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Recap of what we did last time

◮ Wright-Fisher/Moran models and diffusion limit

dp = −sp(1− p)dt+
√

p(1− p)dW ;

◮ Kingman Coalescent/ Ancestral Selection Graph;

◮ Adding space: Kimura stepping stone model/ Wright-Malécot
model;

◮ The pain in the torus;

. . . and we were beginning to discuss a model that addresses the
pain in the torus.



An individual based model

◮ Start with Poisson intensity
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λdx. Events rate
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down ball B(x, r).

◮ If region empty, do nothing,
otherwise:
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◮ Each individual in region dies
with probability u,

◮ New individuals born according
to Poisson intensity λu1Br(x).
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Offspring inherit type of parent



λ → ∞ limit (no space)

Start from Poiss(λ)

If first reproduction event has ‘impact’ u

◮ Poiss((1− u)λ) ‘survivors’;

◮ Poiss(uλ) offspring.

As λ → ∞ proportion u of individuals die and are replaced by
offspring of the type of the parent.



The Λ-Fleming-Viot process

State {ρ(t, ·) ∈ M1(K), t ≥ 0}. K space of genetic types.

◮ Poisson Point Process Π intensity dt⊗ F (du)

◮ if (t, u) ∈ Π, individual sampled at random from population at
time t− (i.e. choose k ∼ ρ(t−))

◮ proportion u of population replaced by offspring of chosen
individual

ρ(t, ·) = (1− u)ρ(t−, ·) + uδk.

F (du) = Λ(du)
u2 , Λ finite measure on [0, 1].

Donnelly & Kurtz (1999)

(‘Generalised Fleming-Viot process’, Bertoin & Le Gall 2003)



The Λ-Fleming-Viot process
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Λ-coalescents

Donnelly & Kurtz (1999), Pitman (1999), Sagitov (1999)

If there are currently n ancestral lineages, each transition involving
j of them merging happens at rate

βn,j =

∫ 1

0
uj(1− u)n−j Λ(du)

u2

◮ Λ a finite measure on [0, 1]

◮ Kingman’s coalescent, Λ = δ0
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The spatial Λ-Fleming-Viot process

State {ρ(t, x, ·) ∈ M1(K), x ∈ R
2, t ≥ 0}. Π Poisson point

process rate dt⊗ dx⊗ ξ(dr, du) on [0,∞)× R
2 × [0,∞) × [0, 1].

Dynamics: for each (t, x, r, u) ∈ Π,

◮ z ∼ U(Br(x))

◮ k ∼ ρ(t−, z, ·).
For all y ∈ Br(x),

ρ(t, y, ·) = (1− u)ρ(t−, y, ·) + uδk.

r
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Backwards in time

◮ A single ancestral lineage evolves in series of jumps with
intensity

dt⊗
∫

(|x|/2,∞)

∫

[0,1]

Lr(x)

πr2
u ξ(dr, du)dx

on R+ × R
2 where Lr(x) = |Br(0) ∩Br(x)|.
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on R+ × R
2 where Lr(x) = |Br(0) ∩Br(x)|.

◮ Lineages can coalesce when hit
by same ‘event’.
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Introducing selection to the SLFV

K = {a,A}, w(t, x) = ρ(t, x, a) proportion of type a

◮ (i) Two types, a, A. Weight type a by (1− s). If a
reproduction event affects a region B(x, r) in which current
proportion of a-alleles is w, then probability offspring are type
a is

(1− s)w

1− sw
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Introducing selection to the SLFV

K = {a,A}, w(t, x) = ρ(t, x, a) proportion of type a

◮ (i) Two types, a, A. Weight type a by (1− s). If a
reproduction event affects a region B(x, r) in which current
proportion of a-alleles is w, then probability offspring are type
a is

(1− s)w

1− sw
= w(1− s) + sw2 +O(s2).

◮ (ii) Neutral events rate ∝ (1− s), selective events rate ∝ s.
At selective reproduction events, sample two potential parents.
If types aa, then an a reproduces, otherwise an A does.
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Evolution of ancestry due to neutral events as before:

◮ lineages evolve in a series of jumps;

◮ they can coalesce when covered by same event.

At selective events

◮ Two ‘potential’ parents must be

traced;

◮ Lineages can coalesce when hit
by same ‘event’.
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A sampled individual is type a iff all lineages in the corresponding
ASG are type a at any previous time.



When can we detect selection?

Neutral mutation rate, µ, sets timescale

◮ Mutation rates are low;

◮ Scaling limits are ‘robust’.

Natural question:

When, and over what spatial scales can we expect to observe a
signature of natural selection?



Scaling limits: Small ‘neighbourhood size’:

Fix u ∈ (0, 1).
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Scaling limits: Small ‘neighbourhood size’:

Fix u ∈ (0, 1).

Set n = 1/µ and rescale: w(nt,
√
nx).

Heuristics:

◮ At a ‘branching’ event in ASG, two lineages born at separation
O(1/

√
n).

◮ Probability they separate to O(1) before coalescing is
◮ d = 1: O(1/

√
n),

◮ d = 2: O(1/ logn),
◮ d ≥ 3: O(1).

◮ Selection will only be visible if expect to see at least one pair
‘separate’ by time 1.



Scaling limits: Small ‘neighbourhood size’:

Fix u ∈ (0, 1).

Set n = 1/µ and rescale: w(nt,
√
nx).

Ability to detect selection depends on dimension:

◮ d = 1, selection only visible if s = O(1/
√
n) = O(

√
µ),

limiting ASG embedded in Brownian net;

◮ d = 2, selection only visible if
s = O(log n/n) = O(µ| log(µ)|),
limiting ASG ‘Branching BM’;

◮ d ≥ 3, selection only visible if s = O(1/n) = O(µ),
limiting ASG Branching BM.

Technical challenges because nsn → ∞.
E., Freeman, Penington, Straulino (2017)



Spread of a favoured allele

Two types, a, A, relative fitnesses 1 : 1 + s. If a reproduction
event affects a region B(x, r) in which current proportion of
a-alleles is w, then probability offspring are type a is w

1+s(1−w)) .



Spread of a favoured allele

Two types, a, A, relative fitnesses 1 : 1 + s. If a reproduction
event affects a region B(x, r) in which current proportion of
a-alleles is w, then probability offspring are type a is w

1+s(1−w)) .

Alternative interpretation: strong selection ∼ range expansion
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Pseudomanas aeruginosa (Kevin Foster)
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What’s really happening?



Hybrid Zones

A hybrid zone is a narrow geographic
region where two genetically distinct
populations are found close together
and hybridise to produce offspring of
mixed ancestry.

They are maintained by a balance be-
tween selection and dispersal.

With thanks to Nick Barton and his group



A mathematical model

Individuals carry two copies of a gene that occurs as a or A.

Hardy-Weinberg proportions: w = proportion of a-alleles,

aa aA AA

w2 2w(1− w) (1− w)2

Relative fitnesses:
aa aA AA

1 1− s 1



Reproduction

◮ Each heterozygote (aA) produces (1− s) times as many germ
cells (cells of same genotype) as a homozygote (aa or AA);

◮ Germ cells split into effectively infinite pool of gametes
(containing just one copy of gene),
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◮ Each heterozygote (aA) produces (1− s) times as many germ
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A deterministic approximation

w∗ − w = sw(1− w)(2w − 1) +O(s2).

In an infinite population, if s = α
M (where M is large), measuring

time in units of M generations,

∆w

∆t
= αw(1 −w)(2w − 1) +O(s2).

dw

dt
= αw(1− w)(2w − 1).

Add dispersal:

∂w

∂t
=

m

2
∆w + αw(1 − w)(2w − 1).



Hybrid zones and the Allen-Cahn equation

∂w

∂t
=

m

2
∆w + αw(1 − w)(2w − 1).

Other mechanisms can lead to hybrid
zones; e.g. an abrupt change in the
environment.

©2019, Steven M Carr

Width of zone

≈
√

2m
α



Zooming out

Applying a diffusive rescaling t 7→ t
ε2
, x 7→ x

ε , the Allen-Cahn
equation becomes

∂w

∂t
=

m

2
∆w +

α

ε2
w(1− w)(2w − 1).

For convenience, set m = 2, α = 1.

For sufficiently regular initial conditions, as ǫ → 0, the solution
converges to the indicator function of a region whose boundary
evolves according to curvature flow.



(Mean) Curvature flow

◮ Γt : S
1 → R

2 smooth embeddings;

◮ nt(u) unit (inward) normal vector to Γt at u;

◮ κ = κt(u) curvature of Γt at u.

∂Γt(u)

∂t
= κt(u)nt(u). Defined up to fixed time T

This point moves faster



The Allen-Cahn equation and curvature flow

Let d(x, t) be the signed distance from x to Γt. Choose w0 such
that Γ0 = {x ∈ R

2 : w0(x) =
1
2}, w0 <

1
2 inside Γ and > 1

2
outside.

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − 1).

Theorem (Chen 1992)
Fix T ∗ ∈ (0, T ). Let k ∈ N. There exists ε(k) > 0, and
a(k), c(k) ∈ (0,∞) such that for all ε ∈ (0, ε(k)) and t satisfying
aε2| log ε| ≤ t ≤ T ∗,

1. for x such that d(x, t) ≥ cε| log ǫ|, we have w(t, x) ≥ 1− εk;

2. for x such that d(x, t) ≤ −cε| log ε|, we have w(t, x) ≤ εk.



Finite populations; adding noise?

Hairer, Ryser & Weber (2012), d = 2 (v = 2w − 1)

dv = (∆v + v − v3)dt+ σdW,

W a mollified space-time white noise.

◮ If the mollifier is removed, solutions converge weakly to zero;

◮ if intensity of W simultaneously converges to zero sufficiently
quickly, recover the deterministic equation.

Will hybrid zones still evolve approximately according to curvature
flow in the presence of random genetic drift︸ ︷︷ ︸

finite population

?

. . . additive white noise is not a good model of genetic drift



Adding selection to the SLFV: majority voting

K = {a,A} {w(t, x), x ∈ R
d, t ≥ 0} (proportion of type a)

Two types of event:

◮ (i) Neutral events as above, rate ∝ (1− s), (ii) selective
events rate ∝ s.

◮ At selective reproduction events, sample three ‘potential’
parents. If types aaa or aaA, then an a reproduces, otherwise
an A does.
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Adding selection to the SLFV: majority voting

K = {a,A} {w(t, x), x ∈ R
d, t ≥ 0} (proportion of type a)

Two types of event:

◮ (i) Neutral events as above, rate ∝ (1− s), (ii) selective
events rate ∝ s.

◮ At selective reproduction events, sample three ‘potential’
parents. If types aaa or aaA, then an a reproduces, otherwise
an A does.

At a selective event

w 7→ w + u(1−w) with probability w3 + 3w(1 − w)2;
w 7→ w − uw with probability (1− w)3 + 3w(1 − w)2.

E[∆w] = us
{
w3(1− w) + 3w2(1− w)2 − w(1− w)3 − 3w2(1− w)2

}

= us · w(1− w)
(
w2 − (1− w)2

)
= us · w(1− w)(2w − 1).



A new proof in the deterministic case

Ternary branching Brownian motion

◮ Individual lifetime
Exp(1/ǫ2);

◮ During lifetime follows
Brownian motion;

◮ Replaced by three
offspring.



Majority voting in (Historical) BBM

Adaptation of idea of del Masi, Ferrari & Lebowitz (1986)
W (t) = historical ternary BBM.

For a fixed function w0 : R
2 → [0, 1], define a voting procedure on

W (t) as follows.

1. Each leaf, independently, votes 1 with probability w0(Wi(t))
and otherwise votes 0.

2. At each branch point the vote of the parent particle is the
majority vote of the votes of its three children.

This defines an iterative voting procedure, which runs inwards from
the leaves of W (t) to the root.
Define Vw0

(W (t)) to be the vote associated to the root.



Majority voting and the Allen-Cahn equation
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Majority voting and the Allen-Cahn equation

0

00 0 1 1 1 0 0 1 0 1

0

1

0

1

W (t) = historical BBM, branching rate 1
ε2 ; w0 : R

2 → [0, 1].

w(t, x) = P
ε
x [Vw0

(W (t)) = 1]

Note that if probability of voting 1 is w, the probability that the
majority of 3 independent votes is 1 is
w3 + 3w2(1− w) = w(1− w)(2w − 1) +w.



Majority voting and the Allen-Cahn equation

0

00 0 1 1 1 0 0 1 0 1

0

1

0

1

W (t) = historical BBM, branching rate 1
ε2 ; w0 : R

2 → [0, 1].

w(t, x) = P
ε
x [Vw0

(W (t)) = 1]

solves

∂w

∂t
= ∆w +

1

ε2
w(1 − w)(2w − 1), w(0, x) = w0(x).



Probabilistic proof of Allen-Cahn result

Representation reduces result to

1. for x with d(x, t) ≥ cε| log ε|, Pε
x [Vp(W (t)) = 1] ≥ 1− εk;

2. for x with d(x, t) ≤ −cε| log ε|, Pε
x [Vp(W (t)) = 1] ≤ εk.

Proof in two steps:

◮ a one-dimensional analogue in the case p(x) = 1{x≥0},
(symmetry, monotonicity for this p and amplification of bias
through majority voting)

◮ for two-dimensional BM W and one-dimensional BM B,
couple so that d(Ws, t− s) is well approximated by Bs when
Ws is close to Γt−s. (uses regularity assumptions on initial
condition)

Approach parallels approximation of solution by one-dimensional
standing wave in Chen (1992).



Some heuristics

Majority voting increases bias. Suppose there is already a sharp
interface.

x

R

For the point x,

Px[Wδt outside ball] = 1/2

Px[Bδt +
1
Rδt > R] = 1/2

x = R− 1
Rδt.

Generation of the interface results from lots of rounds of voting



Proof for the ‘stochastic’ hybrid zones

Π is a Poisson point process on R+ × R
2 × (0,∞) with intensity

measure dt⊗ dx⊗ µ(dr). Dual process of branching and coalescing
‘ancestral’ lineages. Tracing backwards in time:

◮ Start with a single individual;

◮ at event (t, x, r) ∈ Π, independently mark each lineage in
Br(x) with probability u;

◮ if at least one lineage is marked,

1. if event is neutral, all marked lineages coalesce into a single
lineage, whose location is drawn uniformly at random from
within Br(x).

2. if event is selective, all marked individuals are replaced by three

offspring individuals, whose locations are drawn independently
and uniformly from within Br(x).

◮ In both cases, if no individual is marked, then nothing
happens.

Majority voting procedure defined as before.



Recasting the result

0

0 0 1

0

0 1 00 1 0 1 0 1

1
0 0

0

0 0

0

c.f. Ancestral selection graph

1. for x such that d(x, σ2t) ≥ dεn| log εn|, we have
Px [Vp(Ξ

n(t)) = 1] ≥ 1− εkn.

2. for x such that d(x, σ2t) ≤ −dεn| log εn|, we have
Px [Vp(Ξ

n(t)) = 1] ≤ εkn.

E., Freeman, Penington (2017)



What if homozygotes not equally fit?

Relative fitnesses:
aa aA AA

1 + γs 1− s 1

Equation becomes

∂w

∂t
= ∆w + sw(1− w)((2 + γ)w − 1).

Take γ = O(ε) and rescale:

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − (1− νε)).



Sensitivity to asymmetry (Mitch Gooding 2018)

∂w

∂t
= ∆w +

1

ǫ2
w(1− w)(2w − (1− νε)).

Limit a mixture of curvature flow and ‘constant flow’:

∂Γt(u)

∂t
=

(
− ν + κt(u)

)
nt(u). Defined up to fixed time T



Invasions

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − (1− νε)).

In d = 1, travelling wave solution

w(x, t) =

(
1 + exp

(
− x+ νt

ε

))−1

wave speed −ν, connects 0 at −∞ to 1 at ∞



Blocking (E., Gooding, Letter (2022+)

Consider a domain Ω ⊆ R
2 (and containing the x-axis, say)

When do we have invasion?

∂w

∂t
= ∆w +

1

ǫ2
w(1 −w)(2w − (1− νε)), w(0, x) = 1x1≥0.

Theorem (Berestycki et al., 2016) (paraphrased)
Depending on the geometry of the domain:

1. complete invasion;

2. partial propagation;

3. total blocking.
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Consider a domain Ω ⊆ R
2 (and containing the x-axis, say)

When do we have invasion?

∂w

∂t
= ∆w +

1

ǫ2
w(1 −w)(2w − (1− νε)), w(0, x) = 1x1≥0.

Theorem (Berestycki et al., 2016) (paraphrased)
Depending on the geometry of the domain:

1. complete invasion;

2. partial propagation;

3. total blocking.

Ω

2R0 2r 0



A precise statement

{
∂w
∂t = ∆w + 1

ε2
w(1− w)(2w − (1− νε));

∂w
∂n = 0, w(x, 0) = 1x1≥0;

Ω

Nr

r
O

Theorem
Suppose r0 < r < d−1

ν ∧R0. Let k ∈ N. Then ∃ε̂(k) > 0 and
a(k),M(k) > 0 such that ∀ε ∈ (0, ε̂), t ∈ (a(k)ε2| log(ε)|,∞) ,

x ∈ {x = (x1, . . . , xd) : x1 < −r−M(k)ε| log(ε)|} =⇒ w(x, t) ≤ εk.



Other domains

Ω =
{
(x1, x

′), x1 ∈ R, x′ ∈ R
d−1, ‖x′‖ ≤ H + h(−x1)

}

rH + h(z)

aTheorem
Suppose that,

inf
z>0

{
H + h(z)−

(
d− 1

ν

)
h′(z)√

1 + h′(z)2

}
< 0.

Fix k ∈ N. There exist x0 < 0, ǫ̂(k) > 0 and M(k) > 0 such that
for all ǫ ∈ (0, ǫ̂), and t ≥ 0,

if x1 ≤ x0 −M(k)ǫ| log(ǫ)| then uǫ(x, t) ≤ ǫk.



Key argument

Key is coupling around a portion of a spherical shell
eΩ

2r 0

�

�

r 0
sin(� )

r

If r0ν < (d− 1) sinα wave blocked for small ε.



Effect of noise

◮ If genetic drift is weak (population density high), the spread of
the favoured type is blocked;

◮ If genetic drift is strong (population density low), the favoured
population spreads across the whole domain.

Proof uses duality; c.f. earlier slides on genic selection.


