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Introduction

In the first two lectures we met Harnack inequalities and saw how they relate
to Gaussian heat kernel bounds, and how these can be proved using
geometric information on the graph - such as bounds on the volumes (i.e.
sizes) of balls, and an isoperimetric inequality.

Today we will see how these ideas work in two less familiar situations:

Random walk in random environment

Random walks on ‘fractal graphs’



Random walks with random transition probabilities

Take the base graph to be Zd, with d � 2.
There are two common models:

(1) Random walk in random environment (RWRE). For each x 2 Zd

choose the transition probabilities from x to its neighbours i.i.d. at random
from some fixed distribution. The RW (Xn; n 2 Z+) then moves according
to these probabilities.
This model is hard: papers by Kalikow (1981), Sznitman (2000+) and many
others.
One cause of difficulties: the random walk is not reversible, and it is not
possible to compute its stationary measure.

I will not talk about this model.



Random walks with random transition probabilities II

(2) Random conductance model (RCM). Choose random weights
(conductances) axy(!) for the edges fx; yg for Zd; these are defined on a
probability space (
;F ;P). Look at the CTSRW X with generator

La(!) f (x) =
1

ax(!)

X
y�x

axy(!)(f (y)� f (x)):

We call a(!) the environment given by ! 2 
, and write Px
! for the law of

the CTSRW X = (Xt; t 2 R+) with generator La(!).
The process X jumps from x to y � x at rate axy=ax; if axy = 0 then X cannot
move along the edge fx; yg.

The RCM model is much easier than RWRE because the process has known
stationary measure �a with �a(fxg) = ax.

Examples. (1) (Percolation). (ae; e 2 Ed) i.i.d. Bernoulli(p) r.v.
(2) (iid RCM) (ae; e 2 Ed) i.i.d with some distribution on [0;1).
(3) (ae; e 2 Ed) stationary and ergodic



Percolation on Zd

This was introduced by Broadbent and Hammersley (1957).

Fix p 2 [0; 1]. For each edge e = fx; yg keep the edge with probability p,
delete it with probability 1� p, independently of all the others.
Let O = O(!) be the set of edges which are kept, which are called open
edges. The connected components of the random graph (Zd;O(!)) are
called (open) clusters.

We are interested in the infinite clusters.

There exists pc = pc(d) 2 (0; 1) such that, with probability 1:
I if p < pc all clusters are finite (subcritical regime),
I if p > pc then there exists a unique infinite cluster, C1 (supercritical

regime),

If p = pc (critical regime) it is conjectured that all clusters are finite, but only
proved in some cases (d = 2, d � 11 or so).



Percolation



Random walk on percolation clusters

In terms of the weights a defined earlier,

ae(!) =

(
1 if e is open, i.e. e 2 O(!) ;

0 if e is closed i.e. e 62 O(!)

So X will not jump across a closed bond, and if Xt = x then X is equally
likely to jump across any of the open bonds e which have x as one end. X
cannot (a.s.) move between open clusters.

If p < pc then the long range behaviour of X is not interesting – it will
remain in the (typically small) finite cluster it started in.

So we restrict to the case p > pc, and would like to have:
(a) Gaussian bounds/PHI,
(b) Quenched functional CLT (QFCLT): the rescaled random walk
X(n)

t = n�1=2Xnt converges to Brownian motion.



The PHI Theorem – graph case

Theorem (T. Delmotte, 1999). Let G be a (locally finite) graph with local
regularity (controlled weights). The following are equivalent:
(a) G satisfies (VD) and (PI),
(b) Solutions of the heat equation on G satisfy a PHI,
(c) The heat kernel pt(x; y) satisfies (GB).

We would like to use this result for percolation, i.e. for the random subgraph
(C1;OjC1) of Zd. This graph does satisfy ‘controlled weights’.



p > pc: random walk on C1

However, neither VD nor PI hold for C1. The reason is that if we look far
enough we can find arbitrarily large ‘bad regions’:



BUT: Big bad regions are a long way away
Suppose we are looking for a specific bad configuration of volume r. This
has probability of order e�cr.
So to find it in B(0;R) we need Rde�cr � 1, or r � log R.
Hence one expects the biggest ‘bad region’ in B(0;R) to be of size O(log R).
Will these cause ‘log corrections’ in (GB)?
No. The time to leave a bad region is about (log R)2, and this is much less
than the time to leave B(0;R), which is R2.



Isoperimetric inequalities for percolation
Fix suitable (non random) constants C1C2;C3. Call a ball B(x; r) � C1
good if both volume and PI are ‘about right’ for B(x; r):

C1rd � jB(x; r)j � C2rd;

PI holds (with constant C3) for B(x; r) :

Theorem (Benjamini-Mossel, Mathieu-Remy, MB.) If p > pc then

P(B(x;R) is good ) � 1� e�R�

:

Proof. It is enough to look at connected sets A, and there are ec1n connected
sets A with 0 2 A and jAj = n. If p > 1� " then for each A the isoperimetric
inequality fails with probability e�b(")n, where b(") > c1.
For general p 2 (pc; 1) one then uses a renormalization argument.

Natural guess: if B(x0;R) is ‘good’, then pt(x; y) should satisfy (GB) when

t � R2; x; y 2 B(x0;R=2):



Very good balls

This is the right general idea, but ‘good’ is not enough. The proofs of (GB)
all use iterative methods or differential inequalities, which rely on the space
being regular over a range of length scales.

To control pt(x; y) as above one needs to have B(z; r) ‘good’ for all
z 2 B(x0;R), and R1�" < r � R:

Corollary. If p > pc and if � 2 (0; 1) then

P( every ball B(y; r) � B(x;R) with R� � r � R is good) � 1� e�cR��

(�)

Call a ball satisfying the condition in (*) very good: the current proofs need
‘very good’ not just ‘good’.



Gaussian bounds for C1

Theorem (MB, 2004) Let p > pc. For each x 2 Zd there exist r.v. Tx(!) � 1
with

P(Tx � n; x 2 C1) � c exp(�n") (3)

and (non-random) constants ci = ci(d; p) such that the transition density of
X satisfies, for x; y 2 C1(!), t � max(Tx(!); cjx� yj):

c1

td=2 e�c2jx�yj2=t � p!t (x; y) �
c3

td=2 e�c4jx�yj2=t; (GB)

1. The randomness of the environment is taken care of by the Tx(!), which
depend on the percolation configuration near x. These r.v. will usually be
small, but will be large for points in big bad regions.
2. Good control of the tails of the r.v. Tx is essential for applications.
3. The proof used ‘Nash’ rather than ‘Moser’.



Nash’s idea (PDE setting)

I The key hard step in Nash’s 1958 paper was to prove that if
Mx(t) =

P
y jx� yjpt(x; y)dy then

c1t1=2 � Mx(t) � c2t1=2: (1)

I He considered the entropy Qx(t) = �Py pt(x; y) log pt(x; y)dy; and
found an ingenious, but not very transparent argument using three
inequalities between Mx and Qx:

Qx(t) � c + 1
2 d log t; (2)

Mx(t) � ceQx(t)=d; (3)

Q0
x(t) � cM0

x(t)
2: (4)

Lemma (Nash (1958).) If functions Q, M satisfy (??) – (??), and M(0) = 0,
then M satisfies (1).

Proof. First year calculus.



Nash-Bass method

I Nash just obtained Hölder continuity for u(x; t), but Richard Bass
showed how the upper bound on M leads to (GB).

I This technique also works for graphs. It is useful for percolation
clusters, because if we fix a base point x then ‘distant bad regions’ have
little effect on Mx(t) and Qx(t).

I One has to prove the three inequalities (??) – (??):
I Qx(t) � c + 1

2 d log t follows from an upper bound on p!t (x; x) proved
by Mathieu and Remy, which comes from VD+PI for ‘very good’ balls.

I Mx(t) � ceQx(t)=d just uses jB(x; r)j � crd.
I Q0

x(t) � cM0
x(t)

2 holds in general.



Chaining to obtain Gaussian upper bound
We have Mx(t) = ExjXt � xj � ct1=2, and it follows that

P
x(� (x; r) < c1r2) � 1

2 ; where � (x; r) = infft � 0 : jXt � xj > rg:

Look at the sequence of times �1 = � (x; r),

�2 = inffs � 0 : jX�1+s � X�1 j > rg; etc:

Then

S =

nX
i=1

�i �
nX

i=1

c1r21(�i�c1r2) � c1r2Bin(n; 1
2 );

so that
P(jXc1�nr2 � xj � nr) � P(S < c1�nr2) � e�cn:

Let R = nr, T = c1�nr2 = c1�nR2; then

P(jXT � xj > R) � P(S < T) � e�c0R2=T :

The full Gaussian upper bound for X follows.



Gaussian lower bound
This follows by a very general argument of Fabes-Stroock.

Step 1. Use the PI to show that the function log pt(x; �) cannot oscillate too
much on the ball B(x; t1=2). This gives the ‘near diagonal lower bound’

pt(x; y) � ct�d=2 if d(x; y) � ct1=2:

Step 2. Use ‘chaining’ to obtain the general Gaussian lower bound.
If d(x; y) = R and we want to bound pT(x; y), choose n ' R2=T so that if
r = R=n, t = T=n then r ' t1=2. Choose a sequence of balls B(zi; r) linking
x; y; using the CK equations for pt(:; :) one gets

pT(x; y) � ct�d=2e�cn � cT�d=2e�cR2=T :

x

y



Functional CLT

Theorem (Sidoravicius and Sznitman, (d � 4), Berger and Biskup, Mathieu
and Piatnitski). Let p > pc. For a set of ! with probability one, a FCLT
holds for X, i.e. the rescaled SRW

X(n)
t = n�1=2Xnt

converges to (a constant multiple of) Brownian motion.

For d � 3 the proofs use the Gaussian upper bounds.

The CLT is quenched, i.e. it holds for a set of environments ae(!) which has
probability 1.



Proof of CLT

The basic strategy of the proof is to perturb C1 � Zd into a graph which is
harmonic. So we ‘move’ x 2 C1 to '(x) = '!(x) 2 Rd, where ' satisfies

La'(x) =
X
y�x

axy('(y)� '(x)) = 0; x 2 C1:

Set �!(x) = x� '!(x); �! is called the corrector. We have

Xt = '!(Xt) + �!(Xt):

Mt = '!(Xt) is a martingale with stationary ergodic increments; a CLT for
martingales implies that the rescaled processes M(n) converge to �W, where
W is Brownian motion.

The hard part of the argument is to control the corrector: we want

lim sup
n

sup
0�s�nt

����!(Xs)p
n

���! 0:



The function ' in a fixed box



Control of the corrector

Theorem (Biskup and Prescott). Suppose (GB) hold, and � has polynomial
growth, and is sublinear on average, i.e.

lim
n

n�d
X

jxj�n;x2C1

1fj�(x)�"ng = 0: (SoA)

Then
lim

n
max

jxj�n;x2C1
n�1j�(x)j = 0:

Idea of proof. Since '(Mt) is a martingale, and '(x) = x� �(x),

0 = Ex
!('(Xt)� '(x)) = Ex

!(Xt � x)� Ex
!(�(Xt)� �(x)):

So using (GB)

j�(x)j � Ex
!jXt � xj+ jEx

!�(Xt)j � ct1=2 + jEx
!�(Xt)j:

If t = "2n2 then the final term is small using (SoA) plus (GB).



PHI and Local Limit Theorem

As in other cases, once one has (GB) the PHI follows quite easily. Set

p(n;!)t (0; x) = nd=2p!nt(b0c; bn1=2xc);
kt(x; y) = (2��2)�d=2 exp(�jxj2=2�2t):

The quenched CLT implies that in any small ball U = B(x0; ")Z
U

p(n;!)t (0; y)dy !
Z

U
kt(0; y)dy:

The PHI gives Hölder continuity of p(n;!)t (x; y), and so one can replace the
convergence of integrals by pointwise convergence:

Theorem (MB and Hambly). A local limit theorem also holds:

p(n;!)t (0; x)! kt(x; y):

So if one has both (GB) and a CLT one gets very nice pointwise limits.



General RCM

Theorem (Mathieu, Biskup-Prescott, Andres-MB-Deuschel-Hambly). Let ae

be independent and identically distributed with P(ae > 0) > pc. Let C1 be
the infinite cluster associated with the percolation process fe : ae > 0g.
Then a QFCLT holds for X started in C1.

Remark. Berger, Biskup, Hoffmann and Kozma showed that GB do not
hold in general. The reason is that ‘traps’ are possible:

The blue bond represents an edge with 0 < a(e)� 1, and the black bonds
edges with ae = O(1).
However, (GB) do hold for the SRW on a modified cluster C01.



Beyond i.i.d.: the stationary ergodic case

It is also interesting to consider ae with long range correlations.

So now assume just that ae are stationary and ergodic.

One cannot expect (GB) to hold in general, so one needs to find methods for
proving the QFCLT which do not rely on these.

Theorem (Biskup). Let d = 2, and suppose

E�e <1; E��1
e <1:

Then a QFCLT holds with limit �W, with � > 0.

The proof uses that the fact (special to d = 2) that sublinearity on average
for the corrector � implies pointwise sublinearity.



Theorem (Andres, Deuschel, Slowik 2014–2015). Let d � 2. Let (ae) be
stationary and ergodic with P(ae > 0) = 1, and assume there exist p; q with

p�1 + q�1 < 2=d

such that
E ap

e <1; E a�1=q
e <1:

Then the QFCLT holds.

The proof of this Theorem uses Moser’s ideas, rather than those of Nash.

A counterexample (MB, Burdzy, Timar) shows that the QFCLT may fail if
Eae =1.

Conjecture. The QFCLT holds if E ae <1.


