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Mathematical Morphology (MM) 
• Mathematical morphologic transformations (Matheron, 1975; Serra, 1982) 

have shown its speciality and strength in the context of geomorphology 
such as significant geomorphologic features extraction, basic measures of 
water bodies estimation, geomorphic processes modelling and simulation, 
fractal landscapes generation, etc.  

• In the entire investigation, both DEM’s are analysed as grey-scale image 
(3-D) and the extracted networks as thresholded sets (binary form).  

• In order to process the binary sets such as channel networks, binary 
morphological transformations are employed.  

• Grey-scale mathematical morphological transformations are used to 
process the three-dimensional images such as DEM’s.  

• The geometrical and topological structures of DEM are examined by 
matching it with structuring elements of various shapes and sizes at 
different locations in the DEM.  

• Figure below provides two examples of structuring elements (B), which are 
in the shape of rhombus and square of size 3X3. (1’s and 0’s stand for 
foreground and background regions, respectively). 
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Mathematical Morphology (cont) 

Binary MM 

• Binary erosion transformation of S by structuring element, B  
– the set of points s such that the translated Bs is contained in the original 

set S, and is equivalent to intersection of all the translates.  

– S  B = {s: Bs  S}=    

 

• Binary dilation transformation of S by B  
– the set of all those points s such that the translated Bs intersects S, and 

is equivalent to the union of all translates.  

– S  B = {s: Bs S    } =     

 

• The dilation with an elementary structuring template expands the set 
with a uniform layer of elements, while the erosion operator 
eliminates a layer from the set.  

• Multiscale erosions and dilations are  

  - (S  B)  B  …  B = (S  nB),    

  - (S  B)  B  …  B = (S  nB),    

 where nB = B  B  …  B and n is the number of transformation cycles.  
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Mathematical Morphology (cont) 

Binary MM (cont) 

• By employing erosion and dilation of S by B, opening and closing 
transformations are further represented as: 
– S  B = ((S  B)  B))      

– S  B = ((S  B)  B))     

• After eroding S by B, the resultant eroded version is dilated to 
achieve the opened version of S by B. 

• Similarly, closed version of S by B is obtained by first performing 
dilation on S by B and followed by erosion on the resultant dilated 
version.  

• Multiscale opening and closing transformations are implemented by 
performing erosions and dilations recursively as shown below.  

 - (S  nB) = [(S  nB)  nB)],      

 - (S  nB) = [(S  nB) nB)],      

 where n is the number of transformations cycles.  
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Mathematical Morphology (cont) 
Grey-scale MM 

• Grey-scale dilation and erosion operations - expansion and contractions 
respectively  

• Let f(x,y) be a function on Z2, and B be a fixed structuring element of size 
one. The erosion of DEM, f(x) by B replaces the value of f at a pixel (x, y) by 
the minima  values of the image in the window defined by the structuring 
template B  

–               ,     

 

• The dilation of DEM, f(x) by B replaces the value of f at a pixel (x, y) by the 
maxima values of the image in the window defined by the structuring 
template B  

–                ,     

 

• In other words, (f  B) and (f  B) can be obtained by computing minima 
and maxima over a moving template B, respectively.  

• Erosion is the dual of dilation : 
– Eroding foreground pixels is equivalent to dilating the background pixels.  
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Mathematical Morphology (cont) 
Grey-scale MM (cont) 

• Opening and closing are both based on the dilation and erosion 
transformations.  

• Opening of DEM, f by B is achieved by eroding f and followed by dilating 
with respect to B,   = [(f  B)  B],     

• Closing of f by B is defined as the dilation of f by B followed by erosion with 
respect to B,  = [(f   B)  B],      

• Opening eliminates specific image details smaller than B, removes noise 
and smoothens the boundaries from the inside, whereas closing fills holes 
in objects, connects close objects or small breaks and smoothens the 
boundaries from the outside.  

• Multiscale opening and closing can be performed by increasing the size 
(scale) of the structuring template Bn, where n = 0, 1, 2,…, N. These 
multiscale opening and closing of f by B are mathematically represented as: 

  = {[(f  B)  B … B]  B  B … B} = [(f  nB)  nB],  

  = {[(f   B)  B … B]  B  B … B} = [(f  nB)  nB],  

 at scale n = 0, 1, 2,…, N.  

• Performing opening and closing iteratively by increasing the size of B 
transforms the DEM into lower resolutions correspondingly.  
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Mathematical Morphology (cont) 

• Multiscale opening and closing of DEM by nB effect 
spatially distributed elevation regions in the form of 
smoothing of contours to various degrees. The shape 
and size of B control the shape of smoothing and the 
scale respectively.  

• Important problems like feature detection and 
characterisation often require analysing DEMs at 
multiple spatial resolutions. Recently, non-linear filters 
have been used to obtain images at multi-resolution due 
to their robustness in preserving the fine details.  

• Advantages of mathematical morphology 
transformations  
– popular in object recognition and representation studies.  

– The non-linearity property in preserving the fine details. 
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 Granulometries (via multiscale Opening) 

 

Anti-Granulometries (via multiscale Closing) 
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Effect of Dilation using 3X3 structuring element 
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Steps in Dilation of C by S 
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Effect of Erosion using 3X3 structuring element 
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Steps in Erosion of C by S 
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Effect of Opening using 3X3 structuring element 
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Steps in Opening of C by S 
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Effect of Closing using 3X3 structuring element 
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Steps in Closing of C by S 



11 x 11 

9 x 9 

7 x 7 

5 x 5 

           

           

           

           

           

           

           

           

           

           

           

Octagonal symmetric structuring elements of various primitive sizes ranging from 5 × 5 to 11 × 11. These primitive sizes 

can be considered as B.  
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Multiscale Opening and Closing 

                 = {[(M  B)  B B]  B  BB} = [(M  nB)  nB]  
                        = {[(M  B)  B B]  B  BB} = [(M  nB)  nB]  

 

• Multiscale grayscale transformations (erosion, dilation, opening, and 

closing), at scale n = 0,1,2,…,N, are defined as follows: 

  

     (f  nB) = (f  B)  B  B    B  

nBM 
nBM 

(f  nB) = (f  B)  B  B    B  
)( nBf   = [(f  nB)  nB]  

)( nBf  = [( f   nB) nB]  
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Study area specification 

 SPOT X-Band data of Machap Baru reservoir 

situated in Melaka state, Malaysia with spatial 

resolution of 20 m acquired on 28/2/1998 situated in 

between 2o 15’ - 2o25’ N. Latitude and 102o 15’ - 102o 

23’ E.Longitude.  
 

 Surveyed topographic map of scale 1:50000 for 

the region Machap Baru and Gunung Ledang. 
 

 Data collected from Department of Irrigation and 

Drainage. 
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TOPSAR DEM 
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Networks extraction and their 

properties : Sub-basins delineation 

The example of a few sub-basins delineated from Cameron Highlands and Petaling DEM 

is illustrated in figures above. 
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Decomposed basins and networks 
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Fractal and multiscale analyses 

of planar geophysical networks 
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Fractal and multiscale analyses of 

networks 
• A new approach of fractal dimension estimation is suggested in this 

analysis. 

• Firstly, multiscale DEMs are generated via multiscale opening and 
closing transformations. The resolution of DEM becomes coarser 
with increasing cycle of opening/closing transformation.  

• Both ridge and channel networks are extracted from these 
multiscale DEMs.  

• A scaling exponent is derived by plotting the length of the network 
as function of the radius of structuring element employed to 
generate multiscale DEMs.  

• This relationship possesses a linear property on a log-log graph. 
The exponent value derived from the best fit line is fractal-like 
scaling exponent. 

• The derived fractal dimension is resolution-independent as the 
networks are extracted from basins of multiple resolutions. As 
compared to box-counting dimension, which describes the space-
filling property of networks, the new proposed fractal dimension 
complements the existing methods in terrain characterisation. 

 



26 

Fractal and multiscale analyses of 

networks 
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Fractal and multiscale analyses of 

networks 
• Morphology Opening and Closing 

• Multiscale DEM images (Opening and Closing by square 
structure element 3X3 to 21X21) 
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Fractal and multiscale analyses of 

networks : Post processing 

• Thresholding 

• Thinning 

• Ridge 

 

 

• Channel 
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Fractal and multiscale analyses of 

networks : Fractal Dimension 

• Graph: Network length vs scale 
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Fractal and multiscale analyses of 

networks : Fractal Dimension 
Network extraction using line segments Network extraction using square template 

Basin Fractal dimension derived 

from ridge network. 

Fractal dimension derived 

from channel 

network. 

Fractal dimension derived 

from ridge network. 

Fractal dimension derived 

from channel 

network. 

Basin 1 1.4005 1.394 1.5015 1.5453 

Basin 2 1.4097 1.4596 1.5184 1.5941 

Basin 3 1.4204 1.3883 1.585 1.5926 

Basin 4 1.5057 1.4068 1.7092 1.5301 

Basin 5 1.4262 1.3402 1.5729 1.6233 

Basin 6 1.3656 1.3314 1.5403 1.5412 

Basin 7 1.3927 1.3468 1.5271 1.4273 

Basin 8 1.3505 1.3688 1.512 1.4442 

Basin 9 1.3349 1.3358 1.4251 1.3989 

Basin 10 1.3781 1.357 1.5183 1.437 

Basin 11 1.3137 1.3072 1.4263 1.3982 

Basin 12 1.341 1.3342 1.5228 1.4644 

Basin 13 1.299 1.3075 1.452 1.3735 

Basin 14 1.3842 1.3367 1.5083 1.4658 
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Fractal and multiscale analyses of 

networks : Fractal Dimension 
• This relationship depicts that similar trends have been followed for both ridge and 

channel connectivity networks, which shows the duality of both networks. It also 
describes the scaling properties of the terrain, where the density of the networks 
decreases as the resolution decreases. This change is due to the fact that the diffuse 
character of the basin increases as the size of the structuring template increases. 
This relation can be reversed and estimation of lengths of these networks can be 
made from coarse scale information. 

• The lengths of channel and ridge networks extracted by employing line segment 
structuring elements are significantly more than that of the networks extracted by 
convex type of square template.  

• The gradients of best fit lines of these plots indicate that the rate of change in the 
lengths of the networks across multiple resolutions. The rate derived by combination 
of segment-like structuring elements is slower than that of the networks derived by 
square element.  

• Intricacy of the networks observed for Cameron sub-basins is denser as compared to 
the intricacy of Petaling networks. In general, hilly terrain possesses higher value of 
exponent as compared to non-hilly terrain. The reason is the rate of change in the 
elevation of hilly terrain across resolutions is higher than non-hilly terrain. Relatively, 
the network intricacies will also change more rapidly for hilly terrain.  

• Since the power-law exponent is sensitive to the shape of structuring elements 
(shape-dependent), its value would be related to the shape and roughness of the 
terrain. Thus, these power laws can be related to terrain roughness characteristics.  

• The analyses of networks extracted by structuring elements of each direction provide 
new insight to understand the direction-specific terrain complexity.  
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Granulometric analysis of digital 

topography 
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Granulometric analysis 

• Morphological multiscaling transformations are shown to be a potential tool 
in deriving meaningful terrain roughness indices. Resolution constraints is 
one of the limitations in DEM analyses. In order to overcome these 
limitations, granulometric approach (a branch of mathematical morphology) 
is a potential approach because it provides scale-independent surficial 
roughness indices. 

• Consider two different basins of two different physiographic setups 
(Cameron and Petaling regions) that possess similar topological quantities, 
their networks may be topologically similar to each other. But the processes 
involved therein may be highly contrasting due to their different 
physiographic origins. Under such circumstances, the results that exhibit 
similarities in terms of topological quantities and scaling exponents would 
be insufficient to make an appropriate relationship with involved processes. 

• Therefore, granulometric approach is proposed to derive shape-size 
complexity measures of basins. This approach is based on probability 
distribution functions computed for both protrusions and intrusions (in other 
words supremums and infimums) of various degrees of sub-basins.  

• This granulometry-based technique is tested on sub-basins with various 
sizes and shapes decomposed from DEM’s of two distinct geomorphic 
regions, i.e. Cameron Highlands and Petaling region of Peninsular 
Malaysia. 
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Granulometric analysis  

• Multiscale opening till completely black 

• Multiscale closing till completely white 

• Subtraction 

 

• Probability function 

 

• Average size 

• Average roughness 
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Granulometric analysis : 

 Multiscale opening/closing by rhombus 

• Scale 1 , 40, 80, 120, 160 
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Granulometric analysis : 

 Multiscale opening/closing by octagon 

• Scale 1 , 30, 60, 90, 120 



37 

Granulometric analysis : 

 Multiscale opening/closing by square 

• Scale 1 , 20, 40, 60, 80 
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Granulometric analysis :  

Basin wise analysis 

• Average size – 14 sub-basins 

• Average roughness – 14 sub-basins 
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Granulometric analysis :  

Basin wise analysis 
• The number of iterations required to make each sub-basin either become darker or 

brighter depends on the size, shape, origin, orientation of considered primitive 
template used to perform multiscale openings or closings, and also on the size of the 
basin and its physiographic composition. More opening/closing cycles are needed 
when structuring element rhombus is used, and it is followed by octagon and square.  

• Mean roughness indicates the shape-content of the basins. If the shape of SE is 
geometrically similar to basin regions, the average roughness result possesses lower 
analytical values. If the topography of basin is very different from the shape of SE, 
high roughness results are produced, which indicate that the basin is rough relative to 
that SE. In general, all basins are rougher relative to square shape as highest 
roughness indices are derived when square is used as SE. 

• A clear distinction is obvious between the Cameron and Petaling basins. Generally, 
roughness values of Cameron basins are significantly higher than that of Petaling 
basins.  

• The terrain complexity measures derived granulometrically are scale-independent, 
but strictly shape-dependent. The shape dependent complexity measures are 
sensitive to record the variations in basin shape, topology, and geometric 
organisation of hillslopes.  

• Granulometric analysis of basin-wise DEM’s is a helpful tool for defining roughness 
parameters and other morphological/topological quantities.  

 
 


