Advanced Linear Algebra - M. Math. Assignment 2 — 1st Semester 2022-2023

Due date: September 30, 2022 (in class)

Note: Total number of points is 60. Plagiarism is prohibited. But after sustained effort, if you cannot find a solution, you may discuss with others and write the solution in your own words **only after** you have understood it.

- 1. (10 points) Let $A \in M_n(\mathbb{C})$. Show that there is a unique partial isometry $V \in M_n(\mathbb{C})$ such that A = VP for some symmetric positive-semidefinite matrix $P \in M_n(\mathbb{C})$, and rank $(A) = \operatorname{rank}(V)$. Is the corresponding P also uniquely determined?
- 2. (10 points) Let $A, B \in M_n(\mathbb{C})$. Show the following:
 - 1. $\det(I_n + AB) = \det(I_n + BA);$
 - 2. $\operatorname{rank}(I_n + AB) = \operatorname{rank}(I_n + BA).$
- 3. (10 points) (a) (10 points) If $\lambda_j^{\downarrow}(A)$ denotes the eigenvalues of an Hermitian matrix $A \in M_n(\mathbb{C})$ arranged in decreasing order, then for $1 \leq k \leq n$, we have

$$\sum_{j=1}^{k} \lambda_j^{\downarrow}(A) = \max \sum_{j=1}^{k} \langle x_j, Ax_j \rangle,$$

where the maximum is taken over all orthonormal k-tuples of vectors (x_1, \ldots, x_k) in \mathbb{C}^n . (Hint: Use Schur's majorization theorem about diagonals of Hermitian matrices.)

(b) (5 points) (Ky Fan's maximum principle) Consider Hermitian matrices $A, B \in M_n(\mathbb{C})$. Show that for $1 \leq k \leq n$, we have

$$\sum_{j=1}^k \lambda_j^{\downarrow}(A+B) \leq \sum_{j=1}^k \lambda_j^{\downarrow}(A) + \sum_{j=1}^k \lambda_j^{\downarrow}(B).$$

4. (10 points) Show that for $A, B \in M_n(\mathbb{C})$ and $1 \le k \le n$, we have

$$\sum_{j=1}^{k} s_j(A+B) \le \sum_{j=1}^{k} s_j(A) + \sum_{j=1}^{k} s_j(B),$$

where $s_j(\cdot)$ denotes the *j*th singular value.

Advanced Linear Algebra - M. Math.: Sheet 2— 1st Semester 2022-2023

- 5. (15 points) Let P_1, \ldots, P_m be a family of mutually orthogonal projections in \mathbb{C}^n such that $\bigoplus_{j=1}^m P_j = I$. The linear mapping $\mathcal{C} : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ given by $A \mapsto \sum_{j=1}^m P_j A P_j$ defines a conditional expectation of $M_n(\mathbb{C})$ onto the unital *-subalgebra consisting of block-diagonal matrices (the blocks corresponding to P_j 's), and is called a **pinching** of A. In fact, every conditional expectation on $M_n(\mathbb{C})$ arises as a pinching operation.
 - (a) (10 points) Show that for every pinching \mathcal{C} , we have

$$s(\mathcal{C}(A)) \prec_w s(A),$$

where $s(\cdot)$ denotes the vector of singular values. (Hint: Show this for m = 2.)

(b) (5 points) Prove that if $A \in M_n(\mathbb{C})$ is a Hermitian matrix, then $\lambda(\mathcal{C}(A)) \prec \lambda(A)$, where $\lambda(\cdot)$ denotes the vector of eigenvalues (counted with multiplicity) arranged in decreasing order.

(In fact, we will later see in this course that for every completely positive map Φ : $M_n(\mathbb{C}) \to M_n(\mathbb{C})$ and a Hermitian matrix $A \in M_n(\mathbb{C}), \lambda(\Phi(A)) \prec \lambda(A)$. The Hadamard determinant inequality, the Hadamard-Fischer determinant inequality are corollaries of this general majorization inequality involving vectors of eigenvalues.)