Analysis 2 - JRF

Assignment 3 — Even Semester 2020-2021

Due date: August 16, 2021 (by 11:59 pm)

Note: Each question is worth 10 points.

For $n \in \mathbb{N}$, we denote the space of Schwartz functions on \mathbb{R}^n by $\mathscr{S}(\mathbb{R}^n)$, and the space of smooth functions on \mathbb{R}^n with compact support by $C_c^{\infty}(\mathbb{R}^n)$. For a measurable function f on $(\mathbb{R}^n; \mu)$ (where μ is the Lebesgue measure), we denote the centred Hardy-Littlewood maximal function by $M_c(f)$.

1. If $f \in \mathscr{S}(\mathbb{R}^n)$ and f(0) = 0, show that there are functions $g_1, g_2, \ldots, g_n \in \mathscr{S}(\mathbb{R}^n)$ such that

$$f(x) = \sum_{k=1}^{n} x_k g_k(x).$$

- 2. Let $(a_j)_{j \in \mathbb{N}}$ be a given sequence of complex numbers.
 - (a) Let $\varphi \in C_c^{\infty}(\mathbb{R})$ be supported in (-2, 2) and identically equal to 1 on [-1, 1]. Prove that we can find a sequence of real numbers, $(\lambda_k)_{k \in \mathbb{N}}$, such that if we set

$$f_k(x) := \frac{a_k}{k!} x^k \varphi(\lambda_k x),$$

then

$$\sup_{x \in \mathbb{R}} \left| \left(\frac{d}{dx} \right)^m f_k(x) \right| \le \frac{1}{2^k}, \text{ for } 1 \le m \le k - 1.$$

(b) Prove that the series $\sum_{k=0}^{\infty} f_k(x)$ defines a function f which is smooth and

$$\left(\frac{d^j}{dx^j}f\right)(0) = a_j, j = 0, 1, 2, \dots$$

3. (Sharpness of the Hardy-Littlewood maximal inequality) Let $f \in L^1(\mathbb{R}^n; \mu)$ be non-zero. Show that there is a constant $\alpha_f > 0$ (depending on f) such that

$$M_c(f)(x) \ge \frac{\alpha_f}{|x|^n},$$

for sufficiently large values of |x|. Conclude that $M_c(f) \notin L^1(\mathbb{R}^n; \mu)$.

- 4. (Local non-integrability of $M_c(f)$)
 - (a) Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} \frac{1}{|x|\log(1/|x|)^2} & \text{if } |x| \le \frac{1}{2}, \\ 0 & \text{otherwise.} \end{cases}$$

Prove that $f \in L^1(\mathbb{R}^n; \mu)$.

(b) Show that there is a constant $\alpha > 0$ such that

$$M_c(f)(x) \ge \frac{\alpha}{|x|\log(1/|x|)},$$

for all $|x| \leq \frac{1}{2}$. Conclude that f is **not** integrable on any neighbourhood of the origin.

5. (Lebesgue density) The Lebesgue density \mathcal{D}_E of a measurable subset $E \subseteq \mathbb{R}^n$ at a point $x \in \mathbb{R}^n$ is defined as

$$\mathcal{D}_E(x) = \lim_{\mu(B) \to 0, x \in B} \frac{\mu(E \cap B)}{\mu(B)},$$

whenever the limit exists. The set of points $x \in \mathbb{R}^n$ for which $\mathcal{D}_E(x) = 1$ is called the set of density points of E.

- (a) Show that $\mathcal{D}_E(x) = 1$ for almost every $x \in E$, and $\mathcal{D}_E(x) = 0$ for almost every $x \in \mathbb{R}^n \setminus E$.
- (b) If $E \subseteq [0, 1]$ is Lebesgue-measurable and there exists $\alpha > 0$ such that $\mu(E \cap I) \ge \alpha \mu(I)$ for all subintervals I of [0, 1], then $\mu(E) = 1$.