Analysis 2 - JRF

Assignment 5 — Even Semester 2020-2021

Due date: August 30, 2021 (by 11:59 pm) $\,$

Note: Each question is worth 10 points.

We denote the space of Schwartz functions by $\mathscr{S}(\mathbb{R}^n)$, and the space of tempered distributions on \mathbb{R}^n by $\mathscr{S}'(\mathbb{R}^n)$. The translation of a tempered distribution $u \in \mathscr{S}'(\mathbb{R}^n)$ by *a* is denoted by $\tau_a u$.

1. Suppose that a function $f \in L^1_{loc}(\mathbb{R}^n)$ satisfies the estimate:

$$|f(x)| \le \frac{C}{(1+|x|)^N},$$

for some N > n. Show that $\hat{f} \in C^m(\mathbb{R}^n)$ for $1 \le m \le [N - n]$.

- 2. For multi-indices α, β , note that the tempered distribution $u := x^{\alpha} \partial^{\beta} \delta_0$ is supported at the origin. Express u as a complex linear combination of derivatives of δ_0 .
- 3. (a) Prove that e^x is not in $\mathscr{S}'(\mathbb{R})$ but that $e^x e^{ie^x}$ is in $\mathscr{S}'(\mathbb{R})$.
 - (b) Compute the derivative of the tempered distribution $e^x e^{ie^x}$.
- 4. For $\varepsilon > 0$, let $T_{\varepsilon} := \frac{\varepsilon}{2} |x|^{\varepsilon 1}$. Compute in $\mathscr{S}'(\mathbb{R})$, the following limit:

$$\lim_{\varepsilon \to 0} T_{\varepsilon}.$$

5. (a) Let p be a positive integer and $(a_n)_{n \in \mathbb{N}}$ be a sequence of complex numbers such that

$$|a_n| \le Cn^p, \forall n \in \mathbb{N}.$$

Prove that the sequence $T_N := \sum_{n=-N}^N a_n e^{2\pi i n x}$ converges in $\mathscr{S}'(\mathbb{R}^n)$.

(b) Let $T := \lim_{N \to \infty} T_N$. Show that

$$\frac{dT}{dx} = \sum_{-\infty}^{\infty} (2\pi i n) a_n e^{2\pi i n x},$$

and that $\tau_1 T = T$.

6. (Poisson Summation formula) Show that $\sum_{-\infty}^{\infty} e^{2\pi i n x} = \sum_{-\infty}^{\infty} \delta_n$ in $\mathscr{S}'(\mathbb{R})$.