each component must be so traversed that D lies to the left as one
traverses the curve.

The above orientation of ∂D is necessiated by Green’s Theorem, which
we shall use to prove Theorem 4.1.

Theorem 4.3 (Green’s theorem) Let D be a bounded domain in R2 with
piecewise-smooth boundary. Let F = (P, Q) be a continuously differentiable
vector field on D such that the partial derivatives of P and Q extend contin-
uously to ∂D. Then∫

∂D

F · dr =

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.
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With these elements in place, we can provide

A proof of Cauchy’s integral formula:

Let us fix a z ∈ D and write

Dz,ε := D\D(z; ε),

where ε > 0 is so small that D(z; ε) ⊂ D. Let us write

f(w)

w − z
≡ U(w) + iV (w).

Then, referring back to Lecture 3, we can verify that∫
∂Dz,ε

f(w)

w − z
dw =

∫
∂Dz,ε

(U, V ) · dr + i

∫
∂Dz,ε

(V, U) · dr

= −
∫

Dz,ε

(
∂V

∂x
+

∂U

∂y

)
dA + i

∫
Dz,ε

(
∂U

∂x
− ∂V

∂y

)
dA (21)

[using Green’s Theorem]

Now, note that by construction (U + iV ) ∈ O(Dz,ε). The Cauchy-Riemann
conditions on (U + iV ), when applied to (21) give us

−
∫

∂Dz;ε

f(w)

w − z
dw +

∫
∂D

f(w)

w − z
dw = 0

⇒
∫

∂D

f(w)

w − z
dw =

∫ 2π

0

f(z + εeiθ)i dθ.

Note that the above is true ∀ ε > 0 sufficiently small. It is easy to see that
if we define fε(θ) := f(z + εeiθ), θ ∈ [0, 2π], then

Fε −→ f(z) uniformly on [0, 2π] as ε → 0+.

Hence, we have∫
∂D

f(w)

w − z
dw = lim

ε→0+

∫ 2π

0

if(z + εeiθ)dθ

=

∫ 2π

0

lim
ε→0+

if(z + εeiθ)dθ [follows from uniform convergence]

= 2πif(z),
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and the latter holds ∀ z ∈ D. ∗∗
The integral formula immediately allows us to prove the following theo-

rem.

Theorem 4.4 Let Ω be an open set in C and a ∈ Ω. Let R > 0 be such that
D(a; R) ⊂ Ω. Then, f has a power-series representation

f(z) =
∞∑

n=0

cn(z − a)n, z ∈ D(a; R),

whose radius of convergence ≥ R.

Proof: The hypothesis of Cauchy’s integral formula is met by D(a; r),
whence

f(z) =
1

2πi

∫
∂D(a;R)

f(w)

w − z
dw, z ∈ D(a; R).

As |z − a| < R = |w − a| in the above equation, we can write

1

w − z
=

1

(w − a)
(
1− z−a

w−a

) =
∞∑

n=0

(z − a)n

(w − a)n+1
.

For a fixed z : |z − a| < R, the series [viewed as a function in w ∈ ∂D(a; R)]

∞∑
n=0

(z − a)n

(·− a)n+1

is, by the Weierstrass M -test, uniformly convergent on ∂D(a; R). Hence

f(z) =
1

2πi

∫
∂D(a;R)

f(w)
∞∑

n=0

(z − a)n

(w − a)n+1
dw

=
∞∑

n=0

 1

2πi

∫
∂D(a;R)

f(w)

(w − a)n+1
dw

 (z − a)n (22)

≡
∞∑

n=0

cn(z − a)n.
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To complete this proof, we make the following auxiliary observation:

If f ∈ C(Ω; C) and γ : [a, b] → Ω, then∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ ∫
γ

|f(z)| d|z|,

where the integral on the right is the integral with respect to the arc-length
measure.

This follows by applying the Cauchy-Schwarz inequality to the relevant
Riemann sum in Lecture 3. If M := supw∈∂D(a;R) |f(w)|, then, for any z ∈
D(a, R):

∞∑
n=0

|cn||z − a|n ≤ M
∞∑

n=0

(
|z − a|

R

)n

< ∞.

By the definition of the radius of convergence, the above absolute-convergence

statement tells us that r.o.c.

(
∞∑

n=0

cn(z − a)n

)
≥ R. ∗∗

The equation (22) leads to the following

Corollary 4.5 Let Ω be an open set in C and f ∈ O(Ω). If R > 0 is such
that D(a; R) ⊂ Ω then

f (k)(a) =
k!

2πi

∫
∂D(a;R)

f(w)

(w − a)k+1
dw.

We shall end this lecture with the following observation: the technique of
proving Theorem 4.1 allows us to prove a much more general theorem — one
that does not merely pertain to O(Ω)-functions. We leave this generalization
as an exercise.

EXERCISE: Let D be a bounded domain in R2 with piecewise-smooth bound-
ary. Let f = (u + iv) : D → C be continuously differentiable on D and
assume that all first-order partial derivatives of u and v extend continuously
to ∂D. Then

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw − 1

2π

∫ ∫
D

1

w − z

(
∂

∂x
+ i

∂

∂y

)
f(w)dA(w) ∀z ∈ D.

23



Finally, note that we get the following Corollary to Cauchy’s integral
formula:

Theorem 4.6 (Cauchy’s integral theorem) Let the hypotheses on f and D
be as in Cauchy’s integral formula. Then∫

∂D

f(z) dz = 0.

Proof: We pick a point a in the interior of D and apply Theorem 4.1 to the
holomorphic function z 7→ (z − a)f(z). ∗∗
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5 Lecture 5

Now that we have the integral formula of Corollary 4.5 at our disposal, as
well as the fact that holomorphic functions admit a power-series expansion
locally, we can use them to deduce several results which demonstrate that
holomorphic functions behave very differently from functions that are just
finitely differentiable.

We begin with a generalization of an estimate that was already presented
in the proof of Theorem 4.4. This is the so-called

5.1 Cauchy’s estimate: Let Ω ⊂ C be an open set, and let f ∈ O(Ω).
Suppose a ∈ Ω and R > 0 is such that D(a; R) ⊂ Ω. Then

|f (k)(a)| ≤ k!

Rk
sup

ζ∈∂D(a;R)

|f(ζ)|.

Proof: From Corollary 4.5, we have

|f (k)(a)| =
k!

2π

∣∣∣∣∣∣∣
∫

∂D(a;R)

f(w)

(w − a)k+1
dw

∣∣∣∣∣∣∣
≤ k!

2π

∫
∂D(a;R)

|f(w)|
|w − a|k+1

d|w|

≤ k!

Rk
sup

ζ∈∂D(a;R)

|f(ζ)|. ∗ ∗

One of the immediate applications of the above is Liouville’s Theorem.
Before stating this theorem, we introduce the following term: a function that
is holomorphic on C is called an entire function.

5.2 Liouville’s theorem: A bounded entire function must be constant.

Proof: Let f ∈ O(C) and let M ∈ R+ be such that

|f(z)| ≤ M ∀z ∈ C.

25



Pick any arbitrary z0 ∈ C. We have, for any R > 0, D(z0; R) ⊂ C, whence,
by Cauchy’s estimate

|f ′(z0)| ≤
1

R
sup

ζ∈∂D(z0;R)

|f(ζ)| ≤ M

R
.

As the above is true ∀R > 0; it remains true as we take R → ∞. Hence
f ′ ≡ 0, since z0 above was arbitrary. Since C is connected, this implies that
f ≡const. ∗∗

The power of Liouville’s Theorem will be appreciated through the simple
proof it provides of:

5.3 The fundamental theorem of algebra: Let P be a non-constant
polynomial having complex coefficients, of degree N ≥ 1. Then, there exist
complex numbers a1, . . . , aN such that

P (z) = c
N∏

j=1

(z − aj) (c ∈ C\{0}).

Proof: The proof would be complete via induction on degree and the division
algorithm if we could show that P — as above — has at least one zero in C.
Assume not. Then 1/P ∈ O(C). Let us write

P (z) = c0z
N +

N∑
j=1

cjz
N−j, c0 6= 0.

It is easy to find an R > 0 such that

|c0| |z|N −
N∑

j=1

|cj| |z|N−j ≥ |c0|
2

|z|N ∀z : |z| ≥ R.

This implies that

|1/P (z)| ≤ 2

|c0||z|N
≤ 2

|c0|RN
∀z : |z| ≥ R. (23)

As 1/P is continuous, ∃M > 0 such that

|1/P (z)| ≤ M ∀z : |z| ≤ R, (24)
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where R is as introduced above. But, from (23) and (24), we have

|1/P (z)| ≤ max

(
M,

2

|c0|RN

)
∀z ∈ C.

Since 1/P ∈ O(C), by assumption, P must be constant, by Liouville’s The-
orem. This contradicts our hypothesis on P . Hence, our assumption is false,
and P (z) = 0 has at least one root in C. ∗∗

Of course, polynomials form a very small sub-class of the set of entire
functions. And there is certainly no analogue of the previous theorem for
non-polynomial entire functions. For example:

f(z) = eaz, a 6= 0,

is entire, but f(z) 6= 0 ∀z ∈ C. Yet, the analogue of the Fundamental
Theorem of Algebra for a general f ∈ O(Ω) is that if f−1{0} 6= ∅, then it
must be a discrete set in Ω or vanish on an entire component of Ω. This is
made more precise in the following theorem.

Theorem 5.4 Let Ω be a connected open set in C and let f ∈ O(Ω). Then,
the following are equivalent:

a) f ≡ 0;

b) ∃a0 ∈ Ω such that f (k)(a0) = 0 ∀k ∈ N;

c) f−1{0} has a limit point in Ω.

Proof: (a) ⇒ (c) is obvious.

Let us now show that (c) ⇒ (b): Let a be a limit point of f−1{0} lying
in Ω. Since f is continuous, f(a) = 0. Suppose ∃N ∈ Z+ such that

f (k)(a) = 0 ∀k < N,

f (N)(a) 6= 0.

Let R > 0 such that D(a; R) ⊂ Ω. Then, in this disc, we have the power-
series development

f(z) =
∞∑

n=N

cn(z − a)n ≡ (z − a)Ng(z), (cN 6= 0) ∀ z ∈ D(a; R). (25)
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The statements in (25) follow from our assumptions on f (k). In particular,
we see that g ∈ C(D(a; R); C) and that ∃r ∈ (0, R) such that g(z) 6= 0 ∀z ∈
D(a; r). We see from (25) thus that

f(z) 6= 0 ∀z ∈ D(a; r)\{a},

which violates the fact that a is a limit of f−1{0}. Our assumption about
{f (k)}k∈N must hence be wrong. Thus (c) ⇒ (b).

It now remains to show that (b) ⇒ (a). This is where we use the con-
nectedness of Ω. Define

A = {z ∈ Ω : f (k)(z) = 0 ∀k ∈ N}
=

⋂
k∈N

[f (k)]−1{0};

the continuity of f (k) for each k ∈ N establishes that A is closed in Ω. A 6= ∅
by (b). Finally, pick z0 ∈ A. Let ρ > 0 such that D(z0; ρ) ⊂ Ω. Then, f has
the power-series development

f(z) =
∑
k∈N

f (k)(z0)

k!
(z − z0)

k ∀z ∈ D(z0; ρ).

Consequently, f |D(z0;ρ) ≡ 0, i.e. D(z0; ρ) ⊂ A. Since z0 was an arbitrary
point in A, we conclude that A is open.

Thus A is a non-empty set that is both Ω-open and Ω-closed. As Ω is
connected, A = Ω. This establishes (a). ∗∗
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6 Lecture 6

In this lecture, we introduce an object whose purpose is twofold:

Objective I: The Cauchy Integral Formula, as formulated in Theorem 4.4,
involved integration over a disjoint union of simple closed curves. We would
like to extend the formula to closed curves that self-intersect, with appropri-
ate modifications to the resulting formula.

Objective II: To develop a theory of enumeration of the zeros of a holomorphic
function — specifically: if f ∈ O(Ω), α ∈ f(Ω), and a ∈ Ω is a zero of
f(z) = α of multiplicity Mα, to provide a theory for how the number of roots
of the equation

f(z) = β, β ∈ f(Ω) and close to α,

are related to Mα.

We will not have the time to explore Objective II within this set of seven
lectures, but we must emphasize one of the outcomes of pursuing Objective
II — which will be exploited in other lectures in this workshop:

Theorem 6.1 (Open Mapping Theorem) Let Ω be an open connected set in
C, and let f ∈ O(Ω). If f is non-constant, then f is an open mapping, i.e.
for any open set U ⊂ Ω, f(U) is open.

Before providing a formal definition of the object that we have hinted at, we
present a short lemma.

Lemma 6.2 Let γ : [a, b] → C be a piecewise smooth closed curve and let
α /∈ 〈γ〉. Then,

1

2πi

∫
γ

dz

z − α
∈ Z

Proof: We use the notation-developed in Lecture 3, i.e. let

a = T0 < T1 < · · · < TM = b,

M ≥ 1 be such that:

29



• γ|(Tj−1,Tj) is differentiable on (Tj−1, Tj), j = 1, . . . ,M, with [γ|(Tj−1,Tj)]
′ ∈

C((Tj−1, Tj); C); and

• [γ|(Tj−1,Tj)]
′ extends to a continuous function on [Tj−1, Tj], j = 1, 2, . . . ,M .

Define:

g(t) =


0, if t = a,
j−1∑
k=1

Tk∫
Tk−1

γ′(s)
γ(s)−α

ds +
t∫

Tj−1

γ′(s)
γ(s)−α

ds, if t ∈ (Tj−1, Tj),

where γ′ in each integrand is interpreted appropriately.

If we fix t ∈ (Tj−1, Tj), by the Fundamental Theorem of Calculus

{g|(Tj−1,Tj)}′(t) = [γ(t)− α]−1[γ|(Tj−1,Tj)]
′(t).

Then

de−g(γ − α)

dt

∣∣∣∣
t∈(Tj−1,Tj)

= e−g(t)
{
γ|(Tj−1,Tj)

}′
(t)−

{
g|(Tj−1,Tj)

}′
(t)(γ − α)(t)

= 0.

This tells us that
e−g(γ − α)

∣∣
(Tj−1,Tj)

≡ const.

However, note that g is visibly a continuous function, whence:

e−g(γ − α) ≡ const.

Hence:
e−g(b)(γ − α)(b) = e−g(a)(γ − α)(a) = (γ − α)(a).

Since γ is a closed curve and α 6∈ 〈γ〉, the above gives us

e−g(b) = 1 (26)

Note that by construction, g(b) is just the desired integral. Thus, by (26),
∃k ∈ Z such that ∫

γ

1

z − α
dz = 2πik. ∗ ∗

We are now ready to give a definition.
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Definition 6.3 Let γ : [0, 1] → C be a piecewise smooth, closed curve in C,
and let a 6∈ 〈γ〉. The winding number of γ around a, denoted by η(γ; a), is
the integer

η(γ; a) =
1

2πi

∫
γ

1

z − a
dz.

The question arises: what is the geometric interpretation of the winding
number ? To answer this, let us examine several evidences for the answer.
First, suppose we fix an a ∈ C and let γ̂ : [0, 1] → C \ {a} be a piecewise
smooth, closed curve, which is allowed to intersect itself, such that

• γ̂ wraps around a anticlockwise exactly once; and

• γ̂ crosses the ray {z ∈ C : (z − a) ∈ (−∞, 0]} exactly once.

Now some terminology: If Ω is an open set in C and f ∈ O(Ω; C), let us say
that f admits a primitive on Ω if ∃F ∈ O(Ω) such that F ′ = f.

EXERCISE: Show that if f ∈ O(Ω; C) and admits a primitive F on Ω, then∫
γ

f(z)dz = F [γ(b)]− F [γ(a)]

for any piecewise smooth γ : [a, b] → Ω.

Let us now return to the γ̂ introduced above. Let β ∈ C be such that

{β} = 〈γ̂〉 ∩ {z ∈ C : (z − a) ∈ (−∞, 0]};

and we may assume, without loss of generality, that γ̂(0) = γ̂(1) = β. Let us
write γ̂ε := γ̂|[ε,1−ε]; whence

〈γ̂ε〉 ⊂ C \ {z ∈ C : (z − a) ∈ (−∞, 0]}.

Note that Log(z − a), defined by Log(z − a) := log |z − a|+ iArg(z − a)∀z ∈
C \ {z : (z − a) ∈ (∞, 0]}, is a primitive of 1/(z − a) on Ω := C \ {z ∈ C :
(z − a) ∈ (−∞, 0]}. Thus, in view of our exercise:

1

2πi

∫
bγ

1

z − a
dz = lim

ε→0+

1

2πi

∫
bγε

1

z − a
dz

= lim
ε→0+

1

2πi
[Log(γ(1− ε))− Log(γ(ε))]

= 1,
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i.e. the winding number counts precisely the number of times γ̂ maps around
a.

The next piece of evidence requires the following constructions: let γ, σ :
[0, 1] → C be two piecewise smooth closed curves with γ(1) = σ(0). Then,
we write

γ−1(t) := γ(1− t), t ∈ [0, 1],

and

γ ∗ σ(t) =

{
γ(2t), if t ∈ [0, 1/2],
σ(2t− 1), if t ∈ [1/2, 1].

Note that γ ∗ σ is piecewise smooth and is just the juxtaposition of γ and σ,
with σ following γ. Then, we have the following easy

Lemma 6.4 Let γ, σ : [0, 1] → C be two piecewise smooth closed paths with
γ(1) = σ(0). Then:

η(γ−1; a) = −η(γ; a) ∀a 6∈ 〈γ〉,
η(γ ∗ σ; a) = η(γ; a) + η(σ; a) ∀a 6∈ 〈γ〉 ∪ 〈σ〉.

From these two pieces of evidence, we intuit that, at least for a special
class of curves:

η(γ; a) = the number of times γ wraps around a (with positive sign indicating
anticlockwise traversal and negative sign indicating clockwise traversal), i.e.
the number of complete rotations executed by the vector [γ(t)−a] as t varies
from 0 to 1.

The above can be proved in many different ways, but the slickest proof
involves the concept of homotopy. We defer this discussion to Lecture 7.

As for Objective I, as stated right at the beginning of this lecture, we can
now state the strengthened version of the integral formula.

Theorem 6.5 (Cauchy’s integral formula – Version 2) Let Ω be an open set
in C and let f ∈ O(Ω). Let γ : [0, 1] → Ω be a piecewise smooth closed curve
in Ω. Let

η(γ; w) = 0 ∀w ∈ C \ Ω. (∗)
Then,

η(γ; a)f(a) =
1

2πi

∫
γ

f(z)

z − a
dz ∀a ∈ Ω \ 〈γ〉.
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We will take up the proof of this in our next lecture. However, note the
following:

Remark 6.6 If might seem like (∗) represents the imposition of an addi-
tional hypothesis, which is not needed in Theorem 4.4. But the impression is
incorrect. If D ⊂ Ω is a subdomain with ∂D piecewise smooth, and D ⊂ Ω
— as in the hypothesis of Theorem 4.4 — then it is easy to check [assum-
ing, provisionally, the geometric interpretation of the winding number stated
above] that (∗) is automatically true for ∂D. Furthermore, Theorem 6.5 is
false without the hypothesis (∗).
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7 Lecture 7

We begin this lecture with a proof of Version 2 of Cauchy’s integral formula —
stated in the previous lecture. We will then introduce the important concept
of homotopy. Among other applications of homotopy: we will provide a
rigorous justification of the term “winding number” for η(γ; a). But first, let
us study

7.1 The proof of Theorem 6.5: Let us define the function ϕ : Ω×Ω → C
as

ϕ(z, w) =

{
f(z)−f(w)

z−w
, if z 6= w,

f ′(z), if z = w.

Since we are given that f ∈ O(Ω), ϕ ∈ C(Ω× Ω; C). Furthermore, for each
fixed w ∈ Ω, the function

ϕw : z 7→ ϕ(z, w)

is holomorphic on Ω. The reader may verify this by explicitly computing the
C-derivative

(ϕw)′(z) =

{
f ′(z)(z−w)−[f(z)−f(w)]

(z−w)2
, if z 6= w,

f ′′(z)
2

, if z = w.

Next, define H := {w ∈ C : η(γ; w) = 0}. Note that by our hypothesis on γ,
we have the following

C\Ω ⊂ H,

Ω ∪H = C.

Now define g : C → C by

g(z) =

{ ∫
γ
ϕ(z, w)dw, if z ∈ Ω∫

γ
f(w)
w−z

dw, if z ∈ H.

Note that ∫
γ

ϕ(z, w)dw =

∫
γ

f(z)− f(w)

z − w
dw

= −2πif(z)η(γ; z) +

∫
γ

f(w)

w − z
dw

=

∫
γ

f(w)

w − z
dw ∀z ∈ Ω ∩H.
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This demonstrates that g is well-defined. We now need the following lemma
from the real-variable calculus:

Lemma: Let Θ : W × [a, b] → C be a continuous function and W an open
subset of RN . Define:

g(x) :=

∫ b

a

Θ(x, t) dt.

Then, g ∈ C(W ; C). If ∂Θ/∂xj ∈ C(W × [a, b]; C), then

∂g

∂xj

(x) =

∫ b

a

∂Θ

∂xj

(x, t) dt.

Taking Θ(z, t) = ϕ(z, γ(t))γ′(t) OR Θ(z, t) = f(γ(t)) γ′(t)(γ(t) − z)−1,
in the relevant case, over the appropriate regions, and applying the above
lemma, we compute that(

∂

∂x
+ i

∂

∂y

)
g(z) = 0,

i.e. that the Cauchy-Riemann conditions are satisfied. Thus, g is entire. It
is evident that η(γ; ·) ≡ 0 on the unbounded component of C\〈γ〉. Thus,

lim
z→∞

|g(z)| ≤ lim
z→∞

∫
γ

|f(w)|
|w − z|

d|w|

≤ lim
z→∞

sup
w∈〈γ〉

|f(w)|
∫

γ

d|w|
|z| − |w|

= 0. (27)

Thus, ∃R0 > 0 such that |g(z)| ≤ 1 ∀z : |z| ≥ R0. So, if we let M :=
sup|z|≤R0

|g(z)|, then

|g(z)| ≤ max(M, 1) ∀z ∈ C.

By Liouville’s Theorem, therefore g ≡ const. By(27), g ≡ 0. Hence if we
now fix an a ∈ Ω\〈γ〉,

0 =

∫
γ

f(a)− f(w)

a− w
dw

= −2πi f(a)η(γ; a) +

∫
γ

f(w)

w − a
dw. ∗ ∗
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For precisely the same reasons as Theorem 4.6, we get

7.2 The Cauchy Integral Theorem (Version II): Let Ω be an open
subset in C and f ∈ O(Ω). Let γ : [0, 1] → Ω be a piecewise closed curve in
Ω such that η(γ; w) = 0 ∀w ∈ C\Ω. Then∫

γ

f(z) dz = 0.

Our next refinement involves the concept of homotopy.

Definition 7.3 Let γj : [0, 1] → Ω, j = 0, 1, be piecewise smooth closed
curves in Ω. We say that γ0 is homotopic to γ1 in Ω, written γ0 ∼Ω γ1, if
there exists a continuous function H : [0, 1]× [0, 1] → Ω such that

H(·, j) = γj, j = 0, 1,

H(0, t) = H(1, t) ∀t ∈ [0, 1].

Geometrically, the existence of a homotopy between γ0 and γ1 signifies
that γ0 can be continuously distorted to γ1 through a family of of paths
{H(·, t)}t∈[0,1] which stay in Ω. We say that a piecewise smooth closed path
γ : [0, 1] is null homotopic in Ω, written γ ∼Ω 0, if there exists a homotopy
H : [0, 1] × [0, 1] → Ω with H(·, 0) = γ and H(·, 1) ≡ const. This concept
allows us to deduce the following refined version of Theorem 7.2:

7.4 The homotopy form of Cauchy’s integral theorem: Let Ω be an
open subset of C and let f ∈ O(Ω). Let γj : [0, 1] → Ω, j = 0, 1, be piecewise
smooth closed curves in Ω such that γ0 ∼Ω γ1. Then∫

γ0

f(z) dz =

∫
γ1

f(z) dz.

In particular, if γ0 ∼Ω 0, then∫
γ0

f(z) dz = 0.

We omit the proof of the above because it will involve several complications:
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• The proof of Theorem 7.4 itself is most efficiently given using a com-
pactness+connectedness argument in which the geometric flavour of
the result gets effaced; and

• The definition of homotopy does not require each curve H(·, t), t ∈
(0, 1) to be piecewise smooth. But one would require this in order to
be able to define integrals along H(·, t) while proving Theorem 7.4.
In principle, if γ0 and γ1 are piecewise smooth and γ0 ∼Ω γ1, we can
construct a homotopy H̃ such that H̃(·, t) are piecewise smooth ∀t ∈
(0, 1). This is rather technical (although not hard).

One of the most useful consequences of Theorem 7.4 requires a prelimi-
nary definition:

Definition 7.5 Let Ω be an open subset in C. We say that Ω is simply
connected if Ω is continuous and every continuous path in Ω is null-homotopic
in Ω.

With this definition in place, Theorem 7.4 yields the following outcome,
which we leave as an

EXERCISE: Let Ω be a simply connected domain in C. Show that every f ∈
O(Ω) admits a primitive in Ω.

Let us now provide a justification for the geometric interpretation for
η(γ; a) given in the previous lecture. Hence, consider a piecewise smooth
closed curve γ : [0, 1] → C and consider a point a ∈ C\〈γ〉. Let Ωa := C\{a}.
We show that γ ∼Ωa γN , where γN is a piecewise smooth path with the
property

∗ 〈γN〉 = ∂D(a; 1)

∗ the vector [γN(t)− a] makes N complete rotations.

The homotopy linking γ and γN is just the straight-line homotopy:

H(s, t) = (1− t)[γ(s)− a] + t
[γ(s)− a]

|γ(s)− a|
+ a ∈ Ωa ∀(s, t)

that continuously moves γ(s) to {(γ(s)− a)/|γ(s)− a|+ a} along the radial
line originating at a ∈ C\〈γ〉. By this construction, we would be done if we
could show that η(γ, a) = N .
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It is difficult to write down an exact homotopy, but there is a homotopy
H̃ : [0, 1]× [0, 1] → ∂D(a; 1) such that

H̃(·, 0) = γN ,

H̃(s, 1) = a + e2πiNs ∀s ∈ [0, 1],

H̃(0, t) = H̃(1, t) ∀t ∈ [0, 1].

In summary: γ ∼Ωa γ̃N , where γ̃N := H̃(·, 1). But now, by the homotopy
form of Cauchy’s theorem

η(γ; a) =
1

2πi

∫
γ

1

z − a
dz

=
1

2πi

∫
eγN

1

z − a
dz

=
1

2πi

∫ 1

0

2πiNe2πiNs

[a + e2πiNs]− a
ds = N,

which is what we needed to show.

We mention, in conclusion of this lecture, the significance of the exercise
above. For any f ∈ O(Ω) to admit a primitive in Ω is one of two crucial
ingredients in the proof of the Riemann Mapping Theorem. Moreover the
property that every f ∈ O(Ω) admits a primitive in Ω characterises simple-
connectedness of Ω.
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