http://www.im.ufrj.br/eulalia//

will deliver the Ashok Maitra Memorial Lectures 2023-24 at

- Indian Statistical Institute, Bangalore Centre (February 15, 2024; 2 - 3 PM and 3.15 - 4.15 PM)
- Indian Statistical Institute, Kolkata Centre (February 21 and 22, 2024 ; 4.15-5.15 PM)
- Indian Statistical Institute, Delhi Centre (February 26 and 28, 2024; 3.30-4.30 PM)

The talk is based on the paper [2] below.

This talk is based on the paper [3] below.

[1] Cassandro, M.; Colangeli, M.; Presutti, E. Highly anisotropic scaling limits. Jr. Stat. Phys, 162, 997-1030, 2016. DOI 10.1007/s10955-015-1437-0

[2] Fontes, L.R. ; Marchetti, D. H. U. ; Merola, I.; Presutti, E.; Vares. Layered Systems at the Mean Field Critical Temperature. Jr. Stat. Phys. 161, 91-122, 2015.

[3] Mountford, T.S.; Vares, M.E.; Xue, H. Critical scaling for an anisotropic percolation system on Z^2,Elect. Jr. Probab. 25, p. 129, 44pp. 2020.

[1] Gaudillière, A. ; Milanesi, P. ; Vares, M. E. Asymptotic Exponential Law for the Transition Time to Equilibrium of the Metastable Kinetic Ising Model with Vanishing Magnetic Field. Jr. Stat. Phys. 179, 263 - 308, 2020. https://doi.org/10.1007/s10955-019-02463-5

Two monographs on the subject:

[2] Bovier, A; den Hollander, F. Metastability. A Potential-Theoretic Approach. (Springer, 2015)

[3] Olivieri, E.; Vares, M.E. Large Deviations and Metastability. (Cambridge University Press, 2004)

The talk is mostly based on a joint work with Thomas Mountford and Hao Xue [1].

[1] T.S. Mountford, M. E. Vares, H. Xue. Critical scaling for an anisotropic percolation system on Z^2,Electronic Jr. Probab. 25, p. 129, 44pp. 2020

Join Zoom Meetings

https://us02web.zoom.us/j/87004905511?pwd=MWtDQUZ2WFcwZUc4Y2JONTZWOEpjZz09

Meeting ID: 870 0490 5511

Passcode: AMML2324

We then focus on a model introduced by Linker and Remenik (2020), namely the contact process evolving on a dynamical graph given by dynamic bond percolation on the edges of Z^d. The environment is thus defined in terms of two parameters corresponding to the percolation density p and the edge update rate v. Their work contains several interesting results about this model, including a result in dimension one that we extend to higher dimensions. It states that, for any fixed value of p below the critical threshold and the contact infection rate lambda, the infection dies out if v is small enough.

Join Zoom Meetings

https://us02web.zoom.us/j/87004905511?pwd=MWtDQUZ2WFcwZUc4Y2JONTZWOEpjZz09

Meeting ID: 870 0490 5511

Passcode: AMML2324

[1] Fontes, L.R; Mountford, T. S.; Ungaretti, D.; Vares, M.E. Renewal Contact Processes: Phase transition and survival. Stoch. Proc. Applic. 161, 102--136, 2023.

[2] Hilário, M.; Ungaretti, D.; Valesin, D.; Vares, M.E. Results on the contact process with dynamic edges or under renewals. Elect. Jr. Probab. 27, p. 91, 31 pp, 2022.

[3] Fontes, L.R.; Mountford, T.S.; Vares, M.E. Contact process under renewals II. Stoch. Proc. Applic. 130, 1103--1118, 2020.

2022-2023: https://www.isibang.ac.in/~statmath/amml22-23/

2021-2022: https://www.isibang.ac.in/~statmath/amml22/

2020-2021: https://www.isibang.ac.in/~statmath/amml20/

2019-2020: https://www.isibang.ac.in/~statmath/amml19/

2011-2019: https://smu.isical.ac.in/menufour/ashok-maitra-memorial-lectures

Last modified :February 2024