Functional Analysis - M. Math. Assignment 7 — 2nd Semester 2021-2022

Due date: May 05, 2022 (by 11:59 pm)

Note: Total number of points is 60. Plagiarism is prohibited. But after sustained effort, if you cannot find a solution, you may discuss with others and write the solution in your own words **only after** you have understood it.

- 1. (10 points) (a) (5 points) Let \mathfrak{X} be a Banach space. Let $\rho : \mathfrak{X} \to \mathfrak{X}^{\#}$ be a linear map satisfying $\rho_x(x) \ge 0$ for all $x \in \mathfrak{X}$. Prove that ρ is a bounded operator.
 - (b) (5 points) Let $C^1[0, 1]$ denote the space of C^1 -functions on [0, 1] endowed with the uniform norm inherited from C[0, 1]. Let $D : (C^1[0, 1], \|\cdot\|_{\infty}) \to (C[0, 1], \|\cdot\|_{\infty})$ be the differentiation operator. Prove that D is linear and has closed graph, but not continuous. (Deduce that $C^1[0, 1]$ is not a closed subspace of C[0, 1].)
- 2. (20 points) (a) (5 points) Prove that there is **no** sequence of scalars $(c_n)_{n \in \mathbb{N}}$ with the property that a scalar series $(a_n)_{n \in \mathbb{N}}$ converges if and only if $a_n c_n \to 0$.
 - (b) (5 points) Let \mathfrak{X} be a Banach space and $(\rho_n)_{n \in \mathbb{N}}$ be a sequence in $\mathfrak{X}^{\#}$. Prove that the following assertions are equivalent:
 - (i) For each norm-convergent series $\sum_{n=1}^{\infty} x_n$ in \mathfrak{X} , the scalar series $\sum_{n=1}^{\infty} \rho_n(x_n)$ converges;
 - (ii) $\sum_{n=1}^{\infty} \|\rho_n \rho_{n+1}\| < \infty.$
 - (c) (5 points) Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers. Show that the series $\sum_{n=1}^{\infty} |a_n a_{n+1}|$ converges if and only if the series $\sum_{n=1}^{\infty} a_n b_n$ converges for every convergent series $\sum_{n=1}^{\infty} b_n$ in \mathbb{R} .
 - (d) (5 points) Prove that a scalar series $\sum_{n=1}^{\infty} a_n$ converges if and only if the scalar series

$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{2^2} + \dots + \frac{(-1)^n}{n^2} \right) a_n,$$

converges.

(Hint: Use the uniform boundedness principle in the appropriate setting.)

- 3. (10 points) A subset Y of a Hilbert space \mathscr{H} is said to be an *orthonormal set* if it consists of mutually orthogonal unit vectors. If Y is an orthonormal set in \mathscr{H} , prove that the following conditions are equivalent:
 - (i) $[Y] = \mathscr{H}$ (that is, the linear span of Y is dense in \mathscr{H});
 - (ii) For each $u \in \mathscr{H}$, $u = \sum_{y \in Y} \langle u, y \rangle y$;
 - (iii) For each $x \in \mathscr{H}$, $||u||^2 = \sum_{y \in Y} |\langle u, y \rangle|^2$;
 - (iv) For each $u, v \in \mathscr{H}, \langle u, v \rangle = \sum_{y \in Y} \langle u, y \rangle \langle y, v \rangle.$
- 4. (20 points) Let \mathbb{D} be the open unit disc of radius 1 centred at the origin of the complex plane. The Bergman space, $L_h^2(\mathbb{D})$, consists of those homolorphic functions on \mathbb{D} that are square-summable with respect to the planar Lebesgue measure, m. Consider the inner product on $L_h^2(\mathbb{D})$ given by

$$\langle f,g \rangle_{L^2_h(\mathbb{D})} = \frac{1}{\pi} \int_{\mathbb{D}} f(z) \overline{g(z)} \, dm(z).$$

- (a) (5 points) Show that $(L_h^2(\mathbb{D}); \langle \cdot, \cdot \rangle_{L_h^2(\mathbb{D})})$ is a Hilbert space.
- (b) (5 points) For $\lambda \in \mathbb{D}$, show that the evaluation map $\rho_{\lambda} : L_{h}^{2}(\mathbb{D}) \to \mathbb{C}$ given by $\rho_{\lambda}(f) = f(\lambda)$, is continuous. Use the Riesz representation theorem for Hilbert spaces to conclude that there is a (unique) function $K_{\lambda} \in L_{h}^{2}(\mathbb{D})$ such that $f(\lambda) = \langle f, K_{\lambda} \rangle$ for all $f \in L_{a}^{2}(\mathbb{D})$. (The function K_{λ} is called the *reproducing kernel* at λ because it reproduces the value of any function at λ .)
- (c) (5 points) Prove that $Y := \{\sqrt{n+1}z^n : n \in \mathbb{N} \cup \{0\}\}$ is an orthonormal set in $L^2_h(\mathbb{D})$ whose span is dense in $L^2_h(\mathbb{D})$.
- (d) (5 points) Show that $\langle K_{\lambda}, K_{\mu} \rangle = \sum_{n=0}^{\infty} (n+1)\lambda^{n}\overline{\mu}^{n} = (1-\lambda\overline{\mu})^{-2}$. (Hint: Use Parseval's formula from Problem 3, and the orthonormal basis from part (ii) of this problem.)

In other words, $K_{\lambda}(z) = \langle K_{\lambda}, K_{z} \rangle = (1 - \lambda \overline{z})^{-2}$ for all $z \in \mathbb{D}$. Thus we have explicitly computed the reproducing kernel function at λ and we have the formula,

$$f(\lambda) = \frac{1}{\pi} \int_{\mathbb{D}} f(z)(1 - \overline{\lambda}z)^{-2} dm(z), \forall \lambda \in \mathbb{D}.$$