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A fundamental question

At the beginning of the 20th Century, the modern evolutionary
synthesis saw the theories of Darwin and Mendel united, but
fundamental questions remained.

What is the relative importance of:

◮ natural selection;

◮ population structure (spatial and genetic);

◮ genetic drift (randomness due to reproduction in a finite
population);

◮ . . .



A mathematical challenge

The pioneers could only observe genetic variation indirectly
through phenotype.

www.alamy.com

Modern geneticists use differences in DNA sequences
to infer ‘relatedness’ between sampled individuals.
We require consistent

◮ forwards in time models for the evolution of the
population,

◮ and backwards in time models for the relatedness
between individuals in a sample.

Jonathan Marchini
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The simplest imaginable model of inheritance
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Kingman 1982

P[2 lineages coalesce in previous generation] ≈ 1
N

The most recent common ancestor in the pedigree was ≈ log2N
generations in the past. The most recent common genetic ancestor
was ≈ 2N generations ago.
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Sample size k ≪ N1/3, pair of lineages coalesces rate ≈ 1
N
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Melfi & Viswanath (2018)



The Kingman coalescent

Tracing back in time, if there are currently k ancestral lineages, the
next event will occur after an exponentially distributed time with
parameter

(k
2

)

, when a pair of lineages (chosen at random) will
coalesce.

For a vast array of models in which

◮ population size large and constant;

◮ all individuals are equally fit;

◮ there is no spatial structure;

measuring time in units of Ne generations, the genealogy of a
sample is well approximated by the Kingman coalescent.



The Moran Model

model

Time for
Moran

◮ Events determined by
Poisson Process intensity
(N
2

)

dt;

◮ Pair chosen at random;

◮ One reproduces, the
other dies.



Genealogies under the Moran model

model

Time for
Moran Coalescent

Time for

Sample
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Population of fixed size N evolves in discrete generations.

◮ Each individual chooses parent uniformly at random from the
previous generation;

◮ Offspring inherit the type of their parent.

‘Alleles’ a, A. Proportion p of a alleles among parents.

◮ Number of a-offspring Bin(N, p).

◮ E[∆p] = 0 (neutral); E[(∆p)2] = 1
N p(1− p).

❀ changes in p over timescales O(N) generations.



Drift (large population limit)

Time in units of N generations, δt = 1
N , N → ∞



Drift (large population limit)

Time in units of N generations, δt = 1
N , N → ∞

Forwards in time, ∆p = pt+δt − pt,

◮ E[∆p] = 0 (neutrality)

◮ E[(∆p)2] = δtp(1− p)

◮ E[(∆p)4] = O(δt)2

dpt =
√

pt(1− pt)dWt



Drift (large population limit)

Time in units of N generations, δt = 1
N , N → ∞

Forwards in time, ∆p = pt+δt − pt,

◮ E[∆p] = 0 (neutrality)

◮ E[(∆p)2] = δtp(1− p)

◮ E[(∆p)4] = O(δt)2

dpt =
√

pt(1− pt)dWt

Backwards in time

Wright−Fisher   
Coalesent time

MRCA

time

Coalescence rate
(

k
2

)

.



Drift (large population limit)
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Buri’s experiment

Gene that affects eye colour (but not
fitness). Two alleles, a, A.

∼ 100 populations, 8 males, 8 fe-
males. Each started with proportion
p = 0.5 type a.

Eventually, each population will
be entirely one type (with equal
probabilities).

Under Wright-Fisher model,
variance in p across populations
increases from 0 to 1/4 over
time.
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Method of duality: Express distribution of one random variable p
in terms of another (simpler) random variable n.
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)]

= 0, 0 ≤ u ≤ t. (∗)

dpt =
√

pt(1− pt)dWt, nt 7→ nt − 1 rate

(
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2

)

, f(p, n) = pn

Sampling probabilities:

E[p(t)n(0)] = E[p(0)n(t)]

Weaker than saying genealogy given by Kingman coalescent
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Adding selection (Moran model)

Relative fitnesses:
a A

1− sN 1

◮ Events determined by Poisson Process intensity
(N
2

)

dt;
◮ Pair chosen at random;
◮ If types a, A chosen, probability a reproduces 1

2(1− sN ).

P[type a reproduces]

= p2 + 2p(1− p)
1

2
(1− sN ) = p− sNp(1− p).

c.f. in Wright-Fisher, probability parent of type a:

(1− sN )p

1− sNp
= (1− sN )p+ sNp2 +O(s2N )



Adding selection (alternative view)

Coalescent
Time for

Sample

Neutral events at rate (1− sN )
(

N
2

)

;

Selective events at rate sN
(N
2

)

:
if {a,A} chosen, A reproduces.

P[type a parent]

= (1− sN )p+ sNp2 = p− sNp(1− p)

NsN → s,

dpt = −spt(1− pt)dt+
√

pt(1− pt)dWt

E[p(t)n(0)] = E[p(0)n(t)].
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The ancestral selection graph

◮ nt 7→ nt − 1 rate
(nt

2

)

◮ nt 7→ nt + 1 rate snt

dpt = −spt(1− pt)dt+
√

pt(1− pt)dWt

Sampling probabilities:

E[p(t)n(0)] = E[p(0)n(t)]

All individuals in sample are type a iff all their ancestors in the
ASG are type a.



What we have so far

In time units of Ne generations,

◮ (Forwards time) The Wright-Fisher diffusion (with and
without selection)

dpt = −spt(1− pt)dt+
√

pt(1− pt)dWt;

◮ (Backwards time) The Kingman coalescent/ ASG

nt 7→ nt − 1 at rate

(

nt

2

)

, nt 7→ nt + 1 at rate snt;

◮ Sampling probabilities

E[p(t)n(0)] = E[p(0)n(t)]

Stronger result holds. Kingman coalescent really describes
genealogy of random sample from (neutral) population.
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The structured coalescent

The coalescent dual process n evolves as follows:

◮

{

ni 7→ ni − 1
nj 7→ nj + 1

at rate ni
Ne(j)
Ne(i)

mji

◮ ni 7→ ni − 1 at rate 1
Ne(i)

(ni

2

)

If Ne(i) independent of i, backwards in time motion determined by
(reversal of) forwards in time dispersal densities mij

In general, lineages drawn to more densely population demes

More natural to have a model in which population size evolves
Many populations are distributed across spatial continua



The Wright-Malécot model

◮ Individuals are scattered across
a two-dimensional space.

◮ In each generation, each
individual produces a Poisson
number of offspring (average
one).

◮ Offspring are scattered in a
Gaussian distribution around
their parent.
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The pain in the torus (Felsenstein, 1975)

With thanks to Jerome Kelleher

t = 100 t = 1000

In d = 1, 2 population exhibits clumping/extinction
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Mathematical problems

Felsenstein (1975). The pain in the torus: In d = 1, 2, independent
reproduction =⇒ clumping;

Local regulation =⇒ correlated reproduction.

What about modifying the stepping stone model?

dpt(x) =
1

2
∆pt(x) +

√

1

2Ne
pt(x)(1 − pt(x))dW (t, x)

In 2D the diffusion limit fails over small scales . . . and so does the
obvious backwards model.



Probability of identity

Information about the genealogy in patterns of neutral variation.

Simplest example:

◮ Infinitely many alleles model of mutation: each individual in
each generation, independently, with small probability µ
mutates to a type never before seen in the population

◮ Probability of identity by descent of two individuals, F , is
probability no mutation since MRCA

◮ Equivalently F = (1− 2µ)T ≈ exp(−2µT ) is the Laplace
transform of the distribution of the time to the MRCA.

The neutral mutation rate dictates the timescales over which we
can reconstruct information about genealogies.



Malécot-Wright versus Kimura?

F = P[identity]

1 2 3 4 5 6 7
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One more observation

In a spatial continuum, a single individual can be parent to a
significant proportion of the local population.
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An individual based model

◮ Start with Poisson intensity
λdx. Events rate
dt⊗ dx⊗ ξ(dr, du). Throw
down ball B(x, r).

◮ If region empty, do nothing,
otherwise:

◮ Choose parent from B(x, r),

◮ Each individual in region dies
with probability u,

◮ New individuals born according
to Poisson intensity λu1Br(x).

r

x

Offspring inherit type of parent



λ → ∞ limit (no space)

Start from Poiss(λ)

If first reproduction event has ‘impact’ u

◮ Poiss((1− u)λ) ‘survivors’;

◮ Poiss(uλ) offspring.

As λ → ∞ proportion u of individuals die and are replaced by
offspring of the type of the parent.



The Λ-Fleming-Viot process

State {ρ(t, ·) ∈ M1(K), t ≥ 0}. K space of genetic types.

◮ Poisson Point Process Π intensity dt⊗ F (du)

◮ if (t, u) ∈ Π, individual sampled at random from population at
time t− (i.e. choose k ∼ ρ(t−))

◮ proportion u of population replaced by offspring of chosen
individual

ρ(t, ·) = (1− u)ρ(t−, ·) + uδk.

F (du) = Λ(du)
u2 , Λ finite measure on [0, 1].

Donnelly & Kurtz (1999)

(‘Generalised Fleming-Viot process’, Bertoin & Le Gall 2003)
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Λ-coalescents

Donnelly & Kurtz (1999), Pitman (1999), Sagitov (1999)

If there are currently n ancestral lineages, each transition involving
j of them merging happens at rate

βn,j =

∫ 1

0
uj(1− u)n−j Λ(du)

u2

◮ Λ a finite measure on [0, 1]

◮ Kingman’s coalescent, Λ = δ0
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The spatial Λ-Fleming-Viot process

State {ρ(t, x, ·) ∈ M1(K), x ∈ R
2, t ≥ 0}. Π Poisson point

process rate dt⊗ dx⊗ ξ(dr, du) on [0,∞)× R
2 × [0,∞) × [0, 1].

Dynamics: for each (t, x, r, u) ∈ Π,

◮ z ∼ U(Br(x))

◮ k ∼ ρ(t−, z, ·).
For all y ∈ Br(x),

ρ(t, y, ·) = (1− u)ρ(t−, y, ·) + uδk.

r
x

z



Backwards in time

◮ A single ancestral lineage evolves in series of jumps with
intensity

dt⊗
∫

(|x|/2,∞)

∫

[0,1]

Lr(x)

πr2
u ξ(dr, du)dx

on R+ × R
2 where Lr(x) = |Br(0) ∩Br(x)|.
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intensity

dt⊗
∫

(|x|/2,∞)

∫

[0,1]

Lr(x)

πr2
u ξ(dr, du)dx

on R+ × R
2 where Lr(x) = |Br(0) ∩Br(x)|.

◮ Lineages can coalesce when hit
by same ‘event’.

x
r



Introducing selection to the SLFV

K = {a,A}, w(t, x) = ρ(t, x, a) proportion of type a

◮ (i) Two types, a, A. Weight type a by (1− s). If a
reproduction event affects a region B(x, r) in which current
proportion of a-alleles is w, then probability offspring are type
a is

(1− s)w
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Introducing selection to the SLFV

K = {a,A}, w(t, x) = ρ(t, x, a) proportion of type a

◮ (i) Two types, a, A. Weight type a by (1− s). If a
reproduction event affects a region B(x, r) in which current
proportion of a-alleles is w, then probability offspring are type
a is

(1− s)w

1− sw
= w(1− s) + sw2 +O(s2).

◮ (ii) Neutral events rate ∝ (1− s), selective events rate ∝ s.
At selective reproduction events, sample two potential parents.
If types aa, then an a reproduces, otherwise an A does.



(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

◮ lineages evolve in a series of jumps;

◮ they can coalesce when covered by same event.



(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

◮ lineages evolve in a series of jumps;

◮ they can coalesce when covered by same event.

At selective events

◮ Two ‘potential’ parents must be

traced;

◮ Lineages can coalesce when hit
by same ‘event’.

x
r



(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

◮ lineages evolve in a series of jumps;

◮ they can coalesce when covered by same event.

At selective events

◮ Two ‘potential’ parents must be

traced;

◮ Lineages can coalesce when hit
by same ‘event’.

x
r

A sampled individual is type a iff all lineages in the corresponding
ASG are type a at any previous time.



When can we detect selection?

Neutral mutation rate, µ, sets timescale

◮ Mutation rates are low;

◮ Scaling limits are ‘robust’.

Natural question:

When, and over what spatial scales can we expect to observe a
signature of natural selection?
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Scaling limits: Small ‘neighbourhood size’:

Fix u ∈ (0, 1).

Set n = 1/µ and rescale: w(nt,
√
nx).

Heuristics:

◮ At a ‘branching’ event in ASG, two lineages born at separation
O(1/

√
n).

◮ Probability they separate to O(1) before coalescing is
◮ d = 1: O(1/

√
n),

◮ d = 2: O(1/ logn),
◮ d ≥ 3: O(1).

◮ Selection will only be visible if expect to see at least one pair
‘separate’ by time 1.



Scaling limits: Small ‘neighbourhood size’:

Fix u ∈ (0, 1).

Set n = 1/µ and rescale: w(nt,
√
nx).

Ability to detect selection depends on dimension:

◮ d = 1, selection only visible if s = O(1/
√
n) = O(

√
µ),

limiting ASG embedded in Brownian net;

◮ d = 2, selection only visible if
s = O(log n/n) = O(µ| log(µ)|),
limiting ASG ‘Branching BM’;

◮ d ≥ 3, selection only visible if s = O(1/n) = O(µ),
limiting ASG Branching BM.

Technical challenges because nsn → ∞.
E., Freeman, Penington, Straulino (2017)



Spread of a favoured allele

Two types, a, A, relative fitnesses 1 : 1 + s. If a reproduction
event affects a region B(x, r) in which current proportion of
a-alleles is w, then probability offspring are type a is w

1+s(1−w)) .



Spread of a favoured allele

Two types, a, A, relative fitnesses 1 : 1 + s. If a reproduction
event affects a region B(x, r) in which current proportion of
a-alleles is w, then probability offspring are type a is w

1+s(1−w)) .

Alternative interpretation: strong selection ∼ range expansion



Range expansion

Pseudomanas aeruginosa (Kevin Foster)



Range expansion

Pseudomanas aeruginosa (Kevin Foster)



What’s really happening?


