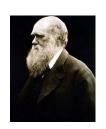


Ashok Maitra Memorial Lectures, March 2022

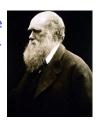
SOME MATHEMATICAL MODELS OF EVOLUTION:
SPATIAL POPULATION MODELS

Alison Etheridge University of Oxford

Special thanks to Nick Barton, IST Austria

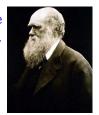


Darwin: Heritable traits that increase reproductive success will become more common in a population.



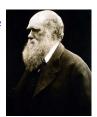
Darwin: Heritable traits that increase reproductive success will become more common in a population. Requires:

- Variation in population
- Offspring must be similar to parents



Darwin: Heritable traits that increase reproductive success will become more common in a population. Requires:

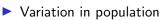
- Variation in population
- Offspring must be similar to parents

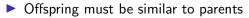


Mendel: Traits 'determined' by genes.

- Genes occur in different types (alleles)
- ▶ Offspring inherit genes from parents

Darwin: Heritable traits that increase reproductive success will become more common in a population. Requires:



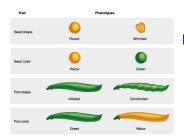


Mendel: Traits 'determined' by genes.

- ► Genes occur in different types (alleles)
- ▶ Offspring inherit genes from parents

Darwin: Heritable traits that increase reproductive success will become more common in a population. Requires:

- Variation in population
- Offspring must be similar to parents



Mendel: Traits 'determined' by genes.

- ► Genes occur in different types (alleles)
- ▶ Offspring inherit genes from parents

A fundamental question

At the beginning of the 20th Century, the modern evolutionary synthesis saw the theories of Darwin and Mendel united, but fundamental questions remained.

What is the relative importance of:

- natural selection;
- population structure (spatial and genetic);
- genetic drift (randomness due to reproduction in a finite population);
- **>** ...

A mathematical challenge

The pioneers could only observe genetic variation indirectly through phenotype.

www.alamy.com

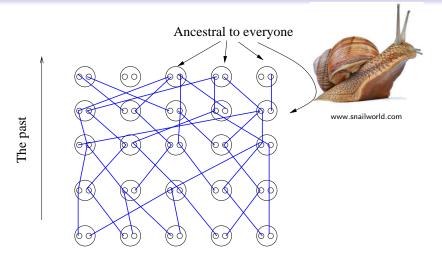
Modern geneticists use differences in DNA sequences to infer 'relatedness' between sampled individuals. We require consistent

- forwards in time models for the evolution of the population,
- ▶ and backwards in time models for the relatedness between individuals in a sample.

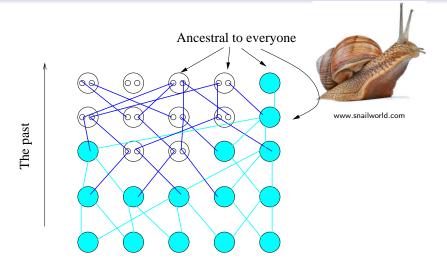


Jonathan Marchini

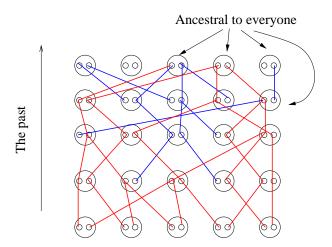
A simple model of inheritance



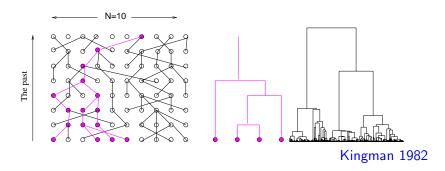
A simple model of inheritance



A simple model of inheritance

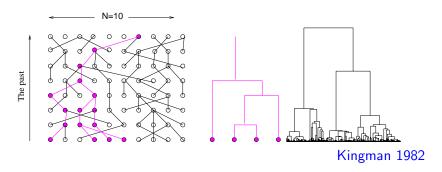


The simplest imaginable model of inheritance



 $\mathbb{P}[2 \text{ lineages coalesce in previous generation}] \approx \frac{1}{N}$

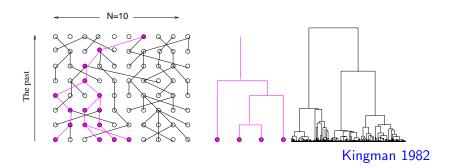
The simplest imaginable model of inheritance



 $\mathbb{P}[2 \text{ lineages coalesce in previous generation}] \approx \frac{1}{N}$

Time in units of N generations, $N\to\infty$, \sim time to coalescence pair of lineages $\sim \operatorname{Exp}(1)$

The simplest imaginable model of inheritance



 $\mathbb{P}[2 \text{ lineages coalesce in previous generation}] pprox rac{1}{N}$

The most recent common ancestor in the pedigree was $\approx \log_2 N$ generations in the past. The most recent common genetic ancestor was $\approx 2N$ generations ago.

Sample size k

If currently j ancestral lineages:

Probability two pairs of lineages merge into separate parents

$$\binom{j}{2}\binom{j-2}{2}\frac{1}{N}\frac{1}{N-1}\approx 6\binom{j}{4}\frac{1}{N^2}$$

Probability three-merger

$$\approx \binom{j}{3} \frac{1}{N^2}$$

Probability one of these events before single pairwise merger

$$pprox rac{N}{{j \choose 2}} {j \choose 2} {j-2 \choose 2} rac{1}{N^2} pprox rac{j^2}{2N}$$

Sample size k

If currently j ancestral lineages:

Probability two pairs of lineages merge into separate parents

$$\binom{j}{2}\binom{j-2}{2}\frac{1}{N}\frac{1}{N-1}\approx 6\binom{j}{4}\frac{1}{N^2}$$

Probability three-merger

$$\approx \binom{j}{3} \frac{1}{N^2}$$

Probability such an event somewhere in the genealogical tree

$$\approx \sum_{j=1}^{k} \frac{j^2}{N} \approx \frac{k^3}{3N}$$

Sample size k

If currently j ancestral lineages:

Probability two pairs of lineages merge into separate parents

$$\binom{j}{2}\binom{j-2}{2}\frac{1}{N}\frac{1}{N-1}\approx 6\binom{j}{4}\frac{1}{N^2}$$

Probability three-merger

$$\approx \binom{j}{3} \frac{1}{N^2}$$

Probability such an event somewhere in the genealogical tree

$$\approx \sum_{j=1}^{k} \frac{j^2}{N} \approx \frac{k^3}{3N}$$

Sample size $k \ll N^{1/3}$, pair of lineages coalesces rate $pprox \frac{1}{N} {k \choose 2}$

The Kingman coalescent

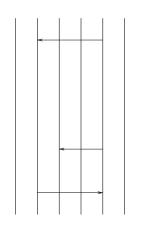
Tracing back in time, if there are currently k ancestral lineages, the next event will occur after an exponentially distributed time with parameter $\binom{k}{2}$, when a pair of lineages (chosen at random) will coalesce.

For a vast array of models in which

- population size large and constant;
- all individuals are equally fit;
- there is no spatial structure;

measuring time in units of N_e generations, the genealogy of a sample is well approximated by the Kingman coalescent.

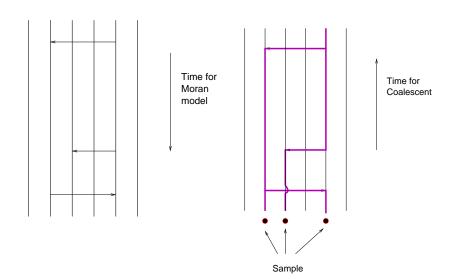
The Moran Model



Time for Moran model

- ► Events determined by Poisson Process intensity $\binom{N}{2}dt$;
- Pair chosen at random;
- One reproduces, the other dies.

Genealogies under the Moran model



Forwards in time: scaling the Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- ► Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

Forwards in time: scaling the Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- ► Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

'Alleles' a, A. Proportion p of a alleles among parents.

- Number of a-offspring Bin(N, p).
- ightharpoonup $\mathbb{E}[\Delta p] = 0$ (neutral); $\mathbb{E}[(\Delta p)^2] = \frac{1}{N}p(1-p)$.

Forwards in time: scaling the Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- ► Each individual chooses parent uniformly at random from the previous generation;
- ► Offspring inherit the type of their parent.

'Alleles' a, A. Proportion p of a alleles among parents.

- Number of a-offspring Bin(N, p).
- $ightharpoonup \mathbb{E}[\Delta p] = 0$ (neutral); $\mathbb{E}[(\Delta p)^2] = \frac{1}{N}p(1-p)$.

 \sim changes in p over timescales $\mathcal{O}(N)$ generations.

Time in units of N generations, $\delta t = \frac{1}{N}$, $N \to \infty$

Time in units of N generations, $\delta t = \frac{1}{N}, \qquad N \to \infty$ Forwards in time, $\Delta p = p_{t+\delta t} - p_t,$

- ightharpoonup $\mathbb{E}[\Delta p] = 0$ (neutrality)
- $\blacktriangleright \mathbb{E}[(\Delta p)^2] = \delta t p (1 p)$
- $\blacktriangleright \ \mathbb{E}[(\Delta p)^4] = O(\delta t)^2$

$$dp_t = \sqrt{p_t(1 - p_t)}dW_t$$

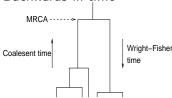
Time in units of N generations, $\delta t = \frac{1}{N}$, $N \to \infty$

Forwards in time, $\Delta p = p_{t+\delta t} - p_t$,

- ightharpoonup $\mathbb{E}[\Delta p] = 0$ (neutrality)
- $\blacktriangleright \mathbb{E}[(\Delta p)^2] = \delta t p (1-p)$
- $\blacktriangleright \ \mathbb{E}[(\Delta p)^4] = O(\delta t)^2$

$$dp_t = \sqrt{p_t(1 - p_t)}dW_t$$

Backwards in time



Coalescence rate $\binom{k}{2}$.

Time in units of N generations, $\delta t = \frac{1}{N}$, $N \to \infty$

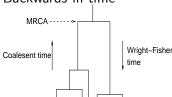
Forwards in time, $\Delta p = p_{t+\delta t} - p_t$,

- $ightharpoonup \mathbb{E}[\Delta p] = 0$ (neutrality)
- $ightharpoonup \mathbb{E}[(\Delta p)^2] = \delta t p (1-p)$
- $ightharpoonup \mathbb{E}[(\Delta p)^4] = O(\delta t)^2$

$$dp_t = \sqrt{p_t(1 - p_t)}dW_t$$

$$dp_{\tau} = \sqrt{\frac{1}{N_e}p_{\tau}(1-p_{\tau})}dW_{\tau}, \quad \text{Coalescence rate } \frac{1}{N_e}\binom{k}{2}$$

Backwards in time



Coalescence rate $\binom{k}{2}$.

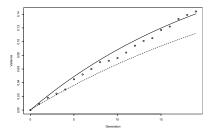
Buri's experiment

Gene that affects eye colour (but not fitness). Two alleles, a, A.

 ~ 100 populations, 8 males, 8 females. Each started with proportion p=0.5 type a.

Eventually, each population will be entirely one type (with equal probabilities).

Under Wright-Fisher model, variance in p across populations increases from 0 to 1/4 over time.



$$\frac{d}{du}\mathbb{E}\left[f\left(\underline{p}(u),\underline{n}(t-u)\right)\right] = 0, \quad 0 \le u \le t. \quad (*)$$

$$\frac{d}{du}\mathbb{E}\left[f\left(\underline{p}(u),\underline{n}(t-u)\right)\right] = 0, \quad 0 \le u \le t. \quad (*)$$

$$dp_t = \sqrt{p_t(1-p_t)}dW_t, \quad n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}, \quad f(p,n) = p^n$$

$$\frac{d}{du}\mathbb{E}\left[f\left(\underline{p}(u),\underline{n}(t-u)\right)\right] = 0, \quad 0 \le u \le t. \quad (*)$$

$$dp_t = \sqrt{p_t(1-p_t)}dW_t, \quad n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}, \quad f(p,n) = p^n$$

$$dp_u^{n(t-u)} = n(t-u)p_u^{n(t-u)-1}\sqrt{p_u(1-p_u)}dW_u$$

$$+ \binom{n(t-u)}{2}p_u^{n(t-u)-2}p_u(1-p_u)du$$

$$- \binom{n(t-u)}{2}\left(p_u^{n(t-u)-1} - p_u^{n(t-u)}\right)$$

Method of duality: Express distribution of one random variable \underline{p} in terms of another (simpler) random variable \underline{n} .

$$\frac{d}{du}\mathbb{E}\left[f\left(\underline{p}(u),\underline{n}(t-u)\right)\right] = 0, \quad 0 \le u \le t. \quad (*)$$

$$dp_t = \sqrt{p_t(1-p_t)}dW_t, \quad n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}, \quad f(p,n) = p^n$$

Sampling probabilities:

$$\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}]$$

Method of duality: Express distribution of one random variable \underline{p} in terms of another (simpler) random variable \underline{n} .

$$\frac{d}{du}\mathbb{E}\left[f\left(\underline{p}(u),\underline{n}(t-u)\right)\right] = 0, \quad 0 \le u \le t. \quad (*)$$

$$dp_t = \sqrt{p_t(1-p_t)}dW_t, \quad n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}, \quad f(p,n) = p^n$$

Sampling probabilities:

$$\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}]$$

Weaker than saying genealogy given by Kingman coalescent

Adding selection (Wright-Fisher setting)

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

► Each individual independently chooses parent; probability parent of type *a*:

$$\frac{(1-s_N)p}{1-s_Np} = (1-s_N)p + s_Np^2 + \mathcal{O}(s_N^2)$$

Adding selection (Wright-Fisher setting)

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

► Each individual independently chooses parent; probability parent of type *a*:

$$\frac{(1-s_N)p}{1-s_Np} = (1-s_N)p + s_Np^2 + \mathcal{O}(s_N^2)$$

Ignoring $\mathcal{O}(s_N^2)$ terms

- Number of a-offspring $Bin(N, p s_N p(1-p))$.
- ► $\mathbb{E}[\Delta p] = -s_N p(1-p)$; $\mathbb{E}[(\Delta p)^2] = \frac{1}{N} p(1-p)$.

Adding selection (Wright-Fisher setting)

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

► Each individual independently chooses parent; probability parent of type *a*:

$$\frac{(1-s_N)p}{1-s_Np} = (1-s_N)p + s_Np^2 + \mathcal{O}(s_N^2)$$

Ignoring $\mathcal{O}(s_N^2)$ terms

- Number of a-offspring $Bin(N, p s_N p(1-p))$.
- $\mathbb{E}[\Delta p] = -s_N p(1-p); \ \mathbb{E}[(\Delta p)^2] = \frac{1}{N} p(1-p).$

$$Ns_N \rightarrow s$$
, $dp_t = -sp_t(1-p_t)dt + \sqrt{p_t(1-p_t)}dW_t$

Adding selection (Moran model)

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

- ▶ Events determined by Poisson Process intensity $\binom{N}{2}dt$;
- Pair chosen at random;
- ▶ If types a, A chosen, probability a reproduces $\frac{1}{2}(1 s_N)$.

Adding selection (Moran model)

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

- ▶ Events determined by Poisson Process intensity $\binom{N}{2}dt$;
- Pair chosen at random;
- ▶ If types a, A chosen, probability a reproduces $\frac{1}{2}(1-s_N)$.

$\mathbb{P}[\mathsf{type}\ a\ \mathsf{reproduces}]$

$$= p^{2} + 2p(1-p)\frac{1}{2}(1-s_{N}) = p - s_{N}p(1-p).$$

Adding selection (Moran model)

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

- ▶ Events determined by Poisson Process intensity $\binom{N}{2}dt$;
- ► Pair chosen at random;
- ▶ If types a, A chosen, probability a reproduces $\frac{1}{2}(1-s_N)$.

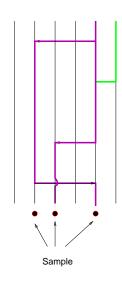
$\mathbb{P}[\mathsf{type}\ a\ \mathsf{reproduces}]$

$$= p^{2} + 2p(1-p)\frac{1}{2}(1-s_{N}) = p - s_{N}p(1-p).$$

c.f. in Wright-Fisher, probability parent of type a:

$$\frac{(1-s_N)p}{1-s_Np} = (1-s_N)p + s_Np^2 + \mathcal{O}(s_N^2)$$

Adding selection (alternative view)



Neutral events at rate $(1 - s_N)\binom{N}{2}$;

Selective events at rate $s_N\binom{N}{2}$: Fine for $\{a,A\}$ chosen, A reproduces.

$$\mathbb{P}[\mathsf{type}\ a\ \mathsf{parent}] = (1-s_N)p + s_Np^2 = p - s_Np(1-p) \ Ns_N o s,$$

$$dp_t = -sp_t(1 - p_t)dt + \sqrt{p_t(1 - p_t)}dW_t$$

$$\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}].$$

- $ightharpoonup n_t \mapsto n_t 1 \text{ rate } \binom{n_t}{2}$
- $ightharpoonup n_t \mapsto n_t + 1 \text{ rate } sn_t$

- $ightharpoonup n_t \mapsto n_t 1 \text{ rate } \binom{n_t}{2}$
- $ightharpoonup n_t \mapsto n_t + 1 \text{ rate } sn_t$

$$dp_t = -sp_t(1 - p_t)dt + \sqrt{p_t(1 - p_t)}dW_t$$

- $ightharpoonup n_t \mapsto n_t 1 \text{ rate } \binom{n_t}{2}$
- $ightharpoonup n_t \mapsto n_t + 1 \text{ rate } sn_t$

$$dp_t = -sp_t(1 - p_t)dt + \sqrt{p_t(1 - p_t)}dW_t$$

Sampling probabilities:

$$\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}]$$

- $ightharpoonup n_t \mapsto n_t 1 \text{ rate } \binom{n_t}{2}$
- $ightharpoonup n_t \mapsto n_t + 1 \text{ rate } sn_t$

$$dp_t = -sp_t(1 - p_t)dt + \sqrt{p_t(1 - p_t)}dW_t$$

Sampling probabilities:

$$\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}]$$

All individuals in sample are type a iff all their ancestors in the ASG are type a.

What we have so far

In time units of N_e generations,

 (Forwards time) The Wright-Fisher diffusion (with and without selection)

$$dp_t = -sp_t(1 - p_t)dt + \sqrt{p_t(1 - p_t)}dW_t;$$

(Backwards time) The Kingman coalescent/ ASG

$$n_t\mapsto n_t-1$$
 at rate $\binom{n_t}{2},\quad n_t\mapsto n_t+1$ at rate $sn_t;$

Sampling probabilities

$$\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}]$$

Stronger result holds. Kingman coalescent really describes genealogy of random sample from (neutral) population.

Spatial structure

Kimura's stepping stone model

$$dp_i = \sum_{j \sim i} m_{ji} (p_j - p_i) dt + \sqrt{\frac{1}{N_e(i)} p_i (1 - p_i)} dW_i$$

System of interacting W-F diffusions

$$\sum_{j} N_e(i) m_{ij} = \sum_{j} N_e(j) m_{ji}$$

Spatial structure

Kimura's stepping stone model

$$dp_i = \sum_{j \sim i} m_{ji}(p_j - p_i)dt + \sqrt{\frac{1}{N_e(i)}p_i(1 - p_i)}dW_i$$

System of interacting W-F diffusions

The coalescent dual process \underline{n} evolves as follows:

$$ightharpoonup n_i \mapsto n_i - 1$$
 at rate $\frac{1}{N_e(i)} \binom{n_i}{2}$

$$\sum_{j} N_e(i) m_{ij} = \sum_{j} N_e(j) m_{ji}$$

The coalescent dual process \underline{n} evolves as follows:

$$lackbox{ } n_i \mapsto n_i - 1$$
 at rate $rac{1}{N_e(i)} {n_i \choose 2}$

The coalescent dual process \underline{n} evolves as follows:

- $ightharpoonup n_i \mapsto n_i 1$ at rate $\frac{1}{N_e(i)} \binom{n_i}{2}$

If $N_e(i)$ independent of i, backwards in time motion determined by (reversal of) forwards in time dispersal densities m_{ij}

The coalescent dual process \underline{n} evolves as follows:

$$ightharpoonup n_i \mapsto n_i - 1$$
 at rate $\frac{1}{N_e(i)} \binom{n_i}{2}$

If $N_e(i)$ independent of i, backwards in time motion determined by (reversal of) forwards in time dispersal densities m_{ij}

In general, lineages drawn to more densely population demes

The coalescent dual process \underline{n} evolves as follows:

- $ightharpoonup n_i \mapsto n_i 1$ at rate $\frac{1}{N_e(i)} \binom{n_i}{2}$

If $N_e(i)$ independent of i, backwards in time motion determined by (reversal of) forwards in time dispersal densities m_{ij}

In general, lineages drawn to more densely population demes

More natural to have a model in which population size evolves

The coalescent dual process \underline{n} evolves as follows:

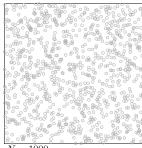
- $ightharpoonup n_i \mapsto n_i 1$ at rate $\frac{1}{N_e(i)} \binom{n_i}{2}$

If $N_e(i)$ independent of i, backwards in time motion determined by (reversal of) forwards in time dispersal densities m_{ij}

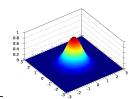
In general, lineages drawn to more densely population demes

More natural to have a model in which population size evolves Many populations are distributed across spatial continua

The Wright-Malécot model

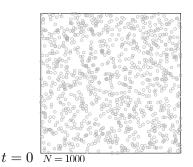


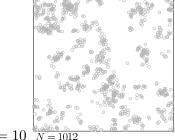
N = 1000



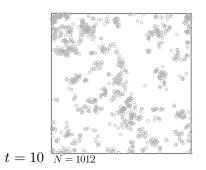
- Individuals are scattered across a two-dimensional space.
- In each generation, each individual produces a Poisson number of offspring (average one).
- Offspring are scattered in a Gaussian distribution around their parent.

Mitch Gooding Jerome Kelleher

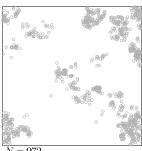


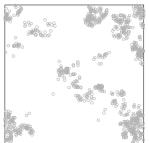


$$t = 10 \ N = 1012$$

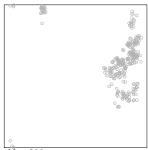


$$t = 100 \quad N = 972$$

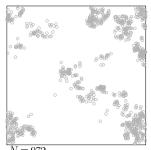


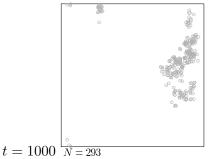


$$t = 100 \ N = 972$$



$$t = 1000 \ N = 293$$





$$t = 100 N = 972$$

In d = 1, 2 population exhibits clumping/extinction

Felsenstein (1975). The pain in the torus: In d=1, 2, independent reproduction \implies clumping;

Felsenstein (1975). The pain in the torus: In d=1, 2, independent reproduction \implies clumping;

Local regulation \implies correlated reproduction.

Felsenstein (1975). The pain in the torus: In d=1, 2, independent reproduction \implies clumping;

Local regulation \implies correlated reproduction.

What about modifying the stepping stone model?

$$dp_t(x) = \frac{1}{2}\Delta p_t(x) + \sqrt{\frac{1}{2N_e}p_t(x)(1-p_t(x))}dW(t,x)$$

Felsenstein (1975). The pain in the torus: In $d=1,\,2$, independent reproduction \implies clumping;

Local regulation \implies correlated reproduction.

What about modifying the stepping stone model?

$$dp_t(x) = \frac{1}{2}\Delta p_t(x) + \sqrt{\frac{1}{2N_e}p_t(x)(1 - p_t(x))}dW(t, x)$$

In 2D the diffusion limit fails over small scales

Felsenstein (1975). The pain in the torus: In d=1, 2, independent reproduction \implies clumping;

Local regulation \implies correlated reproduction.

What about modifying the stepping stone model?

$$dp_t(x) = \frac{1}{2}\Delta p_t(x) + \sqrt{\frac{1}{2N_e}p_t(x)(1 - p_t(x))}dW(t, x)$$

In 2D the diffusion limit fails over small scales ... and so does the obvious backwards model.

Probability of identity

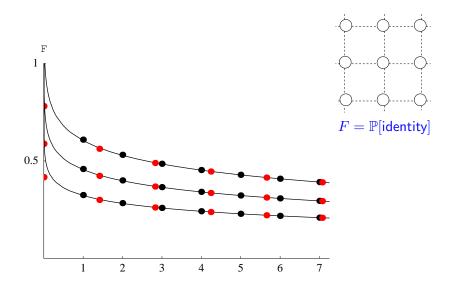
Information about the genealogy in patterns of neutral variation.

Simplest example:

- Infinitely many alleles model of mutation: each individual in each generation, independently, with small probability μ mutates to a type never before seen in the population
- ► Probability of identity by descent of two individuals, F, is probability no mutation since MRCA
- ► Equivalently $F = (1 2\mu)^T \approx \exp(-2\mu T)$ is the Laplace transform of the distribution of the time to the MRCA.

The neutral mutation rate dictates the timescales over which we can reconstruct information about genealogies.

Malécot-Wright versus Kimura?

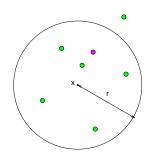


One more observation

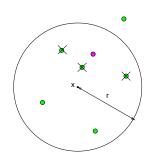
In a spatial continuum, a single individual can be parent to a significant proportion of the local population.

Start with Poisson intensity λdx . Events rate $dt \otimes dx \otimes \xi(dr, du)$. Throw down ball B(x, r).

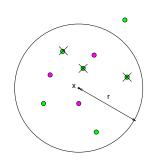
- Start with Poisson intensity λdx . Events rate $dt \otimes dx \otimes \xi(dr, du)$. Throw down ball B(x, r).
- If region empty, do nothing, otherwise:
- ▶ Choose parent from B(x,r),



- Start with Poisson intensity λdx . Events rate $dt \otimes dx \otimes \xi(dr, du)$. Throw down ball B(x, r).
- If region empty, do nothing, otherwise:
- ▶ Choose parent from B(x,r),
- Each individual in region dies with probability u,

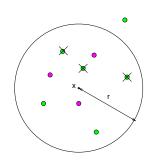


- Start with Poisson intensity λdx . Events rate $dt \otimes dx \otimes \xi(dr, du)$. Throw down ball B(x, r).
- If region empty, do nothing, otherwise:
- ▶ Choose parent from B(x,r),
- Each individual in region dies with probability u,
- New individuals born according to Poisson intensity $\lambda u \mathbf{1}_{B_r(x)}$.



- Start with Poisson intensity λdx . Events rate $dt \otimes dx \otimes \xi(dr, du)$. Throw down ball B(x, r).
- If region empty, do nothing, otherwise:
- ▶ Choose parent from B(x,r),
- ► Each individual in region dies with probability *u*,
- New individuals born according to Poisson intensity $\lambda u \mathbf{1}_{B_r(x)}$.

Offspring inherit type of parent



$$\lambda \to \infty$$
 limit (no space)

Start from $Poiss(\lambda)$

If first reproduction event has 'impact' \boldsymbol{u}

- ▶ Poiss $((1-u)\lambda)$ 'survivors';
- ▶ Poiss $(u\lambda)$ offspring.

As $\lambda \to \infty$ proportion u of individuals die and are replaced by offspring of the type of the parent.

The Λ -Fleming-Viot process

State $\{\rho(t,\cdot)\in\mathcal{M}_1(K),t\geq 0\}.$

K space of genetic types.

- ▶ Poisson Point Process Π intensity $dt \otimes F(du)$
- if $(t,u)\in\Pi$, individual sampled at random from population at time t- (i.e. choose $k\sim\rho(t-)$)
- lacktriangle proportion u of population replaced by offspring of chosen individual

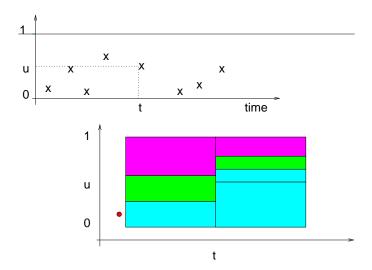
$$\rho(t,\cdot) = (1-u)\rho(t-,\cdot) + u\delta_k.$$

 $F(du) = \frac{\Lambda(du)}{u^2}$, Λ finite measure on [0,1].

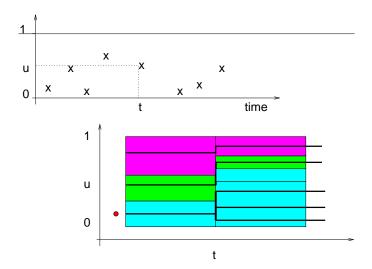
Donnelly & Kurtz (1999)

('Generalised Fleming-Viot process', Bertoin & Le Gall 2003)

The Λ -Fleming-Viot process



The Λ -Fleming-Viot process



Λ -coalescents

Donnelly & Kurtz (1999), Pitman (1999), Sagitov (1999)

If there are currently \boldsymbol{n} ancestral lineages, each transition involving \boldsymbol{j} of them merging happens at rate

$$\beta_{n,j} = \int_0^1 u^j (1-u)^{n-j} \frac{\Lambda(du)}{u^2}$$

- lacksquare Λ a finite measure on [0,1]
- ightharpoonup Kingman's coalescent, $\Lambda=\delta_0$

State $\{\rho(t,x,\cdot)\in\mathcal{M}_1(K),x\in\mathbb{R}^2,t\geq 0\}.$

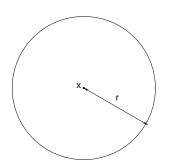
State $\{\rho(t,x,\cdot)\in\mathcal{M}_1(K),x\in\mathbb{R}^2,t\geq 0\}$. Π Poisson point process rate $dt\otimes dx\otimes \xi(dr,du)$ on $[0,\infty)\times\mathbb{R}^2\times[0,\infty)\times[0,1]$.

State $\{\rho(t,x,\cdot)\in\mathcal{M}_1(K),x\in\mathbb{R}^2,t\geq 0\}$. Π Poisson point process rate $dt\otimes dx\otimes \xi(dr,du)$ on $[0,\infty)\times\mathbb{R}^2\times[0,\infty)\times[0,1]$.

Dynamics: for each $(t, x, r, u) \in \Pi$,

State $\{\rho(t,x,\cdot)\in\mathcal{M}_1(K),x\in\mathbb{R}^2,t\geq 0\}$. Π Poisson point process rate $dt\otimes dx\otimes \xi(dr,du)$ on $[0,\infty)\times\mathbb{R}^2\times[0,\infty)\times[0,1]$.

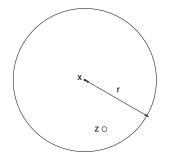
Dynamics: for each $(t,x,r,u)\in\Pi$,



State $\{\rho(t,x,\cdot)\in\mathcal{M}_1(K),x\in\mathbb{R}^2,t\geq 0\}$. Π Poisson point process rate $dt\otimes dx\otimes \xi(dr,du)$ on $[0,\infty)\times\mathbb{R}^2\times[0,\infty)\times[0,1]$.

Dynamics: for each $(t, x, r, u) \in \Pi$,

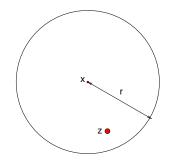
$$ightharpoonup z \sim U(B_r(x))$$



State $\{\rho(t,x,\cdot)\in\mathcal{M}_1(K),x\in\mathbb{R}^2,t\geq 0\}$. Π Poisson point process rate $dt\otimes dx\otimes \xi(dr,du)$ on $[0,\infty)\times\mathbb{R}^2\times[0,\infty)\times[0,1]$.

Dynamics: for each $(t, x, r, u) \in \Pi$,

- $ightharpoonup z \sim U(B_r(x))$
- $\blacktriangleright k \sim \rho(t-,z,\cdot).$



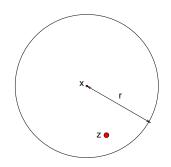
State $\{\rho(t,x,\cdot)\in\mathcal{M}_1(K),x\in\mathbb{R}^2,t\geq 0\}$. Π Poisson point process rate $dt\otimes dx\otimes \xi(dr,du)$ on $[0,\infty)\times\mathbb{R}^2\times[0,\infty)\times[0,1]$.

Dynamics: for each $(t,x,r,u)\in\Pi$,

- $ightharpoonup z \sim U(B_r(x))$
- $ightharpoonup k \sim \rho(t-,z,\cdot).$

For all $y \in B_r(x)$,

$$\rho(t, y, \cdot) = (1 - u)\rho(t - y, \cdot) + u\delta_k.$$

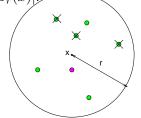


Backwards in time

► A *single* ancestral lineage evolves in series of jumps with intensity

$$dt \otimes \int_{(|x|/2,\infty)} \int_{[0,1]} \frac{L_r(x)}{\pi r^2} u \, \xi(dr, du) dx$$

on
$$\mathbb{R}_+ \times \mathbb{R}^2$$
 where $L_r(x) = |B_r(0) \cap B_r(x)|$.



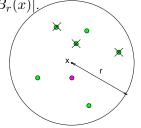
Backwards in time

➤ A single ancestral lineage evolves in series of jumps with intensity

$$dt \otimes \int_{(|x|/2,\infty)} \int_{[0,1]} \frac{L_r(x)}{\pi r^2} u \,\xi(dr, du) dx$$

on
$$\mathbb{R}_+ \times \mathbb{R}^2$$
 where $L_r(x) = |B_r(0) \cap B_r(x)|$.

Lineages can coalesce when hit by same 'event'.



Introducing selection to the SLFV

$$K = \{a, A\}$$
, $w(t, x) = \rho(t, x, a)$ proportion of type a

▶ (i) Two types, a, A. Weight type a by (1-s). If a reproduction event affects a region B(x,r) in which current proportion of a-alleles is \overline{w} , then probability offspring are type a is

$$\frac{(1-s)\overline{w}}{1-s\overline{w}}$$

Introducing selection to the SLFV

$$K = \{a, A\}$$
, $w(t, x) = \rho(t, x, a)$ proportion of type a

▶ (i) Two types, a, A. Weight type a by (1-s). If a reproduction event affects a region B(x,r) in which current proportion of a-alleles is \overline{w} , then probability offspring are type a is

$$\frac{(1-s)\overline{w}}{1-s\overline{w}} = \overline{w}(1-s) + s\overline{w}^2 + \mathcal{O}(s^2).$$

Introducing selection to the SLFV

$$K = \{a, A\}, \ w(t, x) = \rho(t, x, a)$$
 proportion of type a

▶ (i) Two types, a, A. Weight type a by (1-s). If a reproduction event affects a region B(x,r) in which current proportion of a-alleles is \overline{w} , then probability offspring are type a is

$$\frac{(1-s)\overline{w}}{1-s\overline{w}} = \overline{w}(1-s) + s\overline{w}^2 + \mathcal{O}(s^2).$$

▶ (ii) Neutral events rate $\propto (1-s)$, selective events rate $\propto s$. At selective reproduction events, sample two potential parents. If types aa, then an a reproduces, otherwise an A does.

(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

- lineages evolve in a series of jumps;
- they can coalesce when covered by same event.

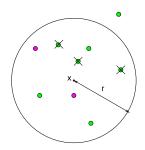
(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

- lineages evolve in a series of jumps;
- they can coalesce when covered by same event.

At selective events

- ► Two 'potential' parents must be traced;
- ► Lineages can coalesce when hit by same 'event'.



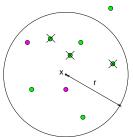
(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

- lineages evolve in a series of jumps;
- they can coalesce when covered by same event.

At selective events

- Two 'potential' parents must be traced;
- ► Lineages can coalesce when hit by same 'event'.



A sampled individual is type a iff all lineages in the corresponding ASG are type a at any previous time.

When can we detect selection?

Neutral mutation rate, μ , sets timescale

- Mutation rates are low;
- Scaling limits are 'robust'.

Natural question:

When, and over what spatial scales can we expect to observe a signature of natural selection?

Fix $u \in (0,1)$.

Fix $u \in (0, 1)$.

Set $n = 1/\mu$ and rescale: $w(nt, \sqrt{nx})$.

Fix $u \in (0, 1)$.

Set $n = 1/\mu$ and rescale: $w(nt, \sqrt{n}x)$.

Heuristics:

- At a 'branching' event in ASG, two lineages born at separation $\mathcal{O}(1/\sqrt{n})$.
- ▶ Probability they separate to $\mathcal{O}(1)$ before coalescing is
 - ightharpoonup d = 1: $\mathcal{O}(1/\sqrt{n})$,
 - ightharpoonup d = 2: $\mathcal{O}(1/\log n)$,
 - ▶ $d \ge 3$: $\mathcal{O}(1)$.
- Selection will only be visible if expect to see at least one pair 'separate' by time 1.

Fix $u \in (0, 1)$.

Set $n = 1/\mu$ and rescale: $w(nt, \sqrt{nx})$.

Ability to detect selection depends on dimension:

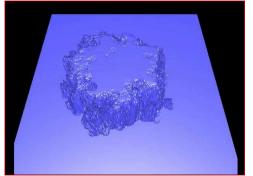
- ▶ d=1, selection only visible if $s=\mathcal{O}(1/\sqrt{n})=\mathcal{O}(\sqrt{\mu})$, limiting ASG embedded in Brownian net;
- ▶ d = 2, selection only visible if $s = \mathcal{O}(\log n/n) = \mathcal{O}(\mu |\log(\mu)|)$, limiting ASG 'Branching BM';
- ▶ $d \ge 3$, selection only visible if $s = \mathcal{O}(1/n) = \mathcal{O}(\mu)$, limiting ASG Branching BM.

Technical challenges because $ns_n \to \infty$.

E., Freeman, Penington, Straulino (2017)

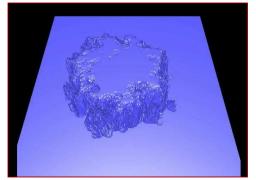
Spread of a favoured allele

Two types, a, A, relative fitnesses 1:1+s. If a reproduction event affects a region B(x,r) in which current proportion of a-alleles is w, then probability offspring are type a is $\frac{w}{1+s(1-w)}$.



Spread of a favoured allele

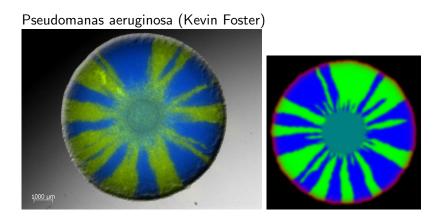
Two types, a, A, relative fitnesses 1:1+s. If a reproduction event affects a region B(x,r) in which current proportion of a-alleles is w, then probability offspring are type a is $\frac{w}{1+s(1-w)}$.



Alternative interpretation: strong selection \sim range expansion

Range expansion

Range expansion



What's really happening?

