Analysis 2 - JRF Assignment 6 — Even Semester 2020-2021

Due date: September 09, 2021 (by 11:59 pm)

Note: Each question is worth 10 points.

We denote the space of Schwartz functions by $\mathscr{S}(\mathbb{R}^n)$, and the space of tempered distributions on \mathbb{R}^n by $\mathscr{S}'(\mathbb{R}^n)$. The dilation of a tempered distribution $u \in \mathscr{S}'(\mathbb{R}^n)$ by a > 0 is denoted by $\delta_a(u)$.

The mean value of a function u taken over the surface of a sphere of radius r > 0 about the point $x \in \mathbb{R}^n$ is denoted by,

$$\mathscr{M}_{x,u}(r) := \frac{1}{\omega_{n-1}} \int_{S^{n-1}} u(x+rt') dt'.$$

We denote the open ball of radius r in \mathbb{R}^n by $B_n(0,r)$.

- 1. Let Ω be a domain in \mathbb{R}^n . We say that $u \in C^2(\overline{\Omega})$ is subharmonic if $\Delta u \geq 0$.
 - (a) Show that for every $x \in \Omega$ and r > 0 such that $B(x, r) \subset \Omega$, we have

$$u(x) \le \mathscr{M}_{x,u}(r).$$

(b) Use part (a) to prove the maximum principle for subharmonic functions:

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

- 2. Let Ω be a domain in \mathbb{R}^n and u be harmonic in Ω .
 - (a) For a convex function $\varphi \in C^{\infty}(\mathbb{R})$ and u be harmonic in Ω . Prove that $\varphi \circ u$ is subharmonic.
 - (b) Let u be harmonic in Ω . Prove that $|\nabla u|^2$ is subharmonic.
- 3. Let u be a non-negative function which is harmonic in $B_n(0,1)$ with a continuous extension to its boundary.
 - (a) Show that for every x such that |x| < 1, we have

$$\frac{1-|x|}{(1+|x|)^{n-1}}u(0) \le u(x) \le \frac{1+|x|}{(1-|x|)^{n-1}}u(0).$$

(b) For $0 \le r \le \frac{1}{2}$, show that

$$\sup_{B(0,r)} u \le 3^n \inf_{B(0,r)} u.$$

- 4. Let u_k be an increasing sequence of functions which are harmonic in $B_n(0, 1)$. Assume that $u_n(0)$ is a Cauchy sequence. Show that there exists a harmonic function u such that $u_n \to u$ uniformly in $B_n(0, r)$ for every r < 1.
- 5. A distribution in $\mathscr{S}'(\mathbb{R}^n)$ is called homogeneous of degree $\gamma \in \mathbb{C}$ if

$$\langle u, \delta_{\lambda}(f) \rangle = \lambda^{-n-\gamma} \langle u, f \rangle, \forall \lambda > 0.$$

- (a) Prove that this definition agrees with the usual definition of homogeneity for functions.
- (b) Show that δ_0 is homogenous of degree -n.
- (c) Show that u is homogeneous of degree γ if and only if \hat{u} is homogeneous of degree $-n \gamma$.

Remark: In particular, the Fourier transform of a homogeneous distribution of degree -n+1 is a homogeneous distribution of degree -1. For an origin-symmetric convex body K, let $||x||_{K}$ denotes the Minkowski functional of K. In the context of our discussion on the Buseman-Petty problem, recall that the formula for central cross-sectional area is based on the Fourier transform of $||x||_{K}^{-n+1}$, which is a homogeneous distribution of degree -n + 1.