Functional Analysis - M. Math. Assignment 6 — 2nd Semester 2021-2022

Due date: April 22, 2022 (by 11:59 pm)

Note: Total number of points is 60. Plagiarism is prohibited. But after sustained effort, if you cannot find a solution, you may discuss with others and write the solution in your own words **only after** you have understood it.

For a compact Hausdorff space X, we use the notation C(X) to denote the Banach space of complex-valued continuous functions on X with the *sup* norm.

- 1. (10 points) Let \mathfrak{X} be a Banach space and \mathfrak{X}_0 be a closed subspace of \mathfrak{X} . A vector $x \in \mathfrak{X}$ is said to be ε -perpendicular to \mathfrak{X}_0 if $||x + y|| \ge (1 \varepsilon)||x||$ for any $y \in \mathfrak{X}_0$.
 - (a) (5 points) Prove that for $\varepsilon > 0$, any proper closed subspace \mathfrak{X}_0 has an ε -perpendicular in \mathfrak{X} .
 - (b) (5 points) Using the above result, show that the unit-ball of an infinite-dimensional Banach space is not compact (with respect to the norm topology).
- 2. (10 points) Consider $L := \{ f \in C[-1,1] : \int_{-1}^{0} f(x) dx = \int_{0}^{1} f(x) dx \}.$
 - (a) (5 points) Prove that L is a closed linear subspace of C[-1,1] and find $\rho \in (C[-1,1])^{\#}$ such that $L = \ker \rho$.
 - (b) (5 points) Prove that ρ from the above part does not attain its norm on the closed unit ball.
- 3. (10 points) Let \mathfrak{X} be a Banach space.
 - (a) (5 points) Prove that the set of norm-attaining functionals in $\mathfrak{X}^{\#}$ is norm-dense in $\mathfrak{X}^{\#}$.
 - (b) (5 points) Prove that \mathfrak{X} is reflexive if and only if $\mathfrak{X}^{\#}$ is reflexive.
- 4. (10 points) Let X be a compact Hausdorff space and let $\mathscr{D}(X) := \{\delta_x : x \in X\} \subseteq (C(X))^{\#}$ denote the space of Dirac measures on X. We have seen in class that $\mathscr{D}(X)$ is the set of extreme points of the set of regular Borel probability measures on X.
 - (a) (5 points) Show that $\mathscr{D}(X)$ with the weak-* topology is homeomorphic to X.
 - (b) (5 points) Show that every regular Borel probability measure on X is the weak-* limit of finitely supported probability measures (discrete probability measures) on X.

5. (20 points) A smooth function $f : (0, \infty) \to \mathbb{R}$ is said to be *completely monotonic* if $(-1)^n f^{(n)} \ge 0$ for all $n \in \mathbb{N} \cup \{0\}$. Let *BCM* denote the set of bounded and completely monotonic functions on $(0, \infty)$. The goal of this exercise is to show that every element of *BCM* is the Laplace transform of a finite positive Borel measure on $[0, \infty)$.

Consider the topology on $C^{\infty}(0,\infty)$ given by the (separating) family of seminorms (for $m, n \in \mathbb{N}$):

$$p_{m,n}(f) = \sup\{|f^{(k)}(x)| : x \in [\frac{1}{n}, n], 0 \le k \le m\}.$$

Note that $C^{\infty}(0,\infty)$ is metrizable (as the family of seminorms is countable). We endow BCM with the corresponding subspace topology.

We define

$$K := \{ f \in BCM : f(0^+) \le 1 \},\$$

which is a convex subset of BCM, and denote the set of extreme points of K by ext(K).

- (a) (5 points) For $x_0 > 0$ and $f \in K$, let $u_{f,x_0}(x) := f(x + x_0) f(x_0)f(x)$. Show that $f + u_{f,x_0}, f - u_{f,x_0} \in K$. Conclude that every element of ext(K) is of the form $f(x) = e^{-\alpha x}$ for some $\alpha \in [0, \infty]$ with the convention that $e^{-\infty x} = 0$. (Hence, $ext(K) \subseteq \{e^{-\alpha x} : \alpha \in [0, \infty]\}$.)
- (b) (5 points) For $\beta > 0$, consider the (dilation) transformation $T_{\beta} : C^{\infty}(0, \infty) \to C^{\infty}(0, 1)$ given by $T_{\beta}(f)(x) = f(\beta x)$ for x > 0. Prove that $T_{\beta}(K) \subseteq K$, and $T_{\beta}(ext(K)) = ext(K)$. (Conclude that $ext(K) = \{e^{-\alpha x} : \alpha \in [0, \infty]\}$.)
- (c) (5 points) Prove that K and ext(K) are compact subsets of BCM. (Hint: Recall that BCM is metrizable and prove sequential compactness.)
- (d) (5 points) Show that for every $f \in BCM$ there is a finite regular Borel measure on $[0, \infty)$ such that

$$f = \int_0^\infty e^{-\alpha x} d\mu(\alpha).$$

(Hint: Here you may assume the Riesz representation theorem for compact Hausdorff spaces, that is, $C[0,\infty]^{\#}$ is isometrically isomorphic to the space of regular Borel measures on $[0,\infty]$.)