# Spatial Dependency, Aggregation and Data

by

Jack Schuenemeyer Southwest Statistical Consulting, LLC Cortez, Colorado USA

#### 2012 International Association for Mathematical Geosciences Distinguished Lecturer

**Indian Statistical Institute** 





### Acknowledgements

- International Association for Mathematical Geosciences for financial support
- Professor Sagar, ISI for very kind hospitality here in Bangalore
- Some work is joint with
  - Dr. Donald Gautier, US Geological Survey
  - Dr. Gordon Kaufman, Professor Emeritus, MIT

International Association for Mathematical Geosciences Student Chapters

- Student Chapters
  - You can plan events
  - Interact with other students
  - Receive financial help attending conferences
  - Meet practicing scientists
- Earth, climate, and environmental sciences are exciting disciplines, which combined with mathematics and statistics, can help solve important problems that will benefit us and future generations

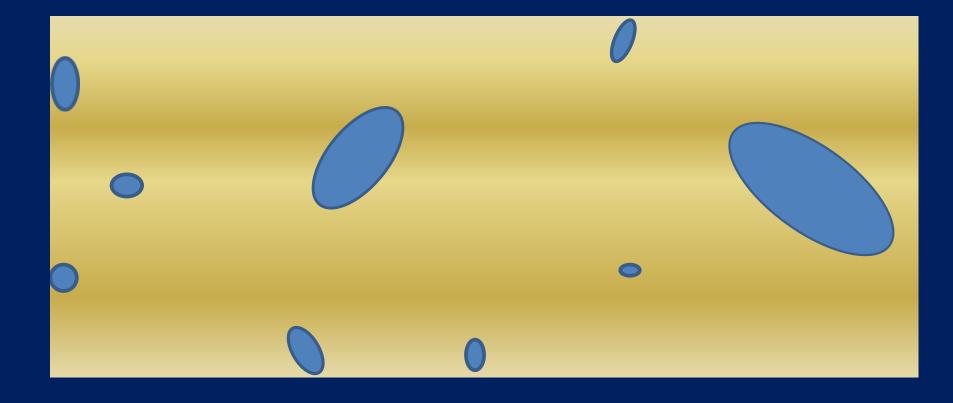
### Outline

- I. Dependency & Aggregation
- II. Data
  - 1. Hard
  - 2. Analogs
  - 3. Expert Judgment

### Selected Spatial Earth Science Applications

- Estimating remaining mineral or energy resources
- Identifying characteristics of a specific resource (energy companies)
- Modeling geologic hazards
- Transport systems water, hydrology
- Snow melt

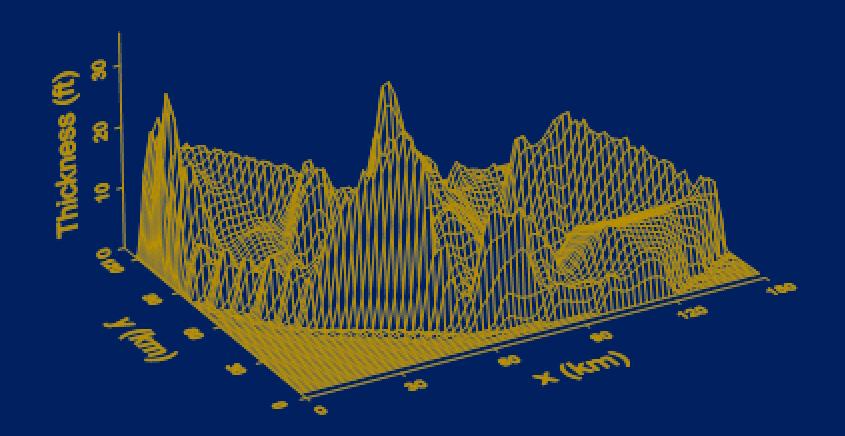
# I. Dependency & Aggregation


### Estimating Remaining Exhaustible Energy Resources

- Important for governments, energy companies, research institutes
- Oil and gas occur in relatively well defined regions called basins or plays
- Two types of oil and gas resource

- Conventional Discrete

- Continuous
- Most regions at least partially explored


### **Conventional (discrete)**



### Tasks

- Understanding and modeling the discovery process
  - Point process. Remaining resource function of discovered resource and efficiency of sampling
- Temporal component is modeling the learning curve in the discovery process

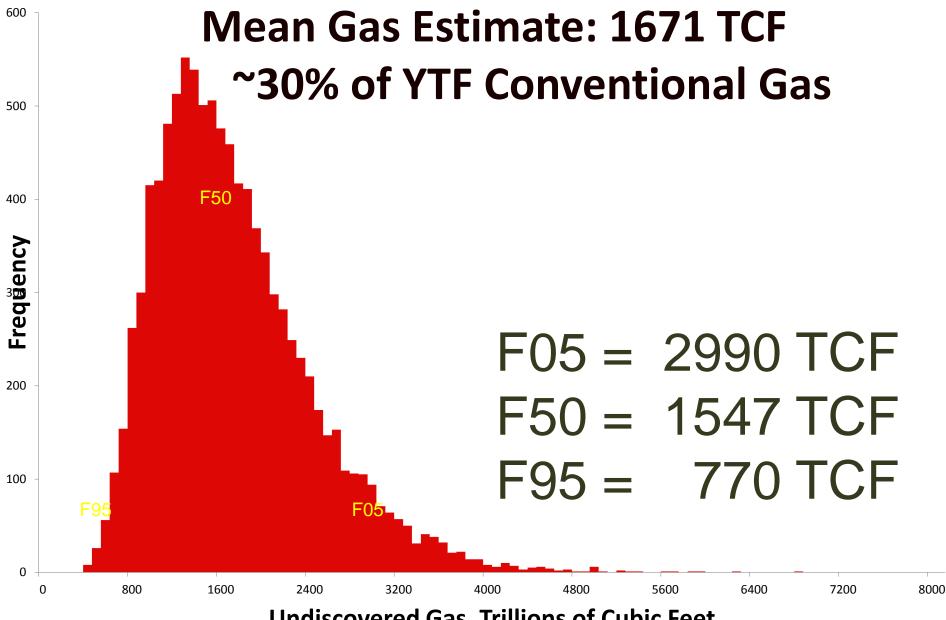
### Continuous



### Issues

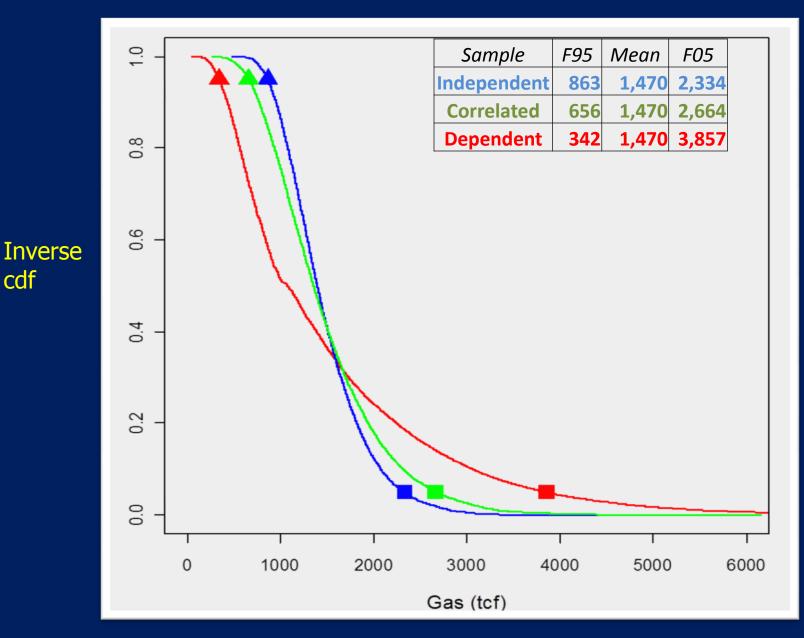
 Concentration of resources varies continuously – estimate regions of higher concentration


- Spatial model fit to partial data
- Cell based
- Nearest neighbor
- Clearly there are spatial dependencies!


# **Aggregation of Results**

- Interest to governments
- Large energy companies
- Tax policy
- Research institutes

### **Assessing Dependency**


- Consider 2 adjoining regions A and B.
- If the assessor overestimate resources in A does that mean that imply that resources in region B were over estimated?
- If answer is YES regions A and B are dependent
- If answer is NO regions A and B are independent





**Undiscovered Gas, Trillions of Cubic Feet** 

#### Aggregated Gas – Circum Arctic



cdf

# **Types of Dependencies**

### Physical

Attributes correlated

### Human

Same assessment team

– Same organization

### **Implications of Dependency Assumptions**

• Effect on aggregated results

- Pairwise independent - uncertainty too small

- Totally dependent - uncertainty too large

NEITHER ASSUMPTION USUALLY VALID

### **Correlation vs. Dependency**

Correlation is one measure of dependency

 Many measures of correlation

 Correlation is not affected by parameter changes (size and/or shape of oil or gas distributions)

Dependency can be modeled via regression

#### Independent

| AU 1      | AU 2      |
|-----------|-----------|
| Gas (tcf) | Gas (tcf) |
| 11.5      | 9.1       |
| 6.7       | 8.4       |
| 5.5       | 2.1       |
| 0.1       | 3.8       |
| 13.7      | 0.2       |
| 11.7      | 1.4       |
| 10.9      | 7.6       |
| 0.3       | 3.7       |
| 7.6       | 9.9       |
| 26.2      | 1.9       |

#### Fractile Dependent

| AU1 Gas<br>(tcf) | AU 2 Gas<br>(tcf) |
|------------------|-------------------|
| 0.1              | 0.2               |
| 0.3              | 1.4               |
| 5.5              | 1.9               |
| 6.7              | 2.1               |
| 7.6              | 3.7               |
| 10.9             | 3.8               |
| 11.5             | 7.6               |
| 11.7             | 8.4               |
| 13.7             | 9.1               |
| 26.2             | 9.9               |

#### Correlation = 0.5

#### See next slide

Obtaining Sample Numbers to Create a Specified Correlation Structure

- Let  $\mathbf{y}_1, ..., \mathbf{y}_n$  be the data sets, each length t
- Let A be the Cholesky factorization of correlation matrix C, where A'A = C
- Let U<sub>txn</sub> = (u<sub>1</sub>,...,u<sub>n</sub>), u<sub>i</sub> {t uniform random num}
- Let X = U x A, Note Var(Au<sub>i</sub>) = C
- Then K<sub>[,j]</sub> = Rank(X<sub>[,j]</sub>), j = 1,...,n are the sample numbers needed to generate the correlated aggregate result.

# Additivity

Means can be added

• Fractiles can be added ONLY when there is fractile additivity between distributions

• That's it

### **Provinces & Assessment Units**

33 Provinces defined 69 Assessment Units evaluated Quantitative estimates for 48 AUs

### Data from 10,000 Monte Carlo Simulations

| Trial | Risked Gas in Gas<br>Fields (BCFG) | Risked Oil in Oil<br>Fields (MMBO) |
|-------|------------------------------------|------------------------------------|
| 1     | 11,567                             | 389                                |
| 2     | 6,752                              | 1,487                              |
| 3     | 0                                  | 0                                  |
| 4     | 11,669                             | 1,071                              |
| 5     | 10,976                             | 678                                |

# Circum Arctic Dependency Approach

• Ask assessors to specify pairwise correlations

 Assessment units close together tend to be more highly correlated than ones further distant

## Problems!

 Given 48 assessment units, there are 48 x 47/2 = 1128 possible correlations

 Specifying pairwise correlations does not guarantee that the resulting matrix will be positive semi-definite

### **Circum Arctic Matrix**

| AU Code  | AU Name                               | 00010101 | 00010202 | 00020101 | 00020201 | 10080102 | 10080103 | 10500101 | 10500102 | 10500103 |
|----------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 00010101 | Makarov Basin Margin                  | 1.00     |          |          |          |          |          |          |          |          |
| 00010202 | Siberian Passive Margin               | 0.70     | 1.00     |          |          |          |          |          |          |          |
| 00020101 | Lena Prodelta                         | 0.20     | 0.27     | 1.00     |          |          |          |          |          |          |
| 00020201 | Nansen Basin Margin                   | 0.20     | 0.20     | 0.30     | 1.00     |          |          |          |          |          |
| 10080102 | Main Basin Platform                   | 0.20     | 0.20     | 0.20     | 0.20     | 1.00     |          |          |          |          |
| 10080103 | Foredeep Basins                       | 0.20     | 0.20     | 0.20     | 0.20     | 0.80     | 1.00     |          |          |          |
| 10500101 | Kolguyev Terrace                      | 0.20     | 0.20     | 0.20     | 0.20     | 0.80     | 0.80     | 1.00     |          |          |
| 10500102 | South Barents Basin and Ludlov Saddle | 0.20     | 0.20     | 0.20     | 0.20     | 0.60     | 0.60     | 0.90     | 1.00     |          |
| 10500103 | North Barents Basin                   | 0.20     | 0.20     | 0.20     | 0.20     | 0.50     | 0.50     | 0.80     | 0.90     | 1.00     |

### Minimum eigenvalue = - 0.5

### Solutions

- Adjust correlations unit matrix is positive semidefinite
- Specify distributions (beta or triangular) for pairwise correlation Frigessi A., and others, Quantitative Finance 11(7):1081-1090
- Use Bayes approach to guarantee that resulting matrix is positive semi-definite as it is specified

### Minimize Frobenius Norm

Projection system; Higham (2002, J. of Numerical Analysis)

$$\left\|\mathbf{A} - \mathbf{B}\right\|_{F} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \left|a_{ij} - b_{ij}\right|^{2}\right)^{1/2}$$

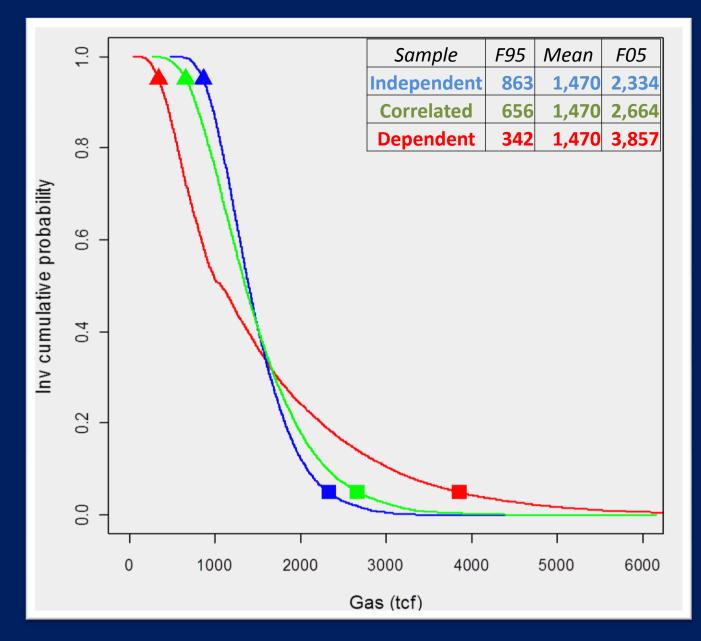
A is an improper matrixB is the nearest correlation matrix

- R function nearcor in library sfsmisc
  - www.r-project.org

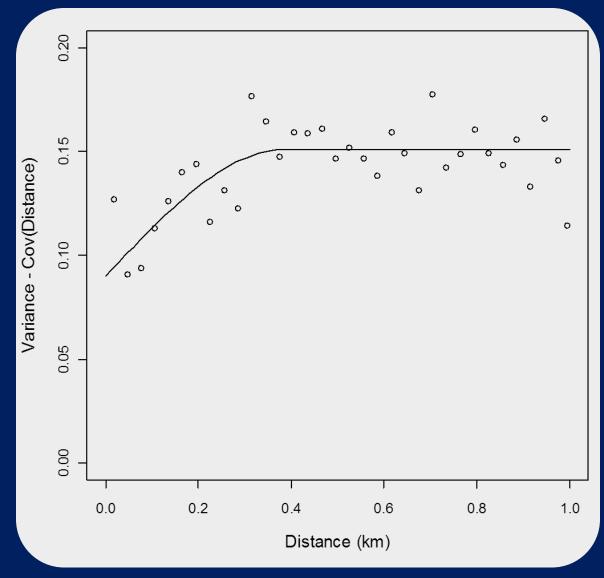
# Small Example

| Matri | x of Correlati | ons  |
|-------|----------------|------|
| Var1  | Var2           | Var3 |
| 1     | 0.9            | -0.3 |
| 0.9   | 1              | 0.3  |
| -0.3  | 0.3            | 1    |

| E     | Eigenvalues |        |
|-------|-------------|--------|
| Var1  | Var2        | Var3   |
| 1.900 | 1.168       | -0.068 |


| Corr   | elation Matrix |        |
|--------|----------------|--------|
| Var1   | Var2           | Var3   |
| 1      | 0.851          | -0.273 |
| 0.851  | 1              | 0.273  |
| -0.273 | 0.273          | 1      |

| Frobenius norm = 0.0879     |
|-----------------------------|
| Max abs difference = 0.0488 |


### Kaufman, Faith, and Schuenemeyer

- In practice we ask geologists to assess
  - marginal distributions of magnitudes of hydrate accumulations in each unit under study
  - marginal distributions of the number of accumulations in each unit and
  - probabilistic dependencies among accumulations within and between units.

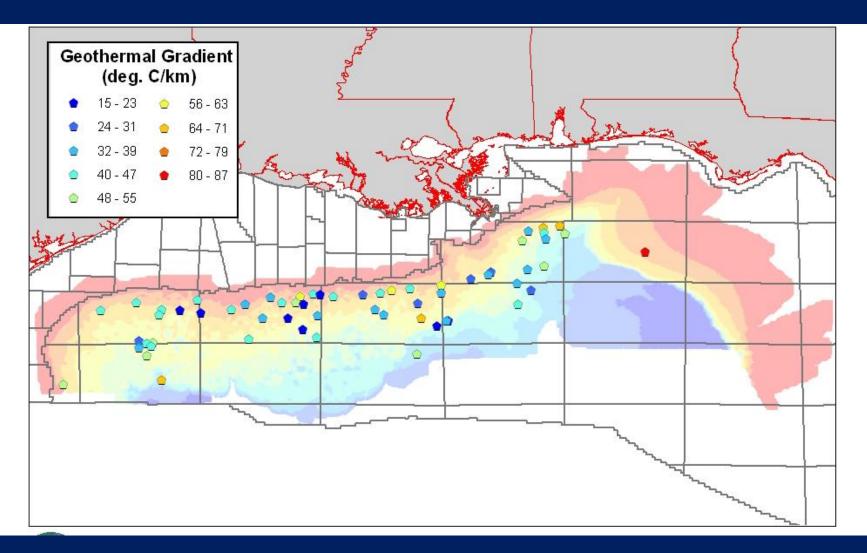
#### **Dependency Matters!**



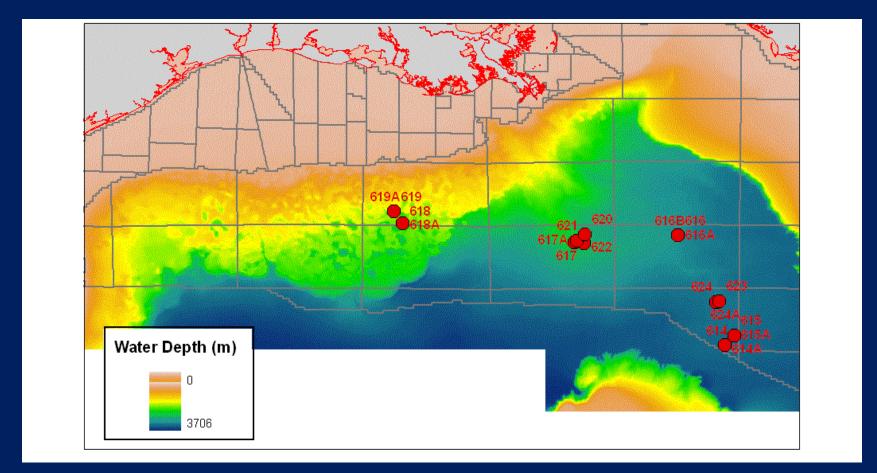
### **Covariance (Semivariogram) Model**



II. Data 1. Hard 2. Analogs

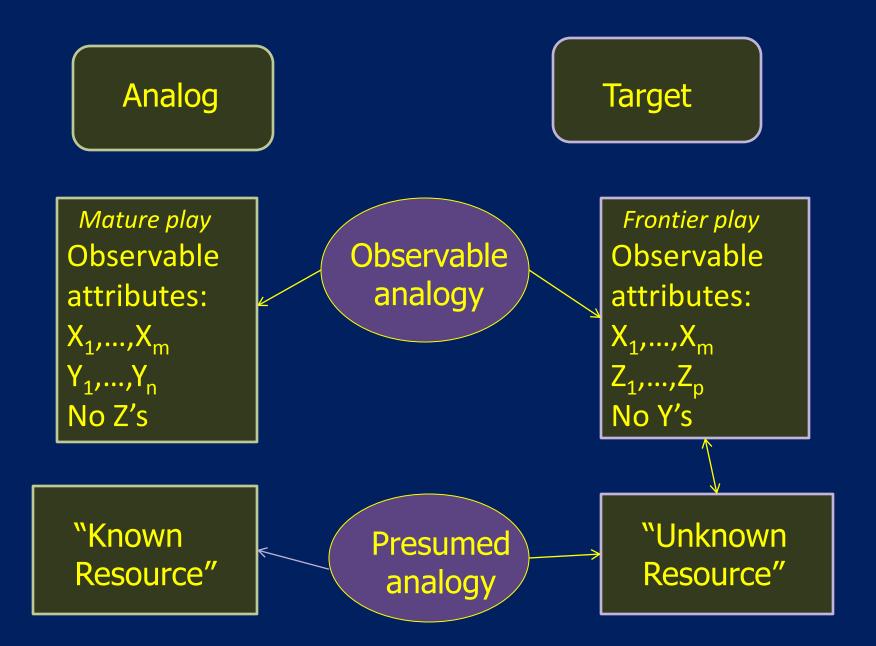

### Why Analogs?

• Data expensive


 In classical designed experiments, sample over area of interest and replicate – even here sometime analogs needed to estimate variance

• Examples:

### Gulf of Mexico, Geothermal Gradient




## **Total Organic Carbon Sites**



#### Oil & Gas Resource Estimation

- Policy makers, energy companies, scientists, public
- Estimation of undiscovered resources
  - Level of exploration
    - Frontier to mature
  - Methods
    - Mature Geological/statistical models hard data
    - Frontier Analogy, expert judgment



## US Geological Survey World Analog Database

- 246 Assessment Units (AUs)
- Observable attributes (factors) are nominal variables assigned to each AU:
  - Architecture
  - Trap system
  - Etc.

#### Resources grouped by AU:

- Sizes, numbers, & properties of oil and gas fields outside the U.S.
- Includes ~ 95% of known petroleum (HIS, 2008 data)
- Probabilistic estimates resources (USGS, 2000)

#### **Observed Factors**

| Observable Attribute (Factor)           | Max Number of Ordered<br>Levels |
|-----------------------------------------|---------------------------------|
| Architecture                            | 3                               |
| Trap System (Major)                     | 4                               |
| Depositional System                     | 4                               |
| Source Rock Depositional Environment    | 2                               |
| Kerogen Type                            | 2                               |
| Source Type                             | 2                               |
| Source Rock Qualifier                   | 1                               |
| Status                                  | 1                               |
| Specific Reservoir Rock Age             | 1                               |
| General Reservoir Rock Age              | 1                               |
| Reservoir Rock Lithology                | 1                               |
| Reservoir Rock Depositional Environment | 1                               |
| Seal Rock Lithology                     | 1                               |
| Тгар Туре                               | 1                               |

#### **Procedure Outline**

- Identify observable attributes (factors) for inclusion via expert judgment (Don Gautier, USGS). In this example they are:
  - Architecture
  - Trap systems
  - Depositional systems
- Establish weighting scheme
  - All attributes are weighted equally
  - Levels within attributes are assigned decreasing weights

## Architecture Levels (Arch\_1, Arch\_2 & Arch\_3)

| AU       | Arch_1                | Arch_2              | Arch_3   |
|----------|-----------------------|---------------------|----------|
| 38220101 | Backarc               | Strike-slip systems | Foreland |
| 38220102 | Backarc               | Strike-slip systems |          |
| 38240101 | Backarc               | Strike-slip systems |          |
| 38240201 | Backarc               | Strike-slip systems |          |
| 38280101 | Backarc               | Strike-slip systems |          |
| 39100101 | Rifted passive margin |                     |          |
| 39100201 | Rifted passive margin |                     |          |

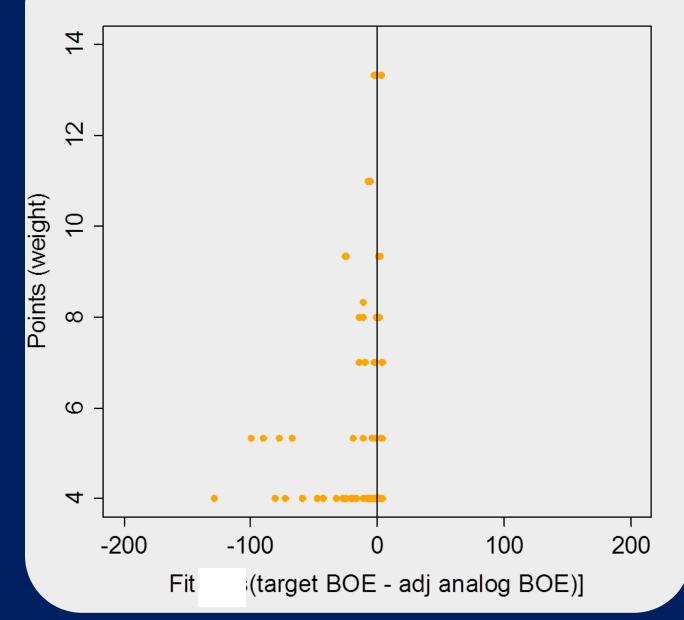
## A Weighting Scheme

|                            |               | Weights |         |         |         |
|----------------------------|---------------|---------|---------|---------|---------|
| Factor                     | Num of Levels | Level 1 | Level 2 | Level 3 | Level 4 |
| Architecture               | 3             | 5.333   | 3.333   | 1.333   |         |
| Trap System (Major)        | 4             | 4       | 3       | 2       | 1       |
| <b>Depositional System</b> | 4             | 4       | 3       | 2       | 1       |

## **Sampling Scheme**

- 24 random samples (AUs) are selected without replacement from the analog database; two large AUs (by BOE) are added.
- Evaluation with a procedure is as follows:
  - Each of the 26 samples is, in turn, assumed to be the target AU
  - The remaining 122 AUs are candidate analogs to be compared with the target. Only AUs with > 50% resources estimated to have been discovered are considered.

#### Examples


 Total BOE in analogs is rescaled to the area of the target (BOE density)

BOE Analog Resource Density = Total Analog BOE x Target Area / Analog Area

#### Measures of Fit

- Many measures of fit
  - We use:
    - Target total BOE density adjusted analog total BOE
  - Note we are assuming total BOE *known* in our model testing procedure

#### Target AU 10150102, Total BOE 4.51



48

## **Analog Issues**

- Using available information
- Missing data
- Uncertain data
- Structure of database
- Expert judgment
- Propagation of uncertainty

## **Using Available Information**

#### • Attributes (factors)

| Observable Attribute (Factor)           | Max Number of Ordered<br>Levels |
|-----------------------------------------|---------------------------------|
| Architecture                            | 3                               |
| Trap System (Major)                     | 4                               |
| Depositional System                     | 4                               |
| Source Rock Depositional Environment    | 2                               |
| Kerogen Type                            | 2                               |
| Source Type                             | 2                               |
| Source Rock Qualifier                   | 1                               |
| Status                                  | 1                               |
| Specific Reservoir Rock Age             | 1                               |
| General Reservoir Rock Age              | 1                               |
| Reservoir Rock Lithology                | 1                               |
| Reservoir Rock Depositional Environment | 1                               |
| Seal Rock Lithology                     | 1                               |
| Тгар Туре                               | 1                               |

#### Using Available Information

- Target resource may not be completely unknown. When possible use:
  - Known prospects or discoveries
  - Size-frequency distribution
  - Oil versus gas
- Multiple analogs
  - Can/should they be combined to provide more accurate results?

#### Missing & Uncertain Data

- Missing data: Discriminatory data elements may be missing
- Uncertainty: Example –

 NE Greenland; no info; Broad regional characteristics; rift-sag basin covered entire area of assessment unit; density of resources in North Sea

#### Missing & Uncertain Data (continued)

- Suggestion: Designate via expert judgment, uncertainty in data elements
  - Analog resource base
    - Not all fields discovered
    - Estimates of remaining undiscovered
  - Areas (analog & target)
    - Uncertainty exists

#### The Database

Biased (systematically wrong-how hierarchic assembled/assembled)

#### **Propagation of Uncertainty**

- Recall goal is to estimate undiscovered resources in target and provide an appropriate uncertainty estimate
- Uncertainty needs to reflect
  - Uncertainty in choice of analog database
  - Uncertainty in elements in database
  - Uncertainty associated with goodness of fit

II. 3. Expert Judgment

#### Examples

- Many disciplines use experts
  - Medicine
  - Food tasting
  - Economics
  - Geology resource assessments
  - Climate
  - Hazards

## **Eliciting Expert Opinion**

- Consensus
- Delphi
- Cooke, RM calibration

# Why Experts?

- Estimate future event
- Estimate event in present measurement not feasible
  - Time
  - Money
  - Accessibility

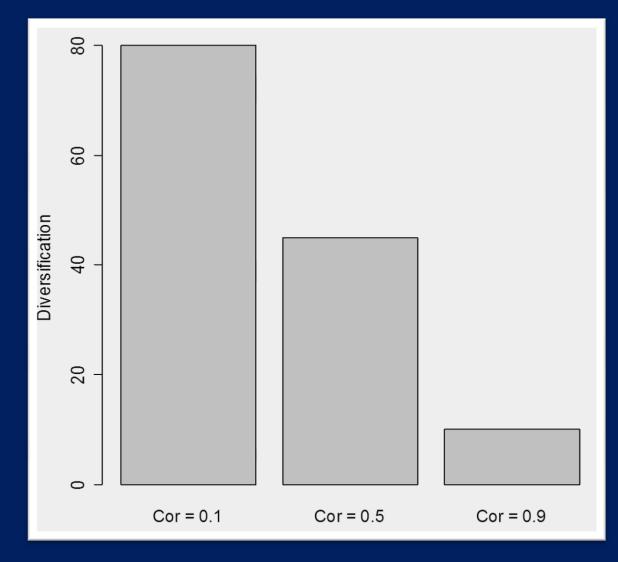
## What Do They Do?

- Answer questions like:
  - How long?
  - How much?

#### **Concerns About Experts!**

- Not all equal!
- Overconfident
- Calibrate or adjust for bias?
- In earth sciences limited number
   Different disciplines
- Weighting
- Gaming the system

# Weighting


- Statistical
- Equal
- Self-selection

#### Thank you

• Questions – comments – suggestions

- Jack's contact info: jackswsc@q.com
- Southwest Statistical Consulting LLC: <u>www.swstatconsult.com</u>
- Statistics for Earth and Environmental Scientists: <u>www.earthstatbook.com</u>

#### **Portfolio Management - Holdings**



#### **Consider a Mutual Fund**

- Two types balanced and specialized
- Specialized energy, technology, health care
- Balanced fund minimal correlation among holding
- Specialized fund high correlation
- It is essential to know the degree of dependency

#### **Uncertainty Intervals**

- Producer perspective
  - Wide
- Policy wonk
  - Narrow

- Investor
  - Realistic

#### **Financial Risk - Reward**

- Suppose investors need a 5% chance of at least 2,664 tcf gas
  - The "Correlated" scenario
  - Pr(Gas >= 2,664) = 0.05
- Alternative A: "Dependent" true
  - $Pr(Gas \ge 2,664) = 0.14$
  - Okay but maybe not best use of resources
- Alternative B: "Independent" true
  - Pr(Gas >= 2,664) = 0.02
  - Could take significant loss

|             | Target                             | Analog (13.3 points)               |
|-------------|------------------------------------|------------------------------------|
| AU_Code     | Lower Volga                        | Western Pre-Aptian Reservoirs      |
| Arch_1      | Rifted passive margin              | Rifted passive margin              |
| Arch_2      |                                    |                                    |
| Arch_3      |                                    |                                    |
| TrapSys_1   | Basement-involved block structures | Basement-involved block structures |
| TrapSys_2   |                                    |                                    |
| TrapSys_3   |                                    |                                    |
| TrapSys_4   |                                    |                                    |
| DepSys_1    | Paralic clastics                   | Paralic clastics                   |
| DepSys_2    | Carbonate shelf                    | Continental clastics               |
| DepSys_3    |                                    |                                    |
| DepSys_4    |                                    |                                    |
| Area_sqkm   | 95,001                             | 13,393                             |
| DiscBOE     | 4.248                              | 0.767                              |
| UnDiscBOE   | 0.262                              | 0.063                              |
| Tot Est Rec | 4.51                               | 0.83                               |
| Adj Est Rec | 4.51                               | 5.89                               |

## Trap Systems Levels

| AU       | TrapSys_1                                 | TrapSys_2                | TrapSys_3       | TrapSys_4       |
|----------|-------------------------------------------|--------------------------|-----------------|-----------------|
| 80420102 | Gravity-induced growth faults             | Stratigraphic            |                 |                 |
|          |                                           | undeformed               | Paleogeomorphic |                 |
| 80430101 | <b>Basement-involved block structures</b> | Stratigraphic            |                 |                 |
|          |                                           | undeformed               |                 |                 |
| 80430102 | Extensional grabens and other             | Stratigraphic            |                 |                 |
|          | structures related to normal faulting     | undeformed               |                 |                 |
| 80470201 | Extensional grabens and other             | <b>Basement-involved</b> | Stratigraphic   | Gravity-induced |
|          | structures related to normal faulting     | block structures         | undeformed      | growth faults   |
| 80470301 | Stratigraphic undeformed                  | Gravity-induced          |                 |                 |
|          |                                           | growth faults            |                 |                 |
| 80470302 | <b>Compressional anticlines, folds,</b>   | Gravity-induced          |                 |                 |
|          | thrusts                                   | growth faults            |                 |                 |

## Architecture Levels (Arch\_1, Arch\_2 & Arch\_3)

| AU       | Arch_1                | Arch_2              | Arch_3   |
|----------|-----------------------|---------------------|----------|
| 38220101 | Backarc               | Strike-slip systems | Foreland |
| 38220102 | Backarc               | Strike-slip systems |          |
| 38240101 | Backarc               | Strike-slip systems |          |
| 38240201 | Backarc               | Strike-slip systems |          |
| 38280101 | Backarc               | Strike-slip systems |          |
| 39100101 | Rifted passive margin |                     |          |
| 39100201 | Rifted passive margin |                     |          |

## A Weighting Scheme

|                            |               | Weights |         |         |         |
|----------------------------|---------------|---------|---------|---------|---------|
| Factor                     | Num of Levels | Level 1 | Level 2 | Level 3 | Level 4 |
| Architecture               | 3             | 5.333   | 3.333   | 1.333   |         |
| Trap System (Major)        | 4             | 4       | 3       | 2       | 1       |
| <b>Depositional System</b> | 4             | 4       | 3       | 2       | 1       |

## **Sampling Scheme**

- 24 random samples (AUs) are selected without replacement from the analog database; two large AUs (by BOE) are added.
- Evaluation with a procedure is as follows:
  - Each of the 26 samples is, in turn, assumed to be the target AU
  - The remaining 122 AUs are candidate analogs to be compared with the target. Only AUs with > 50% resources estimated to have been discovered are considered.

#### Examples

 Total BOE in analogs is rescaled to the area of the target (BOE density)

BOE Analog Resource Density = Total Analog BOE x Target Area / Analog Area

## Examples – 3 in some detail; 23 quickly

- Example 1
- Target AU: Lower Volga

|          | Total Est |            |
|----------|-----------|------------|
| Area (sq | Recov     | Fraction   |
| km)      | BOE       | discovered |
| 95,001   | 4.51      | 0.94       |

#### Measures of Fit

- Many measures of fit
  - We use:
    - Target total BOE density adjusted analog total BOE
  - Note we are assuming total BOE *known* in our model testing procedure

## Examples – 3 in some detail; 23 quickly

- Example 1
- Target AU: Lower Volga

|          | Total Est |            |
|----------|-----------|------------|
| Area (sq | Recov     | Fraction   |
| km)      | BOE       | discovered |
| 95,001   | 4.51      | 0.94       |