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Plan of the lectures

Today
Lecture 1: Introduction to Harnack inequalities (formulation, history)

Lecture 2: Applications of Harnack inequalities, some ideas for proofs

Thursday
Lecture III: Applications to random graphs

Lecture IV: ‘Fractal’ graphs and the stability of the elliptic Harnack
inequality

Brief aim of lectures. We will see how methods developed by researchers in
PDE can be used to study Markov processes in discrete settings, such as
random graphs.



Harmonic functions for a Markov process

Let (Xt; t 2 R+) be a Markov process on a metric space (X ; d). Px is the law
of X started at x. Let D � X be a domain in X . Define the exit time from D
by

�D = infft � 0 : Xt 62 Dg:

We say a function h : X ! R is harmonic in D if h(Xt^�D ; t � 0) is a (local)
martingale.
Equivalent definition (modulo some integrability/regularity questions). We
can define the infinitesimal generator LX by

LXf (x) = lim
t#0

Exf (Xt)� f (x)
t

:

h is harmonic in D if
LXh(x) = 0; x 2 D:

We may also say X-harmonic.



Examples of infinitesimal generators

1. Let X be the continuous time Markov chain on the countable set V, with

P(Xt+h = yjXt = x) = a(x; y)h + o(h); y 6= x:

Then
LXf (x) =

X
y

a(x; y)(f (y)� f (x)):

2. Let W be Brownian motion on Rd, and � be the Laplacian. Then

LW f (x) = 1
2�f (x) = 1

2

dX
i=1

@2

@x2
i

f (x):

(W-harmonic is the same as the standard definition of harmonic.)



Elliptic Harnack inequality (EHI)
Definition. (X ; d;X) satisfies the Elliptic Harnack inequality (EHI) if there
exists CH <1 such that whenever h � 0 is harmonic in B = B(x;R) then
writing B0 = B(x;R=2),

sup
B0

h � CH inf
B0

h:

Meaning. A typical h is hA(x) = Px(X�B 2 A) where A � @B. So EHI gives
good ‘mixing’ properties of X - the probability of exiting B via A does not
differ too much inside B0.

B

AB



Brief History 1

Theorem. (Harnack 1887). Let h : B(0;R)! R+ be harmonic (with
respect to the Laplacian on Rd). Let r < R. Then for any x 2 B(0; r),

� R
R + r

�d�2 R� r
R + r

�
h(x)
h(0)

�
� R

R� r

�d�2 R + r
R� r

:

Proof. Easy from the Poisson formula; if r < s < R then

h(x) =
s2 � jxj2

!ds

Z
@B(0; s)

h(y)
jx� yjd

�(dy):

Remark. The EHI as stated on the previous slide follows immediately.



Divergence form PDE in Rd

Let a(x) = (aij(x); 1 � i; j � d) be a symmetric matrix, which is uniformly
elliptic: there exists A � 1 such that for all x 2 Rd

A�1j�j2 �
X

i;j

�iaij(x)�j � Aj�j2:

Define
Laf (x) = r(a:rf ) =

X
i

@

@xi

�X
j

aij(x)
@

@xj
f (x)

�
:

Elliptic divergence form PDE in a domain D � Rd:

Laf (x) = 0; x 2 D;

f (x) = g(x); x 2 @D:



Brief History 2

A major open problem in the late 1950s: go beyond the classical Schauder
estimates (1930s) to obtain regularity for solutions of divergence form
PDEs. Solved independently by de Giorgi, Nash and Moser.

Moser 1961: proved EHI for solutions to divergence form PDE.

Moser 1964: proved the stronger parabolic Harnack inequality (PHI) for
solutions to heat equation @tu = Lau .

Bombieri-Giusti 1972: EHI in manifold context.

Fabes-Stroock 1986: Proved PHI using ideas of Nash, made two-way
connection between PHI and Gaussian heat kernel bounds.

Li-Yau 1986: PHI using gradients for manifolds.

Grigoryan 1992, Saloff-Coste 1992: gave characterization of PHI via
conditions which are (a) ‘stable’ (b) often easy to check.

1990s: Extensions to metric spaces (Sturm), graphs (Delmotte).



Applications of EHI: Hölder continuity

Let h be harmonic in a domain D, assume EHI holds. Set

Osc(h;B) = sup
B

h� inf
B

h:

Suppose B = B(x;R) � D. Choose a; b so that u = a + bh satisfies
supB u = 1, infB u = 0, u(x) � 1

2 . Then the EHI gives

1
2 � sup

B0
u � CH inf

B0
u; i.e. inf

B0
u � 1=(2CH):

So writing � = 1=(2CH),

Osc(u;B0) � (1� �) = (1� �)Osc(u;B):

By linearity this holds for h, and iterating

Osc(h;B(x; 2�nR)) � (1� �)nOsc(h;B(x;R));

which gives Hölder continuity of h.



Applications of EHI: Liouville property

Definition. X satisfies the strong Liouville property (SLP) if whenever h � 0
is harmonic on the whole space X then h is constant.

Theorem. If X satisfies the EHI then the SLP holds.

Proof. Suppose h � 0 is non-constant and harmonic. Replacing h by
h� inf h we can assume inf h = 0. Choose x 2 X with h(x) > 0. Let y 2 X .
Then by the EHI in the ball B(y; 4d(x; y)),

h(y) � inf
B(y;2d(x;y))

h � C�1
H sup

B(y;2d(x;y))
h � C�1

H h(x);

so inf h > 0, a contradiction.

SLP holds for Rd, and this is connected with the fact that there is only one
way for BM to ‘go to infinity’.



Weighted graphs

The PDE methods of Moser etc are very general, and can be applied to
processes on manifolds, metric spaces and graphs. I will mainly discuss
continuous time simple random walks on weighted graphs.

Weighted graphs. Let (V;E) be a connected graph (finite or infinite) and
a : E ! (0;1) be edge weights. We call Ga = (V;E; a) a weighted graph.
The natural weights are a(e) = 1 for all e = 1.
We extend a to a function a : V� V! [0;1) by setting axy = 0 if fx; yg is
not an edge. We set ax =

P
y axy. Note that axy = ayx.

Assume:
(1) No multiple edges or self-loops -i.e. fx; xg is not an edge.
(2) G is locally finite: for each x the set fy : y � xg = fy : fx; yg 2 Eg is
finite.
We write d(x; y) for the shortest path metric on G, and define balls by

B(x; r) = BG(x; r) = fy : d(x; y) � rg:



Random walk on a weighted graph

The continuous time simple random walk (CTSRW) X = (Xt; t 2 R+) on
Ga makes jumps from x to y � x at rate axy=ax:

P
�(Xt+h = yjXt = x) = h

axy

ax
+ o(h):

Properties and notation
(1) X is reversible or symmetric with respect to a:

axP
x(Xt = y) = ayP

y(Xt = x):

(2) Define the heat kernel to be the transition density of X with respect to a:

pt(x; y) =
Px(Xt = y)

ay
:

Then pt(x; y) = pt(y; x).
This symmetry is very important: the methods I will discuss do not work
well, or at all, for non-symmetric processes.



Overall goal

We have a weighted graph Ga. Using various kinds of information about the
geometry of Ga we want to prove results about the long term behaviour of
the CTSRW X on Ga.

We will be particularly interested in obtaining estimates on the heat kernel
pt(x; y), as these enable us to ‘read off’ many properties of the process.
For example, X is transient iff

Z 1

1
pt(x; x)dt <1:



Parabolic Harnack inequality
Let T = R2 and Q = B(x;R)� [0;T] be a space-time cylinder. Set

Q� = B(x; 1
2 R)� [ 1

4 T; 1
2 T]; Q+ = B(x; 1

2 R)� [ 3
4 T;T]:

The PHI states that if u = u(x; t) is a non-negative solution of

@u
@t

= Lu; (x; t) 2 Q; (1)

(we say that u is caloric) then

sup
Q�

u � CP inf
Q+

u:

Q

Q
+

Q
-

B(x,R)

t

If h is harmonic in B, then u(x; t) = h(x) is caloric, so PHI ) EHI.



Characterization of PHI

Theorem (Grigoryan, Saloff-Coste, Sturm, Delmotte)
Given suitable local regularity, the following are equivalent:
(a) PHI holds,
(b) Gaussian heat kernel bounds (GB) hold,
(c) X satisfies VD= ‘volume doubling’ plus PI= Poincaré inequality.

Remarks. (0) See the next few slides for the definition of GB, VD, PI.
(1) This theorem has versions for manifolds, metric spaces and graphs.
(2) For weighted graphs local regularity is ‘controlled weights’, which we
will assume from now on: there exists p0 > 0 such that

axy

ax
� p0 > 0 for all y � x:



Gaussian heat kernel bounds (GB)

We say that (GB) hold if there exist c;C such that whenever x; y 2 V and
t � d(x; y) _ 1 then

pt(x; y) �
C

�a(B(x; ct1=2))
exp(�c

d(x; y)2

t
);

pt(x; y) �
c

�a(B(x;Ct1=2))
exp(�C

d(x; y)2

t
):

Notes. (1) �a(A) =
P

x2A ax, i.e. we use a� to define a measure on V.
(2) If G = Zd and a are natural weights, then �a(B(x; r)) � rd and we obtain
the familiar ct�d=2 exp(�Cd(x; y)2=t).
(3) If t � d(x; y) then we no longer have Gaussian bounds; the dominant
term is the tail of the Poisson distribution.



VD and PI

Volume doubling. There exists CV such that

�a(B(x; 2r)) � CV�a(B(x; r)) for x 2 X ; r > 0:

Remarks. (1) VD holds for Zd, as �a(B(x; r)) � rd.
(2) VD implies polynomial volume growth, i.e. there exists � <1 such that
a(B(x; r)) � cxr�. So this condition excludes graphs with exponential
growth such as the binary tree.

Poincaré inequality. There exist CP such that if f : 2B = B(x0; 2R)! R

and f B is the average of f on B,
X

y2B(x0;R)

(f (y)� f B)
2ay � CPR2 1

2

X
x;y22B

axy(f (x)� f (y))2= CPR2E2B(f ; f ):



Poincaré inequality (PI)

The PI follows from an isoperimetric inequality. Suppose for all B = B(x;R)
and subsets A � B with �a(A) � 1

2�a(B) we have

Fa(A;B� A) =
X
x2A

X
y2B�A

axy �
c�a(A)

R
:



Poincaré inequality from isoperimetric inequality

Let f = 1A. Then
X

x

jf (x)� f Bjax � �a(A);
X
x;y

axyjf (x)� f (y)j = Fa(A;B� A):

So the isoperimetric inequality �a(A)=R � cF(A;B� A) implies a ‘1-1’ PI
for this f : X

x

jf (x)� f Bj
1ax � cR

X
x;y

axyjf (x)� f (y)j1:

One can then extend to general f , and the ‘2-2’ PI follows by an appropriate
use of Cauchy-Schwarz.



A graph for which PI fails

X
B(x;R)

jf (x)� f Bj
2ax � cR2

X
x;y2B(x;R)

axyjf (x)� f (y)j2 (PI)

Consider two copies of Z3 connected at their origins 01 and 02. Let f = 1 on
one copy, and f = �1 on the other. Let B = B(01;R). Then f B ' 0 and
X

B

jf (x)� f Bj
2ax � R3;

X
x;y2B

axyjf (x)� f (y)j2 = (f (0)� f (00))2 = 1:

Remark. The EHI also fails for this graph. Call the two copies V1 and V2.
As SRW on Z3 is transient, ultimately X will remain in one copy. Let

h(x) = P
x(Xt 2 V1 for all large t):

Then 0 < h < 1, h is harmonic and non-constant, so the SLP fails. As EHI
implies SLP, EHI must also fail. Also easy to see directly by looking at h in
B(0;R).



Recall the PHI theorem

Theorem
Given suitable local regularity, the following are equivalent:
(a) PHI holds,
(b) Gaussian heat kernel bounds (GB) hold,
(c) X satisfies VD= ‘volume doubling’ plus PI= Poincaré inequality.



Why is this theorem useful?



Random walk on graph given by Penrose tiling

The Penrose tiling gives a non-periodic bounded degree graph GPen

embedded in R2.
We expect that the CTSRW XPen on this graph (with natural weights) will
have similar long term behaviour to the CTSRW on Z2.
I do not know how to prove this by probabilistic methods.

On the other hand, for the graph GPen:
(1) One has jBGPen(x; r)j � r2, which implies (VD).
(2) The isoperimetric inequality for GPen follows from the isoperimetric
inequality for R2 or Z2 fairly easily. (If there were a ‘bad set’ for GPen then
one could construct a similar ‘bad set’ for Z2.)

So, the conditions (VD) + (PI) hold for GPen, and the implication (c) ) (b)
then gives (GB).



Perturbations of graphs: example

We have (GB) for the CTSRW on (Zd;Ed) (with natural weights aNat).
Suppose we have E0 � Ed and look at the CTSRW associated with the
weights a with

a(e) = 1; e 2 E � E0;

a(e) = 2; e 2 E0:

Then a � aNat, and it is straightforward to verify that (VD) and (PI) hold for
(Zd;Ed; a). Hence the CTSRW on this graph satisfies (GB).



Perturbations of graphs II

Recall the ‘PHI’ Theorem gives that PHI , GB , (VD)+(PI).

Theorem. Let (G; a) be a weighted graph and suppose that the CTSRW on
this graph satisfies (GB). Let a0(e); e 2 E be weights such that a0 � a, i.e.

c1a(e) � a0(e) � c2a(e) for all e 2 E:

Then the CTSRW on (G; a0) satisfies (GB).

Proof. (1) Use (GB) ) (VD) + (PI) to deduce that (G; a) satisfies (VD) +
(PI) .
(2) If the conditions (VD) + (PI) hold for (G; a) then they hold for (G; a0).
(These conditions are stable under perturbation of weights).
(3) (VD) + (PI) ) (GB) to deduce that (G; a0) satisfies (GB).



Proofs

Recall the ‘PHI’ Theorem gives that PHI , GB , (VD)+(PI).

There are several proofs of this result, all of which use ideas of de Giorgi,
Moser, Nash.
The easier arguments are for the equivalence of PHI, GB, and that these
imply (VD)+(PI). The proof that the ‘low level’ conditions (VD)+(PI) imply
PHI or GB is harder.



From GB to PHI
Recall PHI says for u � 0 caloric, T = R2 one has supQ� u � C infQ+ u.

Q

Q
+

Q
-

Suppose that we have

u(y; t) =
X

z2B(x;R)

v(z)pt(z; y): (1)

(GB) implies that

c1T��=2 � pt(z; y) � c2T��=2 if z; y 2 B(0;R) and t 2 [ 1
4 T;T]:

Feeding this estimate into (1) gives PHI for u.
Note. For a full proof, one also needs to consider ‘mass coming in from the
side of the cylinder’.



PHI to GB

The whole argument takes several steps, to get the GB bounds (upper and
lower) in different ‘regimes’.

Start of the argument: let B0 = B(x0;R=2), fix x 2 V and set
u(y; t) = pt(x; y). Then

pT=2(x; y) � sup
Q�

u � CH inf
Q+

u � CHpT(x; y0) for y; y0 2 B0:

Multiply by the weight ay0 and sum over y0 2 B to obtain

pT=2(x; y)
X
y02B0

ay0 � CH

X
y02B0

pT(x; y0)ay0 � CH;

which gives

pT=2(x; y) �
CH

�a(B(x0;R=2))
:



Moser’s proof

I will now sketch some of the ideas in Moser’s proof of the EHI; the proof of
the PHI uses the same methods but is more complicated.

I will do it in the context of a divergence form operator on Rd, but explain
how the methods generalize.



Moser’s proof 1

Setup and notation. B(r) = B(0; r) � Rd; we will always have 1 � r � 2.
La = ra:r divergence form operator acting on functions f : B(2)! R.
h � 0 a solution of Lah = 0 in B(2), with h = h0 on @B(2).
We write

R
f for

R
fdx.

Our aim is to prove the EHI: supB(1) h � C infB(1) h.

Lemma M1. (Sobolev inequality). There exists � > 1 such that if
f : B(r)! R then

Z
B(r)

jf j2� � c1

Z
B(r)

(jrf j2 + jf j2):

Proof. Follows from the PI. (Saloff-Coste).



Moser’s proof 2

Lemma M2. Let g = hp with p 2 (�1;� 1
2 ) [ ( 1

2 ;1). If 1 < s < r < 2
then Z

B(s)
jrgj2 � cjr � sj�2

Z
B(r)

g2:

Proof. Choose � with � = 1 on B(s), � = 0 outside B(r) and jr�j � (r� s).

Z
B(s)

jrgj2 �
Z

B(r)
�2jrgj2 � c

Z
B(r)

jr�j2jgj2�
c

jr � sj�2

Z
B(r)

jgj2

The step � uses integration by parts, Lah = 0, and Cauchy-Schwarz.

Important remark. Lemmas M1 and M2 hold very generally, e.g. for the
CTSRW on a graph, if we replace

R
D jrf j2 by the energy form

X
x;y2D

axy(f (x)� f (y))2:



Moser’s proof 3
Set pn = �n, rn = 1 + 2�n, Bn = B(rn), f = h or f = h�1.

Z
Bn+1

jf j2pn+1 =

Z
Bn+1

jf j2�pn � c1

Z
Bn+1

(jrf pn j2 + jf pn j2) by M1

� (c1 + 1)jrn � rn+1j
�2
Z

Bn

jf pn j2 � c222n
Z

Bn

jf pn j2: by M2

So

jjf jjBn+1;2pn+1 =
�Z

Bn+1

jf j2pn+1

�1=2pn+1

� (c222n)1=2pn+1 jjf jjBn;2pn :

Since
Q

n(c222n)1=2pn+1 = C <1 we deduce by iterating

sup
B(1)

f = jjf jjB(1);1 � Cjjf jjB(2);2 = C
Z

B(2)
f 2:

Hence

sup
B(1)

h � c
Z

B(1)
h2; sup

B(1)
h�1 =

1
infB(1) h

� c
Z

B(1)
h�2:



Moser’s proof 4

It remains to prove Z
B(1)

h2 �
cR

B(1) h�2 :

For this one needs to use the Poincaré inequality again.
(Moser’s original proof used the John-Nirenberg inequality, but
Bombieri-Giusti found an easier way.)

Remark. I have given Moser’s proof in its original context of divergence
form elliptic PDEs, as it’s the easiest context in which to explain the ideas.
However, the two key Lemmas M1, M2, also work for graphs, and one can
use the same basic proof strategy. One looks at balls B(x; tnR) with
tn = 1 + 2�n. To continue the iteration when 2�nR � 1, and so one can no
longer use Lemma M2, one uses the local regularity of the graph to show
that if x � y then jh(x)� h(y)j � ch(x).


