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Stability

Let (G; a) = (V;E; a) be a weighted graph.

Recall that the continuous time random walk (Xt; t � 0) on (V;E; a)
has generator

La f (x) =
X
y�x

axy(f (y)� f (x)):

A property P (of X) is stable if when it holds for (V;E; a) and a0 are
weights with a0 � a, i.e. there exist 0 < c1 � c2 <1 such that

c1axy � a0xy � c2axy for all edges fx; yg ;

then P holds for (V;E; a0).



Examples

1. Transience/recurrence is stable. (Lyons 1983, Doyle and Snell,
1984). (Consider (G; a) as an electric network: then X is transient if
and only if the effective resistance from 0 to infinity is finite.)

2. Define for D � V the Dirichlet form

ED;a(f ; g) = 1
2

X
x2D

X
y�x

axy(f (y)� f (x))(g(x)� g(y)):

If c1axy � a0xy � c2axy; then

c1ED;a(f ; f ) � ED;a0(f ; f ) � c2ED;a(f ; f ):

Typically, any property which can be characterized in terms of
inequalities involving just the Dirichlet form ED(f ; f ) is stable.

3. Volume doubling and the Poincaré inequality are stable.

4. By the ‘PHI theorem’ it follows that (PHI) and (GB) are stable.



Stability of the PI
Suppose c1axy � a0xy � c2axy, let B = B(x0;R), 2B = B(x0; 2R), and
assume the PI holds for (V;E; a). Write

f B =

P
x2B f (x)ax

�a(B)
; f B;0 =

P
x2B f (x)a0x
�a0(B)

;

Then
X
x2B

(f (x)� f B;0)
2a0x �

X
x2B

(f (x)� f B)
2a0x

� c2
X
x2B

(f (x)� f B)
2ax

� c2CPI;aR2 1
2

X
x;y22B

axy(f (y)� f (x))2

� c2c�1
1 CPI;aR2 1

2

X
x;y22B

a0xy(f (y)� f (x))2;

which gives the PI for (V;E; a0).



Liouville property

A function h : V! R is harmonic in a set D if

La h(x) = 0 for all x 2 D:

(So h(Xt^�D) is a local martingale.)

(G; a) has the Liouville property (LP) if whenever h is a bounded
harmonic function on V then h is constant. (Strong LP: all positive
harmonic functions are constant).

LP relates to whether or not the process X has trivial tail behaviour.

Examples. 1. Zd satisfies the LP.
2. The binary tree does not satisfy the LP.

Theorem (T. Lyons 1983). The Liouville property (and the strong
LP) are not stable.



Basic idea of the proof

Look at the binary tree

B =
1[

n=0

f0; 1gn:

Natural edge weights:
axy = 1 for all edges.
Random walk X.

Call an edge from x to (x; 0) a 0-edge, and from x to (x; 1) a 1-edge.

Let a0 be 1 on all 0-edges, and 2 on all 1-edges; associated random
walk X0.

Then there exists a subset A � B such that with probability 1

Xt 2 A for all large t ; X0t 2 B� A for all large t :



LP is not stable

Connect each point in B� A to a point on the x1-axis in Z4.

The RW X visits B� A only finitely often, so has a positive
probability of remaining in B for all t.

The RW X0 wants to visit B� A infinitely often, but (because of the
links to Z4, and because the x1-axis in Z4 is transient), it will
ultimately stay in Z4. So it has trivial tail behaviour, and hence
satisfies the LP.

The binary tree in this example satisfies exponential volume growth.

But this example still works if one replaces each edge from level n to
n + 1 of the binary tree by a sequence of bn edges, where b > 1.
If � = log 2= log b,

jBG(0; bn)j ' 2n = (bn)�;

so the new graph has polynomial volume growth.



Questions

After the work of Grigoryan and Saloff-Coste (around 1992) which
characterized the PHI and hence proved that it is stable, the following
questions arise naturally:

(1) Are EHI and PHI equivalent?

(2) If not, then is EHI stable?

Recall that PHI ) EHI ) (LP), and that (PHI) is stable, (LP) is not
stable.

Attempts (by me and others) to use the idea behind the Lyons -
Benjamini example to prove instability of the EHI were not
successful.



Counterexamples

EHI and PHI are not equivalent. Example from diffusions on fractals.
Look the ‘pre-Sierpinski gasket’ graph GSG:

Geometry.
There are order 3n vertices
in each ‘triangle’ of side 2n,
so it follows that
jB(x; r)j � rdf where the
‘fractal dimension’
df = log 3= log 2:

It follows easily that
volume doubling holds.



Key property for RW on the SG

Easy calculation for 6 state Markov chain (with symmetry): Mean
time starting at 0 (red) to ‘cross’ the level 2 triangle and reach a blue
vertex is 5 = 52�1.
Mean time to cross level 3 triangle (reach green vertex) is 52.
Mean time to cross level n triangle is 5n�1.
Typically the SRW on the SG takes time Rdw to move a distance R,
where dw = log 5= log 2.
Compare with SRW on Zd which takes time R2 to move a distance R.



Harnack inequality on pre Sierpinski gasket
The special structure of the SG makes it easy to prove the EHI.

Let h(x) = Px(X leaves the triangle at the red vertex ), and D be the
region inside the green circle.
For each pair of blue vertices y; z we have h(y) � 1

4 h(z), and it
follows that

sup
D

h � 4 inf
D

h:



PHI for the SG

The standard PHI looks at space time cylinders Q = [0;T]� B(x;R)
with T = R2 – i.e. the usual space-time scaling for a RW.
For the SG one finds that a PHI still holds, but now with
T = Rdw � R2, so the cylinder for the PHI is

Q = [0;Rdw ]� B(x;R):

Call this PHI(dw). The usual PHI is PHI(2).

The PHI cannot hold with two essentially different space-time scaling
functions, so PHI(2) fails on the pre-SG.

So the pre-SG satisfies EHI but not PHI(2), and thus EHI and PHI(2)
are not equivalent.



More generally we can consider spacetime scaling T = 	(R) for
functions � : [0;1)! [0;1), and consider the associated PHI(	)

and PI(	). The following result was proved by Moser’s methods.

Theorem. (MB, Bass 2004) Given suitable local regularity, the
following are equivalent for a weighted graph:
(1) PHI(	) holds,
(2) (Sub-Gaussian heat kernel bounds hold),
(3) X satisfies VD, PI(	) and CS(	).

CS(	) implies that there exists ' with ' = 1 in B(x;R),
supp(') � B(x; 2R) and

EB(x;2R)(';') �
�(B(x; 2R)

	(R)
;

i.e. there exist ‘low energy’ cutoff functions in B(x; 2R)� B(x;R).

Remark. PI(	) and CS(	) are stable, so PHI(	) is stable.



Delmotte’s counterexample
One can find a pre-fractal graph GV such that the join of Z and GV

satisfies EHI. (Join: connect one pair of vertices in the two graphs.)
However, one has

jBZ(x; r)j � r; jBGV (x; r)j � rlog 5= log 3

and it follows that this graph does not satisfy VD.

This example shows that any attempt to characterise EHI must deal
with spaces which do not satisfy VD, and also with spaces with
different space-time scaling regimes in different regions.

All de Giorgi, Moser, Nash arguments use VD in an essential way.

Bass, 2013: Stability of EHI for a graph/cable system which satisfies
VD. Introduced PI with space dependent functions 	(�;R):

Z
B(x;R)

(f � f B)
2dm � CP	(x;R)E8B(f ; f ):



Change of time/measure
Recall we have weights axy for (x; y) 2 V� V, and we defined a
measure �a on V by ax =

P
y axy, �a(D) =

P
x2D ax: The generator

of X is
Laf (x) =

1
ax

X
y

axy(f (y)� f (x)):

Recall that we defined the Dirichlet form

E(f ; g) = 1
2

X
x

X
y

axy(f (y)� f (x))(g(y)� g(x)):

Discrete Gauss-Green formula (easy to verify); for f ; g 2 L2(�a),

E(f ; g) = h�La f ; giL2(a) = �
X

x
ax(Laf (x))g(x):

Given a measure m on V then we can define a new operator Lm by

E(f ; g) = h�Lm f ; giL2(m):



Change of time/measure II

(Assume mx > 0 for all x.) One finds

Lmf (x) =
ax

mx
Laf (x) =

1
mx

X
y

axy(f (y)� f (x)):

The associated process X(m) is a time change of X = X(a); while X(a)

jumps out of x at rate 1, X(m) jumps out at rate ax=mx.
Changing the measure does not change the jump probabilities or the
set of harmonic functions.

We have an alternative definition of a harmonic function h in a set D:

E(h; f ) = 0 for all f with supp(f ) � D:

This definition depends only on the quadratic form E and not on m.



Overview: EHI on weighted graphs

Consider a weighted graph (V;E; a).

This has the natural graph metric d with d(x; y) the smallest number
of edges to connect x and y, and also has the natural measure �a.
Weighted graphs are examples of MMD spaces - a metric space with a
measure and a Dirichlet form.

The metric d plays no role in the definition of the SRW X, but is used
to define balls, so is needed for EHI.

Measure �a: no role in EHI. But it does play an essential role in PI,
CS inequalities.

General vague idea. Given a MMD space (X ; d;m; E), change d or m
to ‘improve’ the process, or the way we record information about it.

Example: Gurel-Gurevich/Nachmias on recurrence of UIPT replaced
the natural graph metric with a ‘resistance metric’.



Main theorem

Notation. We write (V;E; d0; Ea;m) for the MMD space given by the
graph (V;E) with metric d0 on V, Dirichlet form Ea arising from the
weights a, and random walk Xm with generator Lm. dG will denote the
natural graph metric.

Theorem. (MB and M. Murugan 2018). On a locally regular
weighted graph EHI is stable. Thus if (V;E; dG; Ea; a) satisfies the
EHI, and a0xy are weights with a0 � a, then (V;E; dG; Ea0 ; a0) also
satisfies the EHI.

Note. We also have versions for diffusions on manifolds, and general
metric measure spaces.
MB, Z. Chen, M. Murugan (2020) – good conditions for the necessary
local regularity in the general metric measure space situation.



Metric doubling (MD)
Definition. A metric space (X ; d) satisfies metric doubling if there
exists N <1 such that any ball B(x;R) can be covered by N balls
B(zi;R=2).

It is easy to show that VD implies MD.

Example The binary tree with edges at stage n replaced by bn edges
has polynomial volume growth but does not satisfy metric doubling.



Outline of proof

Step 1. EHI for (V;E; dG; Ea; a) implies that the metric space (V; dG)

satisfies metric doubling (MD).

Theorem (Volberg, Konyagin 1987). If MD holds then there exists a
measure � which satisfies VD.

Step 2. Using Volberg-Konyagin (VK) method, construct a measure �
such that there exist scaling functions 	 = 	�(x;R) and such that
VD, PI(	), CS(	) hold for (V;E; dG; Ea; �).

Step 3. Prove that VD, PI(	), CS(	) on (V;E; dG; Ea; �) imply EHI.



Outline 2: Proof of stability given Steps 1 – 3

Let (V;E; a) be a weighted graph, (V;E; dG; Ea; a) be the associated
MMD space, and assume a0 � a.

1. By Step 1 (V; dG) satisfies MD. By Step 2 there exists a measure �
such that (V;E; dG; Ea; �) satisfies VD, PI(	), CS(	).

2. Since a � a0 the PI holds for (V;E; dG; Ea0 ; �). Similarly CS holds.

3. By Step 3 EHI holds for (V;E; dG; Ea0 ; �) and hence for
(V;E; dG; Ea0 ; �a0), i.e. for the weighted graph (V;E; a0).



Step 1 - from EHI to metric doubling

Basic idea. Let x0 2 V. If metric doubling fails, then for some R we
can find N � 1 disjoint balls Bi = B(zi;R=10) with d(x0; zi) = R. Let
B = B(x0;R).
Let

hi(y) = P
y( X first leaves B through Bi).

(1) The EHI implies that hi � c1 > 0 in Bi \ B.
(2) The EHI also implies that if y 2 B and d(y;V� B) = r then
hi(y0) � hi(y) for y0 2 B(y; r=2). Using this we can ‘chain’ the EHI
for hi from Bi to x0 and that hi(x0) > c2 for some c2 > 0.

But then

1 �
NX

i=1

hi(x0) � c2N:



Step 2 – capacities and measures

Let � be a measure on V, and Ex
� be the law of X�.

Define for D1 � D2,

Cap(D1jD2) = inffE(f ; f ) : f � 1 on D1; supp(f ) b D2g:

We have (if EHI, VD hold) that writing �D for the exit time of D,
B = B(x;R), 8B = B(x; 8R),

E
x
��8B '

�(8B)
Cap(Bj8B)

= 	�(x;R):

Thus the function 	� gives space-time scaling function for the time
changed process X�.

We need our new measure � to make a good connection between
volume and capacity of balls.



Construction of new measure �

To construct � on B = B(x;R) we decompose B into ‘generalised
dyadic cubes’ Qk;j, with diam(Qk; j) � 8�kR.
Using mass transport we define a sequence of measures �k with
�k(x)=a(x) constant on each Qk;j. At each stage we move the measure
�k(Qk;j) onto the ‘successor’ cubes fQk+1;i : Qk+1;i � Qk;jg, and then
following [VK] perform some adjustments.
Let 8Qk;j denote a suitable expansion of Qk;j. We can ensure that �k

satisfies VD, and if Qk+1;i � Qk;j then

�k+1(Qk+1;i)

Cap(Qk+1;ij8Qk+1;i)
�

�k(Qk;j)

Cap(Qj;kj8Qj;k)
; (�)

The measure � = �k0 where 8�k0R � 1.
The inequality (*) ensures ‘good behaviour’ of the functions 	�(x;R).



Remainder of proof

Once we have the measure � = �k0 we can use straightforward
extensions of known methods to complete the argument:

(2) The space (V;E; dG; Ea; �) satisfies VD by the VK construction. It
satisfies conditions similar to those assumed by Bass, so one can use
his methods to prove PI(	�(:)) and CS(	�(:)).

(3) The proof that if (V;E; dG; Ea; �) satisfies VD, PI(	�(:)) and
CS(	�(:)) then EHI holds is a straightforward extension of the
methods of Grigor’yan, Hu (2014), which in turn are extensions of the
Moser, de Giorgi arguments.



Characterization of EHI

Our Theorem gives a stable characterization of the EHI, but the
conditions are hard to check.

Given a ball B = B(x;R), and balls Bi = B(z1;R=4) write

Ceff(B1;B2;B) = inffEB(f ; f ) : f = 1 on B1 and f = 0 on B2 g:

Let A(x;R) be the set of pairs of balls (B(z1;R=8);B(z2;R=8)) with
d(z1; z2) � R=3, zi 2 B(x;R=2).
We say the dumbbell condition (DC) holds for (X ; d;m; E) if

sup(B1;B2)2A(x;R) Ceff(B1;B2;B)

inf(B1;B2)2A(x;R) Ceff(B1;B2;B)
� C:

Conjecture. EHI is equivalent to MD and DC.


