1) It is given to you that $11^6 \equiv 4 \mod 43$. Find the remainder when 11^{19} is divided by 43.

<u>Ans</u>: We know that if $a \equiv b \mod m$, then $a^n \equiv b^n \mod m$ for any natural number n. Additionally $c \cdot a \equiv c \cdot b \mod m$ for any integer c.

As $11^6 \equiv 4 \mod 43$, we have that $(11^6)^3 \equiv 4^3 \mod 43 \Rightarrow 11^{18} \equiv 64 \equiv 21 \mod 43$. Multiplying 11 to both sides, we see that $11^{19} \equiv 11 \times 21(=231) \equiv 16 \mod 43$. Thus the remainder is 16.

2) It is given to you that $11^6 \equiv 4 \mod 43$. Find the remainder when 11^{90} is divided by 43.

<u>Ans</u>: As 43 is a prime number and 11 is not divisible by 43, by Fermat's little theorem we have that $11^{42} (= 11^{(43-1)}) \equiv 1 \mod 43$. Thus $11^{84} (= (11^{42})^2) \equiv 1 \mod 43 \Rightarrow 11^6 \times 11^{84} \equiv 11^6 \times 1 \mod 43 \Rightarrow 11^{90} \equiv 11^6 \equiv 4 \mod 43$. Thus the remainder is 4.

3) Find the remainder when 3^{50} is divided by 15.

<u>Ans</u>: We will explore two ways of doing this.

a) $3^3(=27) \equiv -3 \mod 15 \Rightarrow 3^6(=(3^3)^2) \equiv (-3)^2 \equiv 3^2 \mod 15$. We repeatedly use the fact that $3^6 \equiv 3^2 \mod 15$ by taking suitable powers. If we cube both sides, we get $3^{18} \equiv 3^6 \equiv 3^2 \mod 15$. Next, we square both sides of the previous equation to get $3^{36} \equiv 3^4 \mod 15$. Multiply 3^14 on both sides to get $3^{50} \equiv 3^{18} \mod 15$. But we already know from our previous calculations that $3^{18} \equiv 3^2 \mod 15$. Thus 3^{50} leaves a remainder of $3^2 = 9$ when divided by 15.

b) $15 = 3 \times 5$. Clearly 3^{50} is divisible by 3. By Fermat's little theorem, $3^4 \equiv 1 \mod 5$. Taking the 12th power on both sides, we get $3^{48} \equiv 1 \mod 5$. Thus $3^{50} \equiv 3^2 \equiv 4 \mod 5$. The remainder modulo 15 must also leave the same remainders as 3^{50} when divided by 3, and 5. Then we must answer the following question : Find r such that $0 \leq r < 15$, and 3 divides r and r leaves a remainder of 4 when divided by 5. The possible choices for r from the second condition are 4, 9, 14. Only one of them is divisible by 3 i.e. 9 which is the answer we are looking for.

4) Find a natural number x such that 11x leaves a remainder of 1 when divided by 25.

<u>Ans</u>: We want to solve $11x \equiv 1 \mod 25$. In other words, we want to find the multiplicative inverse of $\overline{11}$ in the class of remainders modulo 25. First of all, it is necessary that 11 and 25 be coprime for a multiplicative inverse to exist.

Let's use the Euclidean division algorithm to compute the GCD of 11 and 25. $25 = 11 \times 2 + 3$, $\begin{array}{l} 11 = 3 \times 3 + 2, \\ 3 = 2 \times 1 + 1. \end{array}$

Thus the GCD of 11 and 25 is 1 i.e. they are coprime. We trace the steps backwards to find integers m, n such that 25m + 11n = 1.

 $3-2=1 \Rightarrow 3-(11-3\times 3)=1 \Rightarrow 3\times 4-11=1 \Rightarrow (25-11\times 2)\times 4-11=1 \Rightarrow 25\times 4+11\times (-9)=1$. From the equation $25\times 4+11\times (-9)=1$, we note that when divided by 25, 11×-9 leaves a remainder of 1. Thus -9 or 25+(-9)=16 is the inverse of 11 modulo 25. We can check by noting that $11\times 16=176$ leaves a remainder of 1 when divided by 25. Thus x=16 is one possible answer. (any natural number in the remainder class of 16 is an answer. For instance 25+16(-41), 50+16(=66), 75+16(=91), etc.)

5) Find the last two digits of 13^{150} .

<u>Ans</u>: The last two digits of 13^{150} is equal to the remainder r when it is divided by 100. As $100 = 25 \times 4$, 13^{100} and r leave the same remainders when divided by 25, and 4. So we try to compute $13^{150} \mod 25$ and $13^{150} \mod 4$ instead.

 $13 \equiv 1 \mod 4$. Thus $13^{150} \equiv 1^{150} \equiv 1 \mod 4$.

 $13^2 \equiv 19 \equiv -6 \mod 25$. Squaring both sides, we get $13^4 \equiv 36 \equiv 11 \mod 25 \Rightarrow 13^8 \equiv 11^2 \equiv 21 \equiv -4 \mod 25 \Rightarrow 13^{16} \equiv (-4)^2 \equiv 16 \mod 25$. Thus $13^4 \times 13^{16} \equiv 11 \times 16 \equiv 1 \mod 25$. Once we have $13^{20} \equiv 1 \mod 25$, by taking 7th power on both sides, we get $13^{140} \equiv 1 \mod 25$. This implies that $13^{150} \equiv 13^{10} \mod 25$. Also using our previous calulations, we get $13^{10} = 13^8 \times 13^2 \equiv (-4) \times (-6) \equiv 24 \mod 25$. We conclude that $13^{150} \equiv 24 \mod 25$.

Thus we also have that $r \equiv 1 \mod 4$ and $r \equiv 24 \mod 25$. As $0 \le r < 100$, from the second part, we have that r must be one of the following: 24, 49, 74, 99. Only one of the above numbers, 49, leaves remainder 1 when divided by 4. Thus r = 49.

6) For a RSA cipher, if the two primes are p = 17, q = 19, find two valid candidates for e (encoding power) and d (decoding power) such that neither of them is equal to 1. (In other words, find non-trivial ones.)

<u>Ans</u>: Our encoding power, e, must be co-prime to $(p-1)(q-1) = (17-1) \times (19-1) = 16 \times 18 = 288$. We choose e = 7. The decoding power d has the property that $e \cdot d$ leaves a remainder of 1 when divided by m = (p-1)(q-1). So, we need to find the multiplicative inverse of 7 modulo 288.

 $288 = 7 \times 41 + 1$. Thus the multiplicative inverse of 7 is 288 + (-41) = 247. Thus we have d = 247 as the decoding power.

7) We have a RSA cipher based on the two primes p = 5, q = 7 and e = 11. If $A \rightarrow 01.B \rightarrow 02, \dots, Z \rightarrow 26$, what is the encrypted version of the message "EXAM"? (Note that the encrypted version is a string of numbers all of which are less than 35.)

<u>Ans:</u> EXAM $\rightarrow 05\ 24\ 01\ 13$. We use the encoding power (11) to raise the numbers to the power 11 and store the remainders modulo $p \cdot q = 5 \times 7 = 35$.

E translates as $5^{11} \mod 35$.

 $5^2 \equiv -10 \mod 35 \Rightarrow 5^4 \equiv (-10)^2 \equiv -5 \mod 35 \Rightarrow 5^8 \equiv (-5)^2 \equiv 5^2 \mod 35 \Rightarrow 5^2 \times 5^8 = 5^{10} \equiv 5^2 \times 5^2 \equiv 5^4 \equiv -5 \mod 35 \Rightarrow 5^{11} \equiv 5 \times -5 \equiv 10 \mod 35$. Thus the encoding of E is 10.

X translates as $24^{11} \mod 35$. $24 \equiv -11 \mod 35 \Rightarrow 24^2 \equiv (-11)^2 \equiv 121 \equiv 16 \mod 35 \Rightarrow 24^4 \equiv 16^2 \equiv 11 \mod 35 \Rightarrow 24^8 \equiv 11^2 \equiv 16 \mod 35 \Rightarrow 24^2 \times 24^8 = 24^{10} \equiv 16 \times 16 \equiv 11 \mod 35 \Rightarrow 24 \times 24^{10} = 24^{11} \equiv (-11) \times 11 \equiv -121 \equiv 19$. Thus the encoding of X is 19.

A translates as $1^{11} \mod 35$. Thus the encoding of A is 01.

M translates as $13^{11} \mod 35$.

 $13^2 \equiv -6 \mod 35 \Rightarrow 13^4 \equiv (-6)^2 \equiv 36 \equiv 1 \mod 35 \Rightarrow 13^8 \equiv 1 \mod 35 \Rightarrow 13^2 \times 13^8 \equiv 13^{10} \equiv (-6) \times 1 \equiv -6 \mod 35 \Rightarrow 13^{11} \equiv 13 \times (-6) \equiv -78 \equiv -8 \equiv 27 \mod 35$. Thus the encoding of M is 27.

The encrypted message reads as 10 19 01 27.

8) Note that $11 \times 11 \equiv 1 \mod 24$. In the previous question with p = 5, q = 7 we have that (p-1)(q-1) = 24. Thus the decoding power is also 11. Check that the encrypted message is the correct one.

<u>Ans:</u> We decode 10 19 01 27 using the decoding power which is coincidentally also 11.

Translate 10 to $10^d \mod 35$. (d = 11) $10^2 \equiv -5 \mod 35 \Rightarrow 10^4 \equiv 25 \equiv -10 \mod 35 \Rightarrow 10^8 \equiv (-10)^2 \equiv -5 \mod 3510^2 \times 10^8 = 10^{10} \equiv (-5) \times (-5) \equiv 25 \equiv -10 \mod 35 \Rightarrow 10^{11} \equiv -100 \equiv 5 \mod 35$. Thus 10 is decrypted as 05 which is indeed correct.

Compute $19^d \mod 35, 1^d \mod 35, 27^d \mod 35$ and check that the results are 24, 01, 13 respectively.