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1. Introduection

One of the most useful principles of enumeration in discrete probability and
combinatorial theory is the celebrated principle of inclusion-exclusion (cf. FELLER *,
FrEcueT, Riorpan, Rysgr). When skillfully applied, this principle has yielded
the solution to many a combinatorial problem. Tts mathematical foundations
were thoroughly investigated not long ago in a monograph by FrRECHET, and it
might at first appear that, after such exhaustive work, little else could be said
on the subject.

One frequently notices, however, a wide gap between the bare statement
of the principle and the skill required in recognizing that it applies to a particular
combinatorial problem. It has often taken the combined efforts of many a
combinatorial analyst over long periods to recognize an inclusion-exclusion
pattern. For example, for the ménage problem it took fifty-five years, since
CAYLEY’s attempts, before JacQues ToucHARD in 1934 could recognize a pattern,
and thence readily obtain the solution as an explicit binomial formula. The
situation becomes bewildering in problems requiring an enumeration of any of the
numerous collections of combinatorial objects which are nowadays coming to the
fore. The counting of trees, graphs, partially ordered sets, complexes, finite sets
on which groups act, not to mention more difficult problems relating to permu-
tations with restricted position, such as Latin squares and the coloring of maps,
seem to lie beyond present-day methods of enumeration. The lack of a systematic

This work was begun under contract NSF-GP-149, continued under contract with the
Qffice of Naval Research, and concluded while the author was a Fellow of the Sloan Founda-
tion.

* Author’s names refer to the bibliography at the end.
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theory is hardly matched by the consummate skill of a few individuals with a
natural gift for enumeration.

This work begins the study of a very general principle of enumeration, of
which the inclusion-exclusion principle is the simplest, but also the typical case.
It often happens that a set of objects to be counted possesses a natural ordering,
in general only a partial order. It may be unnatural to fit the enumeration of such
a set into a linear order such as the integers: instead, it turns out in a great many
cases that a more effective technique is to work with the natural order of the set.
One is led in this way to set up a “difference calculus™ relative to an arbitrary
partially ordered set.

Looked at in this way, a surprising variety of problems of enumeration reveal
themselves to be instances of the general problem of inverting an “indefinite sum”
ranging over a partially ordered set. The inversion can be carried out by defining an
analog of the “difference operator” relative to a partial ordering. Such an operator
is the Mobius function, and the analog of the “fundamental theorem of the
calculus” thus obtained is the Mobius inversion formula on a partially ordered set.
This formula is here expressed in a language close to that of number theory,
where it appears as the well-known inverse relation between the Riemann zeta
funection and the Dirichlet generating function of the classical Mdbius function.
In fact, the algebra of formal Dirichlet series turns out to be the simplest non-
trivial instance of such a ‘““difference calculus”, relative to the order relation of
divisibility.

Once the importance of the Mobius function in enumeration problems is
realized, interest will naturally center upon relating the properties of this function
to the structure of the ordering. This is the subject of the first paper of this series;
we hope to have at least begun the systematic study of the remarkable properties
of this most natural invariant of an order relation.

We begin in Seetion 3 with a brief study of the incidence algebra of a locally
finite partially ordered set and of the invariants associated with it: the zeta
function, Mébius function, incidence function, and REuler characteristic. The
language of number theory is kept, rather than that of the calculus of finite
differences, and the results here are quite simple.

The next section contains the main theorems: Theorem 1 relates the Mobius
functions of two sets related by a Galois connection. By suitably varying one of
the sets while keeping the other fixed one can derive much information. Theorem 2
of this section is suggested by a technique that apparently goes back to RaManu-
7aN. These two basic results are applied in the next section to a variety of special
cases; although a number of applications and special cases have been left out, we
hope thereby to have given an idea of the techniques involved.

The results of Section 6 stem from an “Ideenkreis” that can be traced back
to Whitney’s early work on linear graphs. Theorem 3 relates the Mébius function
to certain very simple invariants of “cross-cuts” of a finite lattice, and the analogy
with the Huler characteristic of combinatorial topology is inevitable. Pursuing
this analogy, we were led to set up a series of homology theories, whose Euler
characteristic does indeed coincide with the Euler characteristic which we had
introduced by purely combinatorial devices.
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Some of the work in lattice theory that was carried out in the thirties is

useful in this investigation; it turns out, however, that modular lattices are not
‘combinatorially as interesting as a type of structure first studied by WHITNEY,

which we have called geometric lattices following BirrrHOFF and the French
school. 'The remarkable property of such lattices is that their Mébius function
alternates in sign (Section 7).

To prevent the length of this paper from growing beyond bounds, we have
omitted applications of the theory. Some elementary but typical applications
will be found in the author’s expository paper in the American Mathematical
Monthly. Towards the end, however, the temptation to give some typical examples
became irresistible, and Sections 9 and 10 were added. These by no means exhaust
the range of applications, it is our conviction that the Mdbius inversion formula
on a partially ordered set is a fundamental principle of enumeration, and we hope
to implement this conviction in the successive papers of this series. One of them
will deal with structures in which the Mébius function is multiplicative, —-that
is, has the analog of the number-theoretic property u(mn) = w(m) u(n) if m and
n are coprime — and another will give a systematic development of the Ideenkreis
centering around Porya’s Hauptsatz, which can be significantly extended by a
suitable Mobius inversion.

A few words about the history of the subject. The statement of the Mobius
inversion formula does not appear here for the first time: the first coherent
version—with some redundant assumptions—-is due to WEISNER, and was indepen-
dently rediscovered shortly afterwards by Priuie Harn. Ward gave the statement
in full generality. Strangely enough, however, these authors did not pursue the
combinatorial implications of their work ; nor was an attempt made to systemati-
cally investigate the properties of Mobius functions. Aside from Harr’s appli-
cations to p-groups, and from some applications to statistical mechanics by
M. S. GreEN and NETTLETON, little has been done; we give a hopefully complete
bibliography at the end.

It is a pleasure to acknowledge the encouragement of G. BIRKHOFF and
A. GLeAsoN, who spotted an error in the definition of a cross-cut, as well as of
SEYyMouR SHERMAN and Ka1-La1 Ciuwe. My colleagues D. Kax, G. WHITEHEAD,
and especially F. PETERSON gave me essential help in setting up the homological
interpretation of the cross-cut theorem.

2. Preliminaries

Little knowledge is required to read this work. The two notions we shall not
define are those of a partially ordered set (whose order relation is denoted by <)
and a lattice, which is a partially ordered set where max and min of two elements
(we call them join and meet, as usual, and write them V/ and A) are defined. We
shall use instead the symbols U and N to denote union and intersection of sefs
only. A segment [z, y], for  and y in a partially ordered set P, is the set of all
elements z between x and y, that is, such that x < 2z =< y. We shall occasionally
use open or half-open segments such as [x, y), where one of the endpoints is to be
omitted. A segment is endowed with the induced order structure; thus, a segment
of a lattice is again a lattice. A partially ordered set is locally finite if every segment
is finite. We shall only deal with locally finite partially ordered sets.
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The product P x @ of partially ordered sets P and @) is the set of all ordered
pairs (p, ), where p € P and q € @, endowed with the order (p, ¢) = (r, s) whenever
p = r and ¢ = s. The product of any number of partially ordered sets is defined
similarly. The cardinal power Hom (P, ¢}) is the set of all monotonic functions
from P to @, endowed with the partial order structure f = g whenever f(p) = g(p)
for every p in P.

In a partially ordered set, an element p covers an element ¢ when the segment
[g, ] contains two elements. An afom in P is an element that covers a minimal
element, and a dual atom is an element that is covered by a maximal element.

If P is a partially ordered set, we shall denote by P* the partially ordered set
obtained from P by inverting the order relation.

A closure relation in a partially ordered set P is a function p — p of P into
itself with the properties (1) = p; (2) § = P; (3) p = ¢ implies § = §. An
element is closed if p = §. If P is a finite Boolean algebra of sets, then a closure
relation on P defines a lattice structure on the closed elements by the rules
pAg=pngand p\/ qg=pUg, and it is easy to see that every finite lattice
is isomorphic to one that is obtained in this way. A Galois connection (cf. ORE,
p- 182ff)) between two partially ordered sets P and @ is a pair of functions
{: P — Qand sz @ — P with the properties: (1) both { and s are order-inverting;
(2)forpin P, ({(p)) = p,and forgin @, {(n(q)) = ¢. Under these circumstances
the mappings p — =z ({(p)) and ¢ —{(m(q)) are closure relations, and the two
partially ordered sets formed by the closed sets are isomorphic.

In Section 7, the notion of a closure relation with the Mac Lane-Steiniiz exchange
property will be used. Such a closure relation is defined on the Boolean algebra P
of subsets of a finite set F and satisfies the following property: if p and ¢ are points
of E, and S a subset of E, and if p ¢ § but peS Uy, then ¢ SU p. Such a closure
relation can be made the basis of WRITNEY's theory of independence, as well as of
the theory of geometric lattices. The closed sets of a closure relation satisfying the
MacLaxEe-StriNITZ exchange property where every point is a closed set form a
geometric (= matroid) lattice in the sense of BirkuoFF (Lattice Theory, Chapter
IX).

A partially ordered set P is said to have a 0 or a I if it has a unique
minimal or maximal element. We shall always assume 0 + I. A partially ordered
set P having a 0 and a [ satisfies the chain condition (also called the JoRDAN-
DEDERIND chain condition) when all totally ordered subsets of P having a
maximal number of elements have the same number of elements. Under these
circumstances one introduces the rank r(p) of an element p of P as the length of a
maximal chain in the segment [o, p], minus one. The rank of 0 is 0, and the rank
of an atom is 1, The height of P is the rank of any maximal element, plus one.

Let P be a finite partially ordered set satisfying the chain condition and of
height n + 1. The characteristic polynomial of P is the polynomial Z w(0, xyAn—r@),
where r is the rank function (see the def. of u below). se b

If 4 is a finite set, we shall write n(4) for the number of elements of A.
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3. The ineidence algebra
Let P be a locally finite partially ordered set. The incidence algebra of P is
defined as follows. Consider the set of all real-valued functions of two variables
f(x, y), defined for x and y ranging over P, and with the property that f(x, y) = 0
if # £ y. The sum of two such functions f and ¢, as well as multiplication by
scalars, are defined as usual. The product » = fg is defined as follows:

bz, y) = f(x,2)9(z¥).

r=z=y

In view of the assumption that P is locally finite, the sum on the right is well-
defined. It is immediately verified that this is an associative algebra over the real
field (any other associative ring could do). The incidence algebra has an identity
element which we write ¢ (z, y), the Kronecker delta.

The zeta function {(x, y) of the partially ordered set P is the element of the
incidence algebra of P such that {(z,y) = 1 if z = y and {(z, y) = 0 otherwise.
The function = (%, y) = {(x, y) — 0 («, y) is called the incidence function.

The idea of the incidence algebra is not new. The incidence algebra is a special
case of a semigroup algebra relative to a semigroup which is easily associated
with the partially ordered set. The idea of taking “interval functions” goes back
to DEDERIND and E. T. Beri; see also WARD.

Proposition 1. The zeta function of a locally finite partially ordered set s invertible
. the wncidence algebra.

Proof. We define the inverse u (x, y) of the zeta function by induction over the
number of elements in the segment [z, y]. First, set p(x, 2) =1 for all z in P.
Suppose now that u(x, z) has been defined for all 2z in the open segment [z, y).
Then set ‘

plwy)=—2 pl2).

T=Ez<<Y

Clearly u is an inverse of [.
The function y, inverse to £, is called the. Mdobius function of the partially

ordered set P.
The following result, simple though it is, is fundamental:

Proposition 2. (Mobius inversion formula). Lef f(x) be a real-valued junction,
defined for x ranging in a locally finite partially ordered set P. Let an element p exist
with the property that f(x) = 0 unless x = p.

Suppose that

(%) ' g@)=2>f.

Then = .

(**) f@) =29 uy.).
y=a

Proof. The function g is well-defined. Indeed, the sum on the right can be
written as z f (), which is finite for a locally finite ordered set.

P=y=x

Substituting the right side of (*) into the right side of (*¥*) and simplifying,
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we get

Sgpwy,a)=> >fEuy.2)=>2 > @)Ey) ey, ).

y=a Y= 2=y YEX 2

Interchanging the order of summation, this becomes

Zfz)ZC(z?/),uy, Zf(z (z,2) = f(x), q.e.d.

Y=

Corollary 1. Let r(z) be a function defined for x in P. Suppose there is an element
q such that r(x) vanishes unless x = ¢. Suppose that

s(x) =D r(y).
Then e
r(z) = > p(@,y)sy)
y=x

The proof is analogous to the above and is omitted.

Proposition 3. (Duality). Let P* be the partially ordered set obtained by tnverting
the order of a locally finite partially ordered set P, and let u* and u be the Mébius
functions of P* and P. Then u*(z,y) = p(y, x).

Proof. We have, in virtue of Proposition 2 and Corollary 1,

r=Fy =%z
Letting g(z, y) = u*(y, ), it follows that ¢ is an inverse of { in the incidence
algebra of P. Since the inverse is unique, ¢ = g, q. e. d.

Proposition 4. The Mdabius funciton of any segment [x,y] of P equals the
restriction to [x, y] of the Mdbius function of P.
The proof is omitted.

Proposition 5. Let P X Q be the direct product of locally finite partially ordered
sets P and Q. The Mbius function of P X @ is given by

(@), () = o (@ 0) o (y,0) , wow € Py, v e

The proof is immediate and is omitted.
The same letter y has been used for the Mobius functions of three partially
ordered sets, and we shall take this liberty whenever it will not cause confusion.

Corollary (Prineiple of Inclusion-Exelusion). Let P be the Boolean algebra of
all subsels of a finite set of n elements. Then, for x and y in P,

[.L(x, y) - (‘ﬁ ]_)n(y)—n(x) s Yy = £,

where n(x) denotes the number of elements of the set x.

Indeed, a Boolean algebra is isomorphic to the product of n chains of two
elements, and every segment [#, 4] in a Boolean algebra is isomorphic to a Boolean
algebra.

Aside of the simple result of Proposition 5, little can be said in general about
how the Mobius function varies by taking subsets and homomorphic images of a
partially ordered set. We shall see that more sophisticated notions will be required
to relate the Mébius functions of two partially ordered sets.



346 Gran-Carro Rora:

Let P be a finite partially ordered set with 0 and I. The Euler characteristic
E of P is defined as

E=1+u(0]1).

The simplest result relating to the computation of the Euler characteristic
was proved by PHILTP HALL by combinatorial methods. We reprove it below with
a very simple proof which shows one of the uses of the incidence algebra:

Proposition 6. Let P be a finite partially ordered set with 0 and I. For every k,
let Cy be the number of chains with k elements streiched between 0 and I. Then

E=1—02+03—O4—[—

Proof. y=(1=@0+n)1t=60—n+n2.... It is easily verified that
nk—1(x, y) equals the number of chains of k£ elements stretched between x and y.
Letting # = 0 and y = I, the result follows at once.

It will be seen in section 6 that the Euler characteristic of a partially ordered
set can be related to the classical Euler characteristic in suitable homology
theories built on the partially ordered set.

Proposition 6 is a typical application of the incidence algebra. Several other
results relating the number of chains and subsets with specified properties can
often be expressed in terms of identities for functions in the incidence algebra. In
this way, one obtains generalizations to an arbitrary partially ordered set of some
classical identities for binomial coefficients. We shall not pursue this line here
further, since it lies out of the track of the present work.

Example 1. The classical Mobius function p(n) is defined as (— 1)% if » is
the product of % distinet primes, and 0 otherwise. The classical inversion formula
first derived by Mobius in 1832 is:

mw=;ﬂm;mm=;mmﬂ%y

It is easy to see (and will follow trivally from later results) that u (%) is the

Mobius function of the set of positive integers, with divisibility as the partial
order. In this case the incidence algebra has a distinguished subalgebra, formed

by all functions f (n, m) of the form f(n, m) = @ (%) The product H = F G of two

functions in this subalgebra can be written in the simpler form
(*) | Hm) = F(k)G(n).
kn=m
If we associate with the element F of this subalgebra the formal Dirichlet series

F(s) = > F(n)/ns, then the product (*) corresponds to the product of two formal
fn=1

Dirichlet series considered as functions of s, H (8) = ﬁ(s) ¢ (s). Under this

representation, the zeta function of the partially ordered set is the classical Rie-

mann zeta function £ (s) = Z 1/n¢, and the statement that the M&bius function is
n=1
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the inverse of the zeta function reduces to the classical identity 1/ (s) = Z U (n)fns.

1t is hoped this example justifies much of the terminology introduced above.

Example 2, If P is the set of ordinary integers, then w(m,n)= —1 if
m=mn-—1, um,m) =1, and p(m,n) = 0 otherwise. The Mobius inversion
formula reduces to a well known formula of the calculus of finite differences, which
is the discrete analog of the fundamental theorem of calculus.

The Mobius function of a partially ordered set can be viewed as the analog
of the classical difference operator Af(n) = f(n 4 1) — f(n), and the incidence
algebra serves as a calculus of finite dlfferenees on an arbitrary partially ordered set.

4, Main results

It turns out that the Mobius functions of two partially ordered sets can be
compared, when the sets are related by a Galois connection. By keeping one of the
sets fixed, and varying the other from among sets with a simpler structure, such
as Boolean algebras, subspaces of a finite vector space, partitions, etc., one can
derive much information about a Mobius function. This is the program we shall
develop. The basic result is the following:

Theorem 1. Let P and @ be finite partially ordered sets, where P has a 0 and Q
has a O and a 1. Let uy and p be their Mobius functions. Let

n:@Q—+P; p:P—Q

be ¢ Galois connectrion such that

(1) n{x) =0 ifandonlyif z=1.
(2) e{0)=1.
Then
10, 1) = 40, 2)Z (0(a), 0) = S (0, a)
a>0 [a e(a)=0]

One gets a significant summand on the right for every @ > 0 in P which is
mapped into 0 by g. One therefore expects the right side to contain ‘‘few’’ terms.
In general, uy is a known function and g is the function to be determined.

Proof. We shall first establish the identity
(*) 2.0(xn £l 0(0))

a=b
for every b in P. Here { on the right stands for the zeta function of Q. Equation (¥)
is equivalent to the following statement: 7 (x) = b if and onty if z < o (b). But
this latter statement is immediate from the properties of a Galois connection.
Indeed, if (%) = b, then g(n(x)) = ¢ (b), but x =< o(7(x)), hence z < p(b), and
similarly for the converse implication.

To identity (*) we apply the Mébius inversion formula relative to P, thereby
obtaining the identity

(**) d(m(x), 0) =2 pp(0,0) L (w, 0(a)).

az0

Now, d(7(x), 0) takes the value 1 if and only if m(zx) = 0, that is, in view of
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assumption (1), if and only if # = 1. For all other values of x, we have d (n (x),0) =0.

Therefore,
d(w(x),0)=1—n(z1).

We can now rewrite equation (**) in the form

1—n(x 1) =2 000) + > us(0,a){x, 0(a))

a>0

However, in view of assumption (2), {(x, ¢(0)) = {(x, 1), and this is identically
one for all z in Q. Therefore, simplifying,

- n(x: 1) = Z;"LI)(O’ a)C(.’L', Q(a)) .
a>0
Now, since { = § + n, we have y = ¢ — un, hence, recalling that 0 + 1,
p0,1)=—>p0,2)nx )= > > up(0,a) 40, 2){(z, 0 ().

O=e=1 0=x=1e>0
Interchanging the order of summation, we get

p0,1) =2 pp(0,0) > 1(0,2){ (v, 0(a)).
a>0 0=5=1
The last sum on the right equals §(0, o(a)), and this equals {{o(a), 0). The
proof is therefore complete.
For simplicity of application, we restate Theorem 1 inverting the order of P.
Corollary. Let p: Q— P; q: P—> @ be order preserving functions between
P and Q such that

(1) If p(x) =1 then x=1, and conversely.
(2) g(l)=1.

(3) plgl)) =« and g(p@) ==.

Then

M (0,1) = Z,up (@, 1)L (g(a), 0) = ZMP (@, 1)
w<l [a:9(@)=0]
where p is the Mobius function of @.

The second result is suggested by a technique which apparently goes back to
RAMANUIAN (cf. HARDY, RAMANUJAN, page 139).

Theorem 2. Let Q be a finite partially ordered set with 0, and let P be a partially
ordered set with 0. Let p: @ — P be a monolonic function of @ onto P. Assume that
the inverse image of every interval [0, a] in P is an interval [0, z] in @, and that the
inverse image of O contains at least two points.

Then z,u((),m)=0
[e:p(x)=al
for every a in P.
The proof is by induction over the set P. Since [0, 0] is an interval and its
inverse image is an interval [0, ¢] with ¢ > 0, we have

[z:p(z)=0] 0=2=¢q
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Suppose now the statement is true for all b such that b << @ in P. Then

S S u(0,2)=0.

b<a [z:p(x)=b]

Du0,2)="2 > u(0,z).

[z:p(a)=a] b=a [z:p(x)=>b]

It follows that

The last sum equals the sum over some interval [0, r] which is the inverse
image of the segment [0, a], that is
> > pu(0,x) = > u(0,x) =06(0,r).
b=a [z:p(x)=0b] O0=zzr
But » > 0 because a is strietly greater than 0. Hence §(r, 0) = 0, and this con-

cludes the proof.
9. Applications

The simplest (and typical) application of Theorem 1 is the following:

Proposition 1. Let R be a subset of a finite lattice L with the following properties:
1 ¢ R, and for every x of L, except x = 1, there is an element y of R such that y = x.

For k = 2, let qi be the number of subsets of B containing k elements whose meet
ts 0. Then u(0,1) =q2 —q3 +qa 4 -+

Proof. Let B(R) be the Boolean algebra of subsets of B. We take P = B(R)
and @ = L in Theorem 1, and establish a Galois connection as follows. For z in L,
let 7 (x) be the set of elements of R which dominate z. In particular, = (1) is the
empty set. For 4 in B(R), set p(4) = A A4, namely, the meet of all elements of
A, an empty meet giving as usual the element 1. This is evidently a Galois
connection. Conditions (1) and (2) of the Theorem are obviously satisfied.

The function u, is given by the Corollary of Proposition 5 of Section 3, and
hence the conclusion is immediate.

Two noteworthy special cases are obtained by taking B to be the set of dual
atoms of @), or the set of all elements <C 1 (cf. also WEISNER).

Closure relations. A useful application of Theorem 1 is the following:

Proposition 2. Let x — & be a closure relation on a partially ordered set Q having 1,
with the property that £ = 1 only +f x = 1. Let P be the partially ordered subset of
all closed elements of . Then: (a) If & > x, then pu(x, 1) = 0; (b) If & = x, then
Wz, 1) = up(®, 1), where py, is the Mobius function of P.

Proof. Considering [z, 1], it may be assumed that P has a 0 and x = 0. We
apply Corollary 1 of Theorem 1, setting p(x) = Z and letting ¢ be the injection
map of Pinto . It is then clear that the assumptions of the Corollary are satisfied,
and the set of all @ in P such that ¢g(a@) = 0 is either the empty set or the single
element 0, g.e. d.

Corollary (Ph. Hall). If O is not the meel of dual aloms of a finite lattice L,
or tf 1 4s not the join of atoms, then (0, 1) = 0.

Proof. Set & = A A (x), where 4 (x) is the set of dual atoms of ¢ dominating «,
and apply the preceding result. The second assertion is obtained by inverting
the order.

Example 1. Distributive laitices. Let L be a locally finite distributive lattice.
Using Proposition 2, we can easily compute its Mobius function. Taking an interval

10
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[x, y] and applying Proposition 4 of Section 3, we can assume that I is finite.
For a € L, define d@ to be the join of all atoms which ¢ dominates. Then & — @ is a
closure relation in the inverted lattice L*. Furthermore, the subset of closed
elements is easily seen to be isomorphic to a finite Boolean algebra (cf. BIRKHOFF
Lattice Theory, Ch. IX) Applying Proposition 5 of Section 3, we find: u(x, y) = 0
if i is not the join of elements covering x, and u(x, y) = (— 1)» if ¥ is the join of
n distinet elements covering .

In the special case of the integers ordered by divisibility, we find the formula
for the classical Mdbius function (cf. Example 1 of Section 3.).

The Mobius function of cardinal products. Let P and @ be finite partially
ordered sets. We shall determine the M6bius function of the partially ordered set
Hom (P, §) of monotonic functions from P to @, in terms of the Mobius function
of Q. It turns out that very little information is needed about P.

A few preliminaries are required for the statement.

Let R be a subset of a partially ordered set @ with 0, and let £ be the ideal
generated by R, that is, the set of all elements x in @ which are below (<) some
element of R. We denote by @/R the partially ordered set obtained by removing
off all the elements of R, and leaving the rest of the order relation unchanged.
There is a natural order-preserving transformation of ¢ onto @/R which is
one-to-one for elements of  not in B. We shall call Q/R the quotient of @ by the
ideal generated by E.

Lemma. Let f: P — @ be monofonic with range R c Q. Then the segment
[f, 1] in Hom (P, @) is isomorphic with Hom (P, Q/R).

Proof. For g in [f, 1], set g’ (x) = g(x) to obtain a mapping g — g’ of [f, 1] to
Hom (P, @/R). Since g = f, the range of g lies above R, so the map is an iso-
morphism,

Proposition 3. The Mobius function u of the cardinal product Hom (P, Q)
of the finite partially ordered set P with the partially ordered set @ with 0 and 1 is
determined as follows:

(@) If f(p) + O for some element p of P which is not maximal, then (0, f) = 0.

(b) In all other cases,

pO.H=]]uOfm), feP,

m
where the product ranges over all maximal elements of P, and where y on the right
stands for the Mébius function of Q.

(¢) For f < g, p(f,g) = n(0, g’), where g’ is the image of g under the canomial
map of [f, 1] onto Hom (P, Q| R), provided /R has a 0.

Proof. Define a closure relation in [0, f]*, namely the segment [0, f] with the
inverted order relation, as follows. Set g (m) = g (m) if m is a maximal element of P,
and g(a) = 0 if a is not a maximal element of P. If g = 0, then g(m) = 0 for all
maximal elements m, hence g(a) = 0 for all @ < some maximal element, since g
is monotonic. Hence ¢ = 0, and the assumption of Proposition 2 is satisfied. The
set of closed elements is isomorphic to Hom (M, P), where M is a set of as many
elements as there are maximal elements in P. Conclusion (¢) now follows from
Proposition 2, and conclusion (b) from Proposition 5 of Section 3. Conclusion (c)
follows at once from the Lemma.

11
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We pass now to some applications of Theorem 2.
Proposition 4. Let a — @ be a closure relation on o finite lattice §), with the
property that ¢ N/ b = @\/ b and 0 > 0. Then for all a € Q,

Eu

[z:z=ua)

Proof. Let P be a partially ordered set isomorphic to the set of closed elements
of L. We define p{x), for x in @, to be the element of P correspondmg to the
closed element . Since 0 > 0, any @ between 0 and 0 is mapped into 0. Hence the
inverse image of 0 in P under the homomorphism p is the nontrival interval
[0, 0.

Now consider an interval [0, ¢} in P. Then p—1([0, a]) = [0, #], where £ is the
closed element of L corresponding to a. Indeed, if 0 <y < & then § < x = &,
hence p(y) = a. Conversely, if p(y) =< a, then ¥ < Z but y =< 7, hence y = 7.
Therefore the condition of Theorem 2 is satisfied, and the conclusion follows at
once.

Corollary (Weisner).

(a) Let a > 0 in a finite lattice L. Then, for any b in L,

2.u{0,2) =0

zV a=b

(b) Let a << 1 in L. Then, for any b in L,
D u@1)=
sha=b
Proof. Take £ = x \/ a. Part (b) is obtained by inverting the order.

Example 2. Let V be a finite-dimenstonal vector space of dimension » over
a finite field with ¢ elements. We denote by L (V) the lattice of subspaces of V.
We shall use Proposition 4 to compute the Mobius function of L(TV).

In the lattice L (V), every segment [z, y], for x = y, is isomorphic to the lattice
L{W), where W is the quotient space of the subspace y by the subspace z. If we
denote by un = ps(q) the value of x (0, 1) for L(V), it follows that u(z, y) = u;,
when j is the dimension of the quotient space W. Therefore once py is known for
for every n, the entire Mébius function is known.

To determine py,, consider a subspace a of dimension n — 1. In view of the
preceding Corollary, we have for all @ << 1 (where 1 stands for the entire space V):
> (1) =0

*Ae=0
where 0 stands of course for the 0-subspace. Let a be a dual atom of L(V), that
is, a subspace of dimension » — 1. Which subspaces # have the property that
x A a=0%xmust be a line in V, and such a line must be disjoint except for 0
from a. A subspace of dimension = — 1 contains g?-1 distinct points, so there will
be g* — g*»~1 points outside of a. However, every line contains exactly ¢ — 1
points. Therefore, for each subspace a of dimension #n — 1 there are

distinet lines x such that # A @ = 0. Since each interval [«, 1] is isomorphic to

12
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a space of dimension » — 1, we obtain

fa=p(0,1) = — > u(® 1) = — ¢ s,
x ANa=0
x+0

This is a difference equation for Hn Which is easily solved by iteration. We obtain
the result, first established by Parrie HaLL (see also WEISNER and S. DELSARTE):

pn(g) = (— 1) gna=172 = (— 1)nq(3) .

6. The Euler characferistic

Sharper results relating u (0, 1) to combinatorial invariants of a finite lattice
can be obtained by application of Theorem 1, when the “comparison set” P
remains a Boolean algebra.

A cross-cut C' of a finite lattice L is a subset of L with the following properties:

(a) C does not contain 0 or 1.

(b) no two elements of C' are comparable (that is, if # and y belong to C, then
neither z << y nor x > y holds).

(e) Any maximal chain stretched between 0 and 1 meets the set C.

A spanning subset S of L is a subset such that V 8§ =1and A § = 0.

The main result is the following Cross-cut Theorem:

Theorem 3. Let y be the Mibius funciion and E the Euler characteristic of a non-
trivial finite lattice L, and let C be a cross-cut of L. For every integer k = 2, let qx
denote the number of spanning subsels of U containing k distinct elements. Then

E—1=p0,)=qp—9g+q—g+-

The proof is by induction over the distance of a cross-cut € from the element 1.

Define the distance d(x) of an element x from the element 1 as the maximum
length of a chain stretched between x and 1. For example, the distance of a dual
atom is two. If C is a cross-cut of L, define the distance d(C) as max d(z) as z
ranges over (. Thus, the distance of the cross-cut consisting of all dual atoms is
two, and conversely, this is the only cross-cut having distance two.

It follows from Proposition 1 of Section 5 that the result holds when d(C) =2
(take R = C in the assertion of the Proposition). Thus, we shall assume the
truth of the statement for all cross-cuts whose distance is less than =, and prove
it for a cross-cut with d(C) = =.

If C is a subset of L, we shall write x > € or x < C to mean that there is an
element y or U such that » > y, or that there is an element y of C such that
x = y. For a general C, these possibilities may not be mutually exclusive; they
are mutually exclusive when C is a cross-cut. We shall repeatedly make use of
this remark below.

Define a modified lattice L’ as follows. Let L’ contain all the elements 2 such
that # =< C in the same order. On top of C, add an element 1 covering all the
elements of C, but no others; this defines L.

In I/, consider the cross-cut ¢ and apply Proposition 1 of section 5 again.
If p’ is the Mobius function of L', then

p(0,1)=ps —p3+pa...,
where py is the number of all subsets A ¢ C c I’ of k elements, such that A A =0.

13
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Comparing the lattices L and L', we have
0=2>pu0,2)+ > u02)=>u 0 x)+ u'(0,1).

z=C > rz=(C

However, for < C, we have u'(0, ) = u(0, z) by construction of L’. Hence

> u(0,@) = — ps -+ pg — pg -

z=C
Since the sets (z/x =< C) and (z/x > C} are disjoint, we can write

p(0,1) = — > p(0,2) = — [ > u(0,x) + > u(0,x)].

<1 z=C 1>z>C

We now simplify the first summation on the right:

(*) (0, 1) =ps —p3+pa--— > p(0,).
I>z>C
Now let g4 (x)} be the number of subsets of € having & elements, whose meet
is 0 and whose join is . In particular, gx (1) = gg. Then clearly

= qr(x), k=2,

a>C
the summation in (*) can be simplified to

(**) p(0,1) = (g2 — g3 + g2 — =) — > [—qa (@) + g3 (%) — qa(2) +
1>z>C
dee - p (0, 2)].

For z above ' and unequal to 1, consider the segment [0, z]. We prove that
C(x) = 0N [0, ] is a cross-cut of the lattice [0, 2] such that d(C(z)) < d(0).
Once this is done, it follows by the induction hypothesis that every term in
brackets on the right of (**) vanishes, and the proof will be complete.

Conditions (a) and (b) in the definition of a cross-cut are trivially satisfied by
C(z), and condition (c) is verified as follows. Suppose @ is a maximal chain in
[0, =] which does not meet C'(x). Choose a maximal chain R in the segment [z, 1];
then the chain QU R is maximal in L, and does not intersect C.

It remains to verify that d(C(z)) < d(C), and this is quite simple. There is
a chain ¢ stretched between €' and x whose length is d(C'(x)). Then d(C) exceeds
the length of the chain QU R, and since 2 << 1, R has length at least 2, hence
the length of QU R exceeds that of @ by at least one. The proof is therefore
complete.

Theorem 3 gives a relation between the value u (0, 1) and the width of narrow
cross-cuts or boftlenecks of a lattice. The proof of the following statement is im-

mediate.
Corollary 1. (a) If L has a cross-cut with one element, then u(0,1) = 0.

(b) Ij L has a cross-cut with two elements, then the only two possible values of
10, 1) are 0 and 1.

(¢) If L has a cross-cut having three elements, then the only possible values of
p{0, 1) are 2,1,0 and —1.

In this connection, an interesting combinatorial problem is to determine all
possible values of (0, 1), given that L has a cross-cut with » elements.

Z. Wahrscheinlichkeitstheorie, Bd. 2 25
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Reduction of the main formula. In several applications of the cross-cut theorem,
the computation of the number ¢; of spanning sets may be long, and systematic
procedures have to be devised. One such procedure is the following:

Proposition 1. Let C be a cross-cut of a finite lattice L. For every integer k = 0,
and for every subset A c O, let q(A) be the number of spanning sets containing A,
and let Sy = Z g(4), where A ranges over all subsets of C having k elements. Set Sy

A

to be the number of elements of C. Then
u(0,1) = So—281 228, — 2383 + «--.
Proof. For every subset Bc C, set p(B) =1 if B is a spanning set, and

p(B) = 0 otherwise. Then

q(4) =2 p(B).
C=2B24

Applying the Mébius inversion formula on the Boolean algebra of subsets of C,
we get

p(d) =2 ¢(B)u(4, B),
B=A4

where u is the Mobius function of the Boolean algebra. Summing over all subsets
A c C having exactly k& elements,

gr=>pd)=>  Dq(B)u(4,B).

wd)=F md)=k B=24
Interchanging the order of summation on the right, recalling Proposition 5 of

Section 3 and the fact that a set of £ - [ elements possesses (k T l) subsets of k&

elements, we obtain

E+1 kL2
kaSk—( T )Skﬂ-i-( —2|— )sz“'—l—(*l)”_k(;:)sn-

A convenient way of recasting this expression in a form suitable for computation
is the following. Let V be the vector space of all polynomials in the variable x,
over the real field. The polynomials 1, x, 22, ..., are linearly independent in V.
Henca there exists a linear functional L in V such that

L{z%y=8,, £k=0,1,2,....
Formula (*) can now be rewritten in the concise form

E+2 k
qk:L(xk_(k+1)xk+1+( ;’ )wmz_...)EL((lT”wjm)_

Upon applying the cross-cut theorem, we find the expression (where go and ¢1
are also given by (*), but turn out to be 0)

- 1 @ x2
M(O’I)ZL(1+x— TFaf T T Fa8 _)

1
= L) = B0 — 20+ 42— 827 4 )
:ngz;S’l—[—éSz—— e, q.e.d.
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The cross-cut theorem can be applied to study which alterations of the order
relation of a lattice preserve the Kuler characteristic. Every alteration which
preserves meets and joins of the spanning subsets of some cross-cut will preserve
the Euler characteristic. There is a great variety of such changes, and we shall
not develop a systematic theory here. The following is a simple case.

Following BIrRkHOFF and JoxNssoN and TARSKI we define the ordinal sum of
lattices as follows. Given a lattice L and a function assigning to every element x
of L a lattice L(x), (all the L(z) are distinct) the ordinal sum P = ZL(x) of

L

the lattices L (x) over the lattice L is the partially ordered set P consisting of the

set |_J L (x), where u < v if ue L(z) and v € L(x) and u < v in L(x), or if uw € L(x)
zel

and v € L{y) and x < y. It is clear that P is a lattice if all the L (x) are finite lattices,

Proposition 2. If the finite lattice P is the ordinal sum of the lattices L(x) over the
non-trivial lattice L, and py, pg and uy, are the corresponding Mobius functions, then:

If L(0) is the one element lattice, then py(0,1) = uz(0, 1).

Proof. The atoms of P are in one-to-one correspondence with the atoms of L
and the spanning subsets are the same. Hence the result follows by applying the
cross-cut theorem to the atoms.

In virtue of a theorem of Jonsson and TARSKI, every lattice P has a unique
maximal decomposition into an ordinal sum over a “‘skeleton” L. This can be
used in connection with the preceding Corollary to further simplify the computa-
tion of u (0, n) as » ranges through P.

Homological interpretation. The alternating sums in the Cross-Cut Theorem
suggest that the Fuler characteristic of a lattice be interpreted as the Euler
characteristic in a suitable homology theory. This is indeed the case. We now
define* a homology theory H (C) relative to an arbitrary cross-cut C' of a finite
lattice L. For the homological notions, we refer to Eilenberg-Steenrod.

Order the elements of C, say a1, as, ..., ay. For k = 0, let a k-simplex ¢ be
any subset of C of & + 1 elements which does not span. Let Oy be the free abelian
group generated by the k-simplices. We let C_; = 0; for a given simplex ¢, let
o; be the set obtained by omitting the (¢ + 1)-st element of ¢, when the elements

of ¢ are ordered according to the given ordering of C. The boundary of a k-simplex
k

is defined as usual as dyo = Z (—1)i0;, and is extended by linearity to all of
i=0

Ck, giving a linear mapping of C into Cx_1. The k-th homology group Hy is
defined as the abelian group obtained by taking the quotient of the kernel of 0y
by the image of 0z11. The rank b; of the abelian group Hy, that is, the number
of independent generators of infinite cyclic subgroups of Hy, is the k-th Bett:
number.

Let oz be the rank of C%, that is, the number of k-simplices. The Euler cha-
racteristic of the homology I (C) is defined in homology theory as

o

E(C) = > (—1)ray.
k=0

* This definition was obtained jointly with D. Kax, F. PErersox and G. WHITEHEAD,
whom I now wish to thank.

26%
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It follows from well-known results in homology theory that
E(C) =2 (—1)kby.
k=0

Let g be the number of spanning subsets with k elements as in. Theorem 3.
Then gg11 + oy is the total number of subsets of € having % |- 1 elements; if C

N
has N elements, then oz = ( b 1) — @g+1- 1t follows from the Cross-Cut Theo-
rem that
oo N o0
BO) =3 (— 1)k( ) — S~ Drgen
kgo k+1 zzo

We have however

T B | R R

k=0 =0

and hence
B(0) =1+ u(0,1) = ;
in other words:

Proposition 3, In a finite lattice, the Huler characteristic of the homology of any
cross-cut C equals the Euler characteristic of the lattice.

This result can sometimes be used to compute the Mobius functions of “large”
lattices. In general, the numbers g; are rather redundant, since any spanning
subset of & elements gives rise to several spanning subsets with more than k&
elements. A method for eliminating redundant spanning sets is then called for.
One such method consists precisely in the determination of the Betti numbers by.

We conjecture that the Betti numbers of H (C) are themselves independent of
the cross-cut €, and are also “invariants’ of the lattice L, like the Euler charac-
teristic K (C). In the special case of lattices of height 4 satisfying the chain con-
dition, this conjecture has been proved (in a different language) by Dowkzr.

Example 1. The Beiti numbers of a Boolean algebra. We take the cross-cut €' of
all atoms. If the height of the Boolean algebra is # + 1, then every k-cycle, for
k< n — 2, bounds, so that by = 1 and by = 0 for 0 << &k << n — 2. On the other
hand, there is only one cycle in dimension » — 2. Hence b, = 1 and we find
E =14 (—1)"2, which agrees with Proposition 5 of Section 3.

A notion of Euler characteristic for distributive lattices has been recently intro-
duced by HapwigeER and KLEE. For finite distributive lattices, KLur’s Euler
characteristic is related to the one introduced in this work. We refer to Kr.er’s
paper for details.

7. Geometrie lattices

An ordered structure of very frequent occurrence in combinatorial theory is
the one that has been variously called matroid (WHITNEY), matroid lattice (BIRK-
HOFF), closure relation with the exchange property (MacLaxg), geometric lattice

17
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(BirkuorF), abstract linear dependence relation (BLEIcHER and PRESTON).
Roughly speaking, these structures arise in the study of combinatorial objects
that are obtained by piecing together smaller objects with a particularly simple
structure. The typical such case is a linear graph, which is obtained by piecing
together edges. Several counting problems associated with such structures can
often be attacked by Mobius inversion, and one finds that the Mobius functions
involved have particularly simple properties.

We briefly summarize the needed facts out of the theory of such structures,
referring to any of the works of the above authors for the proofs.

A finite lattice L is a geometric lattice when every element of L is the join of
atoms, and whenever if ¢ and b in L cover a A b, then a \/ b covers both a and b.
Equivalently, a geometric lattice is characterized by the existence of a rank func-
tion satisfying »(@ A D) + r(a \V b) = r(a) - r(b). Notice that this implies the
chain condition. In particular if @ is an atom, then (e V ¢) = r(c) or r{c) + 1.
If M is a semimodular lattice, then the partially ordered subset of all elements
which are joins of atoms is a geometric sublattice.

Geometric lattices are most often obtained from a closure relation on a finite
set which satisfies the MacLaNE-STEINTTZ exchange property. The lattice L of
closed sets in such a closure relation is a geometric lattice whenever every one-
element set is closed. Conversely, every geometric lattice can be obtained in this
way by defining one such closure relation on the set of its atoms.

The fundamental property of the Mobius function of geometric lattices is the
following:

Theorem 4. Let y be the Mibius function of a finite geomelric lattice L. Then:

(a) wp(x,y) + 0 for any pair x, y in L, provided x = y.

(b) If y covers z, then u(x,y) and p(x, z) have opposite signs.

Proof. Any segment [z, y] of a geometric lattice is also a geometric lattice.
It will therefore suffice to assume that z =0, y = 1 and that z is a dual atom
of L.

We proceed by induction. The theorem is certainly true for lattices of height 2,
where u (0, 1) = — 1. Assume it is true for all lattices of height » — 1, and let L
be a lattice of height n. By the Corollary to Proposition 4 of Section 5, with 6 =1,
and ¢ an atom of L, we have

#(0,1) = — 3 u(0,2).

zVa=1
z+1

Now from the subadditive inequality

rlepNae)+rxyae) =r)+ra)

we infer that if x V@ = 1, then n =< dim z 4 dim «, hence dim x = n — 1. The
element x must therefore be a dual atom. It follows from the induction assumption
and from the fact that L satisfies the chain condition, that all the u (0, ) in the
sum on the right have the same sign, and none of them is zero. Therefore, u (0, 1)
is not zero, and its sign is the opposite of that x (0, ) for any dual atom z. This
concludes the proof.

18



358 G1an-Carro Rora:

Corollary. The coefficients of the characteristic polynomial of a geometric lattice
alternate in sign.

We next derive a combinatorial interpretation of the Euler characteristic of
a geometric lattice, which generalizes a technique first used by WHiTNEY in the
study of linear graphs.

A subset {a, b, ..., c} of a geometric lattice L is independent when

rlaVby - Ve)=r(a)+rd)+ - +r(c).

Let Cy be the cross-cut of L of all elements of rank £ > 0. A maximal independent
subset {a, b, ..., c} c Cf is a basis of Cy. All bases of C; have the same number
of elements, namely, n — £ if the lattice has height n. A subset 4 c Cf is a circuit
(WHITNEY) when it is not independent but every proper subset is independent.
A set is independent if and only if it contains no circuits.

Order the elements of L of rank %k in a linear order, say a1, @z, ..., ¢;. This
ordering induces a lexicographic ordering of the circuits of Cf.

If the subset {a;,, ai,, ---7%} (i1 < i3 < +-- < i5) is & circuit, the subset a;,
@iys -+ Gyy_y Will be called a broken circuit.

Proposition 1. Let L be a geometric lattice of height n 4- 1, and let Cy be the
cross-cut of all elements of rank k. Then u(0,1) = (—1)"mz, where my is the
number of subsets of Cy whose meet is 0, containing n — k - 1 elements each, and
not containing all the arcs of any broken curcuit.

Again, the assertion implies that m1 = mg = mg = ++*.

Proof. Let the lexicographically ordered broken circuits be Py, Pg, ..., Pg,
and let S; be the family of all spanning subsets of Cp containing P; but not
Py, Py, ..., or P; ;. In particular, Sg41 is the family of all those spanning sub-
sets not containing all the arcs of any broken circuit. Let ¢} be the number of
spanning subsets of j elements and not belonging to S;. We shall prove that for
each ¢ =1

(*) w(0,1) =¢b— g5 +qi -

First, set 7 = 1. The set S; contains all spanning subsets containing the
broken circuit P;. Let P; be the cicuit obtained by completing the broken cir-
cuit P;. — A spanning set contained in §; contains either Py or else P; but

not P;; call these two families of spanning subsets 4 and B, and let ¢i' and g7
be defined accordingly. Then ¢; = g} + ¢ + ¢f, and

Pv(O:l):Q’zﬂ%—l*%“':q};—q%{—---_;_
+od 4+ (F—gd)— @ — g+

Now, q.ﬁl == (), because no circuit can contain two elements; there is a one-to-one
correspondence between the elements of 4 and those of B, obtained by com-
pleting the broken circuit P;. Thus, all terms in parentheses cancel and the
identity (*) holds for ¢ = 1.

To prove (*) for ¢ > 1, remark that the element c; of Oy, which is dropped
from a circuit to obtain the broken circuit P;, does not occur in any of the pre-
vious circuits, because of the lexicographic ordering of the circuits. Hence the
induction can be continued up to i = ¢ -~ 1.
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Any set belonging to Sg41 does not contain any circuit. Hence, it is an inde-
pendent set. Since it is a spanning set, it must contain » — k 4+ 1 elements.
Thus, all the integers g541 vanish except g5 1% ; and the statement follows from (*),
g.e.d.

Corollary 1. Let q(1) = A7 + m1 A% 4+ mgin=2 - «++ 4 my be the character-
istic polynomial of a geometric lattice of height n + 1. Then (— 1)kmy, is a positive
witeger for 1 < k& < n, equal fo the number of independent subsets of k atoms not
containing any broken circuit.

The proof is immediate: take £ = 1 in the preceding Proposition.

The homology of a geometric lattice is simpler than that of a general lattice:

Proposition 2. In the homology relative to the cross-cut Cy of all elements of rank
k=1, the Betit numbers by, ba, ..., bp—o vanish.
The proof is not difficult.

Example 1. Partitions of a set.

Let S be a finite set of n elements. A partition 7 of S is a family of disjoint
subsets By, Bs, ..., By, called blocks, whose union is §. There is a (well-known)
natural ordering of partitions, which is defined as follows: # = ¢ whenever every
block of 7 is contained in a block of partition ¢. In particular, 0 is the partition
having = blocks, and [ is the partition having one block. In this ordering, the
partially ordered set of partitions is a geometric lattice (cf. BIRKHOFF).

The Mobius function for the lattice of partitions was first determined by
SCHUTZENBERGER and independently by RosrrTo FrUCHT and the author. We
give a new proof which uses a recursion. If 7z is a partition, the class of 7 is the
(finite) sequence (ky, ks, ...), where k; is the number of blocks with ¢ elements.

Lemma. Let Ly be the lattice of partitions of a set with n elements. If me Ly,
s of rank k, then the segment [, 1] is isomorphic to L. If 7w is of class (k1, ks, ...),
then the segment [0, ] 8 isomorphic to the direct product of ki lattices isomorphic to
Ly, ko lattices isomorphic to La, ete.

The proof is immediate.

It follows from the Lemma that if [z, y] is a segment of L,, then it is iso-
morphic to a product of k; lattices isomorphic to L;, i =1, 2, .... We call the
sequence (k1, kg, ...) the class of the segment [z, y].

Proposition 3. Let py, = p(0, 1) for the lattice of partitions of a set with n ele-
ments. Then py = (—1)"1(n — 1)L
Proof. By the Corollary to Proposition 4 of Section 5, zfu(w, 1) =0. Let a

zha=0
be the dual atom consisting of a block C; containing » — 1 points, and a second

block (3 containing one point. Which non.-zero partitions x have the property
that x A @ = 0? Let the blocks of such a partition x be By, ..., By. None of the
blocks B; can contain two distinct points of the block C;, otherwise the two
points would still belong to the same block in the intersection. Furthermore,
only one of the B; can contain the block C3. Hence, all the B; contain one point,
except one, which contains Cs and an extra point. We conclude that x must be an
atom, and there are n — 1 such atoms. Hence, u, = (0, 1) = — Z w{x, 1), where
T

ranges over a set of » — 1 atoms. By the Lemma, the segment [x, 1] is isomorphic
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to the lattice of partitions of a set with n — 1 elements, hence y, = — (n — 1) p—1.
Since yp = — 1, the conclusion follows.

Corollary. If the segment [z, y] is of class (ki, ke, ..., ky), then
(2, y) = 'ullcllu;cz ﬂlngn = (— D)fathetFha—n (205 3Nk .. ((n — D))=,

The Mobius inversion formula on the partitions of a set has several com-
binatorial applications; see the author’s expository paper on the subject.

8. Representations

There is, as is well known, & close analogy between combinatorial results
relating to Boolean algebras and those relating to the lattice of subspaces of
a vector space. This analogy is displayed for example in the theory of g-difference
equations developed by F.H. JAcKsoN, and can be noticed in many number-
theoretic investigations. In view of it, we are led to surmise that a result analogous
to Proposition 1 of Section 5 exists, in which the Boolean algebra of subsets of R
is replaced by a lattice of subspaces of a vector space over a finite field. Such a
result does indeed exist; in order to establish it a preliminary definition is needed.

Let L be a finite lattice, and let V be a finite-dimensional vector space over
a finite field with ¢ elements. A representation of L over V is a monotonic map p
of L into the lattice M of subspaces of V, having the following properties:

(1) »(0) = 0.

2) pla V) =p(a) Vo).

(3) Each atom of L is mapped to a line of the vector space V, and the set of
lines thus obtained spans the entire space V.

A representation is faithful when the mapping p is one-to-one. We shall see
in Section 9 that a great many ordered structures arising in combinatorial pro-
blems admit faithful representations. Given a representation p: L — M, one
defines the conjugate map q: M — L as follows.

Let K be the set of atoms of M (namely, lines of V), and let 4 be the image
under p of the set of atoms of L. For se M, let K(s) be the set of atoms of M
dominated by s, and let B(s) be a minimal subset of 4 which spans (in the vector
space sense) every element of K (s). Let A (s) be the subset of 4 which is spanned
by B(s). A simple vector-space argument, which is here omitted, shows that the
set A (s) is well defined, that is, that it does not depend upon the choice of B(s),
but only upon the choice of s.

Let C(s) be the set of atoms of L which are mapped by p onto A(s). Set
g(s) = V C(s) in the lattice L; this defines the map ¢. It is obviously a mono-
tonic function.

Lemma. Let p: L — M be a foithful representation and let q: M — L be the
conjugate map. Assume that every element of L is a join of atoms. Then p(q(s)) = s
and g(p(x)) = x.

Proof. By definition, ¢(s) = V C(s), where C(s) is the inverse image of 4 (s)
under p. By property (2) of a representation,

plgs)=p(VO(s)=VpCs) =V As).
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But this join of the set of lines A4 (s) in the lattice M is the same as their span in
the vector space V. Hence \ 4 (s) = s, and we conclude that p(g(s)) = s.

To prove that ¢(p(x)) < «, it suffices to show that A(p(x)) = B, where B
is the set of atoms in A dominated by p(x). Clearly Bc A(p(x)), and it will
suffice to establish the converse implication. By (2), and by the fact that x is
a join of atoms, we have p(x) == \/ B. Therefore every line [ dominated by p(x)
is spanned by a subset of B. If in addition ! € 4, then I = V C for some subset
C ¢ B, hence [ € B. This shows B> A(p{(x)), q.e.d.

Theorem b, Let L be a finite laltice, where every element is a join of atoms, let
p: L — M be a faithful representation of L info the laltice M of subspaces of a vector
space V over a finite field with q elements, and let q¢: M — L be the conjugate map.
For every k = 2, let my be the nuwmber of k-dimensional subspaces s of V such that
q(8)=1I. Then

(*) ILJ(O, l)zg(g)mz_g(g)m3+g(§)m4_...,

where u is the Mobius funciion of L.

Proof. Let Q = L*, let ¢: L — ¢ and c¢*:§ — L be the canonical isomor-
phisms between L and Q. Define w: @ — M as w = pc*, and g : M —Q as g = cq.
We verify that 7 and g give a Galois connection between @ and M satisfying the
hypothesis of Theorem 1. If z(x) = 0, then there is a y € L such that y = ¢*(z)
and p (y) = 0. It follows from the definition of a representation that y = 0. Hence
x = ¢(y) = 1. Furthermore, o(0) = c(g(0)) = 1. It follows from the preceding
Lemma that m and ¢ are a Galois connection. Applying Theorem 1 and the
result of Example 2 of Section 5, formula (*) follows at once.

Remark. It is easy to see that every lattice having a faithful representation
is a geometric lattice. The converse is however not true, as an example of T. La-
ZARSON shows.

A reduction similar to that of Proposition 1 of Section 7 can be carried out
with Theorem 5 and representations, and another combinatorial property of the
Euler characteristic is obtained.

9. The coloring of graphs

By way of illustration of the preceding theory, we give some applications to
the classic problem of coloring of graphs, and to the problem of constructing
flows in networks with specified properties. Our results extend previous work of
G. D. Birkuaorr, D. C. Lewis, W. T. TorTtE and H. WHITNEY.

A linear graph G = (V, E) is a structure consisting of a finite set V, whose
elements are called vertices, together with a family £ of two-element subsets of V,
called edges. Two vertices @ and b are adjacent when the set (a, b) is an edge;
the vertices @ and b are called the endpoints of (@, b). Alternately, one calls the
vertices regions and calls the graph a map, and we use the two terms interchange-
ably, considering them as two words for the same object. If S is a set of edges,
the vertex set V (S) consists of all vertices which are incident to some edge in S.

A set of edges 8 is connecfed when in any partition S = 4 U B into disjoint
non-empty sets 4 and B, the vertex sets V (4) and V (B) are not disjoint. Every set
of edges is the union of disjoint connected blocks.
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The bond closure on a graph G = (V, k) is a closure relation defined on the
set E of edges as follows. If 8 ¢ E, let § be the set of all edges both of whose end-
points belong to one and the same block of S. Every set consisting of a single
edge is closed, and these are the only minimal non-empty closed sets.

Lemma 1. The bond closure 8 — § has the exchange property.

Proof. Suppose ¢ and f are edges, S c £, and e € S U f but e ¢ 8. Then every
endpoint of e which is not in ¥ (8S) is an endpoint of f; on the other hand, S and f
have at least one point in common, otherwise e € 8. Thus both ¢ and j either
connect the same two blocks of S, or else they have one endpoint in § and one
common. endpoint; hence fe SUe, g.e.d.

The lattice L = L (&) of bond-closed subsets of % is called the bond lattice of
the graph . Suppose that E has n blocks and p(A) is the characteristic poly-
nomial of L, then the polynomial A% (1) is the chromatic polynomial of the graph 7,
first studied by G. D. BirkHoFF. From Theorem 4 we infer at once the theorem
of WHITNEY that the coefficients of the chromatic polynomial alternate in sign.

The chromatic polynomial has the following combinatorial interpretation. Let
C be a set of n elements, called colors. A function f: V — C is a proper coloring
of the graph, when no two adjacent vertices are assigned the same color. To every
coloring f — not necessarily proper — there corresponds a subset of E, the bond
of {, defined as the set of all edges whose endpoints are assigned the same color
by f. The bond of f is a closed set of edges. For every closed set S, let p(4, S)
be the number of colorings whose bond is S. Then we shall prove that p(4, S)
= Arq(2, S), where ¢(A, S) is the characteristic polynomial of the segment [, 1]

in the lattice L. Since every coloring has a bond z n(4, T) equals the total
=8
number of colorings having some bond 7' = 8. But this number is ev1dently JE—rE)

where % is the number of vertices of the graph and r(S} is the rank of § in L
Applying the Mobius inversion formula on the bond-lattice, we get

(*) p(A) =p(4,0)= > ¥ u,1).
Tel

But the number of colorings whose bond is the null set 0 is exactly the number
of proper colorings.

WHITNEY's evaluation (cf. A logical expansion in Mathematics) of the chro-
matic polynomials of a graph in terms of the number of subgraphs of s edges
and p connected components is an immediate consequence of the cross-cut theorem
applied to the atoms of the bond-lattice of ¢. This result of WHITNEY’s can now
be sharpened in two directions: first, a cross-cut other than that of the atoms
can be taken; secondly, the computation of the coefficients of the chromatic poly-
nomial can be simplified by Proposition 1 of Section 8. The cross-cut of all elements
of rank 2 is particularly suited for computation, and can be programmed. The
interested reader may wish to explicitly translate the cross-cut theorem and the
results of Section 8 into the geometric language of graphs.

Example 1. For a complete graph on n vertices, where every two-element sub-
set is an edge, the bond-lattice is isomorphic to the lattice of partitions of a set
with n elements. The chromatic polynomial is evidently (i)p == A(2 —1)...
(A — n -+ 1), and the coefficients s(n, k) are the Stirling numbers of the first kind.
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Thus, z (0, ) = s(n, k). This gives a combinatorial interpretation to the Stirling
)=k
numb(el)“s of the first kind.

For a map m embedded in the plane, where regions and boundaries have their
natural meaning and no region bounds with itself, one obtains an interesting
geometric result by applying the cross-cut theorem to the dual atoms of the bond
lattice L(m).

Let m be a connected map in the plane; without loss of generality we can
assume: (a) that all the regions of m, except one which is unbounded, lie inside
a convex polygon, the outer boundary of m; (b) that all boundaries are segments
of straight lines. The dual graph of m is the linear graph made up of the boundaries
of m. A circuil in a linear graph is defined as a simple closed curve contained in
the graph. We give an expression of the polynomial P(Z, m) in terms of the
circuits of the dual graph. The outer boundary is always a circuit.

A set of circuits of a map m in the plane spans, when their union — in the
set-theoretic sense — is the entire boundary of m.

Proposition 1, For every integer k = 1, let Cy, be the number of spanning sets of k
distinet circuits of a map m i the plane. Then

P (0,1) = — C1 4 O3 — O3 + Oy — -+

Proof. If the map has two regions, then €y = 1 and all other C; = 0, so the
result is trivial. Assume now that m has at least 3 regions. Then €y = 0. All we
have to prove is that the integers Oy, are the integers g of Theorem 3, relative to
the cross-cut of L (m) consisting of all the dual atoms,

By the Jordan curve theorem, every circuit divides the plane into two regions;
this gives a one-to-one correspondence of the circuits with the dual atoms of L ().
Conversely, because we can assume that the map is of the special type described
above, every dual atom in L (m) is a map with two connected regions, and so must
have as a boundary a simple closed curve, q.e.d.

It has been shown by RicHARD Ravo (p. 312) that the bond-lattice L(G) of
any linear graph & has a faithful representation. Accordingly, Theorem 5 can also
be applied to obtain expression for u (0,1). These expressions usually give sharper
bounds than similar expressions based upon the cross-cut of atoms.

Farther-reaching techniques for the computation of the M6bius function of L (&)
are obtained by applying Theorem 1 to situations where P and ¢ are both bond-
fattices of graphs. This we shall now do. A monomorphism of a graph @ into a
graph H is a one-to-one function f of the vertices of G onfo the vertices of H,
which induces a map f of the edges of G into the edges of . Every monomorphism
f: G — H induces a monotonic map p: L(GF) — L(H), where p(S) is defined as
the closure of the image f(S) in H. It also induces a monotonic map ¢ : L(H) —
— L(G), where ¢(7T')is defined as the set of edges of G whose image is in 7.

Lemma 2, q(p(S)) =8 for S in L(G) and p(q(T)) = T for T in L(H).

Proof. Intuitively, p(8) is obtained by “adding edges” to &, and q(p(S))
simply removes the added edges. Thus, the first statement is graphically clear.
The second one can be seen as follows. ¢(7') is obtained from 7' by removing a
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number of edges. Taking p(¢(7")), some of the edges may be replaced, but in
general not all. Thus, p(g(7)) < 7.

Taking M = L(H)* and ¢: L(H) — M to be the canonical order-inverting
map, we see that w = c¢p and { = ¢¢ give a Galois connection between L(G)
and M. Now, m(x) = 0 is equivalent to p(x) = 1 for x € L(§). This can happen
only if x has only one component, that is — since z is closed — only if z =1
in L(G). Thus z(x) = 0 if and only if # = 1. Secondly, ¢(0) = ¢(1) =1, evi-
dently. We have verified all the hypotheses of Theorem 1, and we therefore
obtain:

Proposition 2. Let f : ¢ — H be a monomorphism of a linear graph @ into a linear
graph H, and let g and pump be the Mobius functions of the bond-lattices. Then

‘uG(O: 1) = ZMH(G’: 1)9
[a e L(H); q(a)=0]

where q is the map of L(H) into L(G) naturally associated with f, as above.

Proposition 1 can be used to derive a great many of the reductions of
G. D. BrxroFF and D. C. LEwIs, and provides a systematic way of investigating
the changes of Mébius functions — and hence of the chromatic polynomial —
when edges of a graph are removed. It has a simple geometric interpretation.

An interesting application is obtained by taking H to be the complete lattice
on n elements. We then obtain a formula for g which completes the statements
of Theorems 3 and 5. Let & be a linear graph on » vertices. Let C be the family
of two-element subsets of & which are not edges of . Let F be the family of all
subsets of €' which are closed sets in the bond-lattice of the complete graph on n
vertices built on the vertices of G. Then, '

Corollary. ne0,1)=> pue1),

ael
where p is the Mobius function of the lattice of partitions (cf. Example 5) of a
set of » elements.

Stronger results can be obtained by considering “epimorphisms” rather than
“monomorphisms’ of graphs, relating u¢ to the Mobius function obtained from
G by “‘coalescing” points. In this way, one makes contact with G. A. DIrac’s
theory of critical graphs. We leave the development of this topic to a later work.

10. Flows in networks

A network N = (V, E) is a finite set V of vertices, together with a set of
ordered pairs of vertices, called edges.

We shall adopt for networks the same language as for linear graphs.

A cireuit is a sequence of edges S such that every vertex in V (8) belongs to
exactly two edges of §. Every edge has a positive and a negative endpoint. Given
a function @ from E to the integers from 0 to 1 — 1, let for cach vertex v, D (v)
be defined as

D)= niev)De),

where the sum ranges over all edges incident to », and the function # (e, v) takes
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the value + 1 or — 1 according as the positive or negative end of the edge e abuts
at the vertex », and the value zero otherwise. The function @ is a flow (mod. 2)
when @ (v) = 0 {mod. 1) for every vertex v. The value @ (e) for an edge e is called
the capacity of the flow through e. The mod. A restriction is inessential, but will
be kept throughout.

A proper flow is one in which no edge is assigned zero capacity. TUTTE was
the first to point out the importance of the problem of counting proper flows (cf.
A contribution to the theory of chromatic polynomials) in combinatorial theory.

We shall reduce the solution of the problem to a Mdbius inversion on a lattice
associated with the network. This will give an expression for the number of
proper flows as a polynomial in 4, whose coefficients are the values of a Mobius
function.

Every flow through & is a proper flow of a suitable subnetwork of N, obtained
by removing those edges which are assigned capacity 0. However, the converse
of this assertion is not true: given a subnetwork 8 of N, it may not be possible
to find a flow which is proper on the complement of N. This happens because
every flow which assigns capacity zero to each edge of S may assign capacity zero
to some further edges. We are therefore led to define a closure relation on the set
of all subgraphs as follows: S shall be the set of all edges which necessarily are
assigned capacity zero, in any flow of NV which assigns capacity zero to every edge
of 8. In other words, if e ¢ S, then there is a flow in N which assigns capacity =+ 0
to the edge ¢, but which assigns capacity zero to all the edges of S. It is immediately
verified that S — § is a closure relation. We call it the circuit closure of S. The
circuit closure has the exchange property: if ec § U p but e ¢ S, then pe S Ue.
Before verifying it, we first derive a geometric characterization of the circuit
closure. A set S is circuit closed (S8 = §) if and only if through every edge e not
in § there passes a circuit which is disjoint from S. For if § is closed and e ¢ §,
then there is a flow through e and disjoint from S. But this can happen only if
there is a circuit through e.

If there is a circuit through the edge p disjoint from S U e, and a circuit
through e disjoint from S and containing p, then there is — as has been ob-
served by WHITNEY — also a circuit through e not containing § U p. This im-
plies that ¢ is not in the closure of S U p, and verifies the exchange property.

The lattice C(N) of closed subsets of edges of the network N is the cercuit
lattice of N. An atom in this Jattice is not necessarily a single edge.

Proposition 1, The number of proper flows, (mod. 1) on a network N with v ver-
fices, e edges and p connected components is a polynomial p(A) of degree ¢ — v -|- p.
This polynomaal is the characteristic polynomial of the circuit lattice of N. The co-
efficients alternate in sign.

Proof. The last statement is an immediate consequence of Theorem 4 of
Section 8.

The total number of flows on N (not necessarily proper) is determined as
follows. Assume for simplicity that N is connected. Remove a set D of v — 1
edges from IV, one adjacent to each but one of the vertices.

Every flow on N can be obtained by first assigning to each of the edges not
in D an arbitrary capacity, between 0 and 4 — 1, and then filling in capacities
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for the edges in D to match the requirement of zero capacity through each vertex.
There are A¢~%+1 ways of doing this, and this is therefore the total number of
flows mod. 4. If the network is in p connected components, the same argument
gives Ae~v+2, Now, every flow on @ is a proper flow on a unique closed subset S,
obtained by removing all edges having capacity zero.
Hence
Jr =3 p(S, 1),
SeC(®)

where p (8, A) is the characteristic polynomial of the closed subgraph . Setting
n(s) = e(8) — v(s) + p(s), the number of edges, vertices and components of s,
and applying the inversion formula, we get

P(G, )= A (S, @), q.e.d.
SeC(&)

In the course of the proof we have also shown that n(s) is the rank of § in
the circuit lattice of (. The rank of the null subgraph is one.

The four-color problem is equivalent to the statement that every planar net-
work without an isthmus has a proper flow mod 5. (An isthmus is an edge that
disconnects a component of the network when removed.)

Most of the results of the preceding section extend to circuit lattices of a net-
work, and give techniques for computation of the low polynomials of networks.
We shall not write down their translation into the geometric language of networks.
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On the Foundations of Combinatorial Theory
ll. Combinatorial Geometries

By Henry H. Crapo and Gian-Carlo Rota

It is a pleasure to dedicate this
work to the founders of the theory:

Garrett Birkhoff
Robert Dilworth
Saunders MacLane
Richard Rado

W. T. Tutte
Hassler Whitney

Faceste come quei che va di notte,
Che porta il lume dietro e sé non giova,
Ma dopo s¢ fa le persone dotte

Purg. xxii, 67

1. Introduction

The purpose of the present series of papers is to give a systematic and
thorough exposition of the foundations of the theory of combinatorial
geometry.

It has become clear in the last ten years that the concept of combinatorial
geometry, and its applied-mathematical counterpart, that of matroid or
pregeometry, may well play in the current development of combinatorics
a catalyzing role not unlike that of point-set topology in the development
of functional analysis. Unfortunately, all expositions of relevant parts of
the theory that are presently found in the literature take one of several
one-sided approaches which obscure the unifying role and the broader
interest of the theory. Thus, Hassler Whitney’s pioneering paper of 1935,
in which the main lines of the theory were set down, although still an
introduction well worth reading, is definitely motivated by his desire to
generalize the notion of a dual graph; the author abandoned the field
shortly thereafter. Rado’s work, important to the development of matching
theory and the study of independence in infinite sets, proceeded in unfor-
tunate isolation. The lattice-theoretic studies of the thirties, which led to the
parallel idea of a geometric lattice, were confined to axiomatics (Birkhoff
and the French School, M. L. Dubreil, Le Sieur, etc.) and algebraic
dependence (MacLane). It remained for Dilworth in the forties to intro-
duce the first significant combinatorial examples. Tutte’s coordinatization
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papers of the fifties, which set the theory on its present footing, rely pri-
marily upon graph-theoretic arguments, and ignore the geometric motiva-
tion made accessible by his predecessors.

The more recent work, some of it spectacular, by Barlotti, Berge, Bleicher,
Bose, Brualdi, Camion, Dlab, M. L. Dubreil-Jacotin, Edmonds, Fulkerson,
Gale, Higgs, Lehman, Marczewski, Minty, Mirsky, Perfect, Sachs, Schiit-
zenberger, Segre, Urbanik, Welsh, Wille, and by the present authors,
serves only to underline the urgent need for a systematic unification of the
theory.

The present work consists of the following main parts: (1) axiomatics of
combinatorial geometry; (2) description of a large and disparate variety
of examples; (3) a discussion of maps between geometries; (4) a brief
presentation of the coordinatization theory; and (5) a sketch of our two
main lines of future work, namely, the critical problem and matching
theory.

The subject of combinatorial geometry can be broadly understood as
the attempt to develop, and therewith generalize to a natural setting, what
in nineteenth-century language would be called the theory of arithmetic
invariants of finite sets of points in projective space. The term ‘“arithmetic
invariant” was used to distinguish (and quickly to dismiss) integer-valued
invariants under the projective group, from the algebraic invariants (such
as the well-known ‘““brackets”’), whose theory is now well understood. Re-
markably, classical invariant theory failed to produce even a rudimentary
theory of arithmetic invariants for point sets. Relevant examples of such
invariants abound; the simplest is the rank of the given point set. Other
examples can be gleaned from the canonical forms of the associated matrix
and the rank of its minors., The most interesting arithmetic invariants arise
from combinatorial considerations. Typical invariants include the numbers
W, of k-dimensional subspaces spanned by subsets of the given point set.
(We call these numbers the Whitney numbers of the second kind.) Consider
also the maximum size D of a family F of subspaces spanned by the points,
subject to the restriction that no element of F should contain another (the
Dilworth number of the point set.)

In fact, one can state in one short sentence those arithmetic invariants
that fall under the scope of present methods. They are those which depend
only upon the /attice of subspaces of the point set (such, evidently, are the
rank, and the Whitney and Dilworth numbers just defined). The order-
theoretic characterization of lattices arising in this way was achieved by
Birkhoff in 1935, in immediate response to Whitney’s pioneering effort.
Such lattices, called geometric lattices, are defined as point lattices which
have the Birkhoff covering property (see definition and discussion below).
The projective-geometric and linear-algebraic qualities of such point sets
are expressed by the MacLane-Steinitz exchange axiom. This axiom, as is
well known, is all that is needed to derive the standard results about
independence and bases in linear algebra.

We define a combinatorial geometry as a closure relation (see definition
below) defined on subsets of a set S, and enjoying the exchange property.
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(Of course, it is not in general true that the closure of the union of two sets
is the union of their closures, as would be the case for a topological closure.
We also add a finiteness condition, to simplify the exposition of the
theory.) For simplicity, we also assume that every point in a geometry is a
closed set. Without this additional assumption, the resulting structure is
often described by the ineffably cacophonic term matroid, which we tend
to avoid in favor of the term pregeometry. With each pregeometry (=mat-
roid) there is canonically associated a geometry, the points of which are
closures of points of the pregeometry. Therefore, when confronted with a
matroid, the first safety measure to take is to run to the associated geom-
etry whenever possible.

Clearly, a point set in any projective or affine space gives a combinatorial
geometry, when closure is defined in terms of ordinary linear span. We
hasten to add that not every combinatorial geometry is obtained from a
point set in projective or affine space. A host of other combinatorial
situations lead to significantly different examples, several of which are
described in the text. By way of orientation, we now outline a few of these
examples.

Instead of projective geometries one may invent more general geometries,
such as circle geometries, or geometries which are obtained by taking
various classes of algebraic varieties in the role of linear subspaces. The
systematic study of these geometries has been recently undertaken by Wille
(see Section 3.6). The geometric lattices associated with such generaliza-
tions of projective geometry turn out to be part distributive and part
modular (They are not, however, modular.) An algebraic example is
obtained by considering the lattice of relatively closed subfields of a field.
This is a geometric lattice, as was first discovered by MacLane.

A remarkable example from combinatorial sources is the transversal
geometry of Edmonds, Fulkerson, Mirsky and Perfect, which is obtained
as follows. Given a relation R € 4 x B with finite sets 4 and B, one defines
a subset I of A4 to be independent if the relation R, restricted to 7 x B,
dominates a one-one function from [ into B, or matching. These are the
independent sets of a pregeometry on the set 4. Much of classical matching
theory, from Philip Hall’s marriage theorem to the deeper results of Tutte
and others on the factorization of linear graphs, finds a pleasing systemati-
zation in the context of transversal geometries. When matching theory is
formulated in geometric language, further extensions of the theory are
suggested. We shall give the simplest result in this direction, the generali-
zation of the marriage theorem to geometric lattices. This is a variant of a
result of Rado.

The homology sequence on a simplicial complex provides a sequence of
related geometries (see Chapter 6). This theory has been fully investigated
only for one-dimensional complexes or graphs (Whitney, Tutte). The
resulting interaction of topological and geometrical considerations prom-
1ses to open up new connections with combinatorial topology.

Again along combinatorial lines, some remarkable examples of geo-
metries are obtained by the following “ measure-theoretic” process. The
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idea goes back to Dilworth. Let u be an integer-valued function, on the
subsets of a set .S, with the following properties:

w(A) = w(B) if A contains B
w4 N B) + (4 Y B) < p(4) + w(B)

Note that it is not assumed that x is normalized by having any specified
value on the empty set, or on one-element sets. We define a subset 1 = S
to be independent if u(J) = v(J) for every nonempty subset J of I, where
»(J) denotes the size of the set J. The resulting pregeometries, whose
theory is barely scratched, open a fertile line of investigation connecting
with optimization theory, and with the little-investigated theory of non-
additive set functions. We present the theory of such set functions in
Chapter 7, including some remarkable and little-known results of Dilworth.

Geometric lattices often arise as lattices of substructures of combina-
torial structures. The simplest such are the families of coverings of a set
by blocks whose overlap structure is somehow prescribed. The simplest
is the lattice of partitions, but there are many others. For example, there
is the lattice of contractions of a linear graph, and a related structure, the
lattice of cocontractions (see Chapter 6).

In Chapter 11 we give an exposition of one of the outstanding achieve-
ments in the theory, We prefer the precise term orthogonality to the much-
used term duality previously used in this connection. The notion of
orthogonality is due to Whitney, who was led to it by observing that the
classical construction of the dual graph of a planar graph could be gener-
alized to arbitrary graphs by use of the notion of a geometry.

We come now to a discussion of the main parts of the text concerning
maps, representation, and the critical problem. In the process, we shall
give some indication of what we feel are the prospects for, and purposes of,
this theory.

In Chapter 9 we introduce various notions of maps among geometries.
Combinatorial geometry can be viewed as a generalization of the classical
notion of a vector space; correspondingly we introduce notions of maps
which extend the notion of a linear transformation. In the special case of
simplicial geometries, the maps we introduce reduce to the classical notion
of a simplicial map. Any deeper results will require the full-scale introduc-
tion of homological methods, probably the most promising line of future
investigation in this area.

The most thoroughly developed chapter of combinatorial geometry is
the representation (or coordinatization) problem, which may be stated as
follows. Given a geometry G(S) on a set S, find a module M over an inte-
gral domain R, a set S, of submodules of M generated by single elements,
and a one-to-one map of S onto S; which induces an isomorphism of the
geometry G(S) onto the geometry defined on the set S, in terms of ordinary
linear dependence (see Section 3.2). For example, when M is a vector space
over a field, the coordinatization problem is simply the problem of
representing a geometry as the geometry defined by a finite point set in
projective space.
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In Chapter 15 we offer a simplified proof of a theorem of W. T. Tutte
which reduces the problem of coordinatization to a combinatorial question
of matching functions to copoints. The representation theory raises the
following problem, which is largely unanswered: For which sets of points
in projective space is the associated geometric lattice a complete set of
invariants under the projective group ? The main results are stated in the
following numbered paragraphs; several of these results are not treated in
the present work.

A complete representation theory is known for projective geometries of
dimension 3 or more. (In stating results with this restriction, we avoid the
problems associated with finite projective planes.)

(1) For geometries defined by point sets in projective geometries over the
two-element field GF(2), the lattice of subspaces is a complete set of
invariants under projective transformations.

(2) A geometric lattice is isomorphic to the lattice of subspaces of a
finite point set in a projective geometry over GF(2) if and only if
every coline is covered by at most three copoints, or equivalently, if
and only if no interval of rank 2 in the lattice contains more than
five elements (Whitney, Rado, Tutte; see Chapter 15 on binary

lattices).

This theorem appears in Chapter 15, as an immediate consequence of the
coordinatization theorem. Such lattices we call binary lattices.

(3) For any field other than GF(2), the lattice of subspaces of a point set
is not a complete set of invariants.

We come now to the deepest result in this area. Denote by F the Fano
geometry (or Fano lattice), namely, the geometry and the lattice of sub-
spaces defined by the Fano plane of seven points and seven lines. We denote
by F* the orthogonal geometry (see Chapter 11).

(4) A geometry is representable by a set of points in projective space
over every field if and only if its geometric lattice is binary and does
not have any interval containing a subgeometry isomorphic either
to F or to F*,

Such geometries and lattices are called unimodular. They have been
variously studied by A. Hoffman, Camion, I. Heller, and Tutte. Their
existence was first remarked by Poincaré in connection with homology
theory, but was ignored in the subsequent development of topology.

Roughly speaking, the coordinatization of unimodular geometries is
achieved by vectors whose entries are +1, —1, or 0. Furthermore, the
matrix of such vectors enjoys the property that every minor equals +1, —1,
or 0. Such matrices are called rotally unimodular and arise in a variety of
contexts, for example in integer programing.

When extra requirements are imposed upon the point set by which a
geometry is to be coordinatized, the theory is further enriched. The
simplest such requirement is that the geometry be representable as the set
of all points in a projective space. One then obtains that classical theorem
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on modular geometric lattices, relating synthetic to analytic geometry,
which occupied several generations of geometers from von Staudt to
von Neumann.

It seems incredible that the development of coordinatization theory
should have been entirely bypassed by classical projective geometers. One
can only surmise that the possible cause was a pernicious insistence upon
the tenets of the Erlanger program. In the light of classical geometry,
combinatorial geometry may be considered as a revival of projective
geometry in its most synthetic form.

Another fruitful restriction of the coordinatization problem involves the
requirement that a geometric lattice be isomorphic to the lattice of con-
tractions of a graph. It is important to see that this is actually a coordinati-
zation problem. To see this, orient the edges of a linear graph, and let V
be the vector space over a field F, say, of all 1-coboundaries of the graph.
Recall that a 1-coboundary is a function f defined on edges e, whose values
in F are of the form

fle) = glen) — gler

where g i1s a function of the vertices and e, 1s the head, e, the tail, of the
edge e. Every edge e of the graph acts as a linear functional on V, by the
evaluation

f—fle).

This gives an embedding of the set of edges of the graph into a subset .S of
the dual space ¥*. The geometric lattice defined by the set S by ordinary
linear dependence is isomorphic to the lattice of contractions of the graph.

Remarkably enough, the characterization of those geometric lattices
which are isomorphic to lattices of contractions of the graph depends upon
the two Kuratowski graphs, namely, the complete 5-graph, and the graph
of “three girls to the three wells” (the complete bipartite graph). Let K5
and K; 3 be the lattices of contractions of these graphs, and let K5 and
K 5 be the lattices of the orthogonal geometries. Then

(5) A geometric lattice is isomorphic to the lattice of contractions of a
linear graph if and only if it is a unimodular lattice, and does not
have any interval with a subgeometry isomorphic to K; or Kj ;.

(6) (Kuratowski-Tutte) A geometric lattice is isomorphic to the lattice
of contractions of a planar linear graph if and only if it is unimodular
and does not have any interval with a subgeometry 1somorphic to
Ks, K 5, K5, or K5 3.

The concept of a simplicial geometry (see Chapter 6) opens a broad
horizon of possibilities for coordinatization and embedding problems. It is
an open problem to characterize the k-simplicial geometries, for values of
k other than 1 or 2. This was accomplished for k = 2, partition lattices, by
Ore, Sasaki, Fujiwara, and Sachs, but in ways which ill extend to the
infinite case, It is an open problem, also, to characterize the subgeometries
of these k-simplicial geometries, as Tutte has done for linear graphs,
k = 2, by the exclusion of certain subgeometries from all intervals. In its
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complete generality, this problem reads: When is a geometry isomorphic
to the geometry of cycles or cocycles of a simplicial complex? Finally,
observing that the minimal dependent subsets of 3-simplicial geometries
may be regarded as triangulations of closed surfaces, we may inquire as
to which minimal dependent subsets correspond to triangulations of the
sphere, the real projective plane, the torus, and surfaces of higher genus.

It is a pleasing consequence of the theorems we have stated that the
classical Kuratowski theorem of planar graphs, which has yet to find a
suitable topological setting, is placed in the company of several results of
the same nature, when viewed within the context of combinatorial geom-
etry. The common structure of the theorems we have stated is the follow-
ing: “A geometric lattice can be coordinatized by a point set of type X if
and only if no subgeometry of any of its intervals is isomorphic to the
‘small’ geometric lattices 4, B,- - -, E.”” Several other results of this same
nature need to be worked out.

There is, however, another far more promising line of investigation
which connects with representation theory, and which leads to the classical
problem of finding the chromatic number of a graph, namely, the minimum
number of colors sufficient to color the vertices of a linear graph, subject
to the requirement that no two adjacent vertices be assigned the same color.
It is shown by an argument using Mobius inversion that the chromatic
number of the graph depends only upon the lattice of contractions of the
linear graph. Thus, the classical conjecture of Hadwiger can be stated as
follows: “The chromatic number of a linear graph is <# if and only if
the lattice of contractions of the linear graph does not contain any interval
with a subgeometry isomorphic to the lattice of contractions of the com-
plete (n + 1)-graph.” In this form, the Hadwiger conjecture bears a
striking resemblance to the results about coordinatization, and arouses
the suspicion that techniques for proving coordinatization results may
yield some understanding of the mystery of the coloring problem.

When the coloring problem is stated in geometric terms, the question
naturally arises as to whether the same question can be formulated in the
context of the present theory. It turns out that this is indeed the case. We
now describe this generalization in two stages.

Consider first a geometry G(S) defined on a point set S in a projective
space P over GF(g). Say that the set {H,,---, H,} of hyperplanes distin-
guishes the point set S when for every point ¢ belonging to S there
corresponds at least one hyperplane H,, such that ¢ does not belong to H,.
(That is to say, the supports of the linear functions defining the hyper-
planes H,,- - -, H, cover the point set.) The least integer k for which a set
of k distinguishing hyperplanes exists is here called the critical exponent of
the geometry G(S). The critical exponent also equals the maximum dimen-
sion of a subspace of P which does not meet S.

The critical exponent depends only upon the geometry. In fact, it can
be shown (see Rota, “Foundations 1”) that the critical exponent k is the
smallest positive integer for which the polynomial

2 (0, x)g® =k = pi(g¥)

xel
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takes positive value. Here p is the Mobius function on the lattice L of the
geometry, and # is the rank of the geometry.

By taking the point set defined by the edges of a linear graph, considered
as linear functionals on the vector space of coboundaries, as described
above, it is easily checked that the critical exponent is & if and only if the
graph can be colored in ¢g* colors. It is especially interesting to consider the
case g = 2.

The polynomial

X = 2 (0, X0
xel
is called the characteristic polynomial of the geometric lattice (see Rota,
“Foundations, I’). An analogue of the critical problem for arbitrary
geometric lattices is thus seen to be the problem of locating the integer zeros
of the characteristic pclynomial.

A large variety of combinatorial problems (for example, coding prob-
lems and the Segre independence problems, v. below) can be stated as criti-
cal problems. Investigations carried out so far indicate that many attacks
used in classical studies of the coloring problem actually carry over to the
critical problem generally. We are led to conjecture that the critical prob-
lem provides at long last a setting for the study of the coloring problem, a
setting which possesses the much-looked-for level of natural generality.

It was an unfortunate historical accident that the map-coloring problem
was the first instance of the critical problem to be studied. The systematic
study of the critical problem generally should instead begin with simpler
instances. Only thus can we ever hope to discover and develop suitable
techniques which may eventually lead to a general understanding. The
belief that the study of geometries will eventually lead to such an under-
standing is the motivation of the theory expounded in the present work.

The present work is a continuation of the program initiated by Rota in
the paper referred to in the Bibliography as “On the Foundations of
Combinatorial Theory, 1.”” Whereas most of the results in that paper were
new, the present series is at least partially expository. A brief history of
the subject will be given at the end of the present series, together with
credits.

Professor Crapo’s work was funded by the National Research Council
of Canada (grant A-2994). Professor Rota’s work was supported by O.N.R.
contract 00014-67-A-0204-0016

2. Geometries, matroids, and geometric lattices

Motivation. From classical examples, such as affine and projective spaces,
let us abstract an axiomatic description of a combinatorial geometry.

Classically, the objects studied are points, lines, planes, etc. All these
objects (or “flats™) possess a well-defined rank (dimension). Points have
rank 1, lines have rank 2, etc. Any set 4 of points in a geometry should thus
possess a rank, r(A4), equal to the rank of the smaliest flat (subspace) which
contains A.
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II. Combinatorial Geometries 117

Our objective will be to abstract these and other familiar properties
of classical projective geometry by placing certain conditions on the function
A — A, which associates, with each subset A of the points, that smallest
flat which contains A.

Consider, for instance, the geometry of Euclidean n-dimensional space
E™. For any set A of points in E", 4 is the smallest subspace (point, line,
plane, etc., not necessarily containing the origin) containing the point set
A. Within any subset 4 < E™ we can always find a subset 4, with at most
n + 1 elements, such that A, and A4 span the same subspace.

Also, given any k-dimensional subspace A4, the (k + 1)-dimensional
subspaces B, which contain A4 partition the points not in A. That is
to say, if a point g is not in the subspace A, then 4 U {a} is a (k + 1)-
dimensional subspace B. If b is any other point in B but not in 4, then b
equally well generates the subspace B over A. Thus ae A U {b}. These
properties, of finite basis and exchange, lead us to the definition of a
combinatorial geometry.

One critical feature of projective geometries will be found lacking in
combinatorial geometries. In projective geometries the rank (dimension
function) satisfies the identity

r(4A + B) + r(4 N B) = r(4) + r(B).
For combinatorial geometries, this becomes an inequality
r(AY B) + (AN B) < r(4) + r(B),

which is often strict. After this relaxation to an inequality, we discover that
an extraordinary variety of combinatorial structures are combinatorial
geometries. While some of these structures are subsets of projective geom-
etries, others arise from totally unrelated situations. This is our main
motivation for the following axioms.

Basic Definitions. A closure relation on a set S is a function 4 —+ A4
defined for all subsets 4 < §, satisfying

Acs 2.0)
Acd @.1)
A< B implies A< B (2.2)

for all’ subsets A, B of S. It follows that a closure relation is order-
preserving,
A< B implies A< B, and ANB=ANB
and is idempotent:
A=A
A set endowed with a closure relation is a closure space. A subset 4 = S

of a closure space S is closed if and only if 4 = A,
We shall concern ourselves with closure relations with the exchange

property:
For any elements a, b € S, and for any subset 4 < S,
if acAuUb and a¢ A then becAUa. (2.3)
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(The notation 4 U b is an abbreviation for the correct, but needlessly
pedantic, 4 U {b}.)
A closure relation on a set S has finite basis if and only if

any subset 4 < S has a finite subset 4, € 4 such that
A, = 4. (2.4)

A pregeometry or matroid G(S) is any closure space consisting of a set
S and a closure relation with finite basis and the exchange property.
A pregeometry G(S) is a geometry if and only if for the null set @

@ =@, and a@=a forallelements a€sS. (2.5)

Let us associate a geometry with each pregeometry. In doing so, we
make use of the partition of the complement of the closed set &, as
provided by the exchange property.

For any pregeometry G(S) on a set S, the relation (~) defined on § by

a~b ifandonlyif a=>5b

is an equivalence relation. The elements of .S which are not in the closure &
of the empty set are partitioned by the equivalence relation into classes
which may be regarded as the elements of a set S,. The closure relation is
well defined on these equivalence classes, and therefore canonically deter-
mines a closure relation on the set S;. The set S,, furnished with this
closure relation, is a geometry, the geometry canonically associated with
the pregeometry G(S).

Whenever possible, we shall try to express all results in terms of geom-
etries rather than matroids. In matroids, the possibility that two points may
be dependent upon each other results in considerable nuisance, which is
avoided by passing to the associated geometry. All major results of the
theory are about geometries rather than matroids, and the only reason for
considering matroids at all is that they actually arise in applications and
in certain constructions.

Whenever possible, we shall try to picture finite geometries as geometries
of points in affine space E™ of some dimension n. To draw such a geometry,
we mark in only the nontrivial lines and planes. For instance, in the plane
geometry on six points shown in Figure 2.1, the set bd is a line, but it is
not drawn in. There are seven lines in all. -

e
d
f
a < c
b
FIGure 2.1
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e

o b c
FIGURE 2.2

In certain marginal cases, where a geometry cannot be realized in affine
space, a drawing can still be helpful. Consider the projective seven-point
plane, for example. The seventh line bdg is indicated by a curve in the
drawing. T

In any closure space, the intersection of any collection of closed subsets
is also closed. The closed subsets (or flats) of a geometry G(S) form a
complete lattice L(S). (The reader will not be required to know any notions
of lattice theory beyond the basic definitions.) The order relation on L(S)
is induced by that of containment, relating subsets of S. The binary opera-
tions v and A in the lattice L(S) are as follows: if 4 and B are flats of G(S),
then 4 v B is the smallest flat containing both 4 and B,

AV B= AV B,
and 4 A B is the largest flat contained in both 4 and B,
ANB=ANB.

The term open set refers as usual to the complement of a closed set.
Clearly, the union of any collection of open sets is also open.

An example of a geometry on five points, together with its lattice of
flats, is given in Figure 2.3. We shall generally use the lower-case letters

a abc ad
RN \
e

FIGURE 2.3
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120 Henry H. Crapo and Gian-Carlo Rota

z,y, x,- - - to indicate flats of a geometry G(S), when these flats are re-
garded sometimes as subsets of S and sometimes as elements of the lattice
L(S). For those flats which are points, we shall use the letters a, b, - -.

We now derive the characteristic properties of lattices L(S) of geometries
G(S). Two terms are needed for this description. A chain in a lattice L is
any linearly ordered subset of L. An element y covers an element x in a
lattice L if and only if x < y, but x < z < y for no element z in L.

We write y | x if y = x or y covers x (Read: y covers or equals x).

Lattices of geometries have two characteristic properties. They have no
infinite chains, and the flats covering any flat x partition the points not in x.
From these properties it will follow that every flat x has a well-defined
finite rank, r(x), equal to the common length of all maximal chains from
0 to x, where 0 = @ is the smallest flat.

A flat of rank 1 is a point, one of rank 2 is a line, etc. The entire set S is
closed, and has some finite rank, say #. This is the unit element 1 of the
lattice. A flat of rank n — 1 is a copoint, one of rank n — 2 is a coline, etc,

PROPOSITION 2.1. A flat y covers a flat x in the lattice L of a geometry G(S)
if and only if there is a point g not in x such that x v a = y.

Proof: If a flat y covers a flat x, consider the flats as subsets of the set S,
and choose an element aey — x. Then gis a flat, and x < x v a < y,
so x V a = y. Conversely, if x is a flat in L and ¢ is a point not in x, let
z be a flat such that x < z < x v a. Choose an element & in the difference
set z — x. Thenb¢x =xand bex Ua = x V a, so the exchange prop-
erty implies aexUb < Z=z But x <zand a < z imply x vV a < z,
thatis: x V @ = z, and x V a covers x. |

PROPOSITION 2.2. In the lattice L(G) of any geometry G(S), y | x implies
(yv 2) | (x Vv 2),for all flats x, y, z.

Proof: By Proposition 2.1, we may write y = x vV a for some point a.
Then yvz=(xVa)Vvz=(xV 2V a which must cover or equal
x V z, again by Proposition 2.1. |

PROPOSITION 2.3. In the lattice of flats of a geometry, any chain is finite.

Proof: If there is an infinite chain of flats, there is either an infinite in-
creasing subsequence or an infinite decreasing subsequence. From Axiom
2.4 we conclude that for any increasing sequence {4;} of closed subsets
of S, the union |J 4, contains a finite set A such that 4 = {J 4,. But for
some index i, A S A,, so {J A, = 4 € 4; = A4, and the sequence must
terminate in the closed set A,.

It remains to show that there can be no infinite decreasing sequence of
flats. If {A4;} is an infinite decreasing sequence of closed subsets of .S, select
an arbitrary infinite sequence {a;} of elements of the difference sets,
a,€ Ai_y — A, i=1,2,---. By the ascending chain condition, A; =
{a, az,- - -, a,} for some r. It follows that a,,, €{ay, as,- - -, a,}. Let i be
the least suffix such that @, ., ¢ {a;, @41, - -, @}, then a, ., € {a; 1, - -, a,}.
Hence, by the Exchange Property, a;_, €{a;, a,.1,- -, @, .1} S A;, which
is a contradiction. |
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A lattice having no infinite chains is said to be semimodular whenever it
has the Birkhoff covering property:

if x covers x A y, then x Vv y covers y.

This property is easily seen to be equivalent, in any lattice having no
infinite chains, to the following property, as originally stated by
Birkhoff:

if x and y cover x A y, then x v y covers x and y.

We leave to the reader the verification of the equivalence of these two
properties, and we shall use them interchangeably throughout. We shall
also make free use of the fact that every semimodular lattice satisfies
the conclusion of Proposition 2.2.

We know, by Propositions 2.2 and 2.3, that the lattice of a geometry is
semimodular, with no infinite chains. Furthermore, every flat of a geom-
etry equals the lattice supremum of its points. A lattice with this latter
property is said to be a point lattice (that 1s, every element is expressible as
a supremum of elements covering the smallest element, denoted as usual
by 0).

A lattice is geometric if and only if it is a semimodular point lattice with
no infinite chains. We shall see that this description characterizes lattices
of flats of geometries.

PROPOSITION 2.4, If L is a geometric lattice, then the equation
A=1{aeS;a < sup A4}, (2.6)

defined for all subsets A4 of the set S of all points of L, defines a geometry
G(S) on S. The lattice of flats of G(S) is isomorphic to L.

Proof: If ae A, for any set 4 of points, 4 < S, then a < sup 4. Thus
A< A.If A < B, for two subsets A, B < S, then a € 4 implies ¢ < sup B,
sosup A < sup B, and 4 = B. Thus Equation 2.6 defines a closure relation.

It is clear that a set of points is closed if and only if it is the set of all
points beneath some lattice element. Since L is a point lattice, there is a
one-to-one order-preserving correspondence between closed subsets of S
and elements of L. If the closure relation is found to be a geometry, then
it will follow that its lattice is isomorphic to L.

For any set A4 of points, 4 < §, let x = sup A in L. Well-order the set A4,
and let C; = @. Having constructed C,_,, let a; be the first element in
A — C;_,, under the well-ordering, and let C; = C;_; U a;. The sequence
{C;} must be finite, because the lattice has no infinite chain, so {a;} is a
finite subset of 4 with closure equal to that of 4. Thus the closure relation
has finite basis.

If a¢ A, but ae AU b, for points @, b and some subset 4 < S, let
x =sup4,soa £ x,a <xV b But x v b covers x, because the lattice
is semimodular. Therefore x < x Va < x v b implies x Va=x Vv b.
Consequently, b < x v a, and b€ 4 U a, proving the exchange property. |
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Rank, complementation, and modular pairs.

We define the rank A(x) of a flat x as the common length of all maximal
chains from 0 to x in the lattice L(S). Once we have verified that this con-
cept of rank is well defined, we are justified in our use of geometric language.
It becomes reasonable to speak of lines (rank 2), planes (rank 3), copoints
(rank n — 1), and colines (rank » — 2), where A(1) = n is the rank of the
entire geometry. (Recall that in a lattice L, | stands for the maximal element).

PROPOSITION 2.5. Given a semimodular lattice L having no infinite chains,
and elements x, y in L such that x < y, then all maximal chains from
x to y have the same length.

Proof: et x =854 < - <s, =y and x =1, <---<t,=y be two
maximal chains from x to y. If n = 0 or n = 1, then the chains coincide.
Assume the truth of the theorem for all pairs x’, y* between which there
exists a maximal chain of length less than n. By the Birkhoff covering
property, s, V t, covers both s, and ¢,. Select a maximal chain s, v f, =
Uy < Uz < -+ < U, = yfroms, vV t; to y. Comparing the two paths from
s, to y, we have p = r by the induction hypothesis. Thus there is a maximal
chain from ¢, to y having length » — 1, and m = p = n, again by the
induction hypothesis. |

For each subset 4 of a geometry G(S), let o(A) equal A4, considered as
an element of the lattice L(G). Thus o is a function (the canonical map, see
Chapter 9) from the Boolean algebra #(S) of all subsets of S into L(G),
and we may say that the geometric rank r(A4) of a subset A4 is the rank
A{c(A)). These ranks, the rank A of lattice elements and the geometric rank r
of subsets of S, satisfy a certain characteristic linear inequality.

PROPOSITION 2.6. In any semimodular lattice L having no infinite chains,
(in particular in every geometric lattice) the rank function A satisfies the
inequality

AMx AY)+ Mx vy < AXx)+ XMp), 2.7

for all elements x, y in L. If G(S) is a‘geometry, the geometric rank r
satisfies the analogous inequality

r(AN B) + r(A Y B) < r(4A) + r(B) (2.8)
for all subsets 4, B of S.

Proof: Assuming for a moment that the inequality (2.7) holds for geo-
metric lattices, let o(4) = x and o(B) = y for two subsets A4, B for a
geometry G(S). Then 4 N B = 4 N B, the latter being a closed set, the
image of which in L(G) is equal to x A y. Thus (4 N B) < A(x A ¥).
Also A U B = A U B, the latter being a closed set with image x vV y in
L(G). Thusr(AUB)=Ax V y)and r(ANB) + (AU B) < Ax A y) +
AMx V y) < Mx) + A») = r(4) + r(B), so the geometric rank satisfies
Inequality 2.8.

Assume now that L is a semimodular lattice with no infinite chains, and
that x, y are elements of L. Choose a maximal chain x A y = x4 <
X, <+ -<Xx,=xfromx A ytox.Lety,=x; v y. Then y; | y;_, for
i =1,---,n, by the conclusion of Proposition 2.2 which, as remarked,
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holds in any semimodular lattice. Thus except for possible repetition of
some elements, y, < y; < --- < y, is a maximal chain from y to x v »,
and AM(x) — A(x A ») = Mx v y) — 2.1

Given a closed set 4 in a geometry G(S), we may inquire whether there
exists a closed set B, having no points in common with 4, and such that
AU B = §. Such flats always exist, and are called *complements” of A.
In the lattice L(G), a flat y is a complement of a flat x if and only if
xAy=0, and x v y = 1. Actually, we shall see that complements
exist even within an interval [s, t] = {z; s < z < t} of a geometric lattice:

PROPOSITION 2.7. If L is a geometric lattice, and [s, ¢] is an interval in L,
then for any element x in the interval, there exists an element y such that
xAy=sandxVy=="L

Proof: See Figure 2.4. Given any lattice element y; in the interval [s, £]
such that x A y; = s and x vV y; < f, we may select a point b in the
difference setz — (x Vv y;), thatis, a point bsuchthatd < rbutb € x v y,,
andsety;,, =y v b. Thenx v y;,; < tandcoversx V y. If x A y;.q1 #5,
we may select a point ¢ < x A ¥4y, ¢ £ 5. Then ¢ < x, so ¢ £ y;, and
yi<cVy <cV Y=Yz, thatisic Vv y; =y, Butthenx v y, =
(cvxyvy=xV(Vy)=XxV y., acontradiction. Consequently,
¥i+1 also satisfies x A y;,, = 5, and the construction may be repeated
until x v y; = t, after finitely many steps, and y, is a complement of x in
the interval [s, ¢]. |

A flat ysuch that x A y = 5, x V y = 1, is called a relative complement
of x in the interval [s, f]. Clearly, any element y is a relative complement
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of x in one interval, the interval [x A y, x v y]. Because we are dealing
with lattices without infinite chains, any flat x also has at least one minimal
relative complement, in any interval containing x. Minimal relative com-
plements are the analogues of *“orthogonal complements™ in geometric
constructions, and are thus of prime importance. They are characterized
as follows. A lattice is relatively complemented whenever a relative com-
plement exists of any element, in any interval containing it.

PROPOSITION 2.8. Consider the following statements concerning a pair x,
of elements of a lattice L:

(a) For all elements zeL such that z < x, (x A y) VzZz=x A (¥ V 2).
(b) x is a minimal relative complement of y in the interval [x A y, x v y].

©) Mx A Y)Y+ Mx Vv y) = Ax) + Ay).

Statements (a) and (b) are equivalent in any relatively complemented
lattice. Statements (a) and (c) are equivalent in any semimodular lattice
with no infinite chains. Thus all three statements are equivalent in a
geometric lattice.

Proof: We prove first that (b) implies (a) in any relatively complemented
lattice. Given elements x, y, z in any lattice, with z < x, wehave y < y v z,
soxAy<xA(yvz,andz<yvVvzsoz<xA(yV z). Thus the
inequality, (x A y) V z < x A (¥ V z), holds in any lattice.

Assume now that the lattice L is relatively complemented. Let the
element ¢ < x be a relative complement of the element x A (y v z)in the
interval [(x A ¥) V z, x], assuming that (x A y) V z < x A (¥ V 2). Such
an element 7 (see Figure 2.5) satisfies t v y >y v z=x A (y Vv 2), but
tvy=xA(yvz) and ¢tV y=>t together imply that rv y > x,
because ¢ is a relative complement of x A (¥ vV z) in the interval
[(xAY)Vz,x).Thust v y= x v y,andequalityt v y = x v yfollowsfrom
the obvious inequality 7 Vv y < x v y.Ontheotherhand,x A y < ¢ < x
implies + A ¥y = x A y. Since t < x and ¢ is a relative complement of y
in the interval [x A y, x Vv y], it follows that 1 = x, because x is a minimal
relative complement. Hence condition (b) implies condition (a). The con-
verse is clear, if z is taken to be a relative complement of y in the interval
[x Ay, x v y], with z < x.

XV Yy
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Assume next that the lattice L is sesmimodular, with no infinite chains.
Choose a maximal chain x A y = xy < X; < - < X, = x from x A y
to x. Then {y;, = x; v ¥;i = 0,-- -, n} is, except for possible repetition of
elements, a maximal chain from y to x V y. A(x V y) — A(y) < A(x) —
A(x A y) if and only if there exists an index / such that x;_; V y = x; vV ».
If such an index exists, then (x A ) V x;_; =X, <X < x A (P V x3) =
x A (¥ V Xx;_1), and statement (a) is not satisfied for z = x;_;. Conversely,
if statement (a) 1s not satisfied for some element z < x, the elements
s=(xAy)vzandfr = x A (y vV z)stand in the relation s < . Choose a
maximal chain x A y=Xxp < - - <x;=8§< - <X;=1< - - <X, =X.
Then x; V¥ = x; V ¥, 80 M(x V ») — A(¥) < A(x) — A(x A ¥), and state-
ment (c) is not satisfied. |

If two flats x, y in a geometry satisfy the conditions of Proposition 2.8,
we say they are a modular pair, and write (x, y)M. Two flats x, y are skew
if (x, )M and x A y = 0. If a flat x bears the relation (x, y)M to every
flat y of the geometry, then the flat x is a modular fiat. The points, the zero
0, and the unit 1 are modular, in any geometric lattice. If all pairs of flats
are modular, the geometry is modular.

PROPOSITION 2.9. For any two elements x, y in a geometric lattice, there
is a natural order-preserving one-one function from the interval [x A y, x]
into the interval [y, x v y]if and only if x and y are a modular pair, given
by the function z+>z Vv y.

Proof: If x and y are not a modular pair, then A(x v y) — A(y) < A(x) —
A{x A y), and no maximal chain in [x A y, x] can be sent, by an order-
preserving one-one function, into the shorter interval {y, x v y]. Assume
now that (x, y)M. Consider the functions

f
[x Ay, x] [y, x vyl
g

defined by f(z) = y v z and g(w) = x A w. Both functions are order-
preserving. The composite g(f) is the identity function on the interval
[x A y, x], because (x, y)M and

gf@)=xA(yva=xAy)vz=z

for all elements z in the interval [x A y, x]. Thus the function f is the
required one-one function. |

As a consequence of the existence of relative complements in geometries,
every flat is expressible as a set intersection of maximal proper flats:

PROPOSITION 2.10. In any geometric lattice L, every element xe L is
expressible as an infimum of copoints of L.

Proof: Let x be an element of L, and let y = inf C, where C is the set of
copoints containing x. Assume x < y. Let z be a relative complement of
¥ in the interval [x, 1]. Then z # 1, and hence there exists a copoint ¢
containing z. Now, y v z = 1 implies y v ¢ = 1, so y £ ¢. But x < ¢,
contradicting the definition of y. |
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3. Some classical examples

The most important classes of geometries, historically speaking, are the
following: chain groups, function spaces, algebraic extensions of fields,
coverings, Wille incidence geometries, graphs and simplicial geometries.
As a preliminary to the discussion of these examples, let us look at a few
small but otherwise perfectly general geometries. In the next Section, we
shall discuss some examples arising in applied mathematics.

3.I. SMALL GEOMETRIES

Given a five-element set, how many different geometries may be con-
structed upon it ? It will turn out that all such geometries can be represented
by sets of points in an affine space of dimension no greater than 4 when
the closure of a set is the ordinary linear span, so we shall draw them as
such. First, there is the unique geometry of rank 2: five points on a line.

*r—r——0—0—9
FIGURE 3.1

A rank 3 geometry on five points may have at most one line of four
points, and at most two lines of three points. There are four possibilities:

YANR VAR S,

FiGURE 3.2

A rank 4 geometry on five points has at most one nontrivial flat, either
a three-point line, a four-point plane, or five points in general position
on a flat of rank 4.

AR

FIGURE 3.3

If the geometry on five points has rank 5, the points must be in general
position in a space of rank 5.
A similar count of the number g, , of essentially different geometries of

rank k on an n-element set, n = 1,- - -, 8, yields the following tabulation.
Let g, be the total g, ; + - -+ + gn,.. Then the recursion

Ern+1 = (gn)sfz

seems approximately correct, on the basis of this data alone. This would
suggest that there are some thirty thousand essentially different geometries
on a nine-clement set.
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TABLE 1. TABULATION OF g x

8 7 6 5 4 3 2 1
pts. pts. pts. pts. pts. pts. pts. pt.

rank 1 . . . 1

2 1 1 i 1 1 1 1

3 68 23 9 4 2 1

4 617 49 i1 3 1

5 217 22 4 1

6 40 5 1

7 6 1

8 i
total 950 101 26 9 4 2 1 1

3.2, CHAIN GROUPS

Let M be a module over a commutative integral domain R. The set,
upon which we shall define a closure relation, will be an arbitrary finite
subset S of the module M.

For any subset 4 < S, let A be the set

A = {x € §; some nonzero R-multiple of x is expressible as a finite
linear combination of elements of A4, with coefficients in R}.

PROPOSITION 3.1. The subset S, furnished with the relation 4 — A4, is a
pregeometry.

Proof: Foranysubset A € S, 4 = 4. Assume A < Band x € 4. Then for
some nonzero r € R, and coefficients r, € R, rx = rym, + - -- + r,my, with
m; € A. Since the elements m; are in B, there exist nonzero elements
81,°* +, 8 in R such that s;m; is a finite linear combination of elements of B.
Since R is an integral domain, the product s;- - - s5,r is nonzero. Thus
§,- -+ S,rx 1s a nonzero multiple of x, which is expressible as a finite linear
combination of elements of B, because R is commutative. So x e B,
A < B, and the function 4 — 4 is a closure.
Say that ye A U x, y ¢ A. Then for some r # 0,

ry = sx + z riZ;, z; € A.
i=1
But y ¢ A implies s # 0, so
sx =ry + Z (—r)z, zieA
f=1

and xe AU y. |

This pregeometry is called the chain- group pregeometry C(S). It is by
far the most important example of a geometry. The reader is urged to
peruse the connection between the exchange property and the “elimina-
tion” of a variable in linear algebra that is displayed by the preceding
example. This connection embodies the “yoga” of the theory of combina-
torial geometry.
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The traditional example of a chain-group geometry is that on a set S of
vectors in a vector space over a field. Then the dependence of a vector x
on a subset 4 < § reduces to linear dependence, because any relation
rx = ria; + --- + r,a, may be divided throughout by the nonzero field
element r.

An especially simple example of chain-group geometry occurs when an
Abelian group G is regarded as a module over the integers. The closed
subsets of G are simply the subgroups H of G for which the factor group
G/H has no elements of finite order.

We shall discuss below several examples of chain groups which have
arisen in combinatorial problems.

The rank of a subset of a chain group is the analogue of the dimension
of a subspace of a projective space. However, the most important examples
of chain groups in the present context are those where M = P, is a pro-
jective space over a fixed field F, so that we set R = F, and let S be a subset
of P,. In this case the lattice of flats of the chain group C(S) is isomorphic
to the lattice consisting of those subspaces of P, which are spanned by
subsets of S. In these examples we see combinatorial geometry as the study
of those properties of points in projective space which depend only on join
and intersection. This is the typical example of combinatorial geometry,
and provides the motivation and a visualization for many notions.

We urge the reader to constantly picture, insofar as possible, all notions
and results of combinatorial geometry in terms of sets of points in pro-
jective space.

3.3. FUNCTION SPACES

A subtractive algebra is a set X, together with a binary operation
(x, ¥) —x — y (read “x minus y”’) and a constant 0 (read *“zero’) satis-
fying the following axioms:

(Dx —x=0 forall xeX
2)ifx —0=0, then x=0.

Every loop (and, in particular, every group) gives rise to a subtractive
algebra, where 0 is the loop identity and x — y = xy~1.

Now let S be a finite set, and X a subtractive algebra. A proper function
space on S shall be a set V of functions from S to X with the following
properties:

(hiff,geVandr=f— g, thenreV.

(2) if, for some subset 4 = S, element se .S, and function g, €V,
go(p) = 0 for all p € 4 and go(s) # 0, then, for any element x in X
such that x = f(s) for some f € V, there exists a function g € V' such
that g(p) = 0 for all p € 4, and g(s) = x.

The typical example of a proper function space is a vector space of
functions from a set S to a field F, where subtraction in F is the operation
in the subtractive algebra. Proper function spaces furnish the most general
context in which the following hull-kernel construction gives rise to a
geometry.
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Let V be a proper function space on a set .S over a subtractive algebra X.
For any subset A < S, the hull of 4 is a subset of V,

h(A) = {feV;f(s) = 0,Vse A}.
For any subset B < V, the kernel of B is a subset of S,
k(B) ={seS;f(s) =0,Vfe B}

Since the functions £ and k are order-inverting between the Boolean
algebras Z(S) and #(V') of all subsets of S and V,

h

B(S) — &)

and since their composites k(4) and A(k) are increasing on #(S) and #(V),
the functions # and k form a Galois connection between the Boolean
algebras.

It is an easy consequence of the general theory of Galois connections (see
for example Rota, Foundations 1) that the composite functions are closure
operators. The images of functions /4 and k are precisely the closed subsets
of V and S, respectively. The functions 4 and k take unions into inter-
sections. Finally, the lattices of closed subsets of § and of V are anti-
isomorphic (use the restriction of 4). The reader may easily prove these
facts for himself, beginning with a proof of the equivalence

A € k(B) if and only if B < h(A).

PROPOSITION 3.2. Let ¥ be a proper function space on a set S. The set S,
with closure A = k(h(A)), is a pregeometry or matroid.

Proof: We prove that the closure has the exchange property. Assume
s ¢ k(h(A4)) for some subset 4 < S, but s € k(h(A4 U 1)) for some element
t € §. Find a function f€ V vanishing on A4 (that is, f(p) = 0 for p € A)
but not on s. It does not vanish on 1. If ¢ ¢ k(h(4 U 5)), then there is a
function g vanishing on 4 and on s, but not on ¢. By Property (2) of
proper function spaces, we may assume without loss of generality that
f(&) = g(t). Let ¥ = f — g. Then r € ¥, and by Axioms (1) and (2) for the
subtractive algebra X,

rp) =f(p) —gp)=0—-0=0 forallpeA,
r(s) = f(s) — g(s) = f(s) — 0 # 0O,
(1) = f() — g(t) = 0.
This contradicts the assumption that s € k(h(4 U t)), and completes the
proof. |
We say that the proper function space V distinguishes the points of S if,
for every ordered pair s, ¢ of distinct elements of S, there is a function
/€ Vsuch that f(s) = 0 but f(¢) # 0. Whenever V distinguishes the points
of S, the pregeometry obtained above is a geometry. In any event, let us
denote the geometry arising from this hull-kernel construction by the
symbol F(S), the function-space geometry on the set S.
Let M be a module over a commutative integral domain R. (For instance
M may be an Abelian group. Then R is the integers.) If C(S) is the chain-
group pregeometry on a finite subset S of M, the set S also has a natural

20



130 Henry H. Crapo and Gian-Carlo Rota

function-space pregeometry F(S), obtained by taking as the proper func-
tion space V the set of restrictions to S of all elements of the dual module
M* (the set of R-linear maps of M into R). It is easy to check that V is in
fact a proper function space on S, and that the pregeometries F(S) and
C(S) are the same. Thus chain-group pregeometries are in reality merely
a special case of function space pregeometries, in which the subtractive
algebra is necessarily a commutative integral domain.

Conversely, given an R-function space pregeometry F(S) on a finite set
S, derived from a proper function space ¥ of functions from § into a com-
mutative integral domain R, V is an R-module and has a dual V* =
Hompg (V, R). Each ¢lement of S acts as a linear functional on FV, so it
can be regarded as a member of V'*. In case F(S) is a geometry, each
s € § corresponds to a distinct functional so S becomes a subset of V'*,
and as V* is an R-module, S acquires therefrom a chain-group structure
C(S), which is the same as F(S).

We can now state that any integral-domain function-space geometry (not
so for a pregeometry) is isomorphic to a chain-group geometry, and vice
versa. Although strictly speaking the isomorphism makes one of the two
examples superfluous, it is nevertheless useful to be able to use both the
language of chain groups and that of proper function spaces.

As an instance of the usefulness of having both modes of expression
available, we will prove that any chain-group geometry is a vector-space
geometry.

The precise meaning of the statement is this: if S is a finite subset of an
R-module M and C(S) is the resulting chain-group geometry on S, then
S can be embedded in a vector space Y over some field F so as to yield a
chain-group geometry C’(S) = C(S). Specifically we take F to be the
field of fractions of R. The first step in the proof'is to use the fact that C(S)
is isomorphic to an R-function space geometry V(S). V, as a submodule
of Hom (S, R), is also a subset of the F-vector space Hom (S, F), in which
it generates a vector subspace W. W is a proper function space on S over F
and gives a new geometry W(S). It is easily seen that W(S) and V(S) are
the same. (Let fe W. By construction

f=2%ﬁ, a,b;eR,fieV,n=0.
1 i

Let b = b,---b,. Then bf € V and ker f = ker bf. This shows the flats of
W(S) are all flats of F(S). The converse is immediate since V' < W.)
Hence we obtain an F-function space geometry W(S) = C(S). By the
assumption that C(S) is a geometry, W(S) is isomorphic to a chain-group
geometry C'(S) over F. |

Although this isomorphism sometimes makes one of the two previous
examples superfluous, it is nevertheless useful in many contexts to be able
to use both the language of chain groups and the language of proper
function spaces. However, the reduction of a’ proper function space to a
chain group, by an extension of the preceding construction beyond integral
domains, is not always possible.
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3.4. ALGEBRAIC EXTENSIONS OF FIELDS

The transcendence degree of an extension of a field is defined to be the
cardinal number of a maximal set of algebraically independent transcen-
dentals in the extension. The transcendence degree of a field K over a
subfield F can be ascertained from the collection of fields M which are
extensions of F, and which are relatively algebraically closed in X (that is,
every element of K algebraic over M is in M).

Recall that an element 4 of a field K depends algebraically upon a sub-
field M if and only if b is a solution of some polynomial equation p(x) =0
with coefficients in the subfield M.

PROPOSITION 3.3. Let F be an algebraically closed field, let x,,-- -, x, be
independent transcendentals, and let F(x,,---, x,) be the associated ex-
tension field (the field of rational functions in n indeterminates, over F).
Then the relatively algebraically closed subfields of F(x,,---, x,), con-
taining F, form a geometric lattice L of rank ».

Proof: The points of the lattice L may be represented as those relatively
algebraically closed subfields F(y), where y is a transcendental, that is, a
single rational function in the indeterminates x,,- - -, x,. For any set T of
such transcendentals, a transcendental x depends algebraically on T when
x is a solution of a polynomial equation in one variable, with coefficients
in F(T). Then the enlargement of each set T of transcendentals, to the set
of all transcendentals dependent algebraically on T, is a closure operator.
A set of transcendentals is closed if and only if it is the set of transcen-
dentals in some relatively algebraically closed field, contained between F
and F(x.,- -, x,).

If a transcendental x depends algebraically upon a set T of transcen-
dentals, it depends also upon a finite set T, of transcendentals occurring in
the coefficients of some polynomial equation. Thus the closure relation has
the finite basis Property 2.4.

If a transcendental x depends algebraically upon a set 7 U y of transcen-
dentals, but not upon the set T, then x is the solution of some polynomial
equation, in one variable £, with coefficients in the field F(7°V y). Multiply
this polynomial by an appropriate element of F(7T U y), substitute a
variable 7 for y, so that it becomes a polynomial equation in two variables
¢ and 7 over the field F(7T), with solution ¢ = x, n = y. The variable 5
must occur nontrivially in this polynomial, for otherwise x would depend
algebraically on 7. Substituting ¢ = x, we see y depends algebraically on
the set 7V x, and the closure relation has the exchange property. |

3.5. COVERINGS

A covering = of a set X is a family of subsets of X, with union X. A
covering is a partition of type p (or an p-partition) of the set X if

every member of = has at least » elements 3.1

every n-element subset of X is contained in a unigue member
of . (3.2)
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The members of = are the blocks of the covering. For n = 1, an n-parti-
tion is an ordinary partition. For n = 2, the blocks may be called lines,
and our requirement is that two points determine a unique line,

PROPOSITION 3.4. For any n-partition of a set X, n > 2, the following
subsets:

the set X,
the blocks,
and all subsets with fewer than » elements,

are all the flats of a geometry.

Proof: We are given the closed subsets of X. The closure relation with
these closed sets is defined as follows. For any subset 4 < S with fewer
than » elements, 4 = A4. If a subset 4 has at least n elements, then it is
either contained in a unique block B, so that 4 = B, or else it is contained
in no block, and 4 = X. It is clear that 4 < A4 for all subsets 4 < X.
Assume A < B. Then B either has fewer than # elements, or is a block, or is
equal to X. In the first instance, 4 has fewer than n elements, and is closed.
In the second instance, A4 is either closed, or has closure B. In any event,
A < B, and the relation A — 4 is a closure relation.

Any subset 4 € X has a subset with at most # + 1 elements and the
same closure. Thus the closure has finite basis, and it remains to prove the
exchange property. Assume ae 4 U b and a ¢ A, for some subset A < X
and two elements a, b € X. Since the sets 4 and 4 U b differ by a smgle
element, there are three possibilities for Aand AU b. Either 4 U b =
and A is a block, or 4 U b is a block and 4 = 4 has n — 1 elements, or
both 4 = 4 and A U b = A4 U b have fewer than n elements. In the first
instance, a¢ A4, so 4 Ua = X. In the second instance, 4 Ua has n
elements, and 1s a subset of the block 4 U b. In the third instance, ¢ = b.
In any case, AUa=AuUb,andbe AUa.l|

From each geometric lattice L(S) of rank »n + 1, a geometric lattice
TL(S) of rank n may be formed by identifying all the copoints of the lattice
L(S) with the element 1. If this truncation operation is performed on the
lattice of a partition of type », the resulting lattice is composed of all
subsets of a set X which have fewer than n elements, together with the
entire set X. Such geometries have a particularly simple structure: they
are also obtainable by truncating the Boolean algebra #(S) of all subsets
of the set S to rank n.

The converse of this observation also holds. Using the truncation opera-
tion, we obtain two equivalent characterizations of lattices of partitions of

type n.

PROPOSITION 3.5. A geometric lattice L(S) of rank # + 1 is isomorphic to
the lattice of a partition of type n if and only if its truncation TL(S) is
isomorphic to the rank » truncation of the Boolean algebra #(S), if and
only if every lattice interval [0, x] to a coline x is distributive (and is
therefore a Boolean algebra: the lattice of the free geometry on n — 1
points).
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Proof: The preceding discussion establishes the necessity of these condi-
tions. If the intervals [0, x] to colines x are all distributive, we shall see in
Chapter 4, Proposition 4.11, (or else, the reader can easily verify for him-
self) that all n — 1 element subsets of S are independent and closed. Thus
the truncation TL(S) coincides with the truncation of the Boolean algebra
2#(S) to rank n.

Since the lattice L(S) is geometric, each n-element set 4 = {a,,- - -, a,}
must be in a unique copoint. This copoint is obtained by adjoining the
element a, to the closed set {ay,- - -, a,_;}, and by forming its closure. By
the covering property, 4 must be a copoint. Each copoint has at least n
elements, so the lattice L(S) is the lattice of a partition of type #. |
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1. Introduction.

The present work is born from the interplay of
two seeminglyﬁdiépératé4br$ﬁches'of“combiﬁatoriai theory.
The first is the .classical calculus of :finite differences,
ﬁhich has been in the past more often related to numerical
analysis than to problems of enumeration. In the calculus
of finite differences, there occur several sequences of
polynomials which are used in interpolation, numerical

quadrature, and several pthen'connections. Typical of

such sequences of polynomials-are the lower factorials
(l) pn(x) - (x)n - X(x‘l).._.(x"n'l'l), m s 0, 1'2’

-and the upper factoriéig'

(2) ph(x)”g‘x(n):-"x(x+1)..:(x+n-l), n=0,1,2, .

'y Lo
Less well known, biit equally significant polynomia; sequences

are the Abel bOIynbmialg,'éiudied by Abel, Hurwitz and others:
* ".'-'h : “ : :‘ ' . T . - “ .

(3) p_(x) = x(x-an)?", n = 0,1,2;...

and the exponential polynomials, studied by Touchard and others,
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(%) (%) = E S(n, k)%,

where S(n,k) denote the familiar Stirling mmbers of the
- second kind. Another significant sequence is the Laguerre
polynomials

(5) In(x) = 2, B (oD (0%
which have an extensive litérature. These segquences of
polynomials, as well as a large number of other sequences
that have arisen in classical analysis and combinatorics,
share a common property: that of being of binocmial type.
We say that a sequence of polynomieals pn(x), where pn(x)
is of exactly of degree of n, is of binomial type when
it satisfies the sequenceé of identitles

(6) pn(x+y) - kﬁé (ﬁ)pk(x)pn-k(y)’ ne=20,1,2,... .

It will be shown in the course of this study (and it 1s
verified without difficulty using the results below) that
each one of the sequences of polyncmials mentioned above

is of binomial type.
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This work is a study of certain analytic or (more’
suggestively) algebraic-combinatorial properties of
sequences of polynomials of binomial type. The main
problem we aim at is the following: given two sequences
p,(x) and g (x), both of binomial type, there clearly

exist coefficients Cnk’ the so-called connection constants,

(M) . Pn(x) = kiO i (%)

vhich express one sequence of polynomials in terms of the
other. Our problem is to determine as efficiently as
possible the coefficients Cri in terms of minimal data
on the polynomials p (x) and g (x). A few classical
instances of this problem are given below.

In trying to solve this problem we were led to develop.
a systematic theory of polyncmial sequences of binominal
type. The main novelties we 1ntroduga in this theory are,
first, & systematic use of operator ﬁethods as against
less efficient generating function methods, which were
used almost exclusively in the past, and secondly a solution
of the connection problem stated above, which eluded past

workers in the field, and which we believe to be remarkably
simple. '
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Patches and bits of the theory developed in thj.s.work
can ie found in the literature of the last 50 years, starting
vith the work of Pincherle and Amaldi in 1900, following
through the Danish and Italian schools of calculusz of
finite differences, celminating with the work of the great
panish actuarialist Steffensen. The statement (though not,
alas, the proof) of Theorem 4 below is due to him. A few.
other results, such as the Expansion Theorem, where at
least intuited by Pincherle and his school. But, we believe.. .
that our notion of umbral cperator (a tem introduced by
' Sylvestor and extensively used by the invariant theorists
~and by E.T. Bell, though never correctly deﬁ.ned_), together
with our solution of the connection constants problem that
it ylelds, gives a new direction to the calculus of finite
differences, even for workers interested in purely analytic

matters.

It turns out that there is a second and entirely
different point of view from which the theory of polynomials
of binomial types can be looked at. Each of the polynomial
sequences listed above can bve interpreted as counting the
nunber of ways of placing “balls” into “poxes®, sudbject to
various restrictions. This ties in with the classical
theéry of distributions and occupancy, which can be
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alternatively considered as making words out of an alphabet,
subject to various restrictions on the successions of |
letters. More precisely, we are given a set 8 with n
elements and & set X with x elements, and we consider
functions from the set 8 to the set X subject to
various restrictions. The restrictions are such that they
do not 1imit the range of the functions but only the domain.
Thus, for example, the lower factorial powers (1) count the
number of one-to-cne functions from a set of n elements

to a set of x elements. Similarly, the upper fectorials A

(8) x(®) . x(x+1)(x+2)...(x+n-1)

count the different ways of placing the balls S into the
boxes Xx when a linear ordering is to be chosen of the

balls within each box.

In the sanie vein, the Abel polynomials
(9) X(x‘-ln)n-l, nm= o, 1, es ey &n<x,
can be considered in combinatorial terms. Indsed, consider

a circle of circumference x, and & set of n arcs each

of length & and each having the same radius of curvature
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as the circle. If we drop the arcs randomly on the
circumference of the circle then the probability that no

two arcs overlap is easily seen to be

(10) xfx~n&!n'l
£
Thus the Abel polynomials "count” the ways (1i.e., the
measure, since thls case 1is continuous) in which the arcs

may be placed without overlapping.

Whenever we count a set of functions from & set of 8
to a set X, subject to restrictions on the domain, then,
letting p,(x) be the number of such functions, we see
.1mmediately that pn(x) is a polynomial and that the
sequence p (x) must be of binomial type. Thus, sequences
of polynomials of binomial type arise naturally as the
unifying concept in the theory of distrivution and occupancy.

Accordingly, the present study will be divided into
two parts. In the first (the present) part we concentrate
on the analytic properties of polynomial seguences of binomial
type; the relationship to problems of distributions and a
occuparcy is discussed only in Sections 2 and 10, and is
meant only as an introduction to the second part. It turns

out that every sequence of binomial type with positive
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integral coefficlients can be associated to & counting |

. problem 6: a certain class of "reluctant" functions, as
defined in the next Section. In the second part of this
work we shall intrepret the analytic results derived here
in purely combinatorial, that is, set-theoretic terms.

Perhaps the most satisfying results of this investigation
are, rirst, the unexpected relations of sequences of binomial
type with problems of enumeration of rooted labeled trees,
(Section 2), and secondly, the solution of the problem of
the connection constants, which has deep combinatorial
1mpiications.

In several special cases, classical analysis has already
answered the problem of the connection constants. For

example, we have

(11) | B - kgo.sgk,n)(x)k .
(12) (%) = kgo s_(k,n)xk
(13) x(®) o £ la(in) |t

where s(k,n) and S(k,n) are the Stirling number of the
~ first and second kind. Another example is

(14) x(7) . I Bl @),
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(25) In(x) = T (-1)* BF @yt

where -Ln(x) are the laguerre polynomials.

We hope that this introuction has given an idea of the
scope of the present investigation. In the next Section
we briefly outline some combinatorial connections , there-
after to dismiss them in favor of the analytic theory,
until Section 10.

We thank M, Shalor and 8. Smoliar for help in the.
preparation of this manuscript, and the Statistics
Department of the University of North Carolina, as well
as the U.S. Army Research Center at the University of
Wisconsin, and Florida Atlantic University for giving us
"the opportunity to' present these results to an actively
contributing audienco“. |
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2. Reluctant Functions.

Given a function f: 8-X, where from now on 8
will be & finite set with n elements and X will be a
finite set of x elements, we can associate with it
"functorially” two objects: the range ¢ f, namely,the
sub-set of elements of X which are images of some elements

of S under the function f; and the coimage of f, which

consists of the partition of the set X d_efined by the
following equivalence relation: an element a of X 1s
equivalent to an element d of 8 if and only 1if

£(a) = £(b). Thus, the coimage of f is a partition of the
set 8.

We are now going to rather drastically generalize these

concepts.

We define a reluctant function from 8 to X as
follows. It is a function f from 8 to the disjoint
mﬁon 8uUX, subject to the following restriction. For
every element 8¢S, the element f(r(s')) is defined
if and only if f(s) ¢ 8; similarly, £(f(f(s))) is defined
if and only if r(f(s)) € 8, etc. Our requirements is
that only & finite number of terms of the sequence 8,
£(s), £(r(s)), £(r(£(s)))s... DVe well-defined. A more
suggestive, 1f less precise, way of stating the same

65



10.
2-2

condition is the following: for every element s ¢ S,
the "orbit" s,1(s), r(r(s)), £(e(r(s))), ... of =
under iteration of the function f “eventusally” ends up
in X, where it stops. Thus, one might say that £
"reluctantly” maps 8 into X.

The range of & reluctant function f will consist

. of those elements of X which are images of some element
of 8, Just like in the case of an ordinary function.

On the other hand, we need to generalize the notion of
coimage of an ordinary function, as defined above, to the
'neu.Lv 'J.ntroducpd conéaptd a reluctant function. Whereas
the coimage of an ordinary function is simply a partition
of the set 8, the coimage a reluctant functicn is going
to be more than & partition of 8. In fact, for every
element x of X which is in the range of the reluctant
function f, the inverse image of the element x is
defined as the set of all elements s of 8 such that
the sequence of its successors f(s), £(£(s)), ... eventually
ends up in X. The inverse images of distinct elements of
X are disjoint subsets of 8. Thus, to every reluctant
function there is associated a partition of the set 8,
Just like in the case of an ordinary function. However,
within each block of such a partition there is a natural
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structure of a forest of rooted trees descridbing the *nistory?*

of the elements of that b,lbck before they end up in X. Thus,
we are led to define the coimage of a reluctant function to
be a partition of ths set 8, together with a structure of
a rooted forest (i.e., set of rooted trees) defined on each
block of the partition. BEach rooted forest covering one
block of the coimage is the "inverse image® — in the '

generalized sense just described — of an element x of X.

. Note that each block of the coimage can be further.
partitioned into the connected components, that ia, the
| trees, of the rooted forest. The resultin; partition is a
refinement of the coimage and has the additiom.l property
that cach block has the structure of a rooted tree. Ve call
this finer partitidn m of 8, together with the structure
of rooted tree (8es Harary or Moon for definitions) on each
block of 1, the pre-image of the reluctant function f
(recall that a rootéd tree is a partially ordered set).
Thus, the coimage of f 1is obtanied by *piecing togchter®
all those blocks of the pre-image of f Which are "eventually
mapped® to the same element x in X.

Clearly, the pre-image of any reluctant function is a |
rooted labeled forest on the set 8§, following classical
terminology. Given any rooted labeled forest L on 8§,
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with k blocks, that u, consisting of k rootod trees,
thore are cvidcntly } reluctant runctiom whose pro-inco
h the forest L.

By way of exsmple, let us consider the set of all
reluctant functions from 8 to X (notice that our use .
of the word "from" and “to® is not strictly correct, dbut is ..
" nevertheless suggestive so we shall keep using it). ILet
C,x D¢ the number of rooted labeled forests with k blocka |
on the set 8. 'nmn the mnber of roluct&nt functions from
8 to X 1s evidently given dy the polynau.al

(1) 5 ek = Ay(x).

It is easy to see, by & simple combinatorial argument
which imitates the standard set-theorstic proof of the
binomial theorem,that the sequence of polynomials A,(x)
is of binomial type. It is less obvious, and it will
trimily follow from the present theory (see Section 10)
_that the polynomials A,(x) are given by the expression

(2) - Ay (x) = x(mn)?E,
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 that 'vis. that they are a special case of the Abel poly-
noni"ols, ‘corresponding to & = =1. This gives immediately
the classical result of Cayley counting the number of rooted
trees, since rooted trees correspond to rolucunt functions -
‘having u pre-image a partition with one block, and so are

the coefficients °n1 in (2), which equal a2,

4 We define a binomial class B of reluctant functions
as follows. To every set 8 and set X we assign & set
F(8,X) of reluctant functions from 8 to X. The

assigment is "functorial® — or, in combinatorial language,

"unnbolo_d". This means that isomorphisms of the sets 8
‘with 8, and X with X, induce & naturel isomorphis:

of the sets F(S,X) with P(8p,X,). Thus, if the polynomials
Pn(x) denotes the size of the sets F(8,X), the function

' 'pn(x) depends only on the size n the set 8 and the size.. B
x of the set X. ' ‘ '

_ We come now to the crucial condition. In set-theoretic |
tom. tho condition states that there is a natural 1aonorph1n

h) ?(8,XaY) = rA.xorsql.r;
(*) (8, xeY) n‘;s( )OP(8-A,Y)

Here, '@ ‘and I denote disjoint sum of sets, 8 denotes .
product of sets, and = stands for natural isomorphiim. |
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. The variable A ranges over all subsets of the set S.
 We set (for good reasons) F(aX) = 1 for all non-empty

sets X.

Teking the sizes of both sides of (*) we obtain the

‘equation
Pp(xty) = & ()P, (x)Pp_x (¥)

which expresses the fact tt_nt the polynomials pn(x) are
a sequence of binomial type. '

Roughly speaking, condition () states that by "plecing
togehter®” two reluctant functions in the family B, we again
obtain a reluctant function in the family. It is & generalized
set-theoretic version of the binomial theorem. '

| Two important ways of defining binomisl classes B

_of reluctant functions are the following. Lot T be a

family of rooted trees (it is irmaterial whether they are
labeled or unlabeled). The femily B(T) will consist of all- -
reluctant functions whose pre-imsges are ladeled forests on

8 eeach of whose ccnpen&xtl is igomorphic to a tree in the .
fanily T. Clearly B(T) 1s a binmmisl class of reluctant
functions. In the example considered above, the family T
consisted of all rooted trees.




15.
2.7

' Thus, we see that the enumeration of labeled forests
is closely connected with the theory of polynarzials of
bir~mial type. ' The family T can be specifed in innumeredle
ways, which will be considered in the second jmrt of the
present worlc.' For the moment, we shall give scme illustrations
that chow that the classical polynomials listed in Section 1
can be interpreted as enumerating binomial classes of 9
reluctant functions. We have already seen above that the
- Abel polynomials can be interpreted as enumerating the
binomial class of all rélucta.nt functions, as least for
a = «1, A somewhat more elaborate argument would show
that all the other Abel polynomials, for & & negative

integer, enumerate other binomial classes of reluctant function:

. Perhaps the simplest example 1s given by the sequence
2. This enumerates the binomial class B(T), vwhere T
consists 6: a single tree, with one root. _...'
Another interesting example is the sequence of Laguerre
polynomials L (-x). These enumerate the binomial class B(T),
where T is the set of all linearly ordered rooted trees.

We leave the easy verification of this fact to the reader.

A fourth example comes for the inverses of the Abel
polynomials, considered in Section 10, namely, functional
digraphs, enumerated by the polynomials
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: =K k
p (x) = T (D)"x
n kgo(k) >

which do not appear at first sight to be of binomial type.
We prove that they are, by showing that they enumerate &
binomial class B(T). Simply take T to be the family of
'all rooted trees, all of whose branches have length at most

two!

Given a binomial class B(T) of reluctant functions,
we can consider the subclass of those functions having the

property that their coimage coincides with their pre-image.

We denote this subclass by B, (T), and call it the
monomorphic class associated with B(T); it generalizes the

notion of a one-to-one function.

~ The monomorphic class associated with L consists
precisely of all one-to-one functions, enumerated by the
lower factorisls (x),. The monomorphic class associated
" with the Laguerre polynomials turns out to be enumerated by
the upper factorials x(n) (as follows from the combinatorial
interpretation of x(")  given avove).

We state without proof (but the proof is easy) an
important result about monomorphic classes. If the sequence
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"

n
Pp(x) = xfo %k

(]

enumerates the binomial class B(T), then the seguence of
polynomials

6, (x) f.kzé an (X

enumerates the monomorphic class R (T). This fact makes
formula (14) of the preceeding Section immediately obvious,
and a similar interpretation can be given to (11).

The substitution of (x)k for x*

-

is an instance of'

vmbral substitution, studied generally in Section 7. It

will be seen in the second part of this work that the
general umbral substituions of one basic sequence into
anothsr have combinatorial interpreétations in terms of

"piecing together” trees and other set-theoretic operations. -

These examples such suffice to orient the reader to

_ the combinatorial aspect of the theory ve are esbout to

develop. The notion of reluctant function does not exhaust
the interpretation of sequences of polynomials of binonial

. type. For example it does not interpret combinatorlially
those seguences of polyncmials of bincmial type which have
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negative or non-integral coefficients. Nevertheless, we
"shall see in the second part of this work that all sequences
of polynoﬁial type with non-negative coefficients can be
set-theoratically (or probadilistically) interpreted by a
generalization of the noiion of reluctant function,

whereas those with negative coefficients can be interpreted
by sieving methods (MObius inversions, etc.). There is
also an obvious connection with the theory of compound

Poiseon processes.

.Apologizing for this sketchy introduction, we procesd
to begin the anslytic theory.
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3. Fundamentals.

Throughout this paper, we shall be concerned with
the algebra (over a field of characteristic zero) of all
pPolynomials in one variable, to bde denoted P.

By a polynomial sequence we shall denote a sequence of
polyncmials pi(x), i=0,1,2,... where pi(x) is exactly

of degree 1, for all 4.

A polyncmial sequence is said to be of binomial type if
it satisfies the infinite seguence of identities

.

Pp(xty) = kgo(ﬁ)pk(x)pn.k(v), n=0,1,2...

All the polyncmial sequences mentioned above are offbincmial
fype-. For some sequences, such as xn, this is a. trivial
cbservation, but for othcrb, such as the Abel and Touchard
polyncmials, the verification that they are of binomial type
will be a cmequ@e (a mtixex; simple one, to bs sure) of

our theory.

Our study will revolve pﬁma.rily around the study of
Jinear opsrators on P considered as a vector spaca.
Henceforth, all operators we consider will be tacitly
agssuned to be linear. We denote the a.ctic;n of an operator
T or the polynomial p(x) by Tp(x); this notation is not
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strictly correct; a correct version is (Tp)(x). However,
this notational license results in greater readability.
By way of orientation, we list some of the operators of
frequent occurrence in t_he theory of binomial enumeration.

" The most important are the shift operators. A shift

' operator, written I-;‘a', is an operator which translates the
argument of a polynomial by &, where a 1is an element of
the field, that is, E°p(x) = p(x+a).

An operator T which commutes with all shift operators
is called a ghift-invarient operator, i.e.,

¥ - 7 .

The following &re important examples of shift-invariant

operators:
(1)  Identity operator I: x* - x.
(11) Differentistion operator D: X' = n-L,

(111) | Diffsrence Qperator & = B-I: (x), = n(x),_3,
| where we write E in place of E', whers 1
is the identity of the fileld.

(iv) The Abel operator DE® = E*D: .x(x-na.)n"l -
nx(x-(n-l)a.)n'l. B

+1
(v) Bernoulli operator J: p(x) - J‘x p(t)at.
x
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(vi) Backward difference operator A= 1-g71: x(n)-onx(n“"’l
(vii) ZLaguerre operator L: p(x) - -f e” p (x+t)dt.
(viii) Hermite operator H: p(x) - E r et /2p(x+t)dt.

(ix) Central difference operator

8 = 31/2-3"1/2: P(x) = p(x+ 1/2)-p(x- 1/2).

(x) Euler (mean) operator M = (1/2)(I+E): p(x) -
(3/2)(p(x)+ p(x+1)).

We define a delta operator, usually denoted by the letter

Q, as a shift-invariant operator for which Qx is a non-

zero constant.

Thederivative, difference, backward difference, central

difference, Laguerre, and Abel operators are delta operators.

Delta operators possessmany of the’ properties of the

derivative operator, as we proceed to show.

Lemma 1: If Q 1s a delta operator, then Qa = O

for every constant a.

Proof: Since Q 1s shift invariant, then

Qli.‘x = E‘Qx

e dig

By the linearity of Q,
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QEPx = Q(x+8) = QxHQa = o+,

since Qx 1s equal to some non-zero constant c by definition.
But also

E&Qx-f'c-c

and 80 c+Qa = c., Hence Qa = O, Q.E.D.

Lemnma 2: If p(x) 1s a polynomial of degree n and
Q 1s a delta operator, then Qp(x) is a polynomial of

degree n-l.

Proof: It is sufficient to prove the conclusion for 3
the special case p(x) = X, that is, to show that the
polynomial r(x) = Q" 1s of degree n~-l1 (exactly). From
the binomial theorem and the linearity of Q we have

Q(x+a)" = xgo (ﬁ)a“u“"f.
Also by the shift invariance of
Q(x+a)" = QA = B - r(x+a)

80 that
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n -k
r(x+a) = ¥ a.kqf‘ . .
(x+a) " 20(.1.;) »
Putting x = 0, we have r expressed as a polynomial in a:
. K =k
r(a) = v (M)a*[RF ). L.
The coefficient of a® is
-n
twlw-mqu
by Lemma 1. FPFurther, the coefficient of a1 g
n qxu-m-l—l.

Hence r 1s of degree n-l, Q.E.D.

Let Q be a delta operator. A polynoamial sequence
P,(x) is called the sequence of basic polynomials for Q
if:

(1) po(x) =1

(2) »,(0) = 0O whenever n>0

(3) @@u(x) =np,_;(x)

Using Lemma 2, it is easily shown by induction that

every delta operator has a unique sequence of basic polynomials
asrociated with 1t. For example, the bdbasic polynomials for

the deriative operator are x°.
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We shall now see that severval properties of the
polynomial sequence X can be generalized to an arbitrary
sejusnce of'basic polynomials. The first property we
noticed about x" was that it was of bincmial type. This
turns out to be true for évery sequence of basic polynomials,

and 1s one of our basic results.

Theorem 1.

(a) If p,(x) 4is a basic sequence for some delta
6perator Q, then it is a secuence of polynomials of
binomial type.

(v) If pn(x) is a sequence of polynomials of
binomial type, thén it is a basig sequence for some delta

operator.

Proof: .
- (a) Iterating property (3) of basic polynomials, we
~see that '
(%) = (a)yPp ()

and hence that for k = n,

[P, (x) 1,0 = n!
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while

(@, (x)] 0 = 0, ken.
‘Thus, wWe may express pn(x) in the following -_form:
Pa(x) = T, p"( ) < [ (x)],‘_,0

Since any polynomial p(x) 4s a linear combination of the
basic polynomisals pn(x), this expression also holds for
all polynomials p(x), 1.e.,

P(x) = T *‘( ) S [P(x) ]

Now suppose p(x) is the polynomial P, (x+y). Then

Pa(2¥) = T 5’%—) (%, (#+¥) o

But

[, (2+3) 10 = [, (1)1,
= [BR,(x)),
= (B (n)Ppn i (X))o
- (n)yPpx ()
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and so

Pa(xy) = T ()P (X)P, y(¥)
k>0

which means that p (x) 1is of dbinomial type.
(b) Conversely, suppose p (x) is a sequence of

‘binomial type. Putting y = O in the binomial identity,

we have

P, (x) = kfo(ﬁ)"x(")i’n-xm

= Po(XIPo (O} 3 (X)P (O)+.-. -

gince each pi(x) is exactly of degree i, it follows
that p,(0) =1 (and hence p (x) = 1) and p;(0) = O
for all other 4. Thus properties (1) and (2) of basic

sequences are satisfied.

We now find a delta operator for which such a scquence
Py(x) 1s the sequence of basic polynomials. Let Q be
: the operator defined by the property that on(x) = 0 and
Q,(x) = np,_;(x) for nyl. Clearly Qx must be a non-
zero constant. Hence all that remains to be shown is that
'Q 1is shift-invarient.
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i

As before wa may trivially rewrite the generaliszed
bincmial theorem in terms of Q:

pn(x+y) - go BE-S:)— Q‘Pn(ﬂ

and, by linearity, this may be extended to all polyncmials:

P(xy) = I i’%ﬁi‘-’- ().

Now replace p by Qp and interchange x and y on the right
‘to get ‘ ,‘ (v) |
pk Yy '
»my) = I s .
(@) () =z p(x).

But
(@) (x+y) = B (®@)(x) = P(x)
and

P () Py(y) v
£, &*p(x) = *E, Er— &)1’

= Q(p(x+y))
= ().
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..,!Bms we have
2ap(x) = WEp(x),

for all polynomials p(x), i.e., Q 4is shift-invariant, Q.E.D.
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4.  Expansions.
We shall study next the various ways of expreésing
& shift-invariant operator in terms of a delta oper.ttor and
- 1ts powers. The difﬁcuit:les caused by convergence questj.r;n_s_,,
are minimal, and we shall get around them in the ea.si«‘;st
possible way. |

Consider & sequence of shift-invariant operators Tn
on 2. We say that the sequence converges to T, written
T, = T, if for every polynomial p(x) the sequence of
polyncmials 'J:np(x) converges pointwise to the polynomial
Tp(x). The convergence of an infinite series of operators

is to be understood accordingly.

The following theorani ’generalizes the Taylor expansion
theorem to arbitrary delta operators and basic polynocmials.

' Theorem 2, (First Expansion Theorems). Let T be a
shift-invarient opsrator, and let Q be a delta operator
with basic set p (x). Then

'« 2k .k
T= ¢
ko TS

where

o = (TP (x) )0
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A Proof: Since the polynomials p,(x) are of binomial
type then, as usual, we rewrite the binomial formula as

'Pn(x"';)'-kiofkf(rqukpn(x)'

Now we may rmrd this as a polynomial in the variable y
~and apply T to both sides to get:

wy(eer) = 1 ZE ().

| Again, by linearity, this expression can be extended to all
polyncmials p. After doing this and setting Yy equal to

zero we got

W(x) = T E’-’%g-)—]l’-'i’- Q“p(x) Q.E.D.

Obviouclqr, the best-known example of this Theorem 1s
‘When Tw=1 and Q= D; then p (x) = x", end we have
Taylor's expansion. A second exampls 18 Newton's expansion, .
which has three forms. If Q = 4, then p (x) = (x), end
the coefficients are &, = [T(x), ] o If Q= v then |
py(x) = x{Pana & = (rx(®)y . The basic polynomials for ..
Q=6 = BY3-EY2 111 ve determined later.
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The following remark will be used occasionally:

Lenma: If Q 4s a delta operator, and p(x), q(x)
any polynomials, then ) : ' 3

BQ)a(x) ] g = [8(R)P(X) ], 0-

Proof: By _11nea.r1ty, we heed only consider ‘the cases
when ¢(x) = p (x) and p(Q) = Q®, where p,(x) are the
ba.s_j.c polynomials of Q. But it is easy to see ‘that the
relation holds in tm.# case. Q.E.D.

As & further example of the use of the expansion
theorem, we derive the classical Newton-Cotes formulas of
mmerical integration. We wish to find an expansion, in
terms of 4, oOf the Bernoulli operstor J, defined by:

I p(x) = f:"p(t)dtr

Noting that J, 1s a shift-invariant, we have the identities

+A¥=1l A

Jp= =39
I+A) -1

- 3 - 3y

vhich reduces the problem to finding an expansion of J;
in terms of A. Using the Pirst Expansion Theorem, this ia

. falirly simple:
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L % ok
J=m ¥ .Y
bow

where

& = [I(X)i)puo = _T:(x)kax

where we note that the a, are the Bermoulli numbers of

the sscond kind. J, evaluated in this way gives Simpson's
rule:

+2h o ' '

r Tp(t)at = 2h(1ear £ 4% g A iy 4% Jp (%)

X : 4

A final emplé is the ciassical mlerf s transformation
R (-l)kf(ki -1/2 3 %ﬁ a™2(0)
X0 n30
m::h follows from the identities:
o (-1)%2* = g3p

I
- Viwyr
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of course, in this case we are disregarding convergence

questions.

We now turn our attention to the Abel polyncmials.
The delte operator in this case is E°D. Thus, the Abel
polynomials are basic polynomials and hence are of binomial
type. mqrefore, by Thm. 1 we have proved Abel's ident:.tz:

(o) (rey-na)™ = kgo(‘é)x(x-m)“"’y(y—(n-r)a)n-k-'l,

'not esas.ly prmrsd by direct mothods. We can use the

_xsqmnsion 'Iheorm to get an Apel cxpansion of o™, . Indesqd,
- we do got the rollcw.ng becutiful expansion

7 k-1
e" -kfo x‘xul‘m\ . eka’

cenvergent for a«<0. .

Theorsm 3. Let Q be a delta operator, and let F
ve the ring of formal power ssries in the variable t, over
the scme field. Then there exists en isomorphisn from P
onto the ring © of shift-invariant operators, which carriss

8

8 | Kk
f{(t) = int T R
()‘fg'r o -‘g—g-Q-
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Proof: The mapping is already lineer end bty the
Expansion Theorem, it is onto. Therefore, all we have
to verify is that the map preserves products, Let T bDe
’tho shift-invariant operator corresponding to the formal
power series f(t) and let 8 be the shift-invariant
operator correepmding to

. by .k
g(t) = xgo E’f £,
We gnst verifty ;bhat '
(T2 (")]M - 3 (k)‘k ek
where pn(x) are the basic polynomials of Q. Now
(280, (x)),0 = [z % QX £ B ip ()],
A7 d3m0 kzomr n0 Y] V) Ixn0
-[s zom-,-a“*% ()1, o

20

But p,(0) =0 for n>0 and p,(x) = 1. Hence, it follows
that the only none-zero terms of the double sum occur vhen

n=r-k, Thus
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corolla;_x 1. A shitt-inva.rimt opeutor T is
_:!.mrertible ir n.nd only if 'n,éo '

In the following, we shall write P = p(Q), Whers P
is s shift-invariant obet&t_or and p(t) 4is a formal power
saries, to indicate mt the operator P corresponds to
the formal power series p(t) under the iscmorphism of
Theorem 3. Note that p(0) = O and p'(0)40 whenaver P 1s &
shift-invariant delta operator. For such fornmal pmr
series, & unique :uwerse formal power series P (t) e:d.ate.

Cerollery 2. Let Q be a dolta operator wi bas:lc
polynomisls Pp,(x), and let q(D) = Q. Lot ¢ 1(%) be the
inverse formal pover seriea. Then )

Pa(X) n_ xq-l(u?.

(¥

ngo

Proof: Expand E* in tems of Q. The coefricientl
s, sre p (a). Hence
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n;O E%?l Qn ) Ea’
a formula which can be considered as a generalization of
Taylor's formula, and which specializes (for exampleg for
Q = A it gives Newton's expansion) to several classical
expansions. Now use the Isomorphism Theorem, with D 4&as the
delfa operators. We get

p,(2)
y 22— q(t)" = ea’c,
n»o

*

vhence the conclusia, upon setting u = q(t) and a « x, Q.E.D.

As an aside, we remark at this point a possibly useful

connection between basic polynomials and orthogonal polynomials?

Proposition. Let pn(x), n=0,1,2,... be a sequence

of polynomials of binomial type. Then there exists a unique
inner product (p(x), €(x)), on the vector space P of all
polynomials p(x) , under which the sequence bn(x) is

an orthogonal sequence and A(pn(x), Pp(x)) = n!, Under this
inner product we have

[P(x)] 0 = (B(x)sPy(x)/,

so that
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p(x) = n;éo ) [ (x)], g = o Bl (o (x)mg ().

Proof: Let T be the (uniquely defined)operator

n
mapping pn(x) to x, for all n.

product as follows:

Define the inner

(p(x),a(x)) = [(TP)(Q)a(x)] np-

An argument similar to.the proof of the Lemma preceding
Theorem 2 shows that this bilinear form is symmetric

(set p(x) = p,(x) and gq(x) = p,(x)), and that p (x)
is orthogonal to p,(x) for kén. Finally,

(Pp()sPp(2)) = [(T0p) (Q)Pp(x) ] =

[Qp,(x) 10 = 01

which shows that the bilinear form is positive definits. -

It is trivially verified that [Q"p(x)],_, =
(p(x),p,(x))/.[aT. Thus the Expansion Theorem, in the form

a(a) = [B*¢(x)), o = —E-?-(i)- C
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is the same &s t}g orthogonal expansion of q(x) relative

to the above inner product, Q.E.D.

We note that for the Laguerre polynomials, discussed
below, the inner product just introduced reduces to the
classical inner product making the Laguerre polynomials

an orthegonal set.’

Fote that for the operators (i), (ii), (111), (iv),
(vi), (vii), (ix) described at the beginning of this
Section the polynomials defined there are the dasic setg,
as will be shown in the course of this study.
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5. Closed Forms.

We now introduce a class of linear operators of -
an altogether different kind. Let p(x) be a polynomial
in the parsmeter x. Multiplying each teim of p(x) by
D by
i l. R>0, m we obtain a new polynomial in x which

& factor x, 1.e., replacing each occurrence of x

ve may denote xp(x). The first x in this expression

may be regarded as & linear copsrator since it represents

& linear transformation of pelynomial into polyncmiala. Ha
call this the rultiplication operator and we denote it by the

parsmeter x underlined. Thus, Xx: p(x) -~ xp(x). Note
that the operator x 1s not shift-invariant.

Befors proceeding further, it should be noted that
E’p(x) = p(x+a) 4is a polynomial in the formel paramster
x+a. Since the multiplication operator is not‘ smrt-mvarimt,.
%e have the operator identity: o

E'x = (xta)E%,

vhere xta: p(x) ~ (x+a)p(x).

Proposition 1. If T 4s a shift-invariont operator,
than .

" = Tx-xT
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is also a shift-invariant operator.

The proof is a at_:raiéhtforward verification. We call
T' the Pincherle derivative of the operator T.

¥e saw in the previous Section, as a epecial cass of the
Expansion Theorem, that any ahirt-inmunt'opcrutor T can
be expressed as an expansion in the delta operator D; i.e.,

x

T- xgo o D whers & = () . PFurther, by the

iscmorphism t_heom, (Theorem 3) the formal povwer §eriez

corresponding to T 1s o ;’f- t* = £(t). We call £(t)
the indicator of T.

Proposition 2. - If T has indicator f(t), then

T' has f'(t) as its indicator.

Proof: Straightforward verification of coefficients

by Theorem 3.

¥o note in passing Pincherls's Formula:
op(x) = £ @),

Note that by the iszcmorphism theorem of the precseding
Scction, we also havs

(T8)" = T'8+TB',
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Proposition 3. Q 4is & delta operator if and only if
1

G = DP for some shift-invariant operator P, where P~

exists.

Proof: If Q is a delta operator, them it can be

written
.
RS
whers
&y = (Q})M'
But

8 = Q)5 =0
by definition of & dolta oporator. Thus if we set
Sper1
Pe g wenT T

than the conclusion follows at once.
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Conversely, suppose Q = DP where P is shift-
invarfent and P~! exists. Since D and P are shift- -
invariant, thew Q must dbe also. PFurther, shift-invariant
operators comute (by Theorem 3), so that |

Qx = DPx = PDX = Pl § O,

since P1 4 O for an invertible shift-invariant operator.

Hence Q is a.'fdélt{l operator. | " Q.B.D.
Theorem 4 @logéd'.fbn;xs'fbr vasic polynomials). If

pn(x) is a sequence of dbasic polynomials for the delta

operator Q = DP, then
(1) py(x) = QLA
() py(x) = FTP - (rPYR"Y
(3)  mylx) = @AY
(})°  (Rodriguss-type formula) p,(5) = x(a')Yp_,(s).
Proof: We shall f:lrlf show that (1) ..and (2)-deﬁno’ the
same polynamial ssquence:

Q'L . (mp)rp?

= (D'ore)p 1
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Thus, if we can show that ¢ (0) = O for n>0, we will
complete the proof that qn(x) is the seguence of baasic
‘polynarials for Q, md it will follow that thoy will '
satisfy formulas (1), (2), and (3). Mow, from the equivalenco’
of equations (1), (2), (3) we see that

- .

, 'n(*)" ﬂ-nxn-l‘ ' o
@d hence 4,(0) = 0 for ngo Thus (1), (2), and (3)
have been proven, and 4 (x) = P, (x). |

To prove (4), o first invert formula (1), getting:
L = (1) ().

Hotice that Q' 1is invertible, as is easily verified.
" Inserting this into the right side of formula (3) e get:

Pa(x) = xP(Q") PP,y (%)
- *(Q')' ' u-l(x)

vhich 13' the Rodrigucs-type tomhh. i " Q.B.D.
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The following romuhb, numbered (5) and (6), relate - |

the basic polynomials of two different delts operators in
an analogous way. Their proof is immediate. | -

Corollary. Iet R=DS and Q= DP Dbe delts
operators with basic polynomials r (x) and p,(x), |
respectively, where 8"'1 and Pfl exists. 'mem '

(5) p,,(x) -q ()L -1g71y (x)
(6)  pp(x) = ()" r, (x).
| Example 1. The Abel polynomials are the basic
' polyncmials of the Abel operator. l’D. Indeed from fomm
(3)s L | |
- pel® .w1
- X(M)n.l.
M 'mo lower nctor:ula (x), are tho -
sequence of basic polynu:uh for the lower difference

operator & = E-I. B8ince A' = K the Rodrigues formula
(¥) gives immediately

- Pp(x) = xE JPn.]_(x)

which by iterstion gives the lower factorial power (x)n:
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Note that the Mc polynomials for the centrel

difference operatar ‘4 can be obtained from (6) and 4
much as the Abel polyncmisl were cbtained from (3).
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6. - The Automorphism Theorew. |
Lot 2(E) be the algebrs of all lincar operstors

- on the algebra of all polynomials P. Let T be the sub-
~ algebra of shift-invariant operators on P. We now prove
~ our main result. | o

* . Theorem 5. Let T be an operator ind(P), not
necessarily shift-invariant. Let P and Q be delta
operators with basic polynomials p,(x) and gq,(x),
respectively. Assume that

@n(x) - "n(x), for &11 nx0,

then T exists ana
(t.)" the mep 8 - 7871 s an sutozorphism of the
algebra N
(v) T maps every sequence of dasic polyncaials into
a sequence of basic polynomials. | S e
(c) Ist P=p(D) and Q = ¢(D), whers p(t) end
4(t) are formal power series. Let the delta operator R
have formal power series expansion r(D) end bagic polynomisls
rn‘(x)o Thea » ' : .

Tr,(x) = ",n (’.‘A,,),fi - .
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is a sequence of basic nolynomials Teor the delta operator

s = r(p”*(a(D)))s

where p":L is the inverse Tormal power series of p(t),

that is p(p'l(t)) = p'l(p(t)) = 1,

Proof:

(a) We have the string of identities:

b, (x) = T(p, 3 (X))
= nTpn-l( x)

= ngy (%)

Qa, (x)

et oir.ot wvery polynoaial is a linear ccembination of the

sasnerials, by linearity, we inrer that TPp(x) = QTp(x)

ool ioucrynemials p(x), that is, TP = QT. It 1s clear

~

iao.oyairtible, since 1t maps polynomials of degree

~mirls of decree n, for all n. hence

Tt = g
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whence

ey b 2
R R =

fer all n»0. Let S be any shift-invariant operator and

let the expansion of § in terms of P be

noon
S= % P,
nz()n!
Then
5 a a
ST = (v APt 2 B QR (1)
n>0 ° n>0 ‘

and thus TST % is a shift-invariant operator. Further-
more the map S » TST T 1is onto since any shift-invariant
cnornbor can be expanded in terms of €. Thus, the map

Je =u nutomorphism, as claimed.

Wie have also srown that T maps delta

Yoo into delta operators, since for delta operators

the corotand caseflf vanishes.

0
("' et s (x) = Tr (x) and let S = TRT". By

the rwenrts shen, 8§ is a delta operator since R is.
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1) = GRT™Ys (%)
= YRr {x)
= nTrn_l(x)
= nsn_l(x).

To complete the prool that sn(x) are the basic polynomials
of S we need only show that s (0) =0 for n>0. Now we

can write

r (x) = a, o, {x)
n ksl KX

v i1

since a, = O because R 1s a deita operator,and hence

0
r,(2) = 0. Hence

Tr, (x) = apq (x) = s,(x)

1

Wi+

K
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{c) Now @ and R can be writben as power series
in P, say Q= f(?) and R = ¢(?). In equation (I)

above let

then

and therefore

o
It

g(r) = &(p(D))

and

/5]
li

g(2) = g(a{D)).
Finally we see that

r(D) = g(p(D))

(D) = r(p™H(D))

and

s = g(Q) = r(»™H(a(p)))s Q.E.D.

106



52.

7. Umbral Hotatlon.

In order to simplify the complex notation which
has been appearing in many of the above formulas, we will
make use and for the first'time make rigorous the %umbral
calculus? or "symbolic notaticn first devised by Sylvester
and later used informally by many authors. If {an(x)]
is a polynomial secuence then we simply note that there is
a unique linear operator L on P such that L(xn) = a (x).

We say that L is the umbral renresentation of the sequence

{an(x)1. In particular, an operator T with the properties
specified in the preceding Theorem will be called an

umbral operator.

If f(x) is a polynomial then we use the notation
f(a(x)) to denote the image of f(x) under the operator
L. For example, a(x) denotes a,(x), while [g._(x)]2
denotes a,(x). Similarly, [a(x)+v][a(x)+c] denotes
a,(x)+(b+ec)a, (x)+bc. This is in essence the umbral
notation, which we signify by boldface lettering.

Loosely speaking, umbral notation is a simple
technique using exponents to denote subscripts. For exampls,
the defininr property for a polynomial sequence to be of

binomial type

107
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P {(xty) = T a P. (X)P Yy
a(eH) = 2 ()P (=)o i (¥)
can be restated umbrally as
DM (xy) = [p(x)+p(¥)1"

Note that, in view of our definition in terms of the operator
L, this ldentity has & well-defined meaning.
Theorem 6. If P and Q are delta operators with

basic sequences p (x) and q,(x), ,and expansions p = p(D)

and Q = q(D), then the umbral composition

rp(x) = py(a(x))

is the sequence of basic polynomials for the delta operator

R = p(a(D)).

Proof: Let T be the umbral operator defined by

T = g (%),

By the Automorphism Theorem of the preceeding Section, it
follows that T takes any basic sequence into another basic

sequence. ﬁow irf

(x) = © & -
P.(x) = ¢ &a,x Coke
n 1m0 i
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then

Tp (x) = T( £ a;x)
x) = T( I a.x
n i=0 i

n i
= v a,Tx
k=0 <+

s a,q,(x)
$ a,q.(x
k=0 141

p,(a(x)):

Thus rn(x) is a sequence of basic polynomials and by the

Automorphism Theorem, it is the basic sequence for
R = TPT " = p(a(D)), Q.E.D.

Corollary: If pn(x) is a sequence of basic poly-

nomials then there exists a basic sequence qn(x) such that

pa(a(x)) = <.

We say that g (x) dis the inverse sequence of P, (x).

Theorem 7. (Summation Formula). Suppose pn(x) and -

qn(x) are the basic sequences for the delta operators P

and Q respectively. If qn(x) is inverse to pn(x), then
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The proof 1s similar to the preceeding and is left to

the reader.

We are now in a position to solve the problem stated in
the Introduction: given basic sequences p (x) and q (x),
with delta operators P = p(D) and Q = ¢(D), how are

the coefficients Chk

4n(x) = kzo ®nkP (%)

linking the p,(x) to the qn(x), the so-called connection
constants, to be determined? The answer is dismayingly

simple. Consider the polynomials

and consider the umbral operator T defined by
™ = p,(x).
Then clearly

4 (x) = T (x) = ry(2(x)),
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so that r (x) are of binomial type and K = r(D) bveing
trheir delta operator, we find q(t) = r(p(t)), or

r{t) = q(p'l(t)). Tnheorem: 4 then provides explicit
expressions for the rn(x). Cne couldn't expect a simpler

answer.

As an example, consider the connection constants between
n - . ..
a(*) = x* and p (x) = (x),- Here -q(t) =1t and p(t) =
t
e -l. Thus, r(t) = log (1+t) and, as we shall see below,
the polynomials rn(x) turn out to be the exponential

polynomials mn(x), discussed below.

(n),

(x), aend a,(x) = x

An easy computation shows that r(t) = t/(t-1), whose basic

As a second example, let p (X)

polynomials are the Laguerre polynomials, also discussed below,

AR instructive example the reader may work out for him-
self — thereby ocbtaining & number of classical and new
identities, is to take p,(x) = x(x;--rtne.)n"l and  q (X) =
x(x-nb)n~l for afb. These examples could be multiplied
ad infinium, and a great number of combinatorial identities

in the literature can be seen to fall into the simple pattern

we nave just outlined.

~

Remark. It can be shown that every automorphism of
the algebra ¢ is of the form S - rsT™! for some umbral

operator T, but this fact will not be needed, so we omit

the proof.
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5. The Exponential Polvnomialcs.

The exponential polynomials, studied by Touchard
and other authors, are a good testing ground for the theory
developed so far. We shall see that their basic properties
and the identities they satisf& are almost trivial consequences

of the theory.

Consider the sequence of lower factorials (x)n,
which as we have seen is the basic sequence for the delta
operator A = eD-I. In this case the‘inverse sequence 1is
the sequence of basic polynomials for the operator
Q = log(I+D). We denote these polynomials by ?,(x);
these are the exponential polynomials.

From the Corollary above we have umbrally
n
a(n=1) (2-2) . . - (p-n+1) = X7,

Further by the summation formula

k
o (x) = = Er [a%E)

k50 X° x=0

= T S(kn)xS, "

k>0

where S(n,k) denote the Stirling numbers of the second kind.
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Since

which

&7
{o
.

n

o . P = '} g w3 reen . e e o~ Y - - ~
et us apply the Rodrigucs Jormula (¢ see wnat we zel.

-]
G = log(IZ+D), we have @' = (I+2) ~ and rence

\"l I3
:""‘u(x) = ‘T‘(Q') Tgn_lk}:)

= x(I+D)»,_1(x)

L]

Koy ()3t 1 ()

s

is the recursion formula for the exgdonential polyncmiils.

The next property of these exponential polynomials which

we shall prove is expressed wmbrally as

n
e (X)) = X(et1).

- : A . . . n
et T be the urbral operator that takes (;sc)‘,1 into x°, .-

so th

at X7 = o, (%). Hence

Y i
et

Tx(x-1) _ = XX

or changing n to n+l
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can be rewritten as
TXEH(x), = XT(x),.

n

We can extend this by linearity to all polynomials p(x)
so that

mxE Yp(x) = xTp(x).
Replacing p(x) by p(x+l) we have
-}
TXE “p(x+l) = xTp(x+l).

Hence Txp(x) = xTp(x+l).

Since TX" = ¢,(x) then Tp(x) = p(n(x)) and it follows
that

Txp (%)

a(x)p(2(%))

= XTp(x+l)

xp (3 (X)+1).

If we let p(x) = X" then
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; (X\-n+l n

)P e p(0) (%) ]

i}

o (%) =

-n
J

1]

X["?(X)+l

wnich is what we wanted to prove,

In a similar vein one can prove iae remarkable Dobinsky-

type formulsa:

kn
e
k>0 ‘

(%) = 7%

which we shall leave as an exercise to the reader.

115



6x.

9-1

9. Laguerre Polynomials,

As a further example of the above thecry, we shall
develop some properties of the ILaguerre polynomials. The

Laguerre operator L 1is defined Uy
P2 =X .
Lp(x) = =" e “pt(x+t)dt.
o)

It is a delta operator and as such has a sequence of basic
polynonmials wnicn we shall call Lr(x). By straightforward
calculation , we find that the expansion of L in terms of

D has coeffilcients

(an]xxo = n!, nsl
= 0, n=0
and hence we find that
Le oy -

Hence from formula (3) of Theorem 4 we have

nxn-l

(*) Ly (%) = x(D-I)
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Since for all polynomial »n(x) we alsc have

e*De™p(x) = e*(e™p{x)-e"p(x))

= (D-I)p(x)
then e*pe™® = D-I and hence
e*p%e™* = (p-1)".

Therefore we obtain the classical Rodrigues formula,

Ly(x) = xe*pPe X P"1,

From formula (*) we find by binomial expansioﬂ that

LR D"

fcd o

Ly (x) =

where the coefficients

are known as the Lah numbers. Our notation for the poly-

nomials Ln corresponds to the notation in Bateman for the

polynomials Ln(-l)’ that is,
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 ("H(x) = 2 1 (x).

We now come tc the most imporiant fact abcout the

Laguerre polyncmials. e indicator of L 1is
t
and nence
t
=1 t
£((£(t)) = = =TT " t
=T - 1

Thus, by the Autamorphism Tnheorem we infer that the
laguerre polynomials are a self-inverse set. Thus, we have

as aqiﬁmediate conseguence the beautiful identity

2 m B EDEN R0 = 1)

Other identities concerning Laguerre polynomials stem
from the fact that

Since L (x) are the basic polynomials of L Wwe have
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577 Lo(x) = nn. ()
ar.d rence the classical recursion formula
Li{x) = n(>-I)L, _,(x).

In fact, ii we expand §2¢ into series form
h* N

J
=t

nin
__,,:I_-:_ -D - i:-z-)-;'— "D(I""Ji'ﬂ +|-o)

we can use inis to get other known recursion formulas.
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10. A Glimpse of Combinatorics.

Although we intend to leave most of the combinatorial
appiications of the preceeding theory to the second part of
this work, we shall outliné two typical results which we
hope will orient the reader to applications to problems of

enumeration,typicai of the second part of this work.

Theorem 8. Let P be an invertible shift-invariant
operator. Let pn(x) be a sequence of basic polynomials

satisfying
[x'lpn(X)]x_o - n[frlpn‘l(x)]x-o'

for all n»0. Then pn(x) is the segquence of basic poly-
nomials for the delta operator Q = DP.

Proof: Define the operator Q by Q1 = 0 and

Qpn(x) o npn_l(x)

and extending by linearity. Note that Q 1s shift-invariant.
In terms aof Q, the preceding identity can be rewritten in
the form

[x~1pn(x)]x-0 = [P7Qe, (%) )ynp-
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By linearity, this exténds‘to an identity for all poly-
nomials p(x) — an argument we have often used in this work.
Thus, recalling that [x'lp(x)}x=0 = EDP(X)]xno whenever
p(0) = O, we have

[Dp(x)], 0 = [FTr0(x)], g

for all polynomials p(x), including those for which
p(0) # 0. Setting 'p(x) = q(x+a) we obtain, using the
shift-invariance of P and Q,

pa(a) = [P lREa(x)] .0
= [P haa(x) ]

= P‘qu(a)

for all constants a. Butthis means that D = PToQ, or
Q L DP) . Q-E.Do

Corollary 1. Given any sequence of constants

Cphpr B = 1,2,..., there exists a unique segquence of basic

polynomials pn(x) such that [x'lpn(x)]xpo = énl’ that is,

p(x) = T cnkxk, n=12... .

kzl
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Corollary 2. Let g(x) be the indicator of @ in

k
: i - 3 t
the above. Then g = f ~, where f(t) = ¢ g, 1 KT
k>0
Proof: From above
D=QPl= % ¢ ?i-f(a)
kéO k,1 ki

and the result follows.

We now glve -some applications of the above theory.

Application 1. Let tn K be the numver of forests of

rooted labeled trees (i.e., trees with a distinguished
vertex) with n vertices and k components, then

An(x) = kzo tn’kxk = x(x+n)n'l.

Proof:  Since tn,l is the number of rooted trees
on n vertices, then t,1 ™ nA, _,(1) since each such
tree on n vertices may be obtained by mapping & forest
oﬁ n-1 vertices onto a single new root vertex. The
resulting root may be labeled in n ways, i.e., either by
using a new symbol or by using one of ppe n-1l old symbols
and replacing it by the new symbol. But this relation may

be written

[ A (%) 1o = BIBA 1 (X)]rg
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1

and hence the delta operator for A, is DE ~ by Theorem

8. Thus the associated polynomials are the Abel polynomials
x(x+n)n'l. |

Corollary (Cayley). The number of labeled trees on

n vertices is np'z.

Proof: Since the number of rooted labeled trees is
np"l the number of unrooted trees is nn"2 since each free

tree can be labeled in n ways.

Application 2. Let sn be a symmetric group on n

symbols and let c be the number of group elements which
t 4

consist of precisely k cycles. If C,(x) = 20 Ch Kxx
. k 2

= x(®)
then C,(x) = x*"7.
Proof: We note that in this case CA 1= (n-1)!
) 4
vhich is clearly the number of group elements consisting
of just one cycle, and thus by Corollary 2 this is the

required sequence.

Functional Digraphs. A digraph, D, (with loops

permitted) on n symbols is a functional digraph if and
~ly 1f it satisfies the following two postulates,

1) eacn caomponent of D contains precisely one

consistently directed circult; and
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2) each nen-circuit edge is directed towards the

circult contaired in its couvonent.

An idempotent is a functionel digraph all of whose
components contein a distinguished vertex which meets every

edge of that component.

Application 3. The polynomial p (x) = % (Q)kn"k
' k>0

xk is of binomial type. Let hn,k be the numger of
idempotent on n symbols with precisely k components.
Then hn,k = (Q)Icn"k since the k distinguished vertices,
V, mey be chosen in (;) ways and the remaining n-k
points may be directed into V 4in k*°F ways. However,

we may also view each idempotent as a structure generated

by its components. It is interesting to note that the

- coefficients hn,l ; n and the associated delta operator
has indicator f['l](t) where f(t) = te®. Thus these
polynomials are the inverse secuence of the Avel polynomials.
Several identities for them may be derived in much the same

way as we related the exponential polynomials to the lower
factorials in Section 6.

Anticipating some developments in the second part of
this paper, wé may state the following principle. In order
to enumerate by a sequence S @ class of rooted trees, |

graded by the number of vertices, one forms the associated
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basic set, whicﬁ will enumerate a class of reluctant functions,
and then proceedsto apply Theorem 8 or a variant of it,

which will refiect the "composition rule” of such class of
trees. The connection constants between two polynomial |
sequences enumerating segquences of reluctant functions have
& combinatorial‘interpretation in terms of %piecing together®
one set of trees in terms of another. Thus our starting '
point in the second part of this work will be: given two
families Fy end F, of rooted labeled forests, in how
many ways can be a member of F, De "pieced together"

from members of 'F,? Tﬁe'slmplest case of this is Cayley's
theorem &bove, where Fl consists of a gingle edge and Fp

consists of all labeled rooted forests.
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On the Foundations of Combinatorial Theory IV
Finite Vector Spaces and Eulerian Generating
Functions

By Jay Goldman* and Gian-Carlo Rota*

1. Introduction

The purpose of this paper is to carry out a small part of the program that was begun
in Foundations I. Our main concern is the study of the combinatorial aspects of
the lattice of subspaces of a vector space over a finite field, and its use in deriving
various classical and new identities to be found in the literature under various
guises and disguises. The central idea is to obtain as systematically as possible a
set-theoretic interpretation in terms of enumeration of vector spaces and of linear
transformation between vector spaces over finite fields, of various identities
classically known as g-identities. These identities have almost universally been
studied from different points of view, namely, from the point of view of the theory
of partitions of numbers, and from the point of view of the theory of elliptic
functions. The analogy between these identities and classical binomial identities
has been remarked many times. In fact, it is the theme of the entire work of Jackson
and of the small school of English formalists that he left. Unfortunately, Jackson’s
work is purely analytic, and does not reveal the set-theoretic basis for this analogy.
We believe that our systematic attempt at such an interpretation reveals the
structure of this analogy, which is the similarity between the lattices of subspaces
of a finite vector space and the lattice of subsets of a finite set. The numerical
analog of this similarity 1s the fact that as g — 1, every finite identity on vector
spaces tends to an identity on a Boolean algebra.

We begin with a brief study of the Gaussian coefficients, namely the number
of subspaces of dimension k in a vector space of dimension n, displaying various
analogs of binomial identities, which we prove by set-theoretic means. We then
proceed to develop the method of Eulerian generating functions, which are
derived as a subalgebra of the incidence algebra of the lattice of finite dimensional
subspaces of an infinite-dimensional vector space (always over a finite field.)
We call this subalgebra the reduced incidence algebra.

* This paper is the result of research supported by the Office of Naval Research Contract N00014-56A-
0298-0017, NR-042-097.
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Sections 4 and 5 are perhaps the most interesting. At the beginning of Section 4
we give a set-theoretic interpretation of formulas relating Eulerian generating
functions to enumeration with the reduced incidence algebra. We then proceed to
apply this principle of interpretation to various situations, obtaining enumerations
of various quantities connected with vector spaces. Section 5 contains analogs of
the binomial theorem for finite vector spaces and applications of the Mobius
inversion formula over a finite vector space leading to various classical g-identities.
We conclude with a speculative section relating to future work in this field.

We are greatly indebted to the previous work of Philip Hall, who was the first
to develop the Mobius inversion formula in the context of p-groups, and to the
numerous and profound papers of L. Carlitz, H. W. Gould, Sharma, Chak, Segre
and several other authors, whose papers could not be listed in the bibliography
because of their number.

2. The Gaussian coefficients

n
) counts the
k

number of elements of rank (size) k in the lattice of subsets of a set of n elements, we

We begin with the g-analog of the binomial coefficients. Just as (

n
let (k) be the number of subspaces of rank (= dimension) k in lattice L(V,} of
q

subspaces of an n-dimensional vector space over the finite field GF(g). The numbers
of elements of rank k in this lattice are called the Gaussian coefficients.

- - . n 3
It is easy to derive a formula for the Gaussian coefficients (k) . First enumerate
q

all ordered bases of k-dimensional subspaces of V,, as follows. Choose the first
vector y, in any one of g" — 1 ways (that is, excluding the zero vector). There are
g vectors linearly dependent upon y;, so the next vector y, can be chosen in
q" — q ways. y, and y, span a two-dimensional subspace containing g2 vectors,
so we may choose y; in q" — g* way, etc. Thus there are (g" — 1)(¢" — q) - ..
(¢" — ¢ ) linearly ordered sets of k linearly independent vectors in V,. But
each k-dimensional subspace has, by the same argument, (letn = k) [[¥Z, (¢* — ¢)
ordered bases. Thus dividing out the overcount we obtain the well-known expres-
sion

(n) _@-0¢ -9 @ =g _@-DE@ D@ -1 0
g

kK. @ -Did—a...d -4 (@ -Dg "-1...(g-1

7] n . .

Note that as g — 1, (k) — (k),and thus the Gaussian coeficient can be expected
q

to share many of the properties of binomial coefficients. It is a heuristic principle

that all identities between Gaussian coefficients yield as corollaries identities

between binomial coefficients. Perhaps the simplest example is

-1, ®
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This can be seen immediately from (1), or by noting that the lattice L(V,) is
selfdual and thus there are as many k spaces of V, as n — k-spaces. Letting g — 1

n—=k
Since (2) was derived for ¢ any power of prime and »n any positive integer, we
can now think of it as an algebraic function of the variable g varying over a wider
domain. Similarly we take (1) as a definition when ¢ is a variable.
If we think of g as a real variable 0 < g < 1 then as n — o0,

n 1
— 3
(k)q T=a). (= ®

a fact which will be used later. Identity (3) remain true as q ranges over the g-adic
integers.

We shall now use combinatorial arguments on the lattice I(V,) to derive
identities for the Gaussian coefficients by counting sets of subspaces in different
ways, in analogy with the counting of subsets in a Boolean algebra. We limit
ourselves to a few examples, from which the reader will be able to glean the
power and the methods.

PROPOSITION 1. (g-Pascal triangle)

n n
we get the familiar identity (k) = ( )

n) (n — 1) . ;.(" - 1) @
W, =,
Note:wheng — 1,(4)reduces to the usual Pascal triangle identity.

Proof Choose a basis x,,...,x,,and let V,_, be the space spanned by x,,...,
x,_,;. Now let ¥, be an h-dimensional subspace of V. There are two possibilities

for V,.
Case 1. V, includes the whole line spanned by x,. If so, then V, N V,_, is a

ways,
) s

. . .. . . n
subspace of dimension # — 1, and this intersection can be chosen in (
q

accounting for the first term on the right of (4).

Case 2. V, does not include the vector x,. But then, the projection of ¥, onto
¥,_, along the line x, is a subspace of dimension k, call it W, of V,_ .

One then obtains ¥, by choosing such a W,, and then “lifting it up”, that is,
choosing a basis y,, ..., y, of W,, and adding to each y; a multiple of x,,. There are

n—1
altogether g¢" ways of performing the latter operation, and ( ) ways of per-
q

forming the former. This accounts for the second term on the right of (4), and
concludes the proof.

The next proposition yields both a g-identity and also enumerates a useful
quantity.

PROPOSITION 2. N, ;, the number of k-subspaces of V, containing a fixed one-
dimensional subspace, is given by

)
n— 1) B k . 1 .
q

.

Niy = ( (%)
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follows immediately from the self duality of the lattice,

n
Proof: N; | = (

as already remarked, see (2). By flipping L(V,) upside down the number of k-spaces
containing a given 1 space is equal to the number of (n — k)-spaces contained in a

— 1
given n — 1 space which by (1) is (n ) .
n—kl,

To derive the right side of (5) we look at the bipartite graph whose distinct sets
of vertices A and B are the k-spaces and 1-spaces respectively and we connect a
k-space Ve A to an [-space V'€ B by an edge iff V= V’. Now we count the

n
number of edges in this graph in two ways. First there are (k) vertices in 4 and
q

k n
( ) edges at each of these vertices. On the other hand there are (l) vertices

q
in Band N, ; edges at each vertex. Thus

= , ed.
k q ! q ! ! q 1

The next identity is a g-generalization of the binomial theorem, first proved by
Cauchy by purely algebraic means. Other g-binomial theorems will be derived in
Section 5.

ProrosiTION 3.

n

y“=2(mgy—ﬂw—q%~w—q“9 (6)

k=0

" (n
Note: As g — 1 we get y" = ) (k)(y —1forlettingz=y—1,(z+ 1) =
k=0

y ( Z) z*. Thus (6) is a g-analog of the binomial expansion of (z + 1)™.
k=0
Proof: (6)counts, in two ways, all linear transformations of V, into a space Ywith
y vectors. Indeed : let x,, ..., x, be a basis for V,. Then each of the x; can map into
any of the y vectors of Y and these determine the linear transformation. There are
altogether y" choices for the x;. This accounts for the left side of the identity.
On the right hand side we enumerate linear transformations by the dimension

n
of their null spaces. Given a subspace ¥V, of dimension k (and there are (k) of
q

these) let z,,...,2, 4, Zy—k41----»2, b a basis of V, such that z,_,,,...,z,
generates V. A linear transformation has ¥V, as its null space if and only if it
maps z,_j41,---»Z, into zero and the remaining n — k vectors z,,...,z, , onto

an independent set in Y. z, can be mapped anywhere into Yexcept the zero vector
ie. in y — 1 ways. The vector z, can be mapped anywhere except to the line
spanned by the image of z, . Since such a line has g points we have y — g possibil-
ities for z,. Proceeding in this by now familiar way we find there are

G-Dy—a@...(0 — " * Y
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n
maps whose nullspace is a given k space V.. Thus, there are (k) =Dy —9g)...

q
n
(y—qg" Y= (n _ k) (y =1y —q)...(y — ¢" % 1) linear transformations
q

whose nullspace has dimension k. Summing over k we get the right side of (6).

Identity (6) can be interpreted as a g-analog of the classical binomial distribution,
as follows. In the space Y, choose independently and at random a set of n vectors.
What is the probability that they shall span a subspace of dimension k? By the
preceding argument, this probability 1s

nf -y —q...(0 — g
kl, 3" '

As g tends to one, this tends to the classical binomial distribution

n 1 k 1 n—k

-t
k iy
3. Eulerian generating functions

Our chief tool in the study of L(V,) will be the Mobius function, which in this case
gives the g-adic generalization of the principle of inclusion-exclusion. In this
section we shall review some of the important points of Foundations I in the
context of finite vector spaces and introduce some new concepts.

The Mobius inversion formula in L(V,) is as follows:

Let N_(V) and N, (V) be any two functions defined on L(V)), Ve L(V,), (with
values in a commutative ring which we generally take to be the integers) satisfying
the system of equations

N.(V)= Y N_(W); (1)
W=V
then there exists a function u(V, W) defined on L(¥,), independent of the functions
such that
N_(V)= ) wV.W)N.(W). (2)

W=V

The function u is given by the formula

k
WV, W) = pf0, W/V) = (— 12 3)

where k = (dim W/V) = (dim W — dim V).
Since w(V, W) depends only on the difference of dimensions we set

e = (— gD = (— g v @)
Since L(V,) is self-dual an equivalent form of Mdbius inversion is
(1a) N (V)= Y N_(W) implies
W<V
(2a) N_(V) = WEVNS(W)#(W, V).
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Ifboth N _(¥V)and N _(V) depend only on the dimension of ¥, thatis, N_(V) = a,
if dim V' = k and similarly N,(V) = b,, then collecting terms of the same dimen-
sion (1a)«3) gives at once the beautiful numerical inversion formula

by= Y Z) G a=Y (—1)"q('5)(") be. 5)
k=0 \K/, k=0 . kl,

This is the g-analog (let ¢ — 1) of the classical inversion formula (see Riordan)

n[n n . n
bn = kgo k)aka ay = kgo(_l) (k)bk (6)

which arises from p-inversion over the lattice of subsets of an n-element set.

But let us put the u function 1n a more general setting. It is just one of many
functions of two variables in L(V,) which form an interesting structure.

DerINITION. The incidence algebra I(V,) of V, is the set of all functions F(V, W)
of two variables defined on L(V,), which take values in a commutative ring R,
(which we generally take to be the integers) and such that F(V, W) = 0 unless
V < W, together with the following operations:

a) Addition: if f, ge I(V))
let h(V, W)= (f+ gV, W) =f(V,W) + g(V, W) be their sum,

b) if ce R and fe I(V)
let (cf) (V, W) = (f(V, W)

c) iff, g € I(V,) their convolution (or product) is given by L(V, W) = f * g(V, W) =
ZVglst(V; Z)g(Zs W)

It 1s easily verified that I(V)) is an algebra over R.

If one embeds the partial order of L(V}) in a linear order and lists the subspaces
in the order W,, W,, ..., then a typical element f of I(V,) can be thought of as a
matrix 4,; = f(W,, W) and I(V}) is isomorphic to an algebra of upper triangular
matrices.

The zeta function, {(V, W) = 1 if V < W, and 0 otherwise, belongs to I(V}) and
its inverse is the Mobius function.

If one translates this to the isomorphism with upper triangular matrices then
it is seen that Mgbius inversion is a special matrix inversion. (See Foundation 1
for further details.)

It turns out in practice that one often doesn’t have to study the full incidence
algebra but a special subalgebra of particular combinatorial interest.

For this we recall that an interval or segment [V, W]in L(V,) is given by

[V, W]={ZIV<Z<W.

DEerNITION. The reduced incidence algebra R(V,) of L(V,) is the subalgebra
of I(V,) consisting of all function fe I(V,) s.t. if [V, W] is isomorphic to [V, W’]
then f(V, W) = f(V’, W’) i.e. those functions constant on isomorphism classes of
intervals. lsomorphism is taken in the sense of partially ordered sets.

It is easily verified that R(V,) is a subalgebra.

We next determine the reduced incidence algebra of L(V,.), the lattice of finite
dimensional subspaces of a countably infinite dimensional vector space over
GF(g). All definitions and results of this section hold for L(V_) and it proves more
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convenient to work with this lattice which contains as sublattices L(V}) for all n.

Let the height of a segment [V, W] be (dim W — dim V) = dim(W/V). Then
any two segments are isomorphic if they have the same height.

In the convolution sum

Y f(V. W)g(W, U) = L(¥, U) (7
V=Ww=<U

there occur as many segments [V, W] of height k as there are subspaces of dimension
k of the quotient space U/V. Thus if f,ge R(V,) ie., f(V, W)= a, whenever
dim(W/V}) = k and g(W, U) = b,_, whenever d(U/W) = n — k, then equation (7)
simplifies to

=Y (") aba_s ®)

where ¢, = h(V, U) and d(U/V} = h. {c,} is called the Gaussian convolution of
{a,} and {b,}.
When g — 1 (8) reduces to the binomial convolution

" (n
C, = ab,— i
Z, (k) et

Since

(n) _ (1 —g)1 ~¢%)...(1 —¢")
kK, Q-1 -4¢%)...(0 =g —g)(1 —q?)...(1 —g"%’
we can rewrite (8) as

Zn ak bn—k
Sol—g)l—¢g)...0—gHU — g —g?... 1 — PRl
C"
T(-9—g)...(1—-gY 9)

Defining an Eulerian series to be a series of the form

[+ o]

E a,x"
im0 (1 —@)1 —g*...(1 —q"
then by (8) we have probed the following:

THEOREM 1. The reduced incidence algebra of the lattice L{V_) of all finite
dimensional subspaces of a countable infinite dimensional vector space over a finite
field with q elements is isomorphic to the algebra of Eulerian series where multi-
plication is defined as formal multiplication of power series. The isomorphism maps
the Eulerian series

+9] a”

..go (1-q9—-g%...( —q"

to the element f of L(V,) defined by f(V, W) = a, if dW/V) = k and f(V, W) = 0
ifvV¢w.
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In particular the zeta function corresponds to the Eulerian series

@ xk
E(x) = 10
L BN [ (19
and the Md&bius function is given by the Eulerian series
© (__l)qu(k—l)/z xk
e (x) = 11
) kgo(l—q)(l—qz)---(l—q") an

and since { is the inverse of y in I(V))
E (x)e(x) = 1. (12)

In analogy to the above, the reduced incidence algebra of the lattice of finite
subsets of a countable set 1s isomorphic to the algebra of exponential series, i.e.
series of the form

o X"
z a"—r
n=0 hn:

Note however that the Eulerian series

e} H

a,x
,.Zo(l —q...(1L ¢

does not converge to the exponential series )’ (a,x"/n!) as one might expect from
previous discussion. The difficulty lies in the fact that Eulerian series as we write
them refer to affine spaces, not projective spaces, i.e. (1 — g)...{1 — g") refers to
enumeration of affine points (vectors) not projective points (affine lines). If we
renormalize our series and write them in the form

_ a,x"(1 —q)f" a,x"
m“_qk)_zﬂ—qy“ﬂqﬂz(ﬁ(ﬂ V)’
1 q 1 q o 1 q

then this latter series converges to Z (a,x™/n! as g — 1. Since the correspondence

a,x" a,x"

Ax) =Y g HZW = A1 — q)x)
q... :

(1-gq)...(1 —q"
1

4

1s an automorphism of the algebra of Eulerian series it makes no real difference
if we use the affine or projective form. At present we find it more convenient to use
the affine form. It should be noted, however, that it always seems to be the projective
form of equation that converge to the corresponding results in sets as g — 1.

As we previously remarked, there are two versions of the Mdbius inversion
formula, according as we sum ‘‘upwards’ or “downwards’. One of these remains
unchanged whether the dimension is finite or infinite. The other instead becomes
an infinite sum, and questions of convergence become relevant. We shall see that,
in contrast to other instances of Mobius inversion (see for example Hille for a
discussion of the difficult convergence questions associated with the classical
Mébius inversion formula), all convergence questions here can be easily resolved
by use of the g-adic norm.

135



On The Foundations of Combinatorial Theory 1V 247

In the reduced incidence algebra, the “upwards’ inversion formula become:

k

2= ). ( ) Je> (13)
k

=Y ( ) T (14)

ProOPOSITION. A necessary and sufficient condition that either—and hence
both—of the series (13) and (14) converge in the g-adic field is that

2 Jn

>0

converges g-adically.
Proof: Recall that a series converges g-adically if and only if the n'™ term

converges to zero g-adically.
(n)
kl,

Suppose ) f, < oo, so that || f,[|, » 0. Then

)

k
But since g, and ( ) are bounded and
n
q

=1

A straightforward computation gives
q

J < 0.
['s

k
=lfil,—»0 and g, =} (n

q k>n

1
||.Ui|Eq = (—z) -0
q

n

we also have

kzn k

Conversely, suppose that the right side of (14) converges for some n, say n = 1,
then it converges for all n, and the partial sums of the tail end on the right side of
(14) must tend to zero. Thus, f, — 0, and hence Y . , f, converges, g.e.d.

fo= Z (n) My —n8yx < 00,

4. The incidence coalgebra

In the preceding section we studied the inctdence algebra of the lattice of subspaces
of a vector space as an algebra of operators acting on functions from the lattice to
a commutative ring. In this section we introduce an entirely different interpretation
of the incidence algebra, which will lead to a combinatorial interpretation of the
convolution of two elements in the incidence algebra.

We begin with some very general notions applying to every locally finite partially
ordered set, but quickly specialize to the reduced incidence algebra of L(V,). It
is suggested that the reader of this section refer to the notion of coalgebra, as is
found for example in MacLane (page 197), or in the recent survey work of Heine-
mann and Sweedler.
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Let P be a locally finite partially ordered set. Let V(P) (abbreviated V) be the
module, over any ring R, spanned by the intervals [x, y], where x < y. We introduce
a comultiplication in V as follows. It is a function

yV-Vew (1

where the right side is the tensor product taken relative to the ring R (which we
may as well assume to be commutative), defined on the basis elements on V as
follows:
vix,yl= Y [xz2®I[zy] (2)
x<z<y
where the summation ranges over the variable z. It is easily verified that this

comultiplication is coassociative. This means that the iteration of the comulti-
plication leads to summations of the form

Ylx,y] =Y [%2,]®[21,2,] ®: - ®[z,, ], ?3)
where the summation on the right ranges over all sequences z, z,, . .. z, such that
X<z Kz, <2z, <) 4

The counit € is defined by mapping

{ 1ifx=1y 5
“lx.y) 0 otherwise. ©)
With this definition we obtain a coalgebra, as is easily verified. We call this the
incidence coalgebra C(P) of the partially ordered set P, over the ring R. Most
combinatorial operations on the incidence algebra really refer to the incidence
coalgebra, and in fact, when reinterpreted in terms of the incidence coalgebra,
they reveal their combinatorial meaning. We shall see in a moment how this is the
case. Before that, let us formally recall the relationship between the incidence
coalgebra and the incidence algebra. This comes from the well-known fact that
the set V* of all linear functionals on C(V) with values in R has the structure of an
algebra, which is precisely the incidence algebra of the partially ordered set P.

To obtain a combinatorial interpretation of the incidence algebra, we only have
to closely inspect formula (3) above. Let us call a typical summand on the right
hand side of (3), that is an expression

[x,2;]®[21,2,] ® -+ @ [z, V], X<z -2, <y (6)

a multichain (or chain) of a partially ordered set P. The single entries in the multi-
chains will be called the links, and the chain as displayed in (6) will be said to be of
length n + 2. We can and will now consider a multichain of length n + 2 as the
underlying set of n + 1 links. Note that the trivial link [z, z] is also allowed. We
are led to the following

Main problem
To every interval [x, y] associate an element of a finite set C(x, y). We are to
enumerate the functions from the multichains between x and y to the set
\_—x<y Clx, y) with the property that the first link [x, z,] is mapped into the set
C(x, z,), the second link [z,, z,] is assigned to the set C(z,, z,), and so on.
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The problem is easily visualized if one interprets the sets C(x, y) as ““‘colors” to
be assigned to each link of the chain. In this way, one asks for the number of colored
multichains between x and y with the property that the first link is assigned a
color from a given set, the second link 1s assigned a color from another given set,
etc.

The solution of the problem is given in the following

ProrosiTioN 1. Let f(x, y) be the number of elements of the set C(x, y), for
x < y. Then the solution of the Main Problem is given by the convolution, in the
sense of the incidence algebra

Zf(x’ Zl)f(zl’ 22) " 'f(zns J’), (7)

where the summation ranges as in (4). This gives the number of colored chains of
length n + 2.

The proof is immediate, since the Proposition is a restating of the fact that the
incidence algebra is obtained as the dual of the incidence coalgebra, when the ring
R is taken to be the integers. '

Thus we see that the elements of the incidence algebra, which are linear function-
als on the incidence coalgebra, can be considered as the solution of problems of
enumeration. This justifies the contention, first advanced in Foundations [, that
the incidence algebra generalizes the notion of generating function.

In a similar vein, we can interpret the convolution of different elements of the
incidence algebra. Here we need assignments Cy(x, y), k = 1,2,... of “colors” to
segments. Letting f,(x, y) be the size of the set C,(x, y) we obtain the convolution
of fi,f5,-..,fr+ s the number of colored chains in which the ith link is assigned
a color from one of the sets C(x, y). We spare the reader the obvious details,
moving instead to more concrete applications, in the incidence algebra L(V, ) of
all finite-dimensional subspaces of an infinite-dimensional space over a field with
g elements. For simplicity consider the reduced incidence algebra, where con-
volution in the above senses reduces to an Eulerian convolution as studied in the
preceding section. This amounts to studying the Main Problem in the special
case when f(x, y) = f{&, v) whenever dim y/x = dim v/u.

For example, let a'*’ = the number of colored chains with 2 links connecting
x and y, where the height of [x, y] is i, that is dim y-dim x = i. Then we want to

[
color chains of the form [x, A] ® [A, y]. Since [x, y] = L(V)), there are ( k) chains

q
such that [x, A] has height k and [A, y} height i — k. The first link can be colored
in g, = f(x, A) ways and the second in g, _, = f(4, y) ways. Thus

i i
2y __
a? = Z ( ) aa;_,.
q

k=0 \K

In other words, the sequence a{*’ is the Eulerian convolution of the sequence g;
with itself, If A(x), 4,(x) are the Eulerian generating functions of g; and a!*’ respect-
ively, then A,(x) = (A(x))?. Similarly, if a* is the number of chains with k links,
between x and y, where the height of [x, y] is i, and 4,(x) s its generating function,
then A4,(x) = (A(x))".
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Example 1. Let a; = 1 for all i, and let us count all multichains of length 2.
Setting x = 0 (the null space), we obtain the Eulerian convolution

n
> ( k) = G,, (8)
k>0 q

which gives the number of subspaces of the vector space v, of dimension n (see
Goldman-Rota for a study of these numbers, called the Galois numbers).

Example 2. Let f(u, v) = 1ifdim k-dim u = 1 and f(u, v) = 0 otherwise : in other
words, set a, = 1,and a; = 0if i # 1. The number of chains of length n + 2 with
this restriction is simply the total number of maximal chains with n + 1 non-
trivial links connecting x to y. Its Eulerian generating function is

X n

A(x) =

RS .

where n is the difference of dimensions between the sub-spaces x and y.
Summing of all n, we obtain

_ [o0] [vo] X n 1
0= Fam=2 [ -y 1o
where the coefficients of x'/(1 — g)(1 — g?)... (1 — g°) counts all maximal chains
in a segment [x, y] where dim y/x = i.
Next we consider some examples of convolutions of distinct functions.
Example 3. Let C(x, z) be the family of all sets of vectors in the quotient space
z/x which span the space z/x. Let C,(z, y) be a set with one element. Then obtain

> Z) D, =2, (11)
k=0 q

where the right hand side is the total number of subsets of a vector space of
dimension n, and where D, is the number of spanning subsets for a vector subspace
of dimension k. But equation (11) states that the sequence (2¢°, 27, .. ) is the Euler-
ian convolution of the sequences (1, 1, 1,...) and (Dy, D,, D,, .. .). Translating this
into Eulerian generating functions we get

E (x)D(x) = S(x), (12)
where E (x) is the zeta-function of Section 3,
°° D x" x 29°x"
D=L ii—g . a-m ™ W= LiTy -
Solving for D(x) we get
Dix) = S(x) = e(x)S(x), (13)
E (x)

where e(x) is the Eulerian generating function of the Mdbius function. Equating
coefficients in (13) we get

<] k
D,=} n) (= 1)"q(2) 27,
n=0 k q
a result which we could also get directly by MGbius inversion.
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Example 4. We wish to count the set of all pairs (4,, A,), where 4, is an atom of
the lattice, 4, is a coatom of the lattice that is, a line and a hyperplane respectively,
and A, contained in A,.

This is achieved by taking an Eulerian convolution according to the above

prescriptions, as follows:seta; = 1;a; = Ofori # 0,and setb; = 1 for all i. Then
the desired number is the coefficient of

xn

1-q—-g¢%...(1—¢"

in the Eulerian generating function A(x)B(x)A(x), where A(x) is the Eulerian
generating function of a; and B(x)is the Eulerian generating function of b;.

Example 5. Suppose we have a store of a; colors, and we wish to count the number
of colored maximal chains with no trivial links between x and y. Assume again
that the dimension of y/x is n. Let f(n) be such a number. Now, the last link of
such a chain is of the form [A4,_,, y] where A,_, is any {r — 1)-dimensional sub-
space and each such link can receive any of the a, colors. Thus, we are led to the
recursion

fitm = (n ! 1) arfiln = 1)

Taking the Eulerian generating function of the sequence f,(n) we obtain for the
Eulerian generating function F,(x) the recursion

1
1 — (@)A1 — g¥

which gives the explicity form. When a, = [ this gives the result of the Example 2,
giving A(x) in (10).

Example 6. Generalizing the preceding Example let f,(n) be the number of
colored chains between x and y such that links of sizes 1, 2, ... k are allowed. The
links of size i can be colored in g; colors. Repeating the preceding argument we are
led to the recursion

Fy(x) = (14)

k #
Jn) = -; ai(n _ i) Slln — ), (15)

which is the general linear g-difference equation with constant coefficients. Again,
taking Eulerian generating functions F,(x) we find

1
Fx) = L ax a,x? - ax* (16
l-g (1-90-g%) 1-g...0 -4
S Jln)x”

- RZZO(I — —¢)...(1 ~ g7

Thus, we see that the general g-difference equation has a combinatorial inter-
pretation in terms of enumeration of multichains in the lattices of subspaces of a
vector space.
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We hope these few examples have given the reader an idea of the scope of the
method.

5. Some culertan identities

We shall now derive by combinatorial arguments some identities, which have
traditionally been associated with the theory of partitions of a number. We use two
methods: direct enumeration and Mobius inversion on the lattice of subspaces.

If X and Y are subspaces of a vector space, we write X — ¥ = (X — Y) U {0}
for simplicity.

We begin by giving a combinatorial derivation of a very general g-analog of the
binomial theorem. It includes the g-binomial theorem of Section 2 as a special
case and has other cases of particular combinatorial significance.

THEOREM (g-binomial theorem). Let P(x,y) = (x — y)(x — qv)...(x — g* " 'y)
then

Pk(x= y)Pn—k(ys 2)' (1)

q

ﬁ@ﬂ=zv
: oo \k

Note: Although the variable y appears only on the right side, and cancels out
when the right side is expanded, it nevertheless proves very useful to write the
identity in this form. Asg — I the identity reduces to the trivial identity

n

x—2r=3,

Proof. Let V,, X, Y, Z be vector spaces such that Z < Y < X, dim V, = n, and
dim ¥, < dim Z. Say X, Y, Z have X, y, z vectors respectively. Equation (1) counts
in two ways the set of all one-to-one hnear transformations f: V¥, — X such that
f (2} = 0 (or equivalently f(V,) N Z = 0).

Indeed, let v,, ..., v, be a basis for V,. We count the ways of mapping this basis
into a set of n independent vectors in X whose span intersects Z in {0}. The vector
v, can be mapped into any vector in X not in Z i.e. in x — z ways; the vector v,
can be mapped into any of x — gz vectors, namely, all vectors in X except those
lying in the subspace spanned by Z together with the image of V, ; similarly, for the
vector vy there are x — g2z choices, all vectors in X except the members of the space
spanned by the images of V, and V, together with Z, and so on. Thus, the number of
one-to-one linear transformations whose image doesn’t intersect Z is (y — z)
(y —q2)...(v — ¢""'2) = Px,2).

Next, we again count the set of all one-to-one linear transformations whose
image is disjoint from Z, according to the position of the image of V) relative to Y.
Let f be such a transformation. Then f(F,) 1 Y is a subspace of some dimension,
say k; hence it is the image of a k-dimensional subspace of V,. Thus we can con-
struct such an f by first choosing an arbitrary subspace U of V,, next mapping U
into Y but outside Z — {0}, and mapping ¥V, — U into X — Y. This leads to the
following enumeration:let v,, ..., v, be a basis for ¥, such that v,,..., v, is a basis
for U. Then, as in the first part of the proof, the number of one-to-one linear maps
of Uinto Y- Z is P(y,2) =(y — 2)(y — q2)...(y — ¢ 'z). The remaining
basis vectors must map into X — Y in such a way that f is one-to-one. As above,
this can be done in P,_,(x, y) ways since any set of independent vectorsin X — Y

)(x - Wy -2~
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is independent of any set of vectors in Y. Thus, for every k-dimensional subspaces
U of V, there are Py(y, z)P,_(x, y) one-to-one linear transformations of U, into X
whose image intersected with Y — Z is the image of U. Hence there are

Y Z) Py, 2P, (. 3)
k=0

q

one-to-one linear maps of V, into X — Z. We conclude that

P,,(x,z) = Z (:) Pk(y’ Z)Pn—k(xsy)a
k=0 q

which is the desired result.
Several special cases of (1) are worth remarking.
COROLLARY 1. Setting z = 0,y = 1 in (1), we obtain

xn=Z(Z) (x — Dx —q)...0x —g“ "),

which is Proposition 3 of Section 2.
COROLLARY 2. Set z = 1,y = O then

(x — 1)(X—q)---(x—f1”")=kz

n—k

Z) gl s @

(:) (__ l)kq(z) xn—k_

q

=0
2
k=0
This identity goes back to Cauchy (and probably even earlier).

(2) can also be derived directly by a Mobius inversion argument as follows:
count all one-to-one linear transformations from V, into X. The left side clearly
counts this directly by the same method used in proving (1). To derive the right
side let N_(W) be the number of linear transformations from ¥V, to X whose null
space equals W and let N, (W) be the number of linear transformation from V, to
X whose null space contains W. Clearly

N.(U)y= } N_.(W)

w=>U

for every subspace U of V,. Hence by M&bius inversion

N_(U)= Y wU W), (W)

WU

and setting U = 0(01is the zero subspace)
N_©= 3 w0, WN,(W)

wev,

But N _(0) counts all one-to-one linear transformations since a linear transforma-
tion is one-to-one iff its null-space is 0. Thus we count the one-to-one maps by
“sieving’’ through all maps. We now have the identity

(x —Dx—q)...(x =g )= Ym0, W)N_(W). (3

wWeV,

To compute N, (W), the set of all linear transformations that send W into 0, let
vy,...,0, be a basis for V, such that v, ... v, k = dim W, are a basis for W. Then
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each of v, ... v, must map into zero and the remaining v, ,, ..., v, can map into
any vector in X and we can choose the images in x"* ways, i.e. N, (W) = x"~9mW,
Substituting this result and the value of u into (3) we prove our identity (2).

However (3) also gives us a new method of computing the Mé6bius function.
If we substitute the value of N, (W) into (3), observe that u(0, W) depends only on
the dimension of W (i.e. the isomorphism type of (0, W)) [see Rota (1964)], and
equate the right hand side of equations (2) and (3), then equating coefficients of x*
we get

k
w0, W) = (— 1)"q(2) , where k = dim W,

It is now easy to derive from (2) a famous identity due to Euler. Replace y by
x~ ! and multiply both sides by x", obtaining

(1-=x(1—-gx)1 —g*x)...(1 —g" " 'x) = i (—1)"(’;) g = DIk
k=0 g

This is a polynomial identity holding for all x and q. We may therefore let n tend
to infinity, and obtain Euler’s identity (convergence obtains in the g-adic norm,
trivially):

o (__l)qu(k—l)/Zxk

© B " _ _ 4
e =2 ga-m a-p @

k=0

where we have used the fact that,asn — oo, in theg-adicnorm

).~ ==
kK, (1—91—g%...0—qg"

and where e (x) is the generating function of u introduced in Section 3. Therefore
the general fact that the Mobius function is the inverse of the zeta function yields
at once another famous identity of Euler, namely

00 1 0 xk

- . _E(x)
o= &a-oa-p a-p =W 5)
COROLLARY 3. Set y = 0 in (1), then
x=2..c—g - 3 (n) w1yl 2] ©)
o (K,

n k

- (:)q(—l)"q(z) ok,

k=0

This identity seems a little more general than (2) but can actually be derived from
it by setting x = x/z. We can again derive this directly by counting all one-to-one
linear transformations of ¥, into X such that F(V,) N Z = 0. The left side has been
proved in (2). The right side comes from setting

N _(W) = number of linear transformation f such that f ~1(Z) = W.
N, (W) = number of linear transformations f such that f~ Yz2)=>w,

and proceeding by Mobius inversion as in Corollary 2.
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It is interesting to note that setting z = 1 in (6) yields (2) algebraically. Geo-
metrically, it corresponds to shrinking the subspace Z to 0. It would be of the
utmost interest to extend this correspondence between the general algebraic and
geometric theory.

To conclude, we derive an identity which does not appear to be a corollary of (1).

ProrosITION 1.

n—k—1

k) k=1
(x—2)(x—qz)...(x —¢" ') =} (Z) (_1)"4(2) Te-q) [ (x—qg**.

k>0 i=0 i=0
(7)

Proof. As in (2) the left side counts the set of all one-to-one linear transformations
ffrom ¥, to X s.t. f(V,) N Z = 0. We derive the right side as in {2) by Mobius
inversion, but this time we sieve only through the one-to-one transformations
instead of all linear transformations. Let

N _(W) be the number of one-to-one linear transformations
f:V. — X such that f~}(Z) = W.

N, (W) equal the number of one-to-one linear transformations
f:V, - X such that F~}(Z) =2 W.

Then N_(U) =Y ,.,N_(W). Inverting and setting U =0 we get N_(0) =
Ywey, #0, W)N (W) which is the desired identity.

We next compute N,(W). Let k = dim W. Then a linear transformation is
counted by N (W) whenever it is one-to-one and it sends W into Z. Therefore,

k-1 n—k—1
N =T —a) TT =a)

Substituting this in the formula for N _(0) we get (7), g.e.d.
Letting n — oo in (7) we obtain the following infinite g-identity

I vl 1 (e | (o
He—a9= 2 i =..0=d ®)

The particular interest case of this comes from setting x = 1, z = 0. This yields
—1)"q"” () H (—q) ﬂ (1 -4*"
k=0 (1—51)---(1—(1)
z(k) = k+t
w 4] (1 —g* H (1 =g
- 2: i=0

_ _ k
=0l —g)...(1 q _Ul“q

Il
Ms

ol — g ﬁ (1 - g
- -

D TR g
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From this we arrive at the

COROLLARY (k)
R 11— gY
gy o= 0-g?

)

This generalizes Durfee’s identity (Hardy and Wright p.281) in the theory of partitions
of a number, by looking at the largest k x (k — 1) rectangle in the Ferrers diagram
of a partition instead of the largest (Durfee) square.

6. Further work and open problems

The present paper does little more than scratch the surface of a field of research
that may prove fertile in connecting vartous branches of mathematics. In closing,
we should like to outline some of the directions in which further work might pro-
ceed, and some of the research problems that appear at present to us to be most
promising.

Perhaps the most tantalizing open problem is a construction of a g-probabilistic
setup within which formulas such as the Eulerian expansions (4) and (5) of the
preceding section can be justified. One can see heuristically that these formulas
should be related to some sort of g-Poisson distribution, as follows. From formula
(2) of the preceding section we see that the following is true : Given a vector space
X with x vectors, and a linear transformation from ¥V, to X picked at random,
the probability that this linear transformation shall be one-to-one is

kgo (Z)q( - 1)kq(2)x_k‘ (1)

This is simply the right side of (2) divided by the total number of linear trans-
formations from the space V, to the space X, which is x".

Now let 7 — oo in (1). The series converges in the g-adic norm and yields
precisely the Eulerian formula (4) of the preceding section, with x ™! replacing x.
It is therefore reasonable to surmise that this should be a candidate for the
probability stated above.

A deeper argument would yield the g-analog of a Poisson distribution along the
same lines. However, a set-theoretic justification of this heuristic limit-taking is
much more difficult to obtain. We have obtained some results in this direction
using some methods drawn from Von Neumann’s theory of continuous geomet-
ries, specifically, using as the analog of probability the dimension function in a
continuous geometry constructed by an inductive limit of finite-dimensional vector
spaces over a field with g elements. In a certain sense, this continuous geometry is
the g-analog of a nonatomic probability space. The difficulty is that this geometry
is not represented by subspaces of a vector space (only by ideals in a regular ring),
and the development of a probability theory becomes exceedingly delicate. Never-
theless, we think that it is both possible and desirable.

In the same vein, we surmise that most of the identities that heretofore have
been proved using the theory of partitions and elliptic functions are interpretable
set-theoretically in terms of enumeration in finite or in infinite-dimensional vector
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spaces. A simple example is the theta series

( _ l)nqn(n— ”/2.)(", (2)

reck

k

which is the Eulerian generating function of the number of automorphisms of a
vector spaces of dimension n over a field with g elements. The ultimate goal is a
set-theoretic proof and interpretation of the Rogers—-Ramanujan identities.

In this connection, one of the mysteries is the dual interpretation of various
Eulerian formulas both as enumeration of subspaces or of linear transformations
in vector spaces with given properties, and on the other hand as partitions of a
number with given properties. A connection between these two approaches would
be very revealing.

In another direction, the interpretation of linear g-difference equations with
constant coefficients derived in Section 4 could be extended to more complex g-
difference equations with nonconstant coefficients (for example, the g-difference
equations for the g-hypergeometric function of Jackson).

The Theorem of Section 5 can be made the basis for g-analogs of the theories
of Appell polynomials and basic polynomials. The first such theory would be
concerned with polynomials r,(x, y) satisfying the identities

nixz) = ¥ ( ,’:) (%, P43, 2), 3)

k=0

where P, is defined in Section 5. These are the analogs of Appell polynomials. We
know of several examples of polynomials in the literature that satisfy these
identities. For example, the g-Hermite polynomials introduced by Carlitz.

On the other hand, a system of basic polynomials ,(x, z) satisfies the identities

b,,(x, .V) = Z n) bk(x? y)bn—k(y’ Z), (4)

k=0 k q
an analogy with the basic polynomials such as developed for example in Founda-
tions II1. Such systems of polynomials seem to be rare. In the same vein, one can
introduce the analog of shift operators and the notion of a shift-invariant operator,
again in an analogy with Foundations I11.

The analogy between g-identities and binomial identities can be carried further
to a straight set-theoretic analogy between problems and concepts for subspaces
of vector spaces and on the other hand for subsets of a set. One of the most intrigu-
ing notions to be developed is the g-analog of the notion of a partition of a set.
In this connection see the recent work of Bender-Goldman.

A particularly simple analog is the classical result of Sperner regarding the
maximal antichain in the lattice of subsets of a set. This theorem, as well as the
well-known proof given by Lubell, carry over almost without change to the lattice
of subspaces of a vector space (see Lubell, or Harper-Rota). A more intriguing
conjecture is the analog of Ramsey’s theorem, which has recently been studied by
Graham and Rothschild. Finally, one of us has begun a study of g-analogs of the
Euler characteristic, g-analogs of simplicial complexes, and, in a more speculative
vein, g-analogs of homology.
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All these questions point to a major problem, which is of a somewhat philo-
sophical nature; this is the problem of explaining why g-identities relating to
vector spaces tend to ordinary identities for binomial coefficients as g tends to 1.
A purely set-theoretic explanation of this fact would be of great significance.
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1. Introduction

In [18], Rota and Mullin develop a theory of binomial enumeration by making an
extensive study of polynomials of binomial type, that is sequences po(X), p,(X),
p2(X), ... where p,(X) is of degree n, and

n
pX + Y)= 3} (.)P,-(X)p,.-,-(Y)- (1.1)

jiz0

As they remark early in their paper, such sequences arise naturally in problems
of enumeration. For example, if p(X) = X(X — 1)...(X — n + 1), then p,(X)
enumerates the number of one-to-one mappings of a set of n elements into a set
of X elements. In this instance, equation (1.1) is an obvious combinatorial assertion.
Namely, p,(X + Y) is now the number of one-to-one mappings of a set of n

* This research was partially supported by the National Science Foundation Grant GP-9660.
I'wish to express my gratitude to Professor Gian-Carlo Rota for the many valuable suggestions and
comments he made concerning this work and for his invitation to include this paper in the series:
On the Foundations of Combinatorial Theory.
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n
elements into a set of X + Y elements, while ( ) p{X)p,—{Y) is the number of
J

such one-to-one mappings with exactly j elements mapped into the set of X
elements.

In [12], p. 257, Rota and Goldman suggest the importance of a similar study for
polynomials related to enumeration problems in finite vector spaces. Namely they
suggest consideration of sequences of polynomials satisfying

biX,Z) = ¥, (") biX, Y)b,_ (Y, Z) (1.2)

jzo\J

n
where ( ) is the Gaussian polynomial (see Section 2 for definition). They note,

J
however, tqhat such systems of polynomials are seemingly rare. Apparently only
one example of such polynomials appears in the literature [12], p. 252, equation (1);
however, as we shall see in Section 6, there are infinitely many systems satisfying
(1.2) (see Theorem 7).

The object of this paper is to develop a theory for enumeration problems in
finite vector spaces that is analogous to the theory Rota and Mullin [18] developed
for finite sets.

In Sections 4 and 5, our theory very much parallels the work of Rota and
Mullin; however in succeeding sections, the two theories are seen to go their
separate ways. As it turns out the theory developed here has application not only
to finite vector spaces (Section 11) but also to certain areas of classical analysis,
for example, the Rogers—~Ramanujan identities (Section 9).

2. Notation

The theory of basic hypergeometric series has always been plagued with a one-to-
one correspondence between systems of notation and active researchers. The
following table lists the most common notation.

Table 1
n-1
Notation for the Product [] (1 — ag’)
j=0
Rota,
Author Bailey Fine Jackson Goldman Slater Watson
A work in

which
notation
isused [1] [10] [15] [12] [21] [24]

Notation (a),, [n;aq”';q] (1 — gqf"log,al, P.l,a) (a;q9), M, (-a,q)

Some other works in the subject use a great variety of symbols for special cases
of [](1 — ag’) (see for example [2], p. 421).
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For reasons that will become apparent as our work progresses, we shall use
both the notation of Rota and Goldman as well as that of Slater. Thus the following
symbols will be used throughout our work.

P(x,z) =(x — 2)(x —zq)...(x — zg" ')

e
el o),

For the Gaussian polynomial, we use the notation of Rota and Goldman [12],
p. 240:
(q),
(") _ ) @@
q

m

if0<m<n,

0, otherwise.

We also require some conventions concerning finite vector spaces. Upper case
script Latin letters A, 7, %, W, Z, % and % will denote finite vector spaces;
upper case Latin letters N, T, U, W, X, Y, and Z will, in this context, denote the
number of elements of such spaces, and lower case Latin letters n, ¢, u, w, X, y, and z
will, in this context, denote the dimensions of these spaces. Thus Z is a vector
space of dimension x over GF(g) the finite field of ¢ elements, and there are X = ¢*
elements of Z'.

Also every time we refer to a “‘map”’ or “‘mapping” we shall mean a one-to-one
linear transformation of one finite vector space into another.

A comment should also be made concerning the names given to various opera-
tors, sequences, and series that arise in the course of our work. First we have
decided against using ‘‘g-operator”, ‘‘g-basic polynomial” etc., although ¢-
terminology is quite extensive in the literature. Rather we shall use the adjective
“Eulerian” paying tribute to the first worker in g-series [3], p. 47. However this
requires that most things be given three-word names ; this is necessary since terms
such as “‘Eulerian operators”, ““Eulerian numbers’, “*Eulerian polynomials”,
already have been used to describe constructs much different from those in this
paper (see [7], [8], and [9]).

3. Transformations of a finite vector space

Goldman and Rota [12], p. 252, have shown that P, (X, Z) is the number of one-to-
one linear transformations f from .4 (an n-dimensional vector space over GF(qg),
the finite field of g elements) into Z such that f(A4") n Z = {0} where & is a sub-
space of Z. They have also shown that P, (X, Z) satisfies equation (1.2).

We propose to prove an equivalent form of (1.2} for the one variable poly-
nomials P, (X, 1). Let us count the number of one-to-one linear transformations
of / into ¥ @ ¥. Since Z @ % has XY elements, there are clearly P (XY, 1) such
mappings. On the other hand, since every element of @ % is of the form o + f
where a € 4 and ff € % (« is called the Z’-component and 8 the %-component), let us
look at mappings for which those elements of the image with 0 as 2-component
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form a j-dimensional subspace of Z @ #. To form such maps we may choose a
n

j-dimensional subspace of 4" in ( ) ways (see [20], p. 139, {11], [12], [17]) and
Jq

then map it into % in P(Y, 1) ways. Since a linear transformation is completely
determined by the action on a basis, we choose a basis of A, say b,,b,,...,b,
such that b,,...,b; is a basis of the above mentioned j-dimensional subspace. I
claim now that f(b;,,),..., f(b,) need only be chosen so that their Z-components
are linearly independent in Z. This follows from the fact that if f(b;) = o, + B; and
there exist C, € GF(q) not all zero such that

Z C“ai - O,
i=j+1
then

Y Cfb)= 3 Cio+ B)

i=j+1 S i=j+1

= ji CiB:.

i=j+1

Thus Y C,f(b) has 0 as Z-component and so is in the space spanned by
i=j+1

S(by),....f(b)). Hence there exist C,...,C; in GF(q) such that

- Z C.fby) = ._il C.f(b).

i=j+1
Therefore
f( 3 cfbi) =0,
i=1

and since f is a one-to-one linear transformation

Z Cibi = 0
i=1

which is impossible since not all the C; are zero and the b; form a basis for A
Conversely if the Z-components of f(b;.,),...,f(b,) are linearly independent,
then f(b,),...,f(b,) spanan n-dimensional subspace of @ % with a j-dimensional
subspace having 0 as Z-component. Thus there are P,_ (X, 1) ways of choosing
the Z-components of f(b;,,),...,f(b,) and Y"~/ ways of choosing the #-com-
ponents.

Consequently the total number of one-to-one linear transformations of A~
into ¥ @ % with j-dimensional image having 0 as Z-component is

n -
( ) P{Y,1)Y"IP,_(X,1).
Jq

Hence summing over all j, we see that

PXY) =3 (") P(Y,1)Y""IP,_(X,1),

=0\
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and replacing j by n — j, we obtain

P(XY 1) =}

jz0

'7) P/X,)YIP,_(Y,1) 31)

We remark that (3.1) is equivalent to the g-binomial theorem of Goldman and
Rota [12], p. 252, equation (1), by the substitutions x - XY, y—> ¥, z—> 1 (to
reverse X - x/y, Y — y/z, then multiply (3.1) by z"). However, our derivation here
closely parallels the derivation of (1.1) in the special case p,(x) = x(x — 1)...
(x — n + 1). Thus we are led to the following definition:

DEerINITION 1. We say that py(X), p,(X), p.(X),...is an Eulerian family of
polynomials if

(1) po(X) =1,
(1) p(X)1s of degree n,
(iii) for each n,

n ,
pAXY)= ) ) pAX)Y'p,_(Y).
jz0 \J!]q

This definition is analogous to the definition of Rota and Mullin for poly-
nomials of binomial type [18], p. 169.

The next section is devoted to constructing a theory of operators analogous to
the delta operators of Rota and Mullin [18], p. 180, and the differential operators
of Berge [4], p. 73.

4. Eulerian differential operators

The role of the shift operators of [18], p. 179, used in binomial enumeration is now
played by the Eulerian shift operator :

n°p(X) = p(Xq) = p(X A4),

where 4 = g%

To be consistent with our notation for finite vector spaces, we shall write
X =q%Y=q,A4 = q%B = g* and so on; this notational convention allows us to
exhibit symmetries that might otherwise be hidden. Our polynomials will all lie in
algebra (over the real numbers R) of all polynomials of one variable X = g*, to be
denoted by P.

Convergence questions here are trivial and will largely be ignored. Generally
we shall treat series as formal power series, and ¢ will denote a prime power;
however, the results obtained in Section 9 may be treated as analytic results valid
for |g| < 1, or as g-adic results valid for g prime.

DEFINITION 2. An Eulerian differential operator t is a linear operator on P that
satisfies the following conditions:

q *n° = n°t, 4.1)
and
1 X"#20 foreach n> 0. (4.2)

152



350 George E. Andrews

The most well-known Eulerian differential operator is the g-differentiation’
operator D,

1
D, = E(l — n).
Note that
DPX.DN=X"M{X-1DX—-9...(X —¢""H~(Xqg-1)(Xqg—q)-..

x (Xq —q" ")}
=X"'P,_ (X, ){X —¢"' = ¢""'(Xq - 1)}
={1-¢"P,_,(X,1)
LeMMA 1. If ©is an Eulerian differential operator, then tC = 0 for each constant C.

Proof: Since q “tn® = n°t, we see that ¢ “tC = n1C. Let 1C = r(X)eP.
Then we have

g r(X) = rn(Xq").

If r(X) = 0, this identity is obvious. If r(X) 0, let d be the leading coefficient of r
and n the degree. Hence comparing coefficients of X" in the above identity, we
find that

g°d=q™d.

But since d # 0 and n > 0, this equation is impossible. Hence tC = 0.

LEMMA 2. If 7 is an Eulerian differential operator, and p(X) is any polynomial of
degree n, then tp(X) is of degreen — 1.

Proof: By (4.1), for each n

g TP X" = nrrX".
Hence

g X" = X"
Suppose X" = r(X) = eX’/ + ... ; then

4" (X)) = r(Xq).

Comparing coefficients of X/ in this equation, we see that

q(n— l)ne — qaje.

Since ¢ # 0 by (4.2), we see that j = n — 1. By linearity tp(X) is of degree n — 1.
DEerFINITION 3. Let © be an Eulerian differential operator. A sequence of poly-
nomials py(X), p,(X), po(X), . . . is called the sequence of Eulerian basic polynomials
for 7 if:
(1) po(X) = 1,
(i) p,(1) =0, foreachn > 0,
(iil) tpy(X) = (1 — g")p,— ((X).

' F. H. Jackson [14] who introduced g-differentiation actually used (I — ¢)~'D,; the operator  of
L.J. Rogers[19])is D,.
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It is clear by mathematical induction that each p,(X) is of degree n. By Lemma 2
it is clear that we can construct a unique sequence of Eulerian basic polynomials
for each .

THEOREM 1
(a) If p,(X) is an Eulerian basic sequence for some Eulerian differential operator,

then it is an Eulerian family of polynomials.
{b) If p(X) is an Eulerian family of polynomials, then it is an Eulerian basic

sequence for some Eulerian differential operator.
Proof: (a) Iterating property (i1i) of Eulerian basic polynomials, we see that

T X) = (@ *F Deppi(X),
and hence by property (ii)

(@)., ifk=n,
[fkpn(X)]x=1 = {

0, ifk <n,
Thus
(X
pX) = ¥ P8 00,y
k=0 (@)
By linearity, we see that for each p(X)e P,
(X
W)= ¥ 200,
k>0 (q):
Now suppose p(X) is the polynomial p, (X Y). Thus
(X
nixy) = ¥ B0 e,
>0 (@

But since Y = ¢’,
[P X Vg1 = [PWPAX)]x =
= [ p(X)]x =
= [g°0(q" ™ * epn— X)]x = s
= [YHq" " puo il X V)]y 4

= YHG" )Pyl V).

Hence
—k+1
n )k

PAXY) = Z gq—"q—

k=0 ( )k

PX)Y¥p,_\(Y)

=Z(Z

k=0

PX)Y P, - ().

q

(b) Conversely suppose p,(X) is an Eulerian family of polynomials. Putting
Y = 1 in equation (iii) of Definition 1, we see that

piX) = Y ( '.’) PAX)pa_ A1)
q

iz0

154



352 George E. Andrews

Since this identity is valid for each n > 0 and since each p,(X) is of degree n, we
see that py(1) = 1 and that p,(1) = 0 for each n > 0. Since py,(X) is a constant,
po(X) = 1. Thus properties (i) and (ii) of Definition 3 are fulfilled.

Let us now define a linear operator = on P by

po(X) = 0,
X)) = (1 — q")p,_ (X), for each n > 1.
We need only verify that ¢~ *tn* = n’t, where Y = ¢°.
Clearly if we replace j by n — k in property (iii) of Definition 1, we see that
Y
pixy) = ¥ B
Operating on both sides of (4.3) with 7, we first find that
UpXY)) = ’p,(X),

while on the right hand side we have

Y"~kkp (X). 4.3)

Z &Q,)Yﬂ—krk+1pn(x)

k=0 @k
Y
=y PdY) g g)...(1 ~ ¢ Y kp . (X)
k0 (@
=Y(1 - 4q" Z n; ) Pk(Y)Yn—l_kpn—lwk(X)
k>0 q
= Y(I — g, (X Y)
= ¢ p(X).

Since the p,(X) form a basis for P, we see by linearity that
m’ = ¢'n’t

which is equivalent to (4.1)

5. Expansion theorems
DEFINITION 4. If ¢ is a linear operator on P, we shall say that ¢ is an Eulerian shift-
invariant operator if:
on’ = no

for all Y (recall Y = ¢°).
THEOREM 2. (Eulerian expansion theorem). Let ¢ be an Eulerian shift-invariant
operator, and let T be an Eulerian differential operator with associated Eulerian

family p(X). Then

& ok
¢ = — X",
k;o (9

where a,, = [6P(X)]x=1-
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Proof: Since the p,(X) form the Eulerian family associated with 1, we rewrite
property (iii) of Definition 1 as

Y
pixy) = y A

Xkt*p (X).
k>0 (@

We now apply o as an operator on polynomials in Y to the above equation. Thus

Y
on*p(Y) = 3 oY)

X"r"p,,(X).
k>0 (@

By linearity, we can extend this identity to all elements of P. Thus we see that

Y
orp(v) = T Py
o (@
Since o™ = n*o, we see that
rop¥) = ¥ TP xiopx)
k=0 Q)
Consequently
Y
@n(xY) = ¥ P ypx)
k>0 (‘I)k

Setting Y = 1, we obtain Theorem 2.

So far our theory is a perfect g-analog of the results of Rota and Mullin [18].
However, as 1s well-known in classical analysis, the g-analogs of ordinary hyper-
geometric series are not a mirror image of the ordinary theory. The following
result exhibits the beginning of the divergence of these theories as the ring structure
Rota and Mullin obtained for their operators is replaced in the analog by an
additive group structure.

THEOREM 3. Let t be an Eulerian differential operator, and let E be the additive
group of formal Eulerian series over R. Then there exists an isomorphism from E onto
the additive group T of Eulerian shift invariant operators which carries

k ko k
=3 3 jno 7 AET
x>0 (@ k>0 (qk

Proof: The mapping is already linear, and by Theorem 2 it is onto.

We remark that the factor X* is what prohibits our obtaining the ring structure
of formal Eulerian series. At this point we find that the corollaries that Rota and
Mullin [18; p. 189, Cor. 1 and 2] easily derived from their strong Theorem 3 are
not corollaries of our Theorem 3.

We shall now prove a strengthened form of Lemma 2 that will be important in
future developments.

THEOREM 4. Let t be an Eulerian differential operator, then there exist constants
eo = 0,ey,e,,...wheree, # 0 for each n > 0 such that

X" =¢e X" L.
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Conversely for any sequence of constants ¢, = 0, e, e,,... where e, # 0 for each
n > 0, the linear operator t on P defined by X" = ¢,X"" ' is an Eulerian differen-
tial operator.

Proof': First we assume 1 i1s an Eulerian differential operator. Let tX" = s, {X).
Now

Ys(XY)= Yp¥'s(X) = Y1 X" = i’ X" = Y™ X" = V"5, (X). Setting X = 1,we
see that

s(Y) = s (Y"1,

Since 71 = 0, and X" # 0 for each n > 0, we see that sy(1) = 0 and s,(1) # 0
for each n > 0. The first half of the theorem now follows with ¢, = s,(1).

Conversely we consider 7 defined by tX" = ¢, X"~ '. By linearity, we see that 7 is
well-defined on P. Furthermore

Y tX" = Yle, X" ' = Ye,Y" ' X" =¢,Y"X" ! = X",

and since the X" form a basis for P, we see that in general n’t = Y~ 'tn’. Thus
since also 11 = 0 and X" # 0for each n > 0, we see that 7 is an Eulerian differen-
tial operator.

COROLLARY. Let 1 be an Eulerian differential operator with related Eulerian
family of polynomials p(X). Let C, be the leading coefficient of p(X), and let e,
be defined by 1X" = e, X"~ '. Then

€0=0.

Proof: By Theorem 4 we know that e, = 0. Now
Ce X" '+ =1,(X)
= (1 = ¢")p,-(X)
=(1—g)C,_ X" ' +....
Comparing coefficients of X"~ !, we obtain the desired result.
Theorem 4 and its corollary give us much information about Eulerian differential
operators and Eulerian families. To obtain further information (especially an

analog to Corollary 2 of Theorem 3 in [18]), we move to a full-fledged study of the
relevant generating functions.

6. Generating functions

DEFINITION 5. We say that po(X,Z), p,(X, Z), p,(X,Z),... i1s a homogeneous
Eulerian family of polynomials if each p,(X, Z) is a homogeneous polynomial
of degree n in X and Z such that

(1) PolX,Z) = 1,
(i) P(X,0) # 0,
iz0 q
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The relationship between homogeneous Eulerian families and ordinary
Eulerian families is explicitly described in the following theorem.

THEOREM 5. There is a one-to-one correspondence ¢ between homogeneous
Eulerian families and ordinary Eulerian families given by

¢:p(X,Z) - piX, 1),
¢~ :pkX) = Z'p (X /2) = piX, 2Z).

Proof : Suppose the p,(X,Z) form a homogeneous Eulerian family. Then
p.(X,0) = CX" # 0 by property (ii) of Definition 5. Hence p,(X, 1) is of degree n.
By property (i) of Definition 5, py(X, 1) = 1. Next by homogeneity and property
(111) of Definition 5, we see that

pAXY, )= ¥ (") pAXY, Y)p,_ (Y, 1)
g

jz0

n .
= Z ( v) pj(X’ I)Yjpn—j(Y3 1)9
i=0 q

which shows that the p,(X, 1) form an Eulerian family.
Conversely suppose that the p,(X) form an Eulerian family. Let

pn(X) = Z anXja

jz0

where C,, # 0; then
X, Z) = Zp(X/Z)

=

CXiZm .

0

j
Clearly po(X, Z) = 1, and
p(X,0) = C,, X" & 0.

Finally
XY

-z 3 ") ol3) 3 73]
SR

=3 (") piX, Y)p._ (Y, 2).
iz0 \J/q

Noting that ¢ '¢p(X,Z) = ¢~ 'p(X.1) = Z'p(X/Z,1) = p{X,Z), and
dd " 'pX) = ¢Z"p(X/Z) = p,(X), we see that Theorem 5 is established.

The value of Theorem 5 lies in the fact that we may easily determine the form of
the generating functions for the homogeneous Eulerian families (see Theorem 6).
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We then set Z = 1 to determine the generating function for ordinary Eulerian
families.

THEOREM 6. Let p (X, Z) be a homogeneous Eulerian family withC, = p,(1,0) # 0,
and let

t
o=y 95

k=0 (gk
Then

5 PX.2E_ fXD)
VO

Proof : Let
pX, Z)
FX,Z;t)= -t
( t) n§0 (q)n f
Then
< (Dn
FX,Z;t) = ———pdX, V)p (Y,
Xz0= 2 @ 2. @@l 2
j20,k20
— pj(X’ Y)tj . pk(Xa y)tk
j=0k=0 (q)j (qh
= F(X,Y,0)F(Y, Z;1).

i
s
gl

Replace Z by 0 and then replace Y by Z; this yields

F(X,0;t)=F(X,Z;)F(Z,0;1).
Hence
pX D8 pix,z;
n=0 (q)n
_ F(X,0:0)
~ F(Z,0:1)
c . X"t"
_ ngo (q)n
c,zZ""
n§0 (q)n
_f(xy
f(Zty

CoOROLLARY. If p,(X) is an Eulerian family of polynomials, and if C, is the leading
coefficient of p,(X), then

pX0" _ f(X0)
n>0 (q)n f(t) ’
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where
C.t"
(t) = —.
f n§0 (q)n
Proof : In Theorem 6, let p(X, Z) = Z"p(X/Z). Then set Z = 1.
TueorRem 7. If Cy, = 1,C,, C,,. .. is any sequence of non-zero real numbers, and if
Ct*
f(t) = IS
kgo (q)

then the expressions p,(X, Z) defined by

5 pAX, 2" f(X1)
nz9Q (q)n f(Zt)

form a homogeneous Eulerian family of polynomials.

Proof . The argument required here merely reverses the steps in Theorem 6 so
we omit it.

Finally we derive a further result for the generating functions which greatly
resembles Corollary 2 of Theorem 3 in [18].

THEOREM 8. Let the p,(X) form an Eulerian family of polynomials with C, as the
leading coefficient and let

c

SO =2 o

Then

’ 1 n
f“)=exp{21p4)t}.

n>1 (Q)nn
Proof : By Theorem 6, if

S(X1)
f(zy’

FX,Z;1) =

then
FX,Z;t)= F(X,Y;)F(Y,Z;1)
Therefore replacing X by XY, then Y by X and Z by 1, we see that
FIXY, 1;1) = F(XY, X ;t)F(X,1;1)
= F(Y,1; XO)F(X, 1:¢).
Hence

FIXY, 1:1) — F(X,1:1)
Y -1

F(Y,1;Xn -1
Yy—1

Pn(Y) X
=P L T

=Hx1m{
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Letting Y — 1 (or y — oc where Y = ¢*), we obtain

d p)X"t"
X-——F(X,1;t F(X,1;t —_—
XagFX L = FXC 150 0 =0

this follows from the fact that, by Theorem 1, p,(1) = 0 for each n > 0.
Thus F(X, 1;t) satisfies a first order differential equation in X, namely
p(1)X"t"
Xy -y ) ——

ngl (q)n

The solutions of this equation are of the form

y = K(t)exp{z EE(_I)X_HI_"}

= 0.

n>1 (q)nn
Since F(0, 1;1) = (f(t))"! = K(z), we see that
f(X1) - p(HX"
=FX,1;t) = ! —_—
0 (X,1;8) = (f(t) "' exp {; @ }

Hence
~ X"
JXD) = exp {Z @ } ’

and this formula is clearly equivalent to the result stated in Theorem 8.

7. Further expansion theorems

Inthissection weshall be primarily interested in therelationship between expansions
of Eulerian differential operators t and the generating function obtained from the
Eulerian family related to z.
First we observe that any Eulerian differential operator has an expansion in
terms of the g-derivative D, = (1/X)(1 — »).
THEOREM 9. Let t be any Eulerian differential operator, then
a,X"D;
X n>0 (q) ’

where
=[t(X — 1IHX — g).. (X — qn_l)]x=1-

Proof : First we note that X't is Eulerian shift-invariant. This follows from the
fact that

W(Xt)= XYt = XYY 1y’ = (X1
Hence if ¢ = X1, then by Theorem 2
XnDn
c=) Gt T
n>0 (q)n
where a, = [op,(X)]x-, and where p,(X) is the Eulerian family associated with
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D,. As we observed just after Definition 2, p(X) = (X — 1)...(X — ¢"'). Thus
Theorem 9 follows from the fact that ¢ = X7

Most of the Eulerian differential operators we shall meet are expressed 1n terms
of  rather than D, . The following theorem relates such operators to their respective
generating functions.

THEOREM 10. Suppose t is an Eulerian differential operator that has a Laurent
series expansion in n of the form

1

© 1
Y,.:Z—B bny" = }L(’?l

Let p(X) be the associated Eulerian family of polynomials with C, the leading
coefficient of p,(X). Then

C, = —n@n—-
[T Lig"
j=1
Proof: We observe that
1 1 =
Xm=_L Xm:__ b mnszxm—l m.
T + L) X,:Z-B wd L(g™

Thus in the notation of Theorem 4,

e, = L(q"),
and by the Corollary of Theorem 4
_(1-49

C, C,_-
Lgy "
Iterating this equation and recalling that C, = 1, we see that
=\ On
[T L)
j=1

We shall now examine some further results that are related to the symbolic
method utilized by Goldman and Rota in [11].

THEOREM 11. Let t be an Eulerian differential operator with associated Eulerian
family p(X). Let

where C, is the leading coefficient of p(X). Suppose that

m,(X)"
X, t) = ;
g( t) n§0 (q)n

where the m,(X) are polynomials in X, no(X) = 1, n,(1} = 0 for each n > 0, and

te(X,1) = tg(X, ).
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Then

gX. 1) = f(Xv/f).
Proof : We observe that

[z, (X)]t"
X, t) = ——
Tg( t) n§0 (q)n
By by hypothesis
tg(X, 1) = tg(X, 1)
_ TC"(X)t" +1
B n§0 (q)n
e (= g"m, (X"
- ngo (q)n ‘

By comparing coefficients of t"/(g), in our two series for tg(X, t), we see that
(X)) =(1 — ¢g")m,_ (X)), m(1) =0 for each n > 0,
and

(X)) = 1.
However the only family of polynomials satisfying these conditions is p,(X).
Thus

P X) = m,(X).

Therefore

dX,0)= ¥ pa( Xt

= [(X0)/f (1)
n=0 (q)n

as asserted.
COROLLARY. Let 1, p,(X), and f(t) be defined as in Theorem 11. Suppose that

d.t"

h(t) = Eo@’ (dy = 1),
and
th(Xt) = th(Xt).
Then

h(t) = f1(z).
Proof . Define
g(X, 1) = h(X1t)/h(x).
Then g(X, ¢) fulfills the conditions of Theorem 11. Therefore

WX Xy
Wy E0 =T

Setting X = 0, we see that h(t) = f(t).
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8. Eulerian Sheffer polynomials

In [15], Rota and Kahaner extend the work in [18] to Sheffer polynomials. Let us
recall that a Sheffer set relative to the delta operator Q is a sequence of polynomials
So(x), 51(x), s5(x), . ..such that

0s,(x) = ns,_(x),
and

So(x) = L

It is then possible to prove that

s(x)t" pa(0)"
Y i h(t)exp{x Y T}

n=0 n>0

where p,(x) is the basic polynomial set associated with Q and h(¢) is a formal power
series in t with h(0) = 1. Conversely one can show that any family of polynomials
s,(x) defined by a function of the above form is a Sheffer set relative to Q. The
Eulerian analogs of these facts will be important in Section 10, and so we develop
them now.

DEFINITION 6. Let ¢ be an Eulerian differential operator. A sequence of poly-
nomials sy(X), §,(X), s,(X),...1s called an Eulerian Sheffer family relative to z if:

(1) s5o(X) =1
(i1) 15,(X) = (1 — ¢g"s,_(X).

THEOREM 12. Let t be an Eulerian differential operator with p(X) the associated
Eulerian family. If s5,(X) is an Eulerian Sheffer family relative to t, then

SAXY) =) (n) SAX)X" Ip,_{Y) (8.1)
j=0\qlq

for each n. Conversely any family of polynomials satisfying (8.1) with syi(X) = 1
is an Eulerian Sheffer family relative to t.

Proof : Suppose first that the s,(X) form an Eulerian Sheffer family relative to .
Thus if

s (X))
S(X:0)= ) —/——,
( t) ngo {q)n

we see that

S(X ;¢ 1 —¢g"s,_(X)t"
S L e e
= tS(X ; t)/S(1. 1)
Hence by Theorem 11,
S0 _ g pulX
S(LY) 5o (@
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Therefore

S X" s (1)t" pAX)™
ngo (Q)n n§0 (q)n mg‘o (q)m .
Comparing coefficients of ¢" on each side of this equation, we see that
n
s X) = ) ( ) piX)s, - (1).
jz0 \jla
Therefore
S,,(XY) ( ( ) pr(X)erj—r(Y)sn~j(1)
Jla r=01\r

1
(XYY ———p. (Y)s,_ {1
rp,( ey (q).._,-(q),--,p’ AY)s,_ (1)

j=r

_v @
_rgo(Q)

") p (XYY (" B ’) pAY)s,_,- (1)
rlqg J q

j=0

>
r=0
> ( )p,(X )Y's, - (Y).
r20 \r

Conversely suppose that s5(X) = 1 and the 5,{X) satisfy (8.1). Then by setting
X = 1in(8.1) and then replacing Y by X, we see that

5,(X) = ( ) pf(X)s,- (1)
iz0

=2 (j) (1 = ¢)p;- (X)s,- 1)

i=0

-1
- (1 - q") Z ) pj—l(X)Sn—j(l)
jiz1\Jj— 1

—1
(1 -4" Z ( , ) pj(X)Sn—1—~j(1)

jz0

= (1 — g"s,-(X)
CoRrOLLARY. If 5,(X) is an Eulerian Sheffer family relative to 1, then

5 WX Bl

n>0 (q)n n>0 (Q)n

where h(t) is a formal Eulerian series with h(0) = 1. Conversely any family of poly-
nomials defined by the above type of function is an Eulerian Sheffer family relative

to .
Proof: The first part follows directly from the first part of the proof of Theorem
12. On the other hand, suppose that s (X) is defined by the above equation. Then

So(X) = h(0)po(X) = 1,
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and

= s (X" P, (X)t"
n;O (Q)n B h(t) n;o (q)n
(I — q)p,—(X)"
= h
) ,Eo ()

_ Pl X"
=) 2 2,

s,(X)t"
tngo (q)n
o (= gs, (0
Bl ngo (q)n

I

Comparing coeflicients of ¢, we see that

t5,(X) = (1 — ¢")s, - ,(X).

Therefore the s,(X) from an Eulerian Sheffer family of polynomials relative to .
There are at least two examples of Eulerian Sheffer polynomials that have been
studied extensively. First we consider
n\ .
H(X)= ) ( ) X/,
J1q

Jjz0

the g-Hermite polynomials studied by Carlitz [5],[6] and introduced independently
by Szegé {22] and Rogers [19].

HO(X) = 19
h

DH(X) = ¥ (
J

) (1 - gHx/!
q

= (1 — ¢")H,_ ((X).

Thus the H,(X) form an Eulerian Sheffer family relative to D,. Carlitz [5] also has
considered a related set of polynomials

qn(n—l)/zG"(__X) — qn(n—l)/z Z (n) qj(j—'l)(_X).i_
q

j>o
Now

g™ G(—X) = 1,
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and with Aq = ¢/X(1 — ™)

n . . , . .
Aqqn(n—l)/ZGn(_X) — qn(n—l)/Z Z () qJ(J—")(_I)J'_lXJ_lq’J"‘l(l _ qJ)
iz0\Jigq

n—1
— qn(n—l)/Z (1 . qn) Z (

j=0

; 1) gimm =it x)yit
q

= (1 — qn)q(n—l)(n—Z)/Z Z ( ) qj(j—"+1)(_X)j—1
j=0 q

J
- (1 _ qn)q(n—l)(n—Z)/ZG"(_X).

Therefore ¢""~'V2G,(— X) is an Eulerian Sheffer family relative to A, .

9. Applications to basic hypergeometric series

9.1 g-Differentiation. We have already discussed D, = 1/X(1 — ») with related
Eulerian family P,(X,1) = (X — 1)...(X — ¢"~"). Since the leading coefficient
of P,(X, 1) is always 1, we see that by the Corollary to Theorem 6

P(X, )"

T T = Xty 9.1)
nx=0 n
where
In
e(t) B n§0 (q)n
Since [P(X, D)]y-, = lini &',(X’ 3 = (q),—,, we sce that by Theorem 8
Yoo _
tn
ngo (q)n N e(t)

= exp{— log(l — tq’"}
m>0
= [T -tgm ' ="
m>0

a well-known result due to Euler.
Equation (9.1) may now be rewritten as
P(X, )"
Z L”L = (t)oo/(tX)oo’ (92)
HZO (q)n

the well-known summation due to Heine [21], p. 92, equation (3.2.2.12).
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9.2 Backwards g-differentiation. Here we consider the Eulerian differential
operator

By= 1 =n7Y),

P(l,X) - P(1,Xq™ ")
X

1-Xq¢"'—1+ Xg™!
=wrmxﬁ T q}

= P,_ (L, X)(1 — ¢").

AP (1,X) =q

A repetition of the arguments used in Section 9.1 would yield
P(L, X)t"
Z _mer

n=0 (q)n

a result equivalent to (9.2).
9.3 The Heine—Gauss theorem. We now examine the Eulerian differential

operator

= (X1) oo/ (1) 9.3)

1 D_1 1 —¢
"T1—=byp * X1 —bng!

with associated Eulerian family g (X) and generating function G(t), that is

g X"
= G(X1)/G(t).
Now by Theorem 10
t" (),
G(t) =
(”,anﬁ -9
j=1 (1= bg’™1)
e b
B ngo (q)n
Hence
(bt),
G(t) = ,
=0,
by (9.3).
Therefore

g X" (bX1) (1),
nzzo (@, (X0, b0, (9.4)

Now let us expand (9.4) in the following manner

28X CAOPLX, 1)
n§0 (q)n B ngo (q)n .

(9.5)
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That such a formal expansion exists is obvious from the fact that P(X, 1) forms a
basis for P over R. We wish to determine C,(1).
Since

ygn(X) = (1 - q")gn—l(X),
we see that
Dg, (X} = (1 —bn( — q"g,-(X)
= (1 - qn)(gn—l(X) - bgn—l(Xq»
Hence
Cn+l(t)Pn(X’ 1) — 2 Cn(t)(l - qn)Pn—l(X)
n=0 (@)n r=0 (q),
_ « CJ{9D,P(X)
B n§0 (q)n

2. X"
= D ——
qn§0 (q)n
Z (gn— (X)) — bg,_(Xgpt"
nz1 (Q)n—1
_ (84 X) — bg(Xq)"
B tnzzO (q)n
C.HP(X,1) C.(t)P,(Xq,1)
= et an A A ) —_
RS )

(9.6)
Now
1
P(Xgq,1) = q"(X — —)P,,_I(X, 1
q
=X — ¢ )P, (X, D) + (g7 — g" )P, (X, )
= q"Pn(Xa 1) - q"_l(l - q")Pn—-l(Xa 1)
Substituting this identity into (9.6), we see that

Cps 1(HPAX, 1)
ngZO (q)n
tC(1)(1 — bgWP(X, 1) + btg"~ (1 — q"C, ()P, (X, 1)
=L @ '

Comparing coefficients of P(X, 1)/(g), on both sides of this equation we see that
Cpi1(t) = €1 — bg")C () + btq"C, 4 ,(t).
Therefore

(1 — bq")

= 0 o) C,(¢). 9.7

Cpi1(9)
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By iterating (9.7) and noting that C,(f) = 1, we find that

_ (),
C.t) = o, (9.9)
Substituting (9.8) into (9.5), we see that
(bX1) (1), - 2 X"
(Xt)w(bt)w nzQ (q)n
_ C(P(X,1)
B n§0 (q)n

LS50 (g,

Equation (9.9) is the Heine—Gauss theorem [21], p. 97, equation (3.3.2.5).
9.4 The Rogers-Ramanujan Identities. Here we consider the Eulerian dif-
ferential operator

1 _ _
Rq=-)‘(‘('1 2—'1 1)-

Let r,(X) denote the associated Eulerian family, and let

rdX)"  p(X1)
n§0 (q)n B P(t) .

By Theorem 10,

pt) = 3. (;)- ; (q)." _
=0 @ - q7)

ji=1

tn

g %1 — ¢’

=

Y

o
—=

Jj 41
3 Z qn2+ntn
(@n

n>0

Thus p(t) is indeed one of the functions involved in the Rogers—Ramanujan
identities (see [21], p. 103).
Now let us consider the following function:

Fl) — Z (_l)nthqn(5n+3)/j(ll _ tq2n+1)
nz0 (@D(tg" " e
Then in the notation of Hardy and Wright [13], p. 294, equation (19.14.11)
F(t) = H,(tq, ),
and by [13], p. 294, equation (19.14.15)
(™2 — n~ YF(X1) = XtF(X¢).
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Thus
R F(X1) = tF(Xt).
Hence by the corollary to Theorem 11,
p(t) = F(t). 9.10)

Setting t = ¢~ ' in (9.10), we obtain

M8

7" 1+ (—1)'g"cr= V(1 + ¢
n§0 (q)n - (q)co
=(q;97)2"q*; 475", (9.11)

by Jacobi’s identity [13], p. 282,
Finally setting t = 1 in (9.10), we see that

(_l)nqn(5n+3)l2(1 _ q2n+1)

i

ni+n
2 -

S @, @e
= (¢*;97):'(q*: 4%) ", (9.12)

by Jacobi’s identity [13], p. 282.

Equations (9.11) and (9.12) constitute the Rogers—Ramanujan identities.

The results of this section give a small sampling of the relationship of the
theory of Eulerian differential operators to the classical theory of basic hyper-
geometric series.

10. Applications to Eulerian Rodrigues formulae

One of the most useful results in [18] is Theorem 4 which presents several formulae
for the iterative calculation of families of basic polynomials. In particular if Q is
the delta operator related to the family of basic polynomials p,(x), then the Rodri-
gues-type formula [18; p. 194, equation (4)] may be rewritten as

(@x — xQ)x ™ 'py(x) = p,_,(x),

or equivalently
0x ™',y y(x) = nx” p,(x). (10.1)

Thus the Rodrigues-type formula of Rota and Mullin [18], p. 194, equation (4},
is equivalent to the assertion that the family x~*p,(x), x 7 *p,(x), x ™ 'ps(x),...is a
Sheffer set (in the notation of [16] which was described in our Section 8) provided
each polynomial is multiplied by p’(0) so that [x~'p,(x)/p1(0)]x-, = L.

Hence we may prove the Rodrigues-type formula of Rota and Mullin [18], p. 194,
equation (4), if we can establish that {x™'p,, ,(x)/p1(0)} is a Sheffer set relative
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to Q. This is possible in the following manner®

5§ Bl 1 d o plor

L Ot xpi(0) de, S, n!
1 d pLO)"
‘xp;(O)Ee"p{xEo n! }
1 Py 1(0)" { p;(O)t"}
= (). 4 X
EUR T B P My
IO n
- h(r)exp{x Y Pil )t}
n>0 n!

where A(0) = 1. Thus by our remarks in the beginning of Section 8, the

X!y s 1(x)/P1(0)

do indeed form a Sheffer set relative to Q.

Our object now is to follow the g-analog of this procedure. As we shall see a
simple formula like (10.1) does not hold in general for Eulerian families ; however,
more complicated recurrences can be obtained. We shall content ourselves with
examining the polynomials g, (X) introduced in Section 9.3. Define for n > 0

gn+1(X) — bXg,(X)(1 — ¢")

G, (X) = X — 1 Go(X)=1-b. (10.2)
Then if D, , denotes g-differentiation with respect to ¢,
G (X)t" B B+ (X)"
=(X - 1)1 -bXt 2
ngo (Q)n ( ) ( ) n§0 (Q)n
— (X — )71 — bx0)D,, Y, BXN
n=0 (q)n
(X — 1711 — bX1)(bX1q),(tq).,

HX1),.(b1),
x {1l —bXo)(1 —¢) — (1 — Xpp(1 — br)}
_ (1= b)(bX1), (1),
T 1=t (X000,
_(1—b) - gfX)"
(1 - t) r?z:o (q)n .

Therefore by the corollary to Theorem 12, the (1 — b)"'G,(X) form an Eulerian
Sheffer family relative to y. Hence

Y6(X) = (1 — 4")G,-1(X) (10.3)

As we see (10.3) is quite a bit more complicated than (10.1), and, in general, matters
are even worse. The reason is that for basic families p,(x) associated with delta

21 wish to thank Gian-Carlo Rota for supplying me with an equivalent form of this argument.
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operators {by Corollary 2 of Theorem 3 in [18]),

log 3 P 5 p,(0)"

nso Nl nao B!

which is a linear function of x. For Eulerian families 7,(X) associated with
Eulerian differential operators, we see by Theorem 8§ that

(X )" m(1)X"t" (1"
lo = —_—— -
gngo n! n§1 (@)an na1 (@Pan

3

and in general this is a very complicated function of X. Thus it is not surprising
that recurrences among the n,(X) are more complicated.

In actual fact, Theorem 4 and its corollary provide very effective means for
recursively defining Eulerian families.

11. Applications to finite vector spaces

Just as the theory of delta operators developed by Rota and Mullin is useful in the
combinatorics of finite sets, so our theory is useful in the combinatorics of finite
vector spaces.

First we remark that Rota and Goldman [12], Section 5, have studied P(X, Z)
in detail and have shown that P,(X, Z) is the number of one-to-one linear trans-
formations f of A" into & such that f(A") N Z = {0} where & is a subspace of Z.
They also established combinatorially the g-binomial theorem :

P(X,Z)=Y (") P(X, V)P, (Y, 2), (1L.1)

120

a result equivalent to our (3.1). We have already seen that the P,(X, 1) form an
Eulerian family. We conclude by considering a new Eulerian family, and we show
how combinatorial studies may lead to analytic identities.

DEerFINITION 7. Let (X, U, W) denote the number of one-to-one linear trans-
formations f of A" into % @ Z where all non-zero %-components of f-images lie
outside of #  a subspace of %.

DEFINITION 8. b (X) = (X, U, UX ™).

Combinatorially we may think of h,(X) as being defined exactly as #,(X, U, W)
is with the added condition thatw = u — x.

ProOPOSITION 1. Foreach n > 0,

n

HX, U W)=Y (
J

iz0

) P(X,1)P,_{U, W)x"~J,
g

Proof: Let us look at the maps f counted by #,(X, U, W) for which the subspace
of f(.#) with 0 as %-component is j-dimensional. The number of such maps is

.. n
obtained as follows: We can choose a j-dimensional subspace of .4 in ( ) ways.
q
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We can then map this chosen subspace into Z in P{X, 1) ways. If v, ..., v; form
a basis for this j-dimensional subspace of A", we can extend to vy, ..., v, a basis for
A. By the same argument used in Section 3, we need only choose f (v, ), .., f(va)
so that their %-components are linearly independent (and now outside of #” as
well). This can clearly be done in X" /P, _ (U, W) ways. Hence

HX, U W)=Y (") P(X, 1)P,_ (U, W)X",
Jla

jz0

ProPOSITION 2. For each n > 0,

h(X)=Y (”) P(X, 1)P,_ (X, U™,
Jia

jiz0
Proof

h(X) = #(X, U, UX ")

= Y "] Pex, DP,_ (U, UX " 1)x"~
jz0\jlq

= ¥ "] Px, pUx-ty-ip,_(x, Hx
jz0 jq

= 3 " p(x, )P, (x, YU
iz0\jla

ProposITION 3. The h,(X) form an Eulerian family of polynomials.

Proof: By Proposition 2 we see that hy(X) = 1 and h,(X) is a polynomial of
degree n in X for each n. Finally h,(XY) counts the number of one-to-one linear
transformations f of A" into # @ & ® % where all non-zero #-components of
f-images lie outside of .7, a subspace of % withu — t = x + y.

Let us look at the maps counted by 4,(XY) for which the subspace of f(A4")
with 0 as % @ Z-component is j-dimensional. The number of such maps is ob-
n
) ways.
Jq
We can then map this subspace into % in P|(Y, 1) ways. Extending a basis v,, ..., v;
of this j-dimensional subspace of 4" to a basisv,,...,v,for .47, we see by the same
argument used in Section 3 that we need only choose f(v;,),..., f(v,) so that
their @ % -components are linearly independent and their non-zero #-com-
ponents are outside 5 This choice can be made in Y" /i, (X, U, T) ways.

Therefore

tained as follows: We can choose a j-dimensional subspace of 4" in (

h

h(XY)= ) (
J

iz0

) P(Y,)Y" i, _(X,U,T)
q
Now choose # so that # > % o .4 and u — w = x (consequently w — ¢t = y).
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Utilizing (11.1), we see that

h(XY)= Y (” P(Y, )Y i, _(X,U,T)
Jta

=Y [Py y ":1) P(X,1)P,_,_ (U, T)X""/""
q

j=0 J) q rz0
- (" P(Y, )Y" I Y (” - ’) P(X, )X i
iz0\Jlq r=0 r lq
« (" N ; - ") PU, W)P,_,_,_(W,T) (11.2)
120 q

Now if p = r + L, then

A
jia\ T g ! e DADADUDn- -1

L

Hence interchanging the summations in (11.2) and replacing / by p — r, we see that

h(XY)= ¥ (") 14D p) PX,1)P,_(U, W)X?~"
q aq

pz0 \P rz0 \r

Z (n — p) pj(Y’ I)P,,ﬁj,P(W, T)(XY)n—_i—p
J la

iz0

=Y (") Y? Yy (”) P(X,1)P,_(X, U™
pz0 \Plq q

r>0 \7r

) (n - P) P(Y,DP,_,_ (Y, )U" "7
J e

jiz0

- |

p=0

”) YPh(X)h,_ (V)

Pla

Knowing that the h(X) form an Eulerian family, we can derive an identity of
Carlitz [5], p. 361, equation (2.2). First we see by inspection of Proposition 2 that

the leading coefficient of h,(X) is
H{U)= ¥ (") v,
Jia

jz0
the g-Hermite polynomial mentioned in Section 8. Furthermore for n > 0
K1) = Hm(X — 1) *h(X)
= m(X -1ty (") P(X, DU IP,_(X,1)
X1 izo\Jlq
= UQn-1 + (-1
= (@)p-1(1 + U").
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These facts now allow us to establish the following result:
PROPOSITION 4. ([5], p. 361, equation (2.2))
H (Uy"
2

n>0 (q)n

= () (tU)Z"

Proof: By Theorem 8,
H (U)" { h’(l)t"}
= exp
ng() (q)n ngl q)n

(1-|-U” }
n>l {l_q

{ nm(l + Un) n}
= €Xp
mz>0nz1

— Y log(l —tq™ — ) log(l — qum)}

m>0 m=>0

= exp

=[] (1=t 1 = tUq™ ™" = (120N
m=0

12. Conclusion

In light of the characterization of Eulerian differential operators given in Theorem
4, and since the factor 1 — ¢" does not appear in this characterization, we may
reasonably ask what happens if the sequence 0,1 — g, 1 — g%, ... were replaced by
ug = 0, uy, u,,...(where u, # 0 for each n > 0) in Definition 1. Actually we can
prove all the theorems through Section 8 with

1 — 4" replaced by u,,

n TR N TR
( ) replaced by —“r-lrttlmortl
U,y ... Uy

{9), replaced by  uu,_ (... u,

Indeed the results would extend the work of Morgan Ward in [23]; however, such a
generalization seems of little immediate value in applications (such as in Sections
3,9, 10, and 11), and we have, therefore, not bothered to write our results in this
more general form.

There are many other possible applications of our theory. For example, the
series-product identity of F. H. Jackson [21], p. 96, equation (3.3.1.3)

L+ Y (ag),—:(1 — ag*")(b){c)(d)(ag/bed)" _ (aq).(aq/be)n(ag/bd),,(ag/cd)y
n>1 (q).(aq/b),(aq/c) (aq/d), (aq/b) ,(aq/c)(aq/d). (aq/bcd).,,

can be transformed into a generating function for a family of Eulerian polynomials
by the substitutions a = Xt, b = X. Further aspects of the classical theory of basic
hypergeometric series can be included in the theory of Eulerian differential
operators.
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As for applications to finite vector spaces, we first remark that it should be
possible to extend the results of Section 11 to polynomials of the form

y R (00Ui)n(Ugl)y - .- (U,
a0 (@ (Xt)w(UIXt)m(Uth)w...(U,Xt)w'

A more tantalizing problem involves a finite vector space interpretation for the
g,(X) defined in (9.4) (obviously g,(X) = P(X,1)if b = 0).

Professor L. Carlitz has drawn my attention to the paper by A. Sharma and A.
Chak (The basic analog of a class of polynomials, Revista di Matematica della
Universita di Parma, 5(1954), 325-337) and to the paper by W. A. Al-Salam
(g-Appell polynomials, Annali di Matematica, 77 (1967), 31-45). In the present
context, the polynomials studied in these papers are essentially Eulerian Sheffer
polynomials related to the Eulerian differential operator D,. The g-differential
operators L, discussed by Al-Salam on page 43 of his paper are not Eulerian
differential operators (as defined here) except when L, = D, (cf. our Theorem 9).

Also Professor W. A. Al-Salam has drawn my attention to the extensive literature
on generalized Sheffer polynomials. In particular, he pointed out the forthcoming
paper by A. M. Chak (An Extension of a Class of Polynomials) in which our
Eulerian Sheffer polynomials are named *“Appell Polynomials to the Base ¢
Also Professor Al-Salam mentioned the work by Mourad El Houssieny Ismail
(Classification of Polynomial Sets, M.S. Thesis, 1969, University of Alberta) in
which an extensive account of generalized Sheffer polynomials is given and in
which appears a list of 119 references. Presumably our results in Section 8 duplicate
those of Chak ; however, other than there, our results appear to be new.
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ON THE FOUNDATIONS OF
COMBINATORIAL THEORY (VI):
THE IDEA OF GENERATING
FUNCTION
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RICHARD STANLEY
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1. Introduction

Since Laplace discovered the remarkable correspondence between set theoretic
operations and operations on formal power series, and put it to use with great
success to solve a variety of combinatorial problems, generating functions (and
their continuous analogues, namely, characteristic functions) have become an
essential probabilistic and combinatorial technique. A unified exposition of their
theory, however, is lacking in the literature. This is not surprising, in view ot the
fact that all too often generating functions have been considered to be simply an
application of the current methods of harmonic analysis. From several of the
examples discussed in this paper it will appear that this is not the case: in order
to extend the theory beyond its present reaches and develop new kinds of algebras
of generating functions better suited to combinatorial and probabilistic problems,
it seems necessary to abandon the notion of group algebra (or semigroup
algebra), so current nowadays, and rely instead on an altogether different
approach.

The insufficiency of the notion of semigroup algebra is clearly seen in the
example of Dirichlet series. The functions ‘

(1.1) n— 1/n°

defined on the semigroup S of positive integers under multiplication, are charac-
ters of S. They are not, however, all the characters of this semigroup, nor does
there seem to be a canonical way of separating these characters from the rest
(see, for example, Hewitt and Zuckerman [32]). In other words, there does not
seem to be a natural way of characterizing the algebra of formal Dirichlet series
as a subalgebra of the semigroup algebra (eventually completed under a suitable
topology) of the semigroup S. In the present theory, however, the algebra of
formal Dirichlet series arises naturally from the incidence algebra (definition
below) of the lattice of finite cyclic groups, as we shall see.
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The purpose of this work is to begin the development of a theory of generating
functions that will not only include all algebras of generating functions used so
far (ordinary, exponential, Dirichlet, Eulerian, and so on), but also provide a
systematic technique for setting up other algebras of generating functions suited
to particular enumerations. Our initial observation is that most families of
discrete structures, while often devoid of any algebraic composition laws, are
nevertheless often endowed with a natural order structure. The solution of the
problem of their enumeration thus turns out to depend more often than not
upon associating suitable computational devices to such order structures.

Our starting point is the notion of incidence algebra, whose study was briefly
begun in a previous paper, and which is discussed anew here. Section 3 contains
the main facts on the structure of the incidence algebra of an ordered set ; perhaps
the most interesting new result is the explicit characterization of the lattice of
two sided ideals. It follows from recent results of Aigner, Prins, and Gleason
(motivated by the present work) that for an ordered set with a unique minimal
element the incidence algebra is uniquely characterized by its lattice of ideals;
this assertion is no longer true if the ordered set has no unique minimal element.
In particular, the lattice of two sided ideals is distributive, an unusual occurrence
in a noncommutative algebra. Our characterization of the radical suggests that
a simple axiomatic description of incidence algebras should be possible, and we
hope someone will undertake this task.

Section 4 introduces the main working tool, namely, the reduced incidence
algebra. This notion naturally arises in endowing the segments of an ordered set
with an equivalence relation. Such an equivalence is usually dictated by the
problem at hand, and leads to the definition of the incidence coefficients, a
natural generalization of the classical binomial coefficients. After a brief study
of the family of all equivalence relations compatible with the algebra structure,
we show by examples that all classical generating functions (and their incidence
coefficients) can be obtained as reduced incidence algebras. We believe this is a
remarkable fact, and perhaps the most cogent argument for the use of the present
techniques.

Section 5 extends the notion of reduced incidence algebras to families of
ordered structures. The notion of multiplicative functions on partitions of a set
and the isomorphism with the semigroup of formal power series without
constant term under functional composition (Theorem 5.1) are perhaps the most
important results here. Because of space limitations, we have given only a few
applications, which hopefully should indicate the broad range of problems which
it can solve (for example, enumeration of solutions of an equation in the
symmetric group G,, as a function of n). Pursuing the same idea, we obtain an
algebra of multiplicative functions on a class of ordered structures recently
studied by Dowling [19], which were suggested by problems in coding theory.
Finally, we obtain the algebra of Philip Hall, arising from the enumeration of
abelian groups, as a large incidence algebra.
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Section 6 studies the strange phenomenon pointed out in Section 4, that the
maximally reduced incidence algebra does not coincide with the algebra obtained
by identifying isomorphic segments of an ordered set. The structure of such an
algebra is determined.

Sections 7, 8, and 9 make a detailed study of those algebras of generating
functions which are closest to the classical cases. Algebras of Dirichlet type are
those where all the analogs of classical number theoretic functions can be defined,
including the classical product formula for the zeta function. Algebras of
binomial type are close to the classical exponential generating functions, and
naturally arise in connection with certain block designs. Under mild hypotheses,
we give a complete classification of such algebras.

Several applications and a host of other examples could not be treated here.
Among them, we mention a general theory of multiplicative functions, and their
relation to the coalgebra structure (as sketched in Goldman and Rota [25]),
and large incidence algebras arising in the study of classes of combinatorial
geometries closed under the operation of taking minors, in particular the coding
geometries of R. C. Bose and B. Segre, of which the Dowling lattices are special
cases.

This work was begun in Los Alamos in the summer of 1966. Since then, the
notion of reduced incidence algebra was independently discovered by D. A.
Smith and H. Scheid, who developed several interesting properties. The bulk of
the material presented here, with the obvious exception of some of the examples,
is believed to be new.

2. Notations and terminology

Very little knowledge is required to read this work. Most of the concepts basic
enough to be left undefined in the succeeding sections will be introduced here.

A partial ordering relation (denoted by <) on a set P is one which is reflexive,
transitive, and antisymmetric (that is,a < b and b < a imply a = b). A set P
together with a partial ordering relation is a partially ordered set, or simply an
ordered set. A segment [z, y], for x and y in P, is the set of all elements z which
satisfy x < 2 < y. A partially ordered set is locally finite if every segment is
finite. We shall consider locally finite partially ordered sets only.

An ordered set P is said to have a 0 or a 1 if it has a unique minimal or maximal
element.

An order ideal in an ordered set P is a subset Z of P which has the property
thatifxr€e Zand y < x,theny € Z.

The product P x @ of two ordered sets P and Q is the set of all ordered pairs
(p, q), where p € P and g € @, endowed with the order (p, q) = (r, s) whenever
p = rand q = s. The product of any number of partially ordered sets is defined
similarly. The direct sum or disjoint union P + @ of two ordered sets P and @
is the set theoretic disjoint union of P and @, with the ordering x < y if and

181



270 SIXTH BERKELEY SYMPOSIUM: DOUBILET, ROTA AND STANLEY

only if (i) z,ye Pandx < yin Por (ii)x,y € @ and x < y in Q. Note that if
pe€ P and g € @, then p and g are incomparable.

In an ordered set P, an element p covers an element g when the segment [¢, p]
has two elements. An atom is an element which covers a minimal element.

A chain is an ordered set in which every pair of elements is comparable. A
mazximal chain in a segment [z, y] of an ordered set P is a sequence (x,, x,,

*,%,), where xo = x, x, = y, and x;,, covers x; for all i. The chain
(g, Xy, *, x,) is said to have length n. An antichain is an ordered set in which
no two distinct elements are comparable.

The dual P* of an ordered set P is the ordered set obtained from P by inverting
the order.

A lattice is an ordered set where max and min of two elements (we call them
join and meet, and write them v and A) are defined. A complete lattice is a
lattice in which the join and meet of any subset exist. A sublattice L' of a lattice
L is a subset which is a lattice with the induced order relation and in which join
and meet of two elements correspond with the join and meet in L. For the
definitions of distributive, modular, and semimodular see Birkhoff.

A partition of a set S is a set of disjoint nonempty subsets of § whose union is
8. The subsets of § making up the partition are called the blocks of the partition.
The lattice of partitions I1(S) of a set S is the set of partitions of S, ordered by
refinement : a partition 7 is less than a partition o (or is a refinement of ¢) if every
block of 7 is contained in a block of 6. The 0 of I1(S) is the partition whose blocks
are the one element subsets of S, and the 1 of II(S) is the partition with one block.
There is a natural correspondence between equivalence relations on a set S and
partitions of S, since the equivalence classes of an equivalence relation form the
blocks of a partition, and hence, there is an induced lattice structure on the
family of equivalence relations of §.

At the beginning of Section 3, we define the incidence algebra I(P, K) of a
locally finite ordered set P, over a field K. We assume throughout that K has
characteristic 0, except for the last paragraph of Section 6 when it is explicitly
stated that another characteristic is being considered. We also assume that K
is a topological field, and if the topology of K is not specified, we regard K as
having the discrete topology.

A certain familiarity is assumed with pp. 342-347 of Foundations I ([49]),
when the definitions of Mdbius function and zeta function are given and some
elementary properties of the incidence algebra are derived.

3. Structure of the incidence algebra

3.1 Basic identifications. As mentioned in Section 2, we define the incidence
algebra I(P, K) of a locally finite ordered set P, over a field K, as follows. The
members of I(P, K) are K valued functions f(x, y) of two variables, with x and y
ranging over P and with the sole restriction that f(x, y) = 0 unless x < y. The
sum of two such functions, as well as multiplication by scalars, are defined as
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usual, and the product f*g = & is defined as follows,
(3.1) h(x,y) = }, flx,2)g(z, y).

zeP
In virtue of the assumption that the ordered set P is locally finite, the variable z
in the sum on the right ranges over the finite segment [z, y].

Itisimmediately verified that this product is associative. It is also easily verified
that the incidence algebra is commutative if and only if the order relation of P is
trivial, that is, if and only if no two elements of P are comparable. Whenever
convenient, we shall omit mention of the field K and briefly write I(P), with the
tacit convention that K is to remain fixed throughout.

The identity element of I(P) will be denoted by J, after the Kronecker delta.
In addition, we use the following notation for certain elements of I(P). If x € P,
let

3.9 e.(u, v) = 1 if u=v=uw,
(3.2) Y= 0 otherwise,
and for x < y, let
1 if u=x and v=y
. Oy (u, v) = ’
(3-3) () {O otherwise.

Clearly, the elements e, are idempotent, and the J, , are analogous to the
matrix units of ring theory (see Jacobson [35]). Note that e, = 4, ,.
The following easily verified identities will be used in the sequel:

' 0 if u+#x,
(34) if g =20, ,+f, then g(u,v) = {f(y, v) if u=ux
0 if v # w,
f(u’ z) if v= w,

0 if us#xorv+w
fly,z) ifu=2xandv=w,

(3.5) if g =f*4,,, then g(u,v) = {

(3.6) if g =0, ,%f*6,,, then g(u,v) ={

that is, d, ,*f*4. ., = f(y, 2)d,,,. In particula , e, xf+e, = f(x, y)d, ,, and
5x,y*6z,w = 6(?/’ z)éx,W'

3.2 The standard topology. A topology on I(P) is defined as follows. A
generalized sequence { f,} converges to f in I(P) if and only if f,(x, y) converges
to f(x, y) in the field K for every x and y. We call this the standard topology of I1(P).

ProposITION 3.1. Let P be a locally finite ordered set. Then the incidence
algebra 1(P), equipped with the standard topology, is a topological algebra.

Proor. In the right side of the definition (3.1) of the product, only a finite
number of terms occur for fixed « and y; this implies at once that the product
(f,g) = f*g is continuous in both variables. The verification of all other
properties is immediate. Q.E.D.
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In the sequel, we shall often have occasion to use infinite sums of the form

(3.7) f= Y fl@y)d,,,

x, yeP

and we shall presently discuss the meaning that is to be attached to the right side.
Let ® be a directed set of finite subsets of P x P, with the following properties:
(i) @ is ordered by inclusion; (ii) for every pair x, y € P there exists a member
A € ® such that (x, y) € 4. We call such a directed set standard.

ProposiTiON 3.2. Let ® be a standard directed set. Then the set {f,:A € @)
defined as

(38) fA,= Z f(x’ y) 6x,y

(x,y)c4

converges in the standard topology of the incidence algebra I(P) to the element f.

Proor. Take A € ®sothat (x, y) € A. Then forevery Be ®,B = A, we have
fa(x, y) — f(x.y) = 0. Q.E.D.

Speaking in classical language, the preceding proposition states that the ‘“‘sum”
on the right side of (3.7) converges to the element f together with all its
“rearrangements’’. This justifies the use of the summation symbol on the right
side of (3.7), and we shall make use of it freely from now on.

3.3. Ideal structure. We shall now determine the lattice of (two sided, closed)
ideals of the incidence algebra I(P), endowed with the standard topology. For
P finite, all two sided ideals are closed, so Theorem 3.1 below determines the
lattice of all ideals.

Let J be a closed ideal in I(P), and let A(J) be the collection of all elements
J,,, belonging to J. We call A(J) the support of the ideal J. Then, any finite or
infinite linear combination of the 6, , in A(J) gives a member of J. Conversely,
if f e J, then, by 3.6 above,

(3.9) e, xfre, = f(x,y) Oy,y;

hence, if f(x, y) # 0, it follows that §, , € A(J). This proves the following.
LemMma 3.1. Every closed ideal J in the incidence algebra I(P) consists of all
functions f € I(P) such that f(x, y) = 0 whenever J, , ¢ A(J).
Now, let Z(J) be the family of all segments [x, y] such that f(x, y) = 0 for all
f€J. Then we have ‘
Lemma 32. If[x,y]le Z(J)andx < u < v < y, then [u, v] € Z(J).
The proof is immediate: Let f € J. By (3.6) again,

(3.10) Oxu*f*0,,, = f(u, ) Oy,

Thus, if 6,,, ¢ J, then f(u, v) = 0, and [u, v] € Z(J).

We are now ready to state the main result.

TuEOREM 3.1. Inalocally finite ordered set P, let S(P) be the set of all segments
of P, ordered by inclusion. Then there is a natural anti-isomorphism between the
lattice of closed ideals of the incidence algebra I(P) and the lattice of order ideals
of S(P).
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Proor. LetJ be an ideal of P, and let Z(J) be the family of segments defined
above. Lemma 3.1 shows that Z (J) uniquely determines J, and Lemma 3.2 shows
that Z(J) is an order ideal in S(P).

Conversely, let Z be an order ideal in S(P), and let J be the set of all f € I(P)
for which f(x,y) = 0, if [x, y] € Z. Then J is an ideal. Indeed, if g € I(P) is
arbitrarily chosen, if fe J, if [z, y] € Z, and if b = f*g, then

(3.11) hx,y) = Y flx 2)g(zy) =0,

xSzSy

since all f(x, z) = 0 for z between x and y. The case is similar for multiplication
on the left. Since we can take arbitrarily infinite sums as in (3.7), it follows that
J is closed, and the proof is complete.

CoroLLARY 3.1. The lattice of closed ideals of an incidence algebra is
distributive.

CoroLLARY 3.2. The closed maximal ideals of an incidence algebra I(P) are
those of the form

(3.12) J. = {fel(P)|f(z, ) = 0},

where x € P.

3.4. The radical. We recall the well-known and easily proved fact (see
Smith [55], or Foundations I) that an element f of the incidence algebra has an
inverse if and only if f(x, x) # 0 for all x € P. From this it follows (Jacobson
[35], p. 8, and following) that an element f € I(P) is quasiregular if and only if
f(z, z) # 1 for all x € P. Hence, an element f has the property that g*f*h is
quasiregular for all g and &, if and only if f(x, ) = 0 for all x € P. From
Proposition 1 on page 9 of Jacobson, we make the following inference.

ProposiTION 3.3. The radical R of the incidence algebra I(P) of a locally
finite ordered set P is the set of all f € I(P) such that f(x, x) = 0 for all x € P.

3.5. The incidence algebra as a functor. We now determine a class of maps
between locally finite ordered sets so that the association of the incidence
algebra to such sets can be extended, in a natural way, to a functor into the
category of K algebras (where K is the fixed ground ring or field). A function ¢
from an ordered set P to an ordered set @ will be called a proper map if it satisfies
the following three conditions:

(a) o is one to one;

(b) 6(py) < o(p,) implies p; = p,;

() if ¢; and q, are in the image of ¢, and g; < gq,, then the whole segment
[g:1, g2] is in the image.

Note that in view of (a) and (b), condition (c¢) can be replaced by

(¢)ifo(p,) £ o(p;) and g € [a(p,), 6(p;)], then there is a unique p € [py, p, ]
such that o(p) = q.

It is clear that the identity function on any partially ordered set is a proper
map, and it is not hard to verify that the composition of proper maps is a proper
map. Thus, ordered sets together with proper maps form a category. Let </ be
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the subcategory of locally finite ordered sets together with proper maps. We then
have the following proposition.

ProrosiTioN 3.4. (i) The mapping 1 from o to the category of K algebras,
given by 1(P) = incidence algebra of P (with values in K) and

(3.13) [I(U)(f)](PuPz) =f(0(271), G(Pz)),

where 6:P — Q and f € I(Q), is a contravariant functor.

(i) Ifp: P — Qisa function and I(p) (as defined above) is a homomorphism from
1(Q) to I(P), then p is a proper map.

Proor. (i) If fe I(Q) and p,, p, € P, then [I(c)(f)] (p,p2) F 0 implies that
f(o(@,), (p2)) # 0, which implies that 6(p;) < a(p,) (since f € I(Q)) and hence
(by condition (b)), that p; < p,, and so I(g)(f) € I(P). Thus, I(0) is a mapping
from I(Q) to I(P).

It is clearly a linear map. Furthermore, I(c) takes the identity of I(§) to the
identity of I(P), since by condition (a)

(3.14) [1(0)(5Q)] (1, p2) = 5Q(0'(P1), U(Pz)) = 0p(p1, P2)-

Finally, I(o) preserves multiplication, since

(3.15)  [L(o)(f*9)] (@1, p2) = f*g(0(py), 6(p,))
= Y  flow) 9)9(g, o®,))

qela(p1), o(p2)]

= Y flo®), o®)g(c®), o(p,))

pelpi1, p2]

Y. @) ()@ ) [Le) @] @ p2)
pelp1, p2] . .
= ([Lo)(N]*[X(0) 9)]) @1 p2)-
(The third equality follows from (c’).)

Thus, I(o) is an algebra homomorphism from (@) to I(P). To verify that I'is
a functor, it remains to show that I(idp) = idyp), where idp is the identity map
on P, and where idyp, is the identity map on I(P), and that I(co1) = I(7)I(0)
when the composition is defined ; but these are clear.

(ii) Now, let p: P — @ be a function for which I(p) is a homomorphism from
I(Q) to I(P). Then

(3.16) So(p(1), P(2)) = [1(p)(50)] (21, P2)
= 0p(p1, P2)
since I(p) is a homomorphism, so that p is one to one, that is, p satisfies (a).
That p satisfies (b) follows from the fact that if p(p;) < p(p,), then
CQ(P(IH), P(Pz)) = 1; that is, [I(P)(CQ)] (p1,p2) = 1, and so p; < p,, since

l(P)(CQ) € I(P). Finally, let ¢, = p(p1), 92 = p(p2), ¢1 < q2,and g€ [‘Iu QZ]-
Then we have
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(3.17) Y 5‘,1 (91, P(9))84,4,(P(P), q5)

pelpi, p2]

= z [I ql,q)] (plap)[l(p)((sq,qz)] (p’pZ)

pelp1, p2]

= ([l( qlq] [I(p 04,4;) ])(phpz)
= [I(p) ql,q*aq,qz ](Pupz = 6q1,q*6q,Q2(Q1sQZ) = 1.

Thus, p(p) = q for some p € [p;, p, ], and so p satisfies (c). Q.E.D.

We conclude with a number of examples of proper maps.

ExampLE 3.1. Any one to one map from an ordered set to an antichain is
a proper map.

ExampLE 3.2. The proper maps from the integers (with the standard
ordering) to themselves are those of the form f(x) = « + k, where k is some
fixed integer.

ExampLE3.3. If Pisany finite orlocally finite countable ordered set, a proper
map onto P from a chain of integers is obtained by labeling the elements of P with
integers so that p; < p;onlyifi < j, and then taking the map a(i) = p;. A result
of Hinrichs [33] guarantees that such a labeling of P exists.

3.6. Isomorphic incidence algebras. In this subsection, we prove the result of
Stanley [58] that an ordered set P is uniquely determined by its incidence algebra
I(P).

THEOREM 3.2. Let P and Q be locally finite ordered sets. If I(P) and 1(Q) are
isomorphic as K algebras (even as rings), then P and Q are isomorphic.

Proor. We shall show how the ordered set P can be uniquely recovered from
the ring I(P). If R is the radical of I(P), then I(P)/R is isomorphic to a direct
product IT, , K, of copies of the ground field K = K, one for each element x of
P. The K, are intrinsically characterized as being the minimal components of

P)/R. Note that the element e, is an idempotent whose image in I(P)/R is the
identity element of K,. Moreover, the e, are orthogonal, that is, e,e, = e e,
ifx # y.

Define an order relation P’ on the e, as follows: e, < e, if and only if
e, I(P)e, # {0}. It is clear from equation (3.6) that e, < e, if and onlyifx <y
in P. Thus P ~ P

The proof will be complete if we can show that given any set {f,|x € P} of
orthogonal idempotents in I(P) such that the image of f, in I(P)/R is the
identity element of K, then the order relation defined on the f, in analogy to
the e, is isomorphic to P'.

It suffices to prove that there is an automorphism o of I(P) such that
o(e,) = f, for all x e P. We will explicitly exhibit an inner automorphism
o(g) = hgh™!, for some fixed invertible 4 € I(P), with the desired property.
Define

(3.18) h=Yfe.

xeP

Clearly, % is a well-defined invertible element of I(P), since h(x, y) = f,(x, y).
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Now by orthogonality of the e, and the f,, we have ke, = f.e, and f.h = f,e,.
Hence, he k™! = f, for all x € P, and the proof is complete.

4. Reduced incidence algebras

4.1. Order compatible relations. In most problems of enumeration it is not
the full incidence algebra that is required, but only a much smaller subalgebra
of it ; for example, the algebras of ordinary, exponential, Eulerian and Dirichlet
generating functions are obtained by taking subalgebras of suitable incidence
algebras (see Examples 4.1 through 4.12). These subalgebras are obtained by
taking suitable equivalence relations on segments of a locally finite ordered
set P, and then considering functions which take the same values on equivalent
segments. We are therefore led to the following.

DErFINITION 4.1. An equivalence relation ~ defined on the segments of a
locally finite ordered set P is said to be order compatible (or simply compatible)
when it satisfies the following condition : if f and g belong to the incidence algebra
LI(P) and f(x,y) = f(u, v) as well as g(x, y) = g(u, v) for all pairs of segments
such that [z, y] ~ [u, v], then (f*g)(x, y) = (f*g)(u, v).

ExampLE 4.1. Set [x, y] ~ [«, v] whenever the two segments are isomorphic;
then ~ is an order compatible equivalence relation.

There is in general no simple criterion, expressible in terms of the partial
ordering, to decide when an equivalence relation on segments is order com-
patible. A useful sufficient criterion is the following.

ProposiTION 4.1 (D. A. Smith). Az equivalence relation ~ on the segments
of an ordered set P is order compatible if whenever [x,y] ~ [u, v] there exists a
bijection @, depending in general upon [x,y], of [x, y] onto [u, v] such that
[z, 9] ~ [0®1), 9(y1)] for all x,, y, such thatx < x; Sy, S y.

The easy proof is left to the reader.

We shall be first concerned with the family of all order compatible equivalence
relations on P. Its elementary structure is given by the following.

ProrosiTiON 4.2. The family of order compatible equivalence relations on a
locally finite ordered set P, ordered by refinement, is a complete lattice C'(P), in
which joins coincide with joins in the lattice L(P) of all equivalence relations
(partitions) on the segments of P.

Proor. In proving that joins in C'(P) coincide with joins in L(P), it is con-
venient to use the language of partitions of the set of segments of P. Thus, let F
be a family of partitions each of which defines a compatible equivalence relation.
Let © be the join of F, defining an equivalence relation ~. Suppose that
f(x,y) = g(u, v) for all pairs of segments such that [x,y] ~ [«,v]. Then
a fortiori for all ~ in F, we shall have f(x, y) = g(u, v) for all pairs of segments
such that [z, y] =~ [u, v]. It follows that (f*g)(x, y) = (f*g)(u, v) for all such
pairs of intervals. But, by definition of join of partitions, [x, y] ~ [, v] if and
only if there is a sequence ~;, ~,, -+, ~ in F and segments [x;, y;] such
that [z, y] ~, [x1,¥1] " ~ne1[%n=1,Yn-1] =n[u,v]. It follows that f(x,y) =
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flxy,yy) = -+, similarly for g. Recalling that ~ | is order compatible, we have
(f*g)(x, y) f*g (x1,¥,), and so forth, giving finally (f*g)(x,y) =
(f*g)(u, v).

The ordered set C'(P) has a 0, namely, the equivalence relation where no two
distinct segments are equivalent, and therefore arbitrary meets exist by a
simple result of lattice theory. Q.E.D.

Observe that meets in C'(P) do not in general coincide with meets in L(P), so
that C'(P) is not a sublattice of L(P). Unless P is finite, it follows that C'(P) is
not locally finite, for it is easy to stretch an infinite chain between 0 and 1 in
C(P) by successively ‘‘identifying” pairs of segments [x, ] and [«, «].

It is tempting to presume that the maximal element I of C(P) is the equivalence
relation described in Example 4.1, where every pair of isomorphic segments is
equivalent. Surprisingly, this presumption is not generally true, even for finite
ordered sets, as the following example indicates.

ExamPLE4.2. Let P be the ordered set obtained by taking the lattices L, and
L, of subspaces of two nonisomorphic finite projective planes of the same order
and identifying the top of L, with the bottom of L, . Define [z, y] ~ [«, v] when-
ever the two segments are isomorphic or whenever [z, y] ~ L,, [u, v] & L,.

4.2. The incidence coefficients. Let ~ be an order compatible equivalence
relation on P, which will remain fixed until further notice. Denote by Greek
letters a, B, - - - the nonempty equivalence classes of segments of P relative to ~,
and call them types (relative to ~ ) for short.

Consider the set of all functions f defined on the set of types, with addition
defined as usual, and multiplication f*g = & defined as follows:

(1) hia) = Z[ﬁay]f(ﬁ)g(v).

The sum ranges over all ordered pairs f, y of types. The brackets on the right
are called the incidence coefficients, and are defined as follows:

o
(4.2) I:ﬂ’ 7]

stands for the number of distinct elements z in a segment [z, y] of type a, such
that [, 2] is of type B and [z, y] is of type 7.
To see that the incidence coefficients are well defined, define h; € I(P) b

1 if [z, y]is of type 9,
(4.3) hs(x, y) = { L. 4]

0 otherwise.

If [u, v] is of type a, then clearly

o
4.4) (hg*h,) (v, v) = [ﬂ, yjl.

Since ~ is order compatible, the left side of (4.4) is independent of whichever
interval [u, v] of type « is chosen, so that the incidence coefficients are well
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defined. The incidence coefficients are a generalization of the classical binomial
coefficients, as the examples below will show. The corresponding generalization
of the algebra of generating functions is given next.

ProprosiTION 4.3. Let P be a locally finite ordered set, together with a com-
patible equivalence relation ~ on the segments of P. Then the set of all functions
defined on types forms an associative algebra with identity, with the product defined
by (4.1), called the reduced incidence algebra R(P, ~) modulo the equivalence
relation ~. The algebra R(P, ~) is isomorphic to a subalgebra of the incidence
algebra of P.

To complete the proof (much of which has already been given above), all that
needs to be shown is that R(P, ~) is isomorphic to a subalgebra of I(P) which
contains é. This will imply that the algebra R(P, ~) is associative.

For fe R(P, ~), define feI(P) as follows: f(x,y) = f(a) if the segment
[z, ] is of type a. The only properties to be checked are that the mapping is an
isomorphism and that § = f for some f € R(P, ~). Since each type is by defini-
tion nonempty it follows that f — f is well defined ; it is obviously one to one.
Furthermore, from the definition of the incidence coefficients, we find
immediately that the product is

~

(4.5) hz.y) = Y f@ 2@y,
XsSzgy

and thus coincides with the definition (4.1) of the product in R (P, ~). The fact
that & = f for some f e R(P, ~) follows from part (i) of the following lemma.

LeEmMMA 4.1. Let ~ be an order compatible equivalence relation on the segments
of P, and let [x, y] ~ [u, v]. Then

(i) v([x, y]) = v([u, v]), where v([x, y]) = number of z in [z, y];

(i) for every n, [z, y] and [u, v] have the same number of maximal chains of
length n.

PrOOF. Part (i) follows from the fact that v([x, y]) = {*(x, y) and that { is
constant on equivalence classes of ~.

From (i), it follows that the function » defined by

1 if v([x, y]) = 2, that is, y covers x,
(4.6) hiz,y) = { (L= 4])

0 otherwise,

is constant on equivalence classes of ~ ; hence, so is A" for every n, which proves
(ii).

COROLLARY 4.1. If for all types a, B, y we have [ 5%,] = [,%3], then the reduced
incidence algebra R(P, ~) is commutative.

This follows immediately from definition (4.1) of the product.

Now let ~ and ~ be two order compatible equivalence relations on the
segments of P. Suppose that [, y] ~ [, v]implies [z, y] ~ [u, v]. Then, much
as in the preceding proposition, R(P, ~) is isomorphic to a subalgebra of
R(P, ~); the isomorphism is obtained as follows: Let & be a type relative to the
equivalence relation ~. For fe R(P, ~), set feR(P, ~) to be f(a) = f(4),
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where a is any type in R(P, ~) such that the segments of type « are of type & in
R(P, ~).

Furthermore, R (P, ~ ) strictly contains a natural isomorphic image of R(P, ~)
unless ~ equals 2, as is immediately seen by considering functions equal to one
on a given type, and zero elsewhere. Thus, the lattice C'(P) is anti-isomorphic to
the lattice of reduced incidence algebras, ordered by containment.

If ~ isasin Example 4.1, then we call R(P, ~ ) the (standard) reduced incidence
algebra R(P); if ~ is the maximal element of the lattice C(P), we call R(P) =
R(P, ~) the maximally reduced incidence algebra.

ProrosITION 4.4. If ~ is a finer order compatible equivalence relation than
~ , and for f € R(P, ~) the image f (as above) in R(P, ~) is invertible in R(P, ~),
then f is invertible in R(P, ~).

Proor. Identify both algebras with subalgebras of I(P), as in the proof of
Proposition 4.3, so that f = f. We must show that f~! is constant on =~
equivalent segments. Since f is invertible, it takes nonzero values on one point
segments. Let d € I(P) be the function which equals f on one point segments and
is zero elsewhere. Then d is constant on =~ equivalence classes (by Lemma 4.1 (i),
and d~! is also, since d ! is the inverse of d on one point segments and zero
elsewhere. Let g = f — d. Then g € R(P, ~) and

47)  fl=@d+g) = (1+ @ 'xg)) txd!
=(1- (@ 1xg) + (@ 1xg)* — (d ™ xg)> + - )xd 7!

which is well defined, since d ! *g is zero on one point segments; and hence,
fleR(P, =).

It follows that the zeta function and the M obius function belong to all reduced
incidence algebras.

We conclude with a simple characterization of reduced incidence algebras.
In the finite case, it is purely algebraic, but in the infinite case, topological con-
siderations come in. Recall that the Schur product of two elements f, g of I(P)
is the element 4 defined by

(4.8) hx,y) = flx,y)-g(x, y)
forall x, y in P. )

THEOREM 4.1. Let P be a locally finite ordered set, and A a subalgebra of I(P)
having the same identity as I(P). If P is finite, then A is a reduced incidence algebra
of P if and only if-A contains { and is closed under Schur multiplication. If P is
infinite, then A is a reduced incidence algebra if and only if A contains {, is closed
under Schur multiplication, and is closed in the standard topology.

ProoF. The necessity of the conditions is evident, with the possible exception
that A must be topologically closed. But if f € I(P) is in the topological closure
of A then it must clearly be constant on equivalence classes and so f € 4.

Now, assume P finite, and let 4 be a subalgebra of I(P) containing { and
closed under Schur multiplication. Let ~ be the equivalence relation on segments
of P defined by [z, y] ~ [u, v] if and only if f(x, y) = f(u, v) forall fe A. Once
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we have shown that the set of all functions constant on the equivalence classes of
~ is precisely 4, then it will follow that ~ is order compatible (since 4 is closed
under convolution) and that 4 is R(P, ~). Let B,, -, B, be the equivalence
classes of ~. For each i # j, let A; ; be an element of A such that &; ;(B;) #
ki, ;(B;), and let

(4.9) B = M

by ey
where b, ; = k; ;(B;), ¢;,; = ki, j(B;)- Then &; = I;, k; ; (Schur multiplication)
isin 4, and ¢, is the indicator function of ;. Now any function which is constant
on equivalence classes is a linear combination of the functions §;, and hence is
in 4, proving our result.

A slight modification proves the infinite case, since d; is the limit of finite Schur
products of &; ; for j # i, and every function constant on equivalence classes is
a limit of finite linear combinations of indicator functions. @.E.D.

The assumption that 4 be topologically closed in the infinite case is necessary,
as the following examples demonstrate.

ExampLE4.3. Let P be an'infinite locally finite ordered set in which there is a
finite upper bound on the size of segments of P. Then the subset 4 of I(P) con-
sisting of all functions which take only finitely many values is a subalgebra closed
under Schur multiplication and containing {, but is clearly not a reduced
incidence algebra, since the equivalence relation it generates is the trivial one,
while 4 is not all of I(P).

ExampLE 4.4. Let P contain chains of arbitrarily large (finite) length, and let
A be the closure under the operations of scalar multiplication, addition, convolu-
tion, and Schur multiplication of {3, {} in I(P). Then 4 is a subalgebra closed
under Schur multiplication and containing {, but is not a reduced incidence
algebra, since by Lemma 4.1 (ii), any reduced incidence algebra of P must have
uncountable vector space dimension over the ground field, while 4 has countable
dimension.

We now consider various examples of reduced incidence algebras and their
connection with classical combinatorial theory.

ExAMPLE 4.5. Formal power series. Let P be the set of nonnegative integers
in their natural ordering. The incidence algebra of P is evidently the algebra of
upper triangular infinite matrices. On the other hand, we shall now see that the
standard reduced incidence algebra R(P) is isomorphic to the algebra of formal
power series.

Indeed, an element of R(P) is uniquely determined by a sequence {a,:n =
0,1, 2, -} of real numbers, by setting f(i, j) = a;_;, for i < j. The product of
such an element by another element g (i, j) = b;_; of the same form is an element
h of I(P) obtained by the convolution rule

(4.10) h(i,§) = 3, fli.k)g(k,j) = ay-ibj_i.

isksj isk=j

A
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Settingr = k — iandj — ¢« = n, we obtain k(i, j) = X]_, a,b,_, = c,. In other
words, 4 is the element of the reduced incidence algebra which is obtained by

convoluting the sequences {a, } and {b,}. It follows that the map of power series
into R(P) defined by

(4.11) F@) = 3 " f.5) = -0 jzi

is an isomorphism. Under this isomorphism, the zeta function corresponds to
1/(1 — x), and the Mobius function corresponds to the formal power series
1 — z. The incidence coefficients equal either 0 or 1.

ExAmMPLE 4.6. Exponential power series. Let B(S) be the family of all finite
subsets of a countable set S, ordered by inclusion. We shall prove that the
reduced incidence algebra of B(S) is isomorphic to the algebra of exponential
formal power series under formal multiplication, that is, a series of the form

)
4.12) F(x Z In o Gx) = Y 2am Ha)= Y 2o
n=0 ‘ n=0 n‘ n=0 ""
It is immediately verified that the product FG = H of two such formal power
series amounts to taking the binomial convolution of their coefficients,

(4.13) Cn= ). (n> by
k=0 \K

We obtain an isomorphism between the algebra of exponential formal power
series and the reduced incidence algebra of B(S) by setting
(4.14) Fx)= ) Z—x - f(4, B) = a,g- 4, A < B,

n=0 7"
where 4 and B are finite subsets of § and v(B — 4) denotes as usual the number
of elements of the set B — 4. The zeta function corresponds to e*, and the
Mobius function to e *. The Mobius inversion formula reduces to the principle
of inclusion—exclusion, that is, to multiplication by e™*.

The incidence coefficients coincide with the binomial coefficients, and the
types naturally coincide with the integers.

ExampLE 4.7. Let G be the additive group of rational numbers modulo 1,
and let L(G) be the lattice of subgroups excluding @ itself. It is well known that
every proper subgroup of G is finite cyclic. Let [X, Y] ~ [U, V] in L(G) when
the quotient group Y/X is isomorphic to V/U. The types correspond naturally
to the positive integers; the incidence coefficients equal zero or one, and the
product in R(L(G), ~) is given by the Dirichlet convolution c, = Z;;=, a;b;.
Thus, R(L(G), ~ ) is isomorphic to the algebra of formal Dirichlet series

(4.15) Z = = f(s)

nz1 n’

under ordinary multiplication.
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ExampLE4.8. Let P be the set of positive integers, ordered by divisibility, and
let ~ be the equivalence relation defined by [a, b] ~ [m, n] if and only if b/a =
n/m. Then, as in the previous example, R(P, ~) is easily seen to be isomorphic
to the algebra of formal Dirichlet series. The standard reduced incidence algebra
is isomorphic to a subalgebra of the algebra of formal Dirichlet series, namely
tothoseseries Z,,, a,/n°in whicha;, = a,ifk = p{'ps* - ,andn = p{'p3*- - -,
where p,, p,, - - - are the primes, the a; and b; are nonnegative integers, and the
b; are obtained by permuting the a;.

ExampLE 4.9. Let V be a vector space of countable dimension over GF(q),
and let L(V) be the lattice of finite dimensional subspaces. Let ~ be the
equivalence relation defined by [S, T] ~ [X, Y] ifand only if 7/8 ~ Y/X, that
is,dim 7 — dim 8 = dim Y — dim X. Then the types are in one to one corres-
pondence with the integers, and multiplication in R(L(V), ~)is given by

R N R C i’
@16)  (frg)n) = 3 o =gy f e = )

- i (1 - q")(l — q"'l)"'(l _ qn—,+1)
r=0 (1_qr)(1—q"1)...(1_q)

Hence, R(L(V), ~) is isomorphic to the algebra of Eulerian power series, the
isomorphism being given by

fr)g(n — 7).

fn) n
-
. I L ga-a-a°
We now present three examples in which we arrive very simply at previously
known results by using the reduced incidence algebra. Let P be a locally finite
ordered set, and let ¢ € I(P) be the function which assigns to a segment [x, y]

the total number of chains,x = 2, < ; < *** < x,, = y. Since ({ — 8)*(x, y)
is the number of chains, x = x, < x; < ' -+ < x; = y, of length k, we have
(4.18) clx,y) = kZo (¢ = )=, y)

=[-C-9]"@=y
= (20 = )"z, y).
ExaMPLE 4.10. Let P be as in Example 4.5. Then c(x, y) is the number c, of
ordered partitions (or compositions) of n = y — x, the chain x = iy < i; <
-+ < 4, = y corresponding to the composition

(4.19) y—x =iy —i) + (12 — 1)+ + (h — 4-y)
Hence,
& 1 1l —=x d
n o_ — =1 2n—l n,
(4.20) .,;o i s el R + ,,; x

soc, = 2""!'ifn > 0 (a well-known result).
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ExAMPLE 4.11. Let P be as in Example 4.6. Then c(x, y) is the number f, of
ordered set partitions (or preferential arrangements) of the set y — x, where n is
the number of elements in y — x. (See Gross [29].) Hence,

(4.21) i Jogn = 1

a basic result of Gross.

ExamPLE 4.12. Let P be the positive integers ordered by divisibility, with
[, v] ~ [, y]if v/u = y/x. Then c(x, y) is the number f(n) of ordered factoriza-
tions of y/x = n (into factors >1). Hence,

oo] s l
(4.22) 3 = g
a result of Titchmarsh ([59], p. 7).

More generally, the theory of weighted compositions, as developed by Moser
and Whitney [39] and by Hoggart and Lind [34], can be expressed in terms of
the reduced incidence algebra of a chain. Thus, this theory can be extended to
other ordered sets in the same way that Examples 4.11 and 4.12 extend the usual
concept of composition given in Example 4.10.

5. The large incidence algebras

5.1. Definitions. Several enumeration problems lead not to a single ordered
set, but to a family of ordered sets having some common features; for example,
the family of lattices of partitions of finite sets or the family of all lattices of
subgroups of finite abelian groups. It then becomes necessary to extend the
notions of incidence algebra and reduced incidence algebra to these situations.
Recall that we assume the ground field K to have characteristic 0. This avoids
complications inherent in dividing by positive integers, such as n! in exponential
generating functions. We are now led to the following setup.

Two ordered sets (P, ~) and (@, ~) each with an order compatible equiva-
lence relation (denoted by the same symbol for convenience) are said to be
isomorphic when there is an isomorphism ¢ of P to ¢ which preserves the
equivalence relation, that is [x, y] ~ [«, v] in P if and only if [¢(x), ¢(y)] ~
[¢(u), d(v)]in @. If S is a segment of P, then the equivalence relation ~ induces
a compatible equivalence relation on S. (Note that this conclusion does not
hold in general if S is only assumed to be an ordered subset of P.)

Now let C be a category whose objects are pairs (P, ~) as above, where P is
a finite ordered set with 0 and 1, and where morphisms ¢ of (P, ~) into (@, ~)
are isomorphisms of (P, ~) onto a segment of (@, ~) with the induced
equivalence relation (not all such maps need be included in the category as
morphisms). It is further assumed that every segment of an object (P, ~)isin C,
with the induced equivalence relation. Finally, it is assumed that if ¢ and i are
two morphisms of (P, ~) into (¢, ~) having the segments [, y] and [, v] as
images, then [z, y] ~ [%, v] in Q.
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Under these conditions, we can define the large incidence algebra 1(C) of C as
follows: the elements of I(C) are functions f on the isomorphism classes (in the
category C) or “types” of the objects of C such that f(a) = f(B), if some object
(P, ~) contains ~ -equivalent segments of types a and B (with values, as usual,
in a fixed field). The sum of two such functions is defined as usual, and the
product is defined by

o

(5.1) (fxg) (@) = [ﬂ y]fw)g(y),

where the brackets are taken in any object P belonging to the isomorphism
class a. Our assumptions imply that the product is well defined; that is, the
product remains the same if it is computed in any object of type «, and also that
f*gisinI(C). Thus, we obtain an algebra which is associative by Proposition 4.3.
The functions { and J of the ordinary incidence algebra have obvious counter-
parts in the large incidence algebra, and the result that a function is invertible
if and only if it is nonzero on all types containing one point segments (see
Foundations I) also carries over. Hence, the Mobius function can be defined as
the inverse to the zeta function; and clearly, for each object ([0, 1], ~) of
the category, the value of the Mobius function on the type containing [0, 1]
equals u(0, 1).

Most of the classes of incidence algebras (such as binomial type and
Dirichlet type) can be trivially extended to large incidence algebras. Also note
that we need make no distinction between reduced and nonreduced large
incidence algebras, for the degree of reduction is built into the category itself,
depending on the equivalence relations in the objects and on the morphisms.

ExaMpPLE 5.1. Let L be a locally finite ordered set. Construct a category C
as follows. The objects are all segments of L and the morphisms are the
inclusion maps. The equivalence relation is the trivial one (no two distinct
segments are isomorphic in C). Note that two isomorphic segments are not in
general isomorphic in C. The large incidence algebra I(C) is isomorphic to the
incidence algebra of L.

ExaMpLE 5.2. Let L be as above; let the objects of C be again all segments
of L, but let the morphisms be all isomorphisms; and let ~ be isomorphism.
Then I(C) is isomorphic to the standard reduced incidence algebra of L.

ExampPLE 5.3. Let the objects of C all be finite Boolean algebras; let ~ be
isomorphism of segments; and let morphisms all be isomorphisms. Then I(C)
is isomorphic to the algebra of exponential power series of Example 5.6.

In the next three subsections, we consider situations which are better looked
at from the point of view of the large incidence algebra than from that of the
regular incidence algebra.

5.2. Partition lattices. The incidence algebra of the family of all partition
lattices of finite sets can be studied by taking the lattice I1(S) of all partitions of
an infinite set S having exactly one infinite block and finitely many finite blocks,
ordered by refinement. However, it is more pleasingly done in the context of the
large incidence algebra, as follows.
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Let the objects of a category Il be all lattices of partitions of finite sets and
all segments thereof, and let the equivalence relation be an isomorphism of
segments whose top elements have the same number of blocks. Let the
morphisms of IT all be isomorphisms onto a segment such that the top element
of a segment has the same number of blocks as the top element of the image
segment. It is immediate that II satisfies the required conditions.

The class of a segment [0, n] is a sequence of nonnegative numbers
(ky, -, k,, - ), where k; is the number of blocks in # which are the union of
precisely ¢ blocks in ¢. It is clear that k; + 2k, + 3k; + - - - equals the number
of blocks in ¢ and k; + k, + k3 + - - - equals the number of blocks in 7, and
that a segment of class (k, k,. - - *) is isomorphic to IT& x I1% x - - - where
IT; is the lattice of partitions of an i set, so it follows that two segments have the
same class if and only if they are of the same type in II. We denote by
(k.. x,) the number of elements 7 in a segment [0, ©] of type (dg . 61,5 ")
(that is, [o, 7] is isomorphic to IT, and ¢ has n blocks) for which [, 7] has type
(ky, ks, . k,,0.0,--) (and hence, [, 7] has type (8o, 01 "), Where
m =k, + -+ + k,). To compute (,, ", ), first note that any object [0, 7]
of type ky =---=k,_y =0, k, =1 is an upper segment of some finite
partition lattice; that is, 7 = 1 in some finite lattice of partitions. Thus, it is
easy to see that

9 n _ n!
(6.2) ky, 0Lk, _l!k‘kl!Q!"ZkZ!-'-n!""k,,!

whenk, + 2k, + --- + nk, = n, and equals O when k, + 2k, + -+ + nk, # n.
For a partition 7 of some finite set S, we define the class of © to be the class
of the segment [0, 7] of I1(8), as defined above.
The fundamental concept associated with the large incidence algebra I(IT) is
that of multiplicative function. A function f in I(Il) is said to be multiplicative

when there is a sequence of constants (ay, a,, a3, - - ) such that

(5.3) f(n,6) = ka2 a - --

when [7, o] is a segment of class (k,, k,, k3, - - *). The function f is said to be
determined by the sequence (a,, a,, - - *). Similarly, a function of one variable
F(o) for o € TI(S) for some finite set S is said to be multiplicative when

(5.4) Fo) =akral- -,

where (k,, k,, - ) is the class of 0.

The following elementary result is fundamental.

ProposiTiON 5.1. The convolution of two multiplicative functions is multi-
plicative.

Proor. This follows from the fact that if [0, n] is of type (ky, ks, °),
then [0, nt] is isomorphic to TI§* x T1% x - - -, and that if f € I(P) and g € 1(Q)
(where- P and @ are any locally finite ordered sets) and if f X ge (P X @)
is deflned by f x g((x. 2'), (4, ¥')) = f(x, y) g(@'. y'), then (f x g)*(f" x g') =
(f*f) % (g*g)-
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CoroLLARY 5.1. If F(z) is multiplicative and f(r, o) is multiplicative, then so
are

(5.5) G(o) = ), F(m)f(m, o)
and nae
(5.6) H(o) = ; flo, m)F(m),

where the sum is taken in the partition lattice containing o.

ExampLE 5.4. The zeta function of I(IT) is multiplicative and is determined
by the sequence (1, 1, 1, - - - ). By Proposition 3 of Section 7 of Foundations I,
the Mobius function of I(IT) is multiplicative, and determined by the sequence
(ay, @y, - - ), where a, = (—1)"(n — 1)! The delta function ¢ is multiplicative,
determined by (1, 0,0, - - -), but = { — ¢ is not multiplicative. Hence, the sum
of multiplicative functions need not be multiplicative.

Let M(IT) denote the subset of I(IT) consisting of multiplicative functions.
By Proposition 5.1, M(I1) is a subsemigroup of the multiplicative semigroup of
I(I0). If f is in M(IT), let f(n) denote f(I1,); that is f(n, o), where [, ] has class
ky=:=k,.y =0, k, =1. Then, for f, g e M(II), we get from (5.2) that
(f*g)(n) is equal to

i 1
o 2 (1!"%1!2!%;1! AT !) SO fmYrgley + - + k).

ki+2ka+ -+ +nk,=n

THEOREM 5.1. The semigroup M(II) is anti-isomorphic to the algebra of all
formal exponential power series with zero contant term over K in a variable x,
under the operation of composition. The anti-isomorphism is given by f — F,, where

> fin
(5.8) Fp(x) = Z f(—‘)x".
n=1 T:
Thus, F,,,(x) = F,(F;(x)).
Proor. Clearly, the map defined by (5.8) is a bijection, so we need only check
that multiplication is preserved. Now,

[ . ) . J
(5.9) F(F@) =Y 9‘”(2 Mw)

= gt i !

The coefficient of 2" in the expansion of (£{2, (f (z')/i!)xi)j is

fny) - f(n;) ! fF - )

(5.10) Z lf : =Z ] 1 1 ... o tkn
nitmytetn=n  Tp! n;! k! k 1! n!

where the summation is taken over ky + 2k, + -+ + nk, =n, k; + -+ +

k, = j, since there are j!/k,! - - - k,! ways of ordering the partition k, + 2k, +
-+ + nk, = n. When we multiply (5.10) by g(j)/j! and sum over all j, we get
(6.7), and the proof follows.
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ExampLE 5.5. Under the isomorphism of the proposition, the zeta function
corresponds to ¢* — 1, and the delta function to x, so the Mobius function
corresponds to the power series F such that F(e* — 1) = z,thatis,tolog (1 + x).
Hence, u(0,1) = (—=1)""!(n — 1)! for [0, 1] = II,. This is yet another way of
determining the Mobius functions for lattices of partitions.

CoROLLARY 5.2. Let f be a multiplicative function of one variable determined

by the sequence (a,, a,, * - *). For every positive integer n, let
(5.11) by = ), f(m), g = 2, flmp(=, 1).
nell, nell,
Then
2 bx" a,x? azx’
(5.12) 1+n;1 oy =exp{a1x+—2—!+ st
and
© 2 3
q" no_ azx asx .
5.13) ”gl T = log (l + ax + 21 + 31 + )

Proor. For (5.12), let f be the function in M(IT) determined by (a,, a,, * * *),
and let b = f*{. Then b, = b(n) foralln = 1, so

a0 n

X

o

(5.14) 1+
n=1 n!

=1+ Fy(x)

=1+ Fp(x) = 1 + F,(Fp(x))

azxz
exp {a;x + 21 + ccp

For (5.13) let ¢ = f*pu, and the proof follows as for (5.12).

We now work out various examples using the above results.

ExaMPLE 5.6 (Waring’s formula). Let D and R be finite sets, and label the
elements of R by different letters of the alphabet: x,y, - - -, z. To every function
f: D = R, we associate a monomial y(f) = 'y’ - - - 2, where i is the number of
elements of D mapped to the element of R labelled x, and so forth; and to every
set E of functions from D to R, we associate a polynomial y(E), the sum of y( f)
for f ranging over E; y(E) is called the generating function of the set E.

For every partition 7 of the set D, let 4 (m) be the generating function of the
set of all functions f: D — R whose kernel (that is, the partition of D whose
blocks are the inverse images of elements of R) is n. Let () be the generating
function of the set of functions whose kernel is some partition ¢ = n. Clearly,
we have S(n) = X, , 4(c), from which, by Mobius inversion, we have 4 (n) =
Z, > S(o)u(m, 0); and setting © = 0, we have
(5.15) A@) = Y S(0)u(, o).

oeT1(D)

Now assume that D has n elements and that R is larger than D. The poly-
nomial 4 (0) is the generating function of the set of all one to one functions;

199



288 SIXTH BERKELEY SYMPOSIUM: DOUBILET, ROTA AND STANLEY

and hence, every term of 4 (0) is a product of » distinct variables taken among

z,y, -,z Furthermore, every product of » distinct variablesamongx, y, - - - , 2
appears n! times as a term in 4 (0). Thus, A(0) is simply »!-a,, where a, is the
elementary symmetric function of degree n in the variablesx, y, - - -, 2.

Next, if the partition ¢ has class (k,, k,, - - -, k,), we claim that

(5.16) S(@)=(x+y+ - +2M@* +y*+ -+ 220
"'(.’l‘" +y"+ +z")kn,
that is, using the standard notation s, = 2* + ¢* + - -+ + 2%,

(5.17) S(c) = skrshz ... gk,

To see this, let S(c) be the set of all functions with kernel © = ¢, and let
By, -+, B, be the blocks of the partition 6. Then S(g) is the product
Uy, x -+ x U, of the sets U;, where U, is the set of all functions from B; to R
taking only one value. It follows that S(a) = y(S(0)) = y(U,)y(U,) - - - y(Uy)-
The generating function y(U;) is simply x* + 3* + - -+ + 2% if B, has k elements,
and this completes the verification.

We thus see that (5.15) reduces to the classical formula of Waring, expressing
the elementary symmetric functions in terms of sums of powers.

ExAMPLE 5.7. Let V be a finite set of # elements (‘‘vertices’’). We count the
number C, of connected graphs whose vertex set is V. To every graph @, we
can associate a partition 7(G) of the set V, the blocks of n(() being connected
components of G. A graph is connected if and only if n(G) = 1, the partition
with only one block. For every partition 7 of V, let C'(w) be the number of graphs
G with (@) = =, and let D(zn) be the number of graphs @ with n(G) < n. Let
a, be the total number of graphs whose vertex set is V; a simple enumeration gives

(5.18) a, = o(3)

If By, B,, - - -, B, are the blocks of ® and D(B;) is the total number of graphs
on the block B;, then clearly D(n) = D(B,)D(B,) - - - D(B,). Hence, if the class
of the partition = is (k,, k,, - - -, k,), we have

(5.19) D(n) =a%ra% - -akr = t(k1<l> + k, <2> + ks, <3> + 0+ k,,(")),
2 2 2 n

where t(x) = 2 and (3;) = 0 by convention. Furthermore, D(n) = Z, ., C(0)
as follows immediately from the definitions. By the M6bius inversion followed
by setting © = 1, we obtain the identity

(6520) C,=CQ1)= ) D(o)u(o,1)

oell,

1 2 n
() ) v
k1+2k2+2'+nkn=n ( 1<2) 2(2) 2

.(_l)"1+k2+“‘+kn'1 (kl + kz + -0 4 k,, _ 1)'
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which is an explicit expression for the number of connected graphs. Further,
applying (5.13) to (5.20), we get

2 3

< Cn n a,x a3x
520 P =]°g<l+“‘x+ 21 T T3 +)

From this, one can find the values of various probabilistic quantities related to
connected graphs, such as the expected number of connected components,
expected size of the largest component, asymptotic results, and so forth.

ExamMpPLE 5.8. We now determine the number a(n, k) of solutions of the
equation p* = I, where p is an element of the group G, of all permutations of a
set S, of n elements, and I is the identity element of G,. To every p € G,, we
can associate the partition n of S, whose blocks are the transitivity classes
relative to the subgroup generated by p. Let F(n) be the number of permutations
p whose associated partition is 7 and such that p* = I. Clearly, the function F
is multiplicative, and so the function G, defined by G(g) = Z, ., F(n), is also
multiplicative. Further,

(5.22) Qo) = a(l, k) a(2, k)*2 - - -

if (k,, k,, - - *) is the class of 6. Thus, if (b,, b,, - * ) is the sequence which deter-
mines F, then by (5.12), we obtain

(5.23) 1+ i a(1:2, k) x" = exp{ y éﬁx"}

n=ln!

Now, it is easily seen that b, = (» — 1)!if n divides k, and b, = 0 otherwise, so
we obtain the formula (due to Chowla, Herstein, and Scott [10])

a(n, k) , x"
— —exp<2—),

n: nlk

(5.24) i
n=0

where we take a(0, k) = 1.

ExaMPLE 5.9 (The number of partitions of aset). The number B, of partitions
of a set of n elements is given by B, = Z,.; {(n). Hence, from Corollary (5.12),
we get

2 B
(5.25) D n—;'x" = exp {e* — 1} — 1,
n=1 1!

which is the classical generating function for B,.

ExaMPLE 5.10. A set S of n elements splits at time ¢, into a partition 7 with
blocks B,, B,, - - - . At a later time ¢, > ¢, each block B; splits into a partition
n; with blocks B; {, B; 5, - * -, and so on for N steps. Letting B (x) = ¢* — 1, an
argument much like that of the preceding example shows that the exponential
generating function for the number of distinct “splittings” is E[E(- - - E(x) - - I,
where the iteration is repeated N + 1 times.
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5.3. Dowling lattices. Let F be the field of q elements (g will remain fixed
throughout this subsection), and let V be a vector space over F of dimension n,
with basis b, - - -, b,,. The Dowling lattice (V) is the lattice of subspaces W of
V such that W has a basis whose elements are of the form b, or ab; + a’b,. where
a,a’ € F. Since the lattice ¢ (V) depends up to isomorphism on the dimension
of V, it will generally be denoted by @,.

Before attempting to study the combinatorial properties of @,, we will
define a new lattice D,, which is isomorphic to €, in which various counting
arguments become simpler. First we will state a number of definitions. The
concept of directed graph is assumed (see Liu [38]), and we will allow loops
and multiple edges between vertices. If S is any set, an S labelled directed graph
is a directed graph @ = (V, E) together with a mapping from £ to S in which
no two edges from v to v" have the same image, for any v, v" € V. The image of
an edge e is called its label, and v % o' denotes the fact that there is an edge
labelled a from v to v'. If G and G’ are S labelled graphs, G is a subgraph of G,
if both graphs have the same vertex set and if v % ¢’ in @ implies v % ' in G".
A totally complete S labelled directed graph @ is one in which » % ¢’ for any
pair of vertices v and v and any a€ S. If S consists of the nonzero ele-
ments of a field. then an S labelled directed graph G is inverse symmetric if
v % o implies v' 25 v, and is antitransitive if v % o' and v & ¢" implies
v —%, ", Finally, a D graph is an S labelled directed graph G, where S is the
set of nonzero elements of a field in which there is at most one distinguished com-
ponent which is totally complete, and every other component is simple (that is,
at most one edge in each direction between two vertices), inverse symmetric, and
antitransitive.

Now, let § = F* (the nonzero elements of F), and let B be a set of n elements
(‘“‘vertices”’). The lattice D(B), or D,, is the lattice of D graphs with vertex set
B (and label set S), with G < @' if and only if G is a subgraph of G" and the
distinguished component of G is contained in that of G'. The correspondence
with the Dowling lattice @, is as follows. Given a Dowling lattice @ (V) and a
basis B = {b,, -, b,}, to each subspace W of V in @ (V) associate the graph
whose vertex set is B and in which b; % b;if and only if b; + ab;isin W, and in
which the distinguished component is the one whose vertices are those b; which
are in W. The connected components are easily seen to be inverse symmetric and
antitransitive, the distinguished component is clearly totally complete, and all
other components are simple (for if b; % b; and b; % b; with a # @/, then
b; + ab;e W. b, + a’bje W: hence (a — a')b;e W and so bje W and b;e W.
and thus b; and b; are in the distinguished component). This correspondence is
easily seen to be a lattice isomorphism, and so D, and @, are isomorphic.

ExaMpLE 5.11. It follows easily from what we have done that @, ~ I1,
if ¢ = 2. The following correspondence gives an isomorphism from D, to I1,, ;.
Let the vertex set for D, be {1, 2, - - -, n}. To each element G of D,, we associate
the partition of {1,2, -+, n, n+1} whose blocks are the nondistinguished
components of G as well as the distinguished component with n + 1 added.
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Now, let G € D,. Then [0, (] is isomorphic to the product of the lattices
of subgraphs of the components of G (where 0 is the trivial graph with no edges
and no distinguished component), and the lattice of subgraphs of a nondistin-
guished (and hence simple) component of G with k vertices is trivially isomorphic
to IT,. Hence, [0, @] is isomorphic to D, x TI§* x -+ x Tk where 7 is the
size of the distinguished component of G (possibly 0) and k; is the number of
undistinguished components of G of size i. (Note that » + Xik; = n and Xk;
equals the number of undistinguished blocks in G.) Let G’ be above G in D,,
and let C; and C, be distinct undistinguished components of G which are in the
same undistinguished component of &’. Then all edges between vertices of C,
and vertices of C', can be determined from any one such edge, using the properties
of inverse symmetry and antitransitivity. Intuitively, the undistinguished com-
ponents of @ “act like points” in [ G; 1], while the distinguished component of
G simply “joins with these points as they become distinguished.” Using these
ideas, it is not difficult to see (or to prove) that [ G, 1] is isomorphic to Q,,, where
m is the number of undistinguished components of @, that is, to D, ;... +, (the
k; are introduced earlier in this paragraph).

We are thus led to the following definition corresponding to that in the
previous subsection. The class of a segment [G, G'] of D, is the sequence
(r; ky, k,, - - +), where r is the number of undistinguished components of @ which
are contained in the distinguished component of G', and k; is the number of
undistinguished components of G’ which contain exactly ¢ components of G.
(Note that » + Zik; equals the number of undistinguished components of G.)
It follows from the previous paragraph that [G, G'] is isomorphic to
D, x TI% x IT%* x ---. The class of an element G € D, is defined to be the
class of [0, G].

Before going any further, we will put everything preceding in the context of
a large incidence algebra in which two segments are of the same type if and only
if they have the same class. Let D be the category whose objects are the lattices
D(B) for all finite sets B, with two segments being equivalent if they are iso-
morphic and their top elements have the same number of undistinguished com-
ponents (although one top element may have a distinguished component and
the other not). The morphisms of D are all isomorphisms into in which the top
element of the segment has the same number of undistinguished components as
does the top element of the image segment. It is easy to see that D satisfies the
required conditions, and also that two segments are equivalent if and only if
they are of the same class.

Now, a segment [G, @'] in some D, is of type (r; 0,0, ---) if and only if
@ = 1 and @ has r undistinguished components. We denote by [,., t,....] the
number of elements G’ in a segment [@, 1] of type (r;0,0, ) such that
[@, @] has type (7; ky, k;, - - -) (and hence, [, 1] has type [k, + ks + - +;
0,0, - ]) Then

n n n—r
2 = —1 k2+2k3+3k4+-~-’
(5.26) |:7';k1,k2"":| (7.) <k1,k2,"'> (q )
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where (;,","...) is defined as in the previous subsection, as the following counting
argument shows We may assume that [ @, 1] is contained in D, and that G = 0,
that is, that [@, 1] is D,. First, choose r vertices and join edges between all pairs
with all labels and distinguish the resulting component. This can be done in (})
ways. Then choose k,; vertices as the undistinguished one point components.
This can be done in (";,") ways. Proceeding in this way, choose k; distinct j sets
of vertices. This can be done in
1

(5.27) m(n—r—kl —%ky — o — (j = Dky_y)
g
'(n_r‘—kl _2k2_"'_(j_].)kj_1)'°
(n_r—k1—2k2_"'—jkj+l)

ways, and each j set can be made into a labelled, simple, inverse symmetric,
antitransitive component in (¢ — 1)/~ ! ways, since the labelling is completely
determined by the labels on a spanning tree, which hasj — 1 edges (see Liu [38],
pp. 185-186). This establishes (5.26).

As for lattices of partitions, the concept of multiplicative function is important.
A function f € I(D) is multiplicative, if there is a pair of sequences (a4, @,,a3," "),
(bg, by, by, - - <) such that

(5.28) f(G, G') = b, d" a¥ -

when [@, G'] is of type (r; ky, k,, - - *), and f is said to be determined by the
pair of sequences. A similar definition holds for multiplicative functions of one
variable. The subset M (D) of I(D) of all multiplicative functions is closed under
convolution (the proof is the same as for M(IT)), and hence, M(D) is a semi-
group. Also, if f e M(D) and F is a multiplicative function of one variable, then
K and L are also multiplicative, where

(5.29) K@) = Y F&f&, G
G'=G
and
(5.30) Z (@, &")F(G).
G'2G

TueoreM 5.2. The semigroup M(C) is isomorphic to the set of all pairs
(F(x), G (x)) of formal exponential power series in which F(x) has zero constant
term, with multiplication given by

F((g — 1
B (o), @) P, @) = (PiF), oo (ML)
The isomorphism is given by f — (FP (x), F? (x)), where

(5.32) FP(x) = i f (r{ )
n=1 n
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(5.33) FP(x) = i Mw"

n=0 n!
and where f(I1,) denotes the value of f on a segment of typer = 0,k = -+ =
ko_y =0, k, =1, and f(D,) denotes the value of f on a segment of type
(n;0,0,---).

Proor. Clearly, the map defined is a bijection, so we need only check that
multiplication is preserved. Let f, g € M(D). It follows from Theorem 5.1 that
F(x) = FV(F{Y(x)). Now, from (5.26) and denoting by £* a summation
taken over the set {r + k, + 2k, + -+ + nk, = n} and by ** a summation
taken over the set {k; + 2k, + - + nk, = n — r}, we get 4

(5.34)  (f*9)(Dy)

= Z* [,«- k, Ic: . :|f(D,)f(1'I1)"l o 'f(nn)k"g(ka-uH,.)

K

= Z* (:) (kl knz—“?’. . )(q . l)kz+2k3+...+(n—l)knf(Dr)f(nl)kl

s+ f(IL)g Dy, o sk)

= Z (:)f(Dr) (Z;"* (k I:’z—. "l"' § )f(nl)kx(f(nz)(q _ 1))k2
r=0 1 R  k,

cen (.f(r[n)(q - 1)"—1)""9(Dk,+-"+kn)>‘

Now, f(D,) is the coefficient of z'/r! in FP(x), and

(5.35) Z:‘*( bl )f(n1)k‘(f(nz)(q - D

- (FTL) (g = 1 g (D sti)

is the coefficient of "~"/(n — r)! in FP(F{"((g — 1)x)/(g — 1)), and hence the
theorem follows.
CoroLLARY 5.3. The Mobius function in D, is given by

n—1
(5.36) p0,1) = (=17 [T [1 + @ = i].

ProoF. We have F{)(x) = ¢ — 1, FP(z) = €5, F{"(x) = x, and FP (x) = 1.
Now, FV(x) = 2, (u(I1,)/n!)z" = log (1 + x) from the previous sub-
section. Thus,

(1) —
(5.37) 1 = FP(x) = F&(x) = FO () FP (F“—(;-qtl—l)x—)>
= FP(z)-exp {log (1 ; iql— 1)w)}

= FQP(x)- (1 + (g — )x)/a~ .
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Hence,
(538) FP(@) = (1 + (¢ = Da)~1e7",

from which the result follows.
CoroLLARY 5.4. Let f be a multiplicative function of one variable. For every
nonnegative integer n, let b, = Xs.p f(G) and q, = Zgep, f(G)u(G, 1). Then

2 b, , FP((g — 1))
(5.39) nzoax =F(f2)(x)'exp {qul , ,
> Gn n e
(40 Lt = FP@ 0+ (g - )],

Proor. The proof follows from Theorem 5.2 and Corollary 5.3 in the
same way as Corollary 5.2 is proved.

Let us now return to the lattice @, to get an idea of what the class of a segment
means in terms of the corresponding segment of vector spaces. Let W e Q(V),
that is, W is a subspace of V which has a basis whose elements are of the form
b; or ab; + a'b, (where a, a’ € F*). Then it is not difficult to see that W has a
basis of the form
(5.41) {b;. by, -+ . b;. b, + a;bj,, by, + azb;. -, b +ab; . b, + aib?

’/ ) / . o " ) ”
by, + a5by,, by + @by, by, + Al by, + agby,

where the a; are nonzero and no b; appears twice. Such a basis can be obtained
by taking any basis and noting that if ab; + a’b; and ab; + a'b; both appear
(and hence a/a’ # a/a’), then b; and b; are in W and can replace ab; + a'b; and
ab; + a'b; in the basis. The collection {b; + a;b;,,b;, + ayb;,, -, b; +
asb;. .1} in the above basis is called an (s + 1) cycle of the basis. Let k; equal
the number of basis elements {b,, b,, - - -, b,} which do not appear in the above
basis (that is, are not among {b;,b;,,, <, b, b, -, b;, ., . by, ",
b,...}), and for i > 1, let k; be the number of i cycles in the basis. Then
(riky, ko, -, k,) is the class of the segment [0, G] in D, (where @ is the
graph corresponding to W), and [G, 1] has class [k; + k; + -+ + k,; 0,0,
-+ -]. Note that it follows from this that r and k,, k,, - - -, k, do not depend on
the basis (of the proper type) chosen for W. The class of a general segment
[W, W] could also be determined from bases of the proper form chosen for
W and W’. Thus, the class of a segment of @, could have been defined without
resorting to the lattice D,, but it then becomes necessary to prove that the class
does not depend on the bases chosen.

5.4. Abelian groups. Let C(p) be the category whose objects are lattices of
subgroups of finite abelian p groups (where p is a prime, fixed throughout) and
all segments thereof, with the equivalence relation in each object being given by
[4,B] ~ [G, H] if and only if B/A ~ H/G. Morphisms in C(p) are all iso-
morphisms into such that if [4, B] is the domain and [@, H] the image of the
isomorphism, then B/4 ~ H/G.
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A partition of an integer n is a sequence A = (4, A,, ' - ) of nonnegative
integers arranged in decreasing order, whose sum is n. The types in the category
C(p) above are in one to one correspondence with partitions, the type of a
segment [A4, B] being A = (4;, 4,, - - ), where B/A ~ Z(p*') @ Z(p*) @ - -
The type of a group @ is defined to be the type of [0, G]. The incidence coefficient
(«+5) is equal to the number of members G € [4, B] (where [4, B] is of type 1)
such that [4, (] has type « and [ @, B] has type B, or equivalently the number
of subgroups G of a group H (where H is of type 1) such that @ has type « and
H /@G has type f. This is precisely the “Hall polynomial” g; z(p) defined in Hall
[31], p. 156, and further studied by Green [27] and Klein [37]. (The Hall
polynomials g4,...,(p) are simply the coefficients in the expression (fxgx---*h)
(p) = Zg5,,(p)f(A) - -+ h(v).) Hall’s algebra A(p) is isomorphic to the sub-
algebra of I(C(p)) consisting of functions which are nonzero on only finitely
many types, the isomorphism being given by linearly extending the map
d; = G;(p), where d; is the indicator function of the type A in I(C(p)) and where
G,(p) is as in Hall’s paper. The incidence coefficients g; »(p) satisfy g7 5(p) =
gj.«(p), which follows from the well-known fact that the lattice of subgroups of
a finite abelian group is self dual. and hence by Corollary 4.1, I(C(p)) is com-
mutative. Various properties of the incidence coefficients g7 ;(p) are worked
out by Hall and extended by Klein and Green, the most basic being that g7 ;(p)
is a polynomial in p with integer coefficients. A condition for this polynomial to
be identically zero, that is, for g; ;(p) to equal zero for all p, is given by Hall in
terms of multiplication of Schur functions (see [31]. p. 157).

ExampLE 5.12. Let (ry.7,,-:-.7,) be an ordered partition of n. Then it
follows from the commutativity of I(C(p)) that given any partition 4 of n. the
number of towers 1 < H, < H, < --- < H,, = G (where (@ has type 1) in
which H;/H;_, has order p" is independent of the arrangement of (r;, r,.---.
7). This is because the number of such chains is given by (h, *h,, *- - -*h, )(4),
where h, is the function which takes the value 1 on segments [4, B] in which
B/A has order p", and is zero elsewhere (4, is clearly constant on each type).

6. Residual isomorphism

In this section we are mainly concerned with the problem of determining
when two segments are equivalent in the maximally reduced incidence algebra
R(P). As has been seen in Section 4, the two segments need not be isomorphic,
that is, the standard reduced incidence algebra need not equal the maximally
reduced incidence algebra. Until further notice, we will assume the ground field
K has characteristic 0.

First, we give a criterion when two segments of P are equivalent in R(P). Let
P =[0,1] and P’ = [0', '] be two finite ordered sets with unique minimal
elements (6 ind 0’, and unique maximal elements 1 and 1’, respectively. We say
that P and P’ are 1-equivalent, without imposing any other conditions on them.
Define inductively P and P’ to be (n + 1)-equivalent (written P "Ll P’y if there
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exists a bijection x « ' between P and P’ such that [0, 2] ~ [0, 2] and
[#, 1] < [«',1']. Note that P <~ P’ implies P X~ P’ for 1 < m £ n. Note also
that P 2 P’ if and only if P and P’ have the same number of elements.

ProPOSITION 6.1. Two segments [x, y] and [u, v] of a locally finite ordered
set P are equivalent in R(P) if and only if they are n equivalent for all positive
integers n.

Before proving Proposition 6.1, we show that the apparently infinite sequence
of conditions that must be satisfied in order that P £ P’ for every positive integer
n reduces to a finite number of conditions for any given choice of P, P'.

ProrosITION 6.2. Let £ be the length of the longest chain of the two finite
ordered sets P = [0,1] and P’ = [0/, 1']. Then P & P’ for every n 2 1 if and
only if P X P'.

Proor. The proof is by induction on ¢. The conclusion clearly holds when
¢ =1 and ¢ = 2, since then P and P’ are isomorphic. Now assume that the
conclusion holds for £ = 2 and that the longest chain of P and P’ has length
¢ + 1 and that P ‘X P’'. Assume that P £ P’ for some n = ¢ + 1. We will be
done if we show P "%! P’. Since P & P', there exists a bijection x « ' with
[0, ] "' [0',2'] and [z, 1]"~! [, 1']. Clearly, 0 & 0’ and 1« 1’, since
n 2 3. Ifx # 0, 1, then [0, ] and [0’, '] have no chain of length = ¢ + 1, s0
by the induction hypothesis [0, x] & [0, 2']. Similarly, [z, 1] £ [z, 1'].
Hence, the bijection x «» x’ defines an n + 1 equivalence between P and P’
and the proof is complete.

We conjecture that the following converse to Proposition 6.2 holds: for every
¢ = 1, there exist finite ordered sets P = [0, 1] and P’ = [0, 1'] with longest
chain of length # such that P/<! P’ but not P £ P'. Figure 1 illustrates the
validity of this conjecture for / = 4.

Ficure 1
Ordered sets of length 4 which are 3-equivalent, but not 4-equivalent.

Proor oF ProrositioN 6.1. Define [z, y] ~ [«', %] in P if and only if
[z, y] & [, ¥'] for all positive integers n. To prove the ““if” part, we need to
show that the equivalence relation ~ is order compatible. It suffices to show
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that the coefficient [, ] is well defined for any equivalence classes (types) a, B, y.
Let [z, y] and [2', '] be two segments of P of type a. Define 7(x, y, =) to be the
number of points z € [z, y] such that [z, 2] is n equivalent to a segment of type
and [z, y] is n equivalent to a segment of type y. The number r(x, y, n) is
independent of the particular choice of segments of type f and y, since all such
segments are n equivalent. Since [z, y] "' [2',y'], we have r(x,y,n) =
r(z', y', n). But then

(6.1) I:ﬂa}’:' = lim f(x, y, n) = lim (&', ¢, n),
so [4%,] is well defined.

Conversely, suppose [z, y] ~ [/, ¥'] in R(P). We prove by induction on n
that [z, y] £ [«', ¥'] for all n. Trivially [z, y] 4 [z, y'] forall [z, y] ~ [z, ¥']
(indeed, for any pair [z, y], [«, y']). Assume [z, y] £ [«/, y] for all [z, y] ~
[, y']. Given any segment [u, v] of P, define f, , , € I(P) by

©2) f..,v,,.(x,y>={1 i [ y] & u0],

0 otherwise.
By the induction hypothesis f, , ,€ R(P). Hence, f, , ,*f, ., € R(P). But
Su,v.n*fur,or.n(@, y) is just the number of elements z € [z, y] such that [z, z] £
[, v] and [z, y] & [/, v']. (This is where the assumption that K has charac-
teristic 0 is needed.) Since f, , . * f. ... € R(P),

(63) fu,v,n*fu',v’,n(x’ y) = fu, v,n*fu’,v’,n(x,a ?/)

Hence, [z, y] "' [2', '], and the proof is complete.

The proof of Proposition 6.1 allows us to characterize the form of functions
in R(P), at least when the characteristic of the ground field K is 0. If f € I(P),
define x, € I(P) by

1 if fx,y)=1,
0 otherwise.

(6.4) Xr(@, y) = {

CoROLLARY 6.1. The algebra R(P) consists of those functions which can be

obtained from { by a sequence of operations of the following three types:
(i) linear combination (possible infinite),

(i) convolution,

(iii) the operation f — x,.

Proor. Clearly, all functions of the type described are in R(P). The proof
of Proposition 6.1 shows that for any segment [«,v] of P, the function
fuo.m € R(P). Proposition 6.2 shows that the sequence f,, 1, fuy2, " is
eventually constant, and that its limit (namely, f, , ,, where = is the greater of
2 and the number of elements in [u, v], as is easily verified) is the characteristic
function for the type of [«, v] in R(P). All functions in R(P) are linear combina-
tions (infinite if R(P) has infinitely many types) of such characteristic functions.
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Finally, it is not difficult to show (by induction on ) that f, , , is in the class of
functions described for every segment [u, v] and every n, so the proof'is complete.

Define two locally finite ordered sets P and @ to be residually isomorphic
(r isomorphic for short) if there is a bijection between the types of P relative
to R(P) and the types of @ relative to R(Q) (over the same ground field K,
which we still assume to have characteristic 0) inducing an isomorphism of R(P)
and R(Q).

NotEe. Itis possible for R(P) and R(Q) to be isomorphic as K algebras, and
yet P and ) are not r isomorphic.

ProposiTION 6.3. Two finite ordered sets P and P’, each with 0 and 1, are r
isomorphic if and only if P & P’ for all n = 1. Equivalently, two segments of a
locally finite ordered set P are equivalent in R(P) if and only if those segments are
r isomorphic. Furthermore, o and o' are corresponding types in the isomorphism
R(P) = R(P') if and only if the segments in P of type o are r isomorphic to the
segments in P’ of type o'

Proor. Assume P and P’ are r isomorphic, and that a type a relative to
R(P) corresponds to a type o relative to R(P’'). Let @ be the disjoint union
(direct sum) P + P’. Define an equivalence relation on segments of ¢ by
[z, y] ~ [, y'] if either (1) [x, y] ~ [«', y'] in R(P), (2) [z, y] = [«",y'] in
R(P'), (3) [x. y] is of type a in P and [« y'] of type o’ in P’, or (4) [, y] is of
type o in P’ and [«, y'] of type a in P. Clearly, this equivalence relation is order
compatible. Hence, by Proposition 6.1 segments of type a are n equivalent to
segments of type o’ for all » = 1, and in particular P £ P’

Conversely, if P £ P’ for all n = 1, define a bijection a <> o’ between types a
relative to R(P) and types o’ relative to R(P’) by requiring that segments of type
o be n equivalent to segments of type o’ for all » = 1. It follows easily from
Proposition 6.1 that this bijection induces an isomorphism between R(P) and
R(P'), and the proof is complete.

COROLLARY 6.2. Two finite r isomorphic ordered sets P = [0, 1] and P' =
[0, 1'] have the following properties in common :

(i) number of maximal chains of a given length,

(i) number of elements a given minimum length from the bottom (or top);
consequently, total number of elements, number of atoms, and number of dual
atoms. ‘

Proor. It follows from Corollary 6.1 that the function n = y._,is in R(P)
and R(P’). Note that

1 if y covers x,
(6.5) n.y) = {0 otherwise,

so that #'(x, y) is the number of maximal chains of [, y] of length r. By
Proposition 6.3, (0, 1) = 5"(0’, 1'), since P and P’ are r isomorphic. This
proves (1).

Similarly one can find functions in R(P) and R(F’), explicitly expressed in
the form given by Corollary 6.1, which enumerate the quantities in (ii). The
details we omit.

210



GENERATING FUNCTION 299

ProrosiTioN 6.4. Let P be an ordered set with 0 and 1 with <7 elements, and
let Q be any finite ordered set with 0 and 1. Then P and @ are r isomorphic if and
only if they are isomorphic.

The proof is essentially by inspection of all possibilities, and will be omitted.
Figure 2 shows two r isomorphic nonisomorphic ordered sets with eight
elements. Another example of r isomorphic nonisomorphic ordered sets is the
lattice of subspaces of two nonisomorphic finite projective planes of the same

i

F1GURE 2
Residually isomorphic nonisomorphic ordered sets.

We say that a finite ordered set P with 0 and 1 is residually self dual (r self dual
for short) if it is r isomorphic to its dual. The next proposition uses this concept
to characterize those P for which R(P) is commutative.

PRrOPOSITION 6.5. Let P be a locally finite ordered set. Then R(P)is commuta-
twe if and only if every segment of P is r self dual.

Proor. Suppose R(P)is commutative. This means that [*,] = [,%;] for all
types a, B, y. If & is the type of a segment, let §* be the type of its dual. If [z, y]
is a segment of type o, consider the bijection é «> 6* between types of segments
in [, y] and types in the dual [x, y]*. Then

o5 )= L) = L)
' Bx.v* | [v-B] LB.v)

so the bijection & <> 6* induces an isomorphism between R([z,y]) and
R([x, y]*). that is, [z, y] is r self dual.

Conversely, suppose every segment [x, y] of P is r self dual. Since [z, y] is
r self dual, the number of elements z € [x, y] such that [z, z] is of type f and
[2, y] of type y is equal to the number of elements 2’ € [, y] such that [, 2']
is of type y* and [2', y] of type f*. But B = f* and y = y*, since every segment
of these types is r self dual. Hence, if [z, y] is of type a, then [,*,] = [,%;] and
R(P) is commutative. This completes the proof.

Figure 3 illustrates an r self dual ordered set P which is not self dual. For this
ordered set, R(P) is equal to the standard reduced incidence algebra. This
answers a question of Smith ([55], p. 632) on the existence of such ordered sets.

REMARKS. On characteristic p. Proposition 6.1 and its consequences are
false if the characteristic of the ground field is not 0. For example, whenever the
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Ficure 3
A residually self dual ordered set which is not self dual.

FiGure 4
Equivalent segments in characteristic 2 which are not residually isomorphic.

two ordered sets of Figure 4 occur as segments of a locally finite ordered set P,
then they are equivalent in R(P) over a ground field of characteristic 2. It is not
difficult, however, to modify the results of this section to get corresponding
results for characteristic p, basically by replacing all concepts by the corres-
ponding concepts modulo p. We will not go into the details here.

7. Algebras of Dirichlet type

7.1. Definitions. Let P be a locally finite ordered set, having a unique
minimal element 0. Let R(P, ~) be a reduced incidence algebra whose types
are in one to one correspondence with a subset of the positive integers, the type
of a segment [z, y] being denoted by O (z, y). Suppose the function O satisfies
the following property: ifx < y < zin P, then O(x, z) = O(x, y)O(y, 2).

We then call R(P, ~) an algebra of Dirichlet type. The bracket [,",] stands
for the number of points y in a segment [, 2] of type n such that O(x, y) = k
and O(y, z) = /. Clearly, [,",] = 0 unless » = k/. Hence, it makes sense to
define the brace {;} = [, 7x]. The reduced incidence algebra R(P, ~) is
isomorphic to the algebra of all sequences a,, n = 1,2, - - -, where a, # 0 only
if there is a segment of type n in P. The convolution of two such sequences is

(7.1) en="Y {Z} i

k|n
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ExamMpLE7.1. Let P be the set of all positive integers, ordered by divisibility.
Set O(k,n) = n/k, for k,ne P. This gives the reduced incidence algebra
mentioned at the beginning of Example 4.8. The braces are identically equal to
one, the convolution is commutative, and it reduces to the classical Dirichlet
convolution
(7.2) C, = %akb,,,,,.

The reduced incidence algebra R(P, ~) is isomorphic to the algebra of formal

Dirichlet series. The zeta function is mapped into the Riemann zeta function
21

(7.3) ()= =

b
n=1 ns

and the Mobius function goes into the function

p(n)

s ?

n

(7.4) (& =X
n=1

where p(n) is the classical Mobius function, as has already been sketched in
Foundations 1.
Algebras of Dirichlet type satisfy the following fundamental recursion:

(1.5) {:,} {Z} - {Z} {Z:}

This is obtained by counting in two ways the number of subsegments [z, , y, |
of a segment [z, y] of type n such that O(x, z,) = k, O(x, y;) = m. There are
{2} ways of choosing y, , and for each such choice there are {7} } ways of choosing
2, below it. On the other hand, there are {}} ways of choosing x, , and for each
such choice there are {}/}} ways of choosing y, above it. This establishes (7.5).

There are three kinds of algebras R(P, ~) of Dirichlet type of special
importance.

(A) The algebra R(P, ~) is commutative if and only if {§} = {,}i} for all
types n and all kln.

(B) The algebra R(P, ~)is said to be full, if whenever = is a type and k|n, then
{i} #0.

(C) The algebra R(P, ~) is said to be of binomial type, if there is a prime p
such that all tvoes are powers of p. We then write

-0

The recursion (7.5) becomes

(7.7) [2] [Z] - [:] [Z _ Z] '
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An algebra of binomial type is simply the additive analogue of an algebra of
Dirichlet type. We shall always speak of algebras of binomial type in an
additive sense, so a segment of type # in an algebra R(P, ~) of binomial type
is of type p" when R(P, ~) is regarded as an algebra of Dirichlet type.

_There are, a priori, eight kinds of algebras of Dirichlet type obtained by
specifying which of (A), (B), (C) hold or do not hold. It is easy to construct
examples of seven of these kinds; in the next section, we shall see that every
algebra of full binomial type is commutative.

7.2. Full commutative algebras of Dirichlet type. In this section, we show
that if R(P, ~) is a full commutative algebra of Dirichlet type, then there is an
isomorphism of R(P, ~) into formal Dirichlet series.

LemMma 7.1.  Let R(P, ~) be a full commutative algebra of Dirichlet type.
Then the segments of P of type 1 are precisely the one point segments, and a
segment has a prime type if and only if it is a two point segment. Further, P satisfies
the Jordan—Dedekind chain condition, that is, in all segments of P, all maximal
chains have the same length.

Proor. If [z, ] has type k, then k? = k, so k = 1. Conversely, if [z, y]
has type 1, it follows from Lemma 4.1 that x = y.

If [, y] has prime type p, then x # y (by the above), and if [x, y] contained
a third point z, then p = O(z, 2)- O(z, y), which is impossible. Conversely, if
[x, y] is a two point segment and has type #, then n must be prime, for if it had
a nontrivial factor k, then since R(P, ~) is full there would be an element
z € [z, y] such that [z, z] would have type k. Finally, it follows from this that
for any segment [x, y], the length of any maximal chain is the number of primes
in the prime decomposition of O(x, y). This completes the proof.

Let [, y] be a segment of P of type n, and let C be a maximal chain of [z, y],
say X = Ty < &, < Xy <+ < x, = y. If p; is the type of [x;_,, x;], then
n = p,P; Pm is an ordered factorization of » into primes; we call it the
factorization of n induced by C, or more briefly, the factorization of C.

LEmMA 7.2. Let R(P, ~) be a full commutative algebra of Dirichlet type and
[z, y] a segment of type n. Let n = p,p, - * p,, be any ordered factorization of n
into primes. The number of maximal chains of [z, y] with factorization p,p; * * * P
is given by

(7.8) B(n) = {”} {"/p*} {”/Plpz} ... {"/Px " -pm_l}
' V2 D2 P3 Dom

and this number depends only on n, not on the factorization chosen.
Hence, if n = q$'q% -+ - qi" is the canonical factorization of n, then
M(n)a,!ay! - a,!

(@ +ay + - +a)

(7.9) B(n) =

where M (n) is the number of mazximal chains in [z, y].
Proor. The number of maximal chains with factorization p,p, * - - p, 18
obviously the expression on the right side of (7.8). By the commutativity relation
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{;} = {,.} and the recursion (7.5),
(7.10) {”/Plpz e 'Pk—1}.{”/171p2 o 'Pk}
Di Di+1
- {"/Plpz Tt Pk—l}_{”/ﬁll’z " ‘Pk}
n/p1P2 " P Pr+1
— {n/Z’lpz T ‘Pk—1}_{”/P1P2 e 'Pk—lpkﬂ}

Pr+1 n/P1P2 " PkPr+1
— {"/Ihpz e 'Pk—l}.{"/mpz " Pr-1Pr+ 1}.

Dr+1 Di
Hence, B(n) is not changed when p, and p,,, are interchanged. Since all
permutations of p,, - - - p,, are generated by such interchanges, the proof follows.

ProposiTioN 7.1. Let R(P, ~) be a full algebra of Dirichlet type with types
ny = 1,n,, . If fe R(P, ~), then the map

J(m)
. - ) —
7.1 = F B
of R(P, ~) into formal Dirichlet series is an isomorphism, if when we multiply
Dirichlet series we ignore all B~° terms when B is not some n,.

Proor. Let [z, y] be of type n. For any type /|n, let » = p, * - p,, be any
factorization with p;p, ‘- p, = £. Exactly B(/) maximal chains with the
factorization p,p, - - * p, connect x with a fixed point z such that [z, 2] is of
type ¢. Exactly B(n//) maximal chains with the factorization p; , * - - p,, connect
z with y. Thus, the number of such z is

n B(n)
7.12 -—
(7.12) {/} B(£)B(n/¢)
and the isomorphism follows.

REMARK. As we will see in the next section, when R(P, ~) is of full
binomial type we know that we can write B(r) = A(1)4(2) - - - A(n), where
A(n) = {7} is the number of points covered by y in an interval [x, y] of length n.
The analogy for full commutative algebras of Dirichlet type is formula (7.8).
Here y '

Pm-k+1

depends on the particular ordered factorization of n into the primes chosen. A
canonical choice of 4 (k) can be specified by the requirementp; < p, < - < py,.
In certain cases it is possible to know considerably more about the structure
of P and R(P, ~).
ProrposiTiON 7.2. Let R(P, ~) be a full commutative algebra of Dirichlet
type. Suppose the function B is “‘multiplicative if defined,” that is, if (m,n) = 1
and if mn is a type, then B(mn) = B(m)B(n). Let [z, y] be a segment of type
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n = pi'pP - pim and let [z, z,], ", [z, x, ] be segments of [z, y] of types
pi, - -, pim, respectively. Then [x,y] is the product, [z,y] = [x,x,] X
[z, 23] x -+ % [z, ], and R(P, ~) restricted to [z, y] is given by the tensor
product (over k), R([z, y], ~) = R([z, ,], ~) ® - - - ® R([x, ], ~). Each
of the algebras R([x, x;], ~) is of full binomial type.

Proor. Ifl £ i £ m, we have

B
(7.14) {Pr:‘} = — (n) _ = Bm) _ |
i B(p{*)B(n/p{*)  B(n)
Thus, the segments [z, x;] are unique. If z € [z, y] and [z, 2] is of type £ =
PPy -+ - por, then as above {4} = 1, and z lies above a unique point z; € [, z;]

with [z, z;] of type p?. Hence, we have a mapping z — (24, * * * , 2,,). Now, the
number of z € [z, y] such that [«, 2] is of type p5* - - - pb equals
ptlll . .p;l"m B(plix . .p:lnm)
(7.15) {ﬂ . } = —— —
Ii ...pzlm B(plit ...pg'm)B(pll b, s o plm bm)

_ B(p$') -~ B(piy)
B@Y) - BBy ™) By )

-Gt U
P 0% oo
which is the number of m-tuples (z,, - - -, 2,,) With [z, z;] of type p?. Further,

the mapping is injective, as the following argument shows. Suppose z and z are
distinct elements of [x, y] with [, 2] and [z, Z] of type p%' - - - pim, and suppose

both z and % lie over z,, * - -, z,,, where O(x, z;) = p¥. Take w, € [z, y] with
O(Z, wl) = P‘i'_bl: wy € [wl’ y] Wlth O(wl’ w2) = P?—bz, L, w, € [wn—I’ y]
with O(w,_,, w,) = p2=~b= and similarly take elements w,, - - -, w,, above Z.

Note that w, = w, = y, since
(7.16) O(x, wy) = O(x, 2)O(z, w;) O (wy, wy) "+ - O(wy-y, W)
= Bt i
However, we show by induction that w; # w; for 1 < j £ m, which gives the

desired contradiction.
Forj =1, if w; = w,, then

by —ay ,.b2 .b3 bm
Py PPy P
(7.17) { zps ;"m}> 1
p2'ps Dm
(since 2, Z € [z, w;]), which is not the case as B is multiplicative. Assume
wj_l % ﬁ)j—l fOI'j é m. Ifw]' = "'7)]’ then

b bj— bj+ bm ay—b .« e e Qaj-1—bj- aj—b;
(: 18) {p o .pjj 11 P,J . 'pm I’ll ! pij‘ 1l it p".j J} > I
: b bj- Div1 oo phbm 81—by ... @j-1—bj-
pll T pil— 11 piJ+ ll pm pll ! piJ— 1l -t

(since w;_,, ;_, € [2;, w;]) which is not the case, as B is multiplicative.
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Thus the mapping z - (2, -, 2,,) is the desired isomorphism [z, y] ~
[x,z,] x -+ X [z, z,], and the rest of the proof follows easily.

As a converse to the above proposition, suppose R(P,), R(P,), - - - are full
algebras of binomial type. Let p,, p,, - - - be distinct primes, and let [z, y] =
[(xy, 22, "), (Y1, Y2, - )] be a segment of P, x P, x -+ where [z;, y;] is
of type a; in R(P;). Then defining O(x, y) = pi'p% - - - gives a full commutative
algebra of Dirichlet type such that B is multiplicative if defined.

REMARK. The condition that B is ‘“‘multiplicative if defined” is equivalent
to saying that the Dirichlet series corresponding to the zeta function { € R(P, ~)
has an Euler product in the sense that the Dirichlet series

~ 12 gy 5
for some n;, = p® vanishes at all terms m~° whenever m is a type.

All the usual number theoretic functions such as the Euler totient function ¢,
the number of divisors d, the sum of the divisors ¢, and so forth, have analogues
in full commutative algebras of Dirichlet type (even in any algebra of Dirichlet
type, although some of their properties do not carry over). For instance, if
O(x, y) = n, we define

$(n) = pxO(n) = ) p(x,2)0(,y),

(7.19) y

kB”k”k

ze[x, y)
(7.20) dn) = ’) = Y 1,
ze[x, y}-
o) = Oxl(m) = ¥ 0@ 2),
ze[x, y

and so on.

These functions, along with u, will be ‘“multiplicative if defined” if and only if
Bis also.

ProBLEM. It is easy to construct examples of infinite noncommutative
Dirichlet algebras. For instance, let P be the lattice of positive integers under <
(a discrete chain). If m < n, define

an—m if 1<m,
(7.21) O(m,n) =43-2""m"1 if 1=m<n,
1 if m=n=1

The corresponding Dirichlet algebra R(P, ~) is infinite, that is, there are
infinitely many values of O(m, n), and noncommutative.

Suppose, however, we require R(P, ~) to have the following properties:

(a) R(P, ~) is a full algebra of Dirichlet type, and

(b) any two elements of P have an upper bound. We know of no infinite non-
commutative algebras R(P, ~) satisfying (a) and (b).

7.3. Abelian groups. Suppose G is an abelian group whose lattice P of sub-
groups gives a Dirichlet algebra R(P, ~)if we take O (x, y) to be the order of the
quotient group y/x. Then @ is finite (since P must be locally finite and every
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infinite group has infinitely many subgroups), and every Sylow subgroup of @
is either cyclic or elementary abelian. Conversely, any such G gives rise to such
a Dirichlet algebra, which in fact is of full Dirichlet type whose zeta function
has an Euler product. A

Proor. Suppose a Sylow p subgroup of G is not cyclic or elementary abelian.
Then it contains a subgroup isomorphic to Z(p) @ Z(p*), where Z(n) denotes
the cyclic group of order n. The segments [0, Z(p*)] and [0, Z(p) ® Z(p)]
both have type p* but are not residually isomorphic, so R(P, ~) cannot be of
Dirichlet type.

That the converse is true is a straightforward verification.

8. Algebras of full binomial type

8.1. Structure. Recall from the previous section that R(P, ~) is an algebra
of full binomial type if the types are in one to one correspondence with a subset of
the nonnegative integers, the type of a segment [x, y] being denoted O(x, y),
satisfying:

(A) ifx £ z £ y,then O(x,y) = O(x, z) + O(z,9);

(B) if n is a type and if k < n, then [{] # 0, where [}] is the number of
elements z in a segment [, y] of type n for which O(x, z) = k (and hence,
O(z,y) = n — k). We then had the following relation

o EIR-EE

ProrosiTiON 8.1. Every algebra of full binomial type is commutative.

Proor. Suppose R(P, ~) is a full algebra of binomial type. We prove by
induction on n that [%] = [,",] when 0 < m < =. Since [§] =[] =1, it
will follow that R(P, ~) is commutative.

The statement is clear for n = 0, 1, 2. Assume it is true for all n, < n.
Suppose 0 < m < n < 2m. From the relation (8.1), we have

(8.2) [Z] [n " m] - [n f m] [Mm- "]

Since 0 < m < n < 2m and R(P, ~) is full, we have [,",,] # 0, [2m-.] # O.
By induction [,™,,] = [2m.]- Hence, [%] = [,2n] If0 < m < nbut2m < =,
then0 <n —m < nand n < 2(n — m), so again [,*,.] = [], and the proof
is complete.

LeEmMmA 8.1. Let R(P, ~) be an algebra of binomial type. Then the segments
of type 0 are precisely the points of P. Moreover, if R(P, ~) is of full binomial
type, then the segments of type 1 are those segments of P which contain exactly
two points.

Proor. If [z, z] is of type n, then n + n = n, so n = 0. Conversely, if
[z, ¥] is of type 0, it follows from Lemma 4.1 that x = y.

If R(P, ~)is full and [z, ] is a two point segment of type n > 0, then since
[#] # 0, we must have n = 1. Conversely, by Lemma 4.1 any segment of type 1
contains exactly two points. This completes the proof.
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We assume for the rest of this subsection that R(P, ~) is a full algebra of
binomial type. Let N be the largest type of any segment of P (or N = o0 if
there is no largest type). Since R(P, ~) is full, we have

(8.3) l:(l):' = A(0) = 0, I:?] = A(n) # 0, 1 £ n £ N (except = ).

Define B(n) = A(1)A(2) - - - A(n), with B(0) = 1.
Setting &k = 1 in (8.1) and iterating, we find

(8.4) n| AmAm—1)---An —m + 1)
' m| Am)A(m — 1)--- A(1)
B(n)
Bm)B(n — m) 0=<m=n =< N (except n = 00),
where we have used the obvious fact that
(8.5) [g]=1, 0<un <N+ o

We have therefore shown that a full algebra of binomial type is isomorphic
to an algebra of formal power series, taken modulo zV*!, the isomorphism being
given by

al f(n)
8.6 - g n N+1
(8.6) f ;,B(n) 2" (mod 2M*1),

where f(n) denotes the value f € R(P, ~) takes at any segment of type n. The
converse to this statement, and a characterization of full algebras of binomial
type, is provided by the next theorem.

THEOREM 8.1. Suppose P is a locally finite ordered set and R(P, ~) a reduced
incidence algebra of P with types labelled 0,1,2,--- , N, 1 < N < o, such that
(8.6) is an isomorphism of R(P, ~ ) onto formal power series modulo 2" **. The iso-
morphism (8.6) can be “normalized” by setting 2 = (1/B(1))z, so we can assume
B(1) = 1. Then R(P, ~)is a full algebra of binomial type and the following hold :

(i) P satisfies the Jordan—Dedekind chain condition ;
(i) all segments of P of length n have the same number of maximal chains ;

(iii) a segment of length n is of type n;

(iv) in the isomorphism (8.6) (normalized to B(l) = l), B(n) is the number of
maximal chains in a segment of length n and N is the length of P;

(v) R(P, ~) = R(P). B
Conversely, if P is a locally finite ordered set satisfying (i) and (ii), then R(P)
is a full algebra of binomial type given by (iii) and (iv).

Proor. Suppose R(P, ~) satisfies the hypothesis of the theorem. Then (A)
follows from the isomorphism (8.6) using the law of exponents z™*" = 2™2".
Hence, R(P, ~) is of binomial type. By the hypothesis that the isomorphism
(8.6) is onto, it follows that R(P, ~) is a full algebra of binomial type.

Define g € R(P, ~) by
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1 if [z, y]isof type 1,
0 otherwise.

(8.7) g(x,y) = {

Using Lemma 8.1, we see g"(x, y) is the number of maximal chains of [z, y]
of length n. By (8.6), g"(x, y) # 0 if and only if [, y] is of type n. Hence, every
maximal chain of [z, y] has length z. Since

n B n
(8.8) (Bfl)) - 20 2

then by (8.6), B(n) is the number of maximal chains in an interval of type n
when we take B(1) = 1. Clearly, N is the length of P. By Lemma 4.1 (ii),
R(P, ~) = R(P). This proves (i), (ii), (iii), (iv), (v) of the theorem.

Conversely, suppose P satisfies (i) and (ii). (Actually, (i) and (ii) follow easily
from the slightly weaker condition that all segments of P of the same minimum
length contain the same number of maximal chains.) Let B(n) be the number of
maximal chains in a segment of length n. Then each segment [, ] of length »
contains B(n)/B(k)B(n — k) points of height k, since B(k)B(n — k) maximal
chains in [z, y] pass through a point of height k. Thus, if f, g € I(P) depend
only on the length n of any segment [x, y], we have

" B(n)

89 (frm = (r)@ ) = ¥ e

fk)g(n — k),
which is a function of n only. Thus, specifying all segments of the same length
to be of the same type gives a reduced incidence algebra R(P, ~), which by
Lemma 4.1 (ii) must be R(P). The isomorphism (8.6) now follows immediately
from (8.9). We have proved that if (8.6) holds, then R(P, ~) is of full binomial
type, so the proof is complete.

CoRrOLLARY 8.1. If P is a locally finite ordered set and if every segment of P
of the same minimum length is of the same type in R(P), then R(P) is a full algebra
of binomial type.

Proor. By Lemma 4.1, all segments of P of the same minimum length
contain the same number of maximal chains, since they are of the same type.
We have already remarked that it is easy to prove from this that P satisfies the
Jordan-Dedekind chain condition. The proof now follows from Theorem 8.1.

REMARK. Suppose R(P, ~) is of full binomial type. By the previous theorem
any two segments of P of the same length are r isomorphic. Moreover, any
segment of P is “‘r self dual”’, that is, is r isomorphic to its dual, since R(P, ~) ~
R(P*, ~), when P is of full binomial type and P* is the dual of P.

A further characterization of full algebras R(P, ~) of binomial type, at least
when P does not have arbitrarily large chains, is given by the next proposition.

PropoSITION 8.2. Suppose R(P, ~)is a reduced incidence algebra of a locally
finite ordered set P with 0 which when considered as an algebra with identity over
the ground field (which we have been assuming has characteristic 0) is generated
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by a single function f. Then R(P, ~) is a full algebra of binomial type, and there
is an integer N such that the longest chain in P has length N.

Conversely, if R(P, ~)is a full algebra of binomial type and if the longest chain
in P has finite length N, then R(P, ~) is generated by any function f € R(P, ~)
not vanishing on segments of length 1 ( for example, f = {).

Proor. Suppose f generates R(P, ~). We first show that all points of P
belong to the same equivalence class relative to ~. Otherwise, since P has a 0,
there is a two point segment [x, y] of P such that [z, 2] and [y, y] are not
equivalent. Hence R(P, ~), when restricted to [, ], has dimension three as a
vector space. But if f(x, x) = a and f(y, y) = b, then (f — a)(f — b) vanishes
on all three subsegments of [z, y¥] and hence f generates, together with the
identity, a vector space of dimension < two when restricted to [, y]. This
contradiction shows [z, ] ~ [y, y] and hence all points of P are equivalent.

If P contains arbitrarily long chains, then R(P, ~ ) has uncountable dimension
as a vector space, while f generates a vector space of countable dimension.
Hence, there is an integer N such that the longest chain in P has length N. The
preceding paragraph shows that f is constant on points, say f(x, ) = a. Then
(f — a)¥*! = 0. Hence, f, together with the identity, generates a vector space
of dimension < N + 1. Since two segments of different maximum lengths must
be of different types, it follows that any two segments of the same maximum
length are of the same type (because the dimension of R(P, ~) is equal to the
number of types). It then follows from Corollary 8.1 that R(P, ~) is a full
algebra of binomial type.

The converse is a trivial consequence of the isomorphism (8.6), and the
proof is complete.

8.2. Lattices of full binomial type. An ordered set P is said to be of full
binomial type if it satisfies (i) and (ii) of Theorem 8.1.

Examples of ordered sets P of full binomial type are discrete chains with 0,
lattices of finite subsets of a set, and lattices of finite subspaces of a projective
space. Various other examples are given in Figure 5.

(A) (8)

FiGure 5
Ordered sets of full binomial type.
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The ordered sets (A) and (B) have isomorphic reduced incidence algebras of
full binomial type, although they are not isomorphic as ordered sets. In fact,
(A) is a lattice and (B) is not. The ordered set (C) has two interesting properties:
not all its segments of the same length are isomorphic (it has 3 segments iso-
morphic to (A) and (B)), and its Mdbius function (see Foundations I) does not
alternate in sign.

We now prove some results relating the structure of P to the numbers B(1),
B(2), .

ProrosiTION 8.3. Let P be of full binomial type. An n segment of P is a chain
if and only if B(n) = 1.

The proof is obvious.

ProrosITION 8.4. Let L be a lattice of full binomial type. Every element of L
is the join of atoms (that is, L is atomic) if and only if A(2) > 1.

Proor. If 4(2) = 1, then a 2 segment is a chain; hence any element of L of
height 2 is not the join of atoms.

Conversely, suppose L is not atomic and let y be an element of L of minimum
height » > 1 which is not the join of atoms. Let x be an element of height
n — 2 lying below y. Then [z, y] is a chain of length 2, so 4(2) = 1.

ProrosiTiON 8.5. Let L be a lattice of full binomial type and [x, y] an n seg-
ment of L. The join of any two distinct atoms of [z, y] is of height 2 if and only if

(8.10) Ak) =1+ (42) - 1)+ (4@) — 1> + -+ + (4(2) — 1)7?

whenl £ k < n.
Proor. Suppose the join of any two distinct atoms of [z, y] has height 2.

Then the same is true for [z, '], where ' is any point of [, y] of height & < .

Now any element of [, y'] of height 2 lies above A4 (2) atoms and (4%) pairs

of atoms. But [, y'] contains [%] elements of height 2 and (*") pairs of atoms.
Hence,

Ak k|/A2
B
which implies 4 (k) = 4(k — 1)(4(2) — 1) + 1. By induction

(8.12) A(k) =1+ (4(2) — 1)+ (A©2) = 1)* + -+ + (4(2) — 1)*71,
1<k <n.

Conversely, if two atoms of [, y'] have join of height > 2, then the above
argument yields

Ak kl/A@2
8.13) ()= 5] (%) -
Consequently,

(8.14) Ak) > 1+ (4(2) — 1) + -+ + (4(2) — )71,

and the proof is complete.
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Lemma 8.2.  Let L be a lattice of full binomial type such that the join of any
two distinct atoms of L has height 2. Then L is modular.

Proor. Let x, y be two elements of L such that x and y cover x A y. (If no
such x, y exist, then L is a chain and hence modular.) Let » be the length of
[*x A y,x v y] = L. Then L is a lattice of full binomial type whose invariants
B(1), B(2), - - - B(n) are the same as those for L. Hence, by Proposition 8.5, the
join of any two distinct atoms of L' has height 2; in particular, x v y has height
2 and thus covers x and y. This means L is upper semimodular. Dually, if x and y
are covered by x v y, then the same argument applied to the dual of [x A y,
x Vv y] shows that L is lower semimodular. Hence, L is modular and the proof
is complete.

Finally, we come to the main theorem of this subsection.

Turorem 8.2.  Let L be a lattice of full binomial type, such that the join of any
two atoms of L has height 2. Then L is isomorphic to either:

(i) a chain;
(ii) the lattice of finite subsets of a set; or to

(iii) the lattice of finite subspaces of a projective space.

Proor. Suppose L is not a chain. Then L, being of binomial type, has two
distinct atoms whose join has height 2; hence, 4(2) > 1. By Proposition 8.4, L is
atomic. By Lemma 8.2, L is modular. Thus, every segment [x, y] of L is a
modular geometric lattice. By Birkhoff (Theorem IV-10), [«, y] is the product
of a Boolean algebra with projective geometries. The only such products which
are of full binomial type are the single factor ones, that is, [«, y] is of the type (ii)
or (iii). Since every segment [0, 2] of L is of the type (ii) or (iii), so is L, and the
proof is complete.

9. Algebras of triangular type

In this section, we investigate locally finite ordered sets P with 0 which have
a reduced incidence algebra R(P, ~) which is isomorphic, in a natural way, to
the algebra of all upper triangular N x N matrices (possibly N = o0) over the
ground field of R(P, ~). First we describe a class of such P. Let P be a locally
finite ordered set with 0 satisfying the Jordan-Dedekind chain condition. If
[, ] is a segment of P with x of height m and y of height n, we call [z, y] an
(m, n) segment. Suppose that for all m, » any two (m, n) segments contain the
same number B(m, n) of maximal chains. (By convention B(n,n) = 1 if P
contains an element of height #n.) We then call P an ordered set of triangular
type. Geometric lattices of triangular type are considered by Edmonds, Murty,
and Young [20] under a different name.

ProposiTION 9.1.  The equivalence relation on the segments of an ordered set P
of triangular type defined by [z, y] ~ [/, y'], if and only if [z, y] and [«', y'] are
both (m, n) segments for some m, n, gives a reduced incidence algebra R(P, ~).
If f(m, n) denotes the value that f € R(P, ~) takes on an (m, n) segment, then the
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mapping
f(0,0) f(0,1) f(0,2)
B(0,0) B(0,1) B(0,?2)
0 f, 1 f(1,2)
©1) fo B(1,1) B(1,2)
0 0 f(2,2)
0 0 B(2, 2)

18 an isomorphism of R(P, ~) onto the algebra of all upper triangular N x N
matrices, where N is the height of P (possibly o0).

Proor. Let [z, y]bean (m, n) segment. The number of points z € [z, y] such
that [x, z] is an (m, m') segment and [z, y] is an (m’', n) segment is given by
B(m, n)/B(m, m’)B(m', n). Thus, if f, g are constant on equivalence classes
relative to ~, we have

n B(m,
9.2) feg)@y) = 3 i, 1)

mom B(m, m')B(m', n)

fim, m')g(m', n),

which is a function of m, » only. Hence, ~ gives a reduced incidence algebra,
and (9.2) is the condition for (9.1) to be an isomorphism.

The converse of Proposition 9.1 is provided by the next proposition.-

ProposITION 9.2. Let P be a locally finite ordered set with 0 and R(P, ~) a
reduced incidence algebra whose types can be labeled by ordered pairs (m, n),
0 < m < n, such that whenever (m,n) is a type and 0 < m' < n' < n, then
(m', n') is a type. Suppose there are numbers B(m, n) for every type (m, n) such
that the mapping (9.1) is an isomorphism of R(P, ~) onto the algebra of all upper
triangular N x N matrices for some N < 00. Then the following hold :

(i) P satisfies the Jordan—Dedekind chain condition ;

(ii) B(n, n) = 1 whenever (n, n) is a type;

(i) we can take new values of B(m, n) preserving the isomorphism (9.1) such
that B(n,n + 1) = 1 whenever (n,n + 1) is a type;

(iv) every (m, n) segment of P contains the same number of maximal chains,
and when the isomorphism (9.1) is normalized by (iii), then B(m, n) is the number
of maximal chains in an (m, n) segment.

Proor. Define k,, ,€ R(P, ~) by

1 if [z, y]isan (m, n) segment,
. h ,Y) = .
®3) mn (% Y) {0 otherwise.
It follows from (9.1) that
B(m,
0.) i = )

B(m, k)B(k,n) ™"

224



GENERATING FUNCTION 313

Thus, if [z, y] is an (m, k) segment and [y, z] a (k, n) segment, then [z, z] is an
(m, n) segment. Conversely, if [z, z] is an (m, n) segiment and m < k < n, then
there is a point y € [z, z] such that [z, y] is an (m, k) segment and [y, 2] a (k, n)
segment. It follows that points are (n, n) segments for some n and that two point
segments are (n, » + 1) segments for some n. Moreover, every maximal chain in
an (m, n) segment has length n — m, which proves (i).

Since the identity of R(P, ~) goes into the identity matrix under (9.1), we
have B(n, n) = 1 whenever (r, ) is a type, proving (ii).

If B(m, n) is replaced by

B(m, n)
Bm,m + 1)Bm + 1,m + 2)---B(n — 1,n)’

(9.5)

then the isomorphism (9.1) is preserved and B(z, » + 1) is replaced by 1. This
proves (iii).

Hence, suppose each B(n,n + 1) = 1 whenever (n,n + 1) is a type. Let
n € R(P, ~) be the function which is 1 on two point segments and 0 elsewhere,
that is,

1 if [x,y]isan (n,n + 1)segment for some =,
6 , = )
(9-6) n(@, y) {0 otherwise.

If [z, y] is an (m, n) segment, then n"~™(x, ) is the number of maximal chains
in [z, y], so that this number depends only on m and ». Using (9.1), " "™(x, y) =
B(m, n), so (iv) is proved.

Propositions 9.1 and 9.2 give a characterization of ordered sets P which have
a reduced incidence algebra isomorphic to the algebra of all upper triangular
N x N matrices, namely P is of triangular type. If we assume P is a lattice, then
some of the structure of P can be inferred from the numbers B(m, n).

ProrositioN 9.3. Let L be a lattice of triangular type. Set T(n) =
Bn,n + 2) — 1.

(1) If T(n) #+ O for every type (n,n + 2), then L is atomic (that is, every
element of L is the join of atoms) ; the converse is true if L is semimodular ;

(il) L is upper semimodular if and only if for all types (m, n),

B(m, n)

®.7) B(m + 1, n)

=14+ Tm)+ Tm)T(m + 1) + T(m)T(m + 1)T(m + 2)
+ -+ Tm)Tm +1)---T(n — 2);

(iii) L is lower semimodular if and only if for all types (m, n),

B(m, n)

(9.8) B(m,n — 1)

=14+Tn—-2)+Tn—-2)T(n —3) + -
+ Tn — 2)T(n — 3) - T(m).
Proor. For (i), suppose L is not atomic, and let y € L be a join irreducible
of L of height » + 2 > 1. If z is any element of height n lying below y, then
[z, ] is a chain, so T'(n) = 0. The converse will be proved after (ii) and (iii).
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For (ii), L is upper semimodular if and only if whenever x and y cover x A y,
then x v y covers x and y; that is, if and only if in every (m, ) segment, the
join of any two distinct atoms has height 2. Now an (m, n) segment has B(m, r)/
B(m + 1,n) = A(m, n) atoms and (*"}'™) pairs of distinct atoms. Moreover,
each element of height 2 in an (m, n) segment covers B(m, m + 2) atoms, and
hence (B™7%*?) pairs of distinct atoms. Since an (m, n) segment has B(m, n)/
B(m,m + 2)B(m + 2, n) elements of height 2, we see that L is upper semi-
modular if and only if

(9.9) A(m,n)\ B(m, n) B(m,m + 2))
' 2 " B(m,m + 2)B(m + 2, n) 2

for all types (m, »). Simplifying (9.9) gives

B(m,n) Bm + 1, n)
R T T B Ty
=1+ Tm)(1 + Tim + 1))5;—277:——1"—;’—%

=1+ T(m) + Tm)T(m + 1) + - -
+ Tm)Tm + 1) T(n — 2).

Case (iii) is the dual of (ii).

We now prove the second part of (i) ; that is, if L is semimodular and 7'(m) = 0
for some type (m, m + 2), then L is not atomic. Say L is upper semimodular.
(The dual argument works when L is lower semimodular.) We show that there is
only one element of L of height m + 1. Suppose there are two elements of L

of height m + 1, and let # > m + 1 be the height of their join. We prove by
“descending induction” on k that

B(k, n) _
B(k,m + )B(m + 1,n)

(9.11)

when0 < k < m + 1. The case k = 0 asserts that a (0, n) segment has only one
element of height m + 1, a contradiction.
Clearly, (9.11) holds for k¥ = m + 1. Assume it holds for k£ + 1 with
0<k+1=Zm+ 1 By (i),
Bk, n)
Bk,m + 1)B(m + 1, n)

Bk + 1,n)
Bk +1,m + 1)B(m + 1,n)
1+ Tk +TE)Tk +1)+ -+ T(k) - T(n — 2))
+Tk) +TE)Tk+1)+ -+ Tk Tim—1))

(9.12)
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By assumption,

(9.13) Bk + 1,n)

Bk + L,m+ )Bm + 1,n)

Since T'(m) = 0,

9.14) 1+ Tk + - +Tk) - Tn —2)
=1+Tk) + - +Tk) - Tim —1).

Hence, B(k, n)/B(k, m + 1)B(m + 1,n) = 1, and the proof follows.

If L is a, say, upper semimodular lattice of triangular type, then Proposition
9.3 (ii) expresses B(m, n) in terms of B(m + 1, n) and the T'(k). By iteration, we
can in fact express B(m, n) in terms of the 7'(k) only, namely

n-m—2
915) Bm,n)= [] D+ Tm+4é)+Tm+i)T(m+i+1)+---
= + Tm +4) T — 2)],
n=m+ 2.
A dual formula holds for lower semimodularity.

The proof of the second part of Proposition 9.3(i) reduces the theory of semi-
modular lattices of triangular type to that of atomic semimodular lattices. In
fact, we have the following theorems.

THEOREM 9.1. Let L be an upper semimodular lattice of triangular type. Then
there are geometric lattices (that is, upper semimodular atomic lattices of finite
length) Ly, L,, - - -, L, of triangular type and an upper semimodular atomic lattice
'L, of triangular type, such that L is isomorphic to the lattice obtained by identi-
fying the top of L; with the bottom of L;,, for1 =i < 1.

TuroreM 9.2. If L is a modular lattice of triangular type, then the lattices
L,, -, L, of Theorem 9.1 are either Boolean algebras or projective geometries.

Theorem 9.2 follows from the well-known structure theorem for modular
geometric lattices (Birkhoff, Theorem IV-10). Any such lattice is the product
of a Boolean algebra and projective geometries, and it is easily seen that this is
of triangular type if and only if the product has only one factor.

ExampLE 9.1. Chains. Discrete chains with 0 are modular lattices of tri-
angular type. Each lattice L; of Theorem 9.1 consists of two points. Here
B(m, n) = 1 whenever (m,n) is a type, or equivalently 7'(r) = 0 whenever
(n, n + 2)is a type.

ExampLE 9.2. Projective geometries. The lattice of finite subspaces of a
projective geometry with ¢ + 1 points on a line is a modular lattice of triangular
type with T'(n) = q whenever (n, n + 2) is a type.

ExaMpLE 9.3. Boolean algebras. These are modular lattices of triangular
type with T'(n) = 1 whenever (n, n + 2) is a type.

Examples 9.1, 9.2, and 9.3 all have the property that B(m, n) depends only on
n — m when (m, n) is a type. Such ordered sets are of full binomial type defined
in the previous section. It is proved there that a semimodular lattice of full
binomial type is one of Example 9.1, 9.2, 9.3.
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ExAMPLE 9.4. Affine geometries. The lattice of finite affine subspaces of an
affine space with q points on a line is an upper semimodular (but not modular
unless there is only one line) lattice of triangular type with 7'(0) = q¢ — 1,
T(n) = q,n > 0, when (n, n + 2) is a type.

ExamPLE 9.5. Various ways of putting together and taking apart ordered
sets of triangular type give other ordered sets of triangular type. The simplest
examples are (a) segments, (b) identifying all elements above or below a certain
level to a single element (called upper or lower truncation), and (c) identifying
the top of an ordered set of triangular type with 1 with the bottom of an ordered
set of triangular type. All of these operations except lower truncation preserve
upper semimodularity.

ExamPLE 9.6. Block designs. Let L be a geometric lattice of triangular type
of height 3. If we regard the atoms of L as objects and the co-atoms as blocks
containing the atoms they cover, then L determines a balanced incomplete
block design with parameters

v=1+T©0) + T(0O)T(1) = 1 — B(1, 3) + B(0, 2)B(1, 3),

(9.16)

Conversely, any balanced incomplete blocks design with 4 = 1 determines a
geometric lattice of triangular type of height 3. Thus, geometric lattices of
triangular type can be regarded as generalizations of 4 = 1 block designs.
Proposition 9.3 is then the generalization of the well-known relations bk = vr
and r(k — 1) = v — 1 holding in any block design with 4 = 1 (see Hall, [30],
Chapter 10).

ExampLE 9.7. Miscellaneous other examples and a method for classifying
them, can be found in the paper of Edmonds, Murty, and Young [20].
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On the Foundations of Combinatorial Theory. VilI:
Symmetric Functions through the Theory of
Distribution and Occupancy”

By Peter Doubilet
(Communicated by G.-C. Rota)

1. Introduction

Our purpose in this paper is to derive many of the known results about symmetric
functions, and a few new ones, using techniques involving the lattice of partitions
of a set. There are a number of advantages to be obtained from this approach. The
results come out in a more simple and elegant manner than in more standard
approaches, thereby giving, it is hoped, more insight into their meaning. It also
gives new interpretations to various formulas and statements. One further possi-
bility is that the present line of attack could be extended to deal with a class of
symmetric functions not discussed here, the so-called Schur functions, and in doing
this develop the theory of the linear representations of the symmetric group in a
very beautiful manner.

In Section 3 we develop the tools to study the monomial symmetric functions,
the elementary symmetric functions, and the power sum symmetric functions.
Among the results we prove is what is sometimes called the fundamental theorem of
symmetric functions, namely that the elementary symmetric functions form a
basis for the vector space of all symmetric functions. The standard proof of this
fact 1s an induction argument, but we prove it neatly here by M&bius inversion. We
also show that the matrix of coefficients expressing the elementary symmetric
functions in terms of the monomial symmetric functions is symmetric.

In Section 4 we extend our techniques to allow us to deal with the complete
homogeneous symmetric functions and a new type of symmetric functions which
are ‘“‘dual” to the monomial symmetric functions in the same sense that the
elementary symmetric functions are dual to the homogeneous symmetric functions.
One of the results proved in this section is one which we believe to be new, namely
that under the isometry 8 of the space of symmetric functions introduced by
Philip Hall, every monomial in the image under & of a monomial symmetric
function appears with the same sign, either positive or negative.

Noting that many of the results obtained in Sections 3 and 4 hold in a stronger
form than the statements about symmetric functions they imply, in Section 5 we

* This work appears as part of the author’s doctoral thesis.
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378 Peter Doubilet

make this precise and thereby set up a system in which we, in the next two sections,
study the inner product of Philip Hall and the Kronecker inner product, which
arises from the theory of representations of the symmetric group. One of the
results obtained can be interpreted to yield an interesting fact about permutation
representations of S, but this interpretation will not be discussed here.

We would like to thank Dr. Gian-Carlo Rota, whose idea it was to study sym-
metric functions from the present point of view, for his many helpful suggestions
and discussions on the topic.

2. Terminology and assumed results

We assume the reader to have a certain familiarity with symmetric functions, at
least to the extent of knowing the definitions of the following basic symmetric
functions:

(1) The monomial symmetric functions, denoted k.

(i) The elementary symmetric functions a;.
(it1) The complete homogeneous symmetric functions 4;.
(iv) The power sum symmetric functions s;.

All symmetric functions dealt with have coefficients in Q (the field of rational
numbers), involve infinitely many indeterminates x,, x,,..., and are of a fixed
homogeneous degree n. The vector space (over Q) of symmetric functions of
degree nis denoted &, or simply % The relevant definitions are to be found in [10]
or [19]

Along with the above we assume a knowledge of the definitions and notations
used in [19] for partitions of an integer n. A number of these notations are so
important that we shall list them here:

(1) A — ndenotes that A is a partition of n.
(i) A =(4;,4;5,...,4,)0r 4 = (41, 4,,...) means that the parts of 4 are 4, 4,,
... in non-increasing order, and 1, > 0.
(iif) A = (1m27...), denotes the partition of n with r, parts equal to 1, r, parts
equal to 2, etc.

We also use the following notations:

(1) A= A, 14,0 .. = 11212 if A = (4,, 4,,...) = (17272..)
() |4 = rylry). . if A= (17220
(lll) signi = (_1)r2+2r3+3r4+....

We further assume the reader to be familiar with the notions of (finite) partially
ordered sets (posets) and lattices, of segments and direct products of these, and of
Mobius inversion over posets (see [18]).

In this paper we deal with the lattice [] (D) of partitions of a finite set D (also
denoted [, if D has n elements). A partition 7 of D is a family of disjoint subsets
B,,B,,...,B,, called blocks, whose union is D. The set of partitions of D is
ordered by putting ¢ < = if every block of ¢ is contained in a block of 7. It is easily
verified that this is a partial ordering relation and that [ | (D) is in fact a lattice. We
assume knowledge of the result thatif ¢ < min [ [, the segment [, 7] is isomorphic
to the direct product of r, copies of [ [, , #, copies of [, etc., where r; is the number
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of blocks of 7 which are composed of i blocks of 4, and that u(s, ) = l_[i(i — N
To the segment [o, 7] we assign the partition A(o, 7) = (1712"2...), (A(o, &) — m for
some m < n), called the type of [o, 7], and to n € [ |, we assign the partition i(r) =
A(0, ) of n (where 0 is the minimal element in [ [ (D), namely the partition whose
blocks are the one point subsets of D), called the type of n. If A(n) = u we sometimes
write 7€ . To [0, ] we assign the number sign (¢, 7) = (—1)2*2"3* = sign A, 71)
and to n we assign the number sign = = sign (0, n). It is not difficult to see that
sign (o, m) = (sign o)(sign n) and that w(e, n) = sign (o, n) - |u(o, 7)|. For more
details and some proofs see [2], [6], or [18].

It is useful to know a few simple facts about the symmetric group §,,, the group of
permutations of the set {1, 2,..., n}. Any permutation can be written as a product
of disjoint cycles (see [3], page 133, for definitions), and hence to each permutation
¢ in §, we can associate the partition A = (1722, ..) of n, where r; is the number of
cycles oflength iin the cycle decomposition of ¢. Ais called the type of 6. The number
of elements of S, of type 4, denoted [%), is easily computed to be

n!
1”1‘1 !2’2"2! e

3. The functions &, a,, and S,

Let D be a set with n elements, X = {x;,x,,...}, and let F = {f:D — X}. For
feF, its generating function y(f) is [[,_, f(d), ie, [, x ™). For TcF,
the generating function y(T)is ), rer () To any f e F, we assign a partition ker f
of D, by putting d, and d, in the same block of ker f'if f(d,) = f(d,). ker f is called
the kernel of f.

We now define three types of subsets of F. If n e [ [ (D), let

A, = {feFkerf = n} (1)
I, ={feFlker f > n} @
o, = {feFlkerf A n=0} 3)
Let k, = Y(H), s, = WTo), @, = y(<4,). We now compute k,, s,, @,.
THEOREM 1.
Q) ky = [A(m)K ;) (4)

where k, is the monomial symmetric function.

(i) s, = Sy )

(iii) a, = A(m)'a;,. (6)
Proof. Let A(m) = (127 -+ = (A, 43,...).
(i) For fe A, 1e ker f = m, itis clear that y(f) = x}'x}? - - - for some choice of
distinct indices i, , i, .. ..
Further, each such monomial can arise from r, !r,!--- functions f e .%,.
Therefore k, = y(A#) = rylry! .k = [k,
(i) 7. = {feFlker f = n} = {f€F|fis a constant on blocks of n}.
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WT) = ¥ W)= Y wfBSB)-

JSeTn feIx

= Y WSIBONS1By)- -
R

=11 ([:;X v(f))

o (IR
i

- S).(TC)'

(ii)) o/, = {fe Flker f A m =0} = {f € F|fis 1-1 on the blocks of n}
Wl = X 9= 2 WS BWSIBy). ..

fédn fedft

= Y WfIBy(fIBy)...

JeF:
[1B;is 1-1 ¥

=11 X v(f))-
ey

Now,

Y WD
E

is the sum of monomials of |Bj distinct terms, and each such monomial can arise

from |B|! functions f:B — X. Therefore

Z W) = |B|!a|8|~
E
Therefore a, = y(o) = |B,|!IB,l|!--- a5,a5, - - = Aln)!a;,.

By formulas (1), (2), and (3), it follows that

SR= de'

az=n

a, = Z ka

oo AT=0

(7
(8)

Formula (7) can be inverted by Mdbius inversion, as can (8) by the following lemma.

LEMMA. Let L be a finite lattice on which (0, x) # 0 for all x in L, where p is the

Mobius function on L. Then

fW= Y ghegd= ")y 0

y:yAx=0 yax:u(o’ y)zsy
Proof : Let
fx)= Y

y:y Ax=0
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Then

f (X)=Z( 2. MO, 2))g(y)

y Z<X Ay

= 3 w0,2) ) gy

zZEXx y=2z

By Mébius inversion of (10),
wo,x) 3 gy = 3 wz x)f(2)

y2x zgx

Thus

Y #0) = 5 ¥ a0/

since u(0, x) # 0, so by Mo&bius inversion again,

e H(xp)
g(x) = y};x 20.3) Ey u(z, Y f(2)

The converse is proved by reversing the steps.

THEOREM 2.
() ko= Y ui, s,
(i) k= 3 220 e, 0)a,

[ - 4 #(Os O') I<0

Proof :
(i) follows from (7) by Mébius inversion
(ii) follows from (8) and the preceding lemma.

331

(10}

(11)

(12)

(13)

(14)

COROLLARY. {s,} and {a,} are bases for %, the vector space of symmetric functions

of homogeneous degree n.

Proof . {k;} is a basis for %, and Theorem 2 shows that {s,} and {a,} generate
4. Since all three sets have the same number of elements (namely, the number of

partitions of n), the result follows.

We now determine the relationship between the elementary and the power sum

symmetric functions.

THEOREM 3.

(i) a, = Y 10, 0)s,

(i1) ! Y o, m)a

Sy = ’ a

wo, m) 2"

(=1 !

(i) 1 + > a," = exp ) s,t"
nz1 n>1 n
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(i) Apply Mébius inversion to (15)
(i) Follows directly from (i) and the corollary to Theorem 4 in [6], since
(0, o)s, 1s a multiplicative function of & (in the sense of [6]).
Waring’s formula follows from Theorem 3 if we put # = 1 (the maximum element
in [ ],) in (16) using the fact (proved in [6]) that the number of ne [], of type

n
A= (1m272...), which we will denote s is equal to

n! n!
1V 12102, AN4

If we generalize the formula for @, in (15) and consider the functions k;, , =
Y ete.n T 0)3, it is not difficult to verify that ki, = )., ... K, and that k, ,; is
the product [ ], k,,, where the product is over the blocks B of = and where o is the
partition of B whose blocks are those blocks of ¢ contained in B. We can use this
to express the product of monomial symmetric functions as a linear combination
of any of the symmetric functions discussed here.

We now prove a well-known result concerning the elementary symmetric func-
tions.

THEOREM 4. Let a, = z# cik,- Thec;, = c,;-
Proof : By (8) and Theorem 1, the coefficient of {ulk, in Ala; is Zaeu oo,a A\ n)

where 7 is some fixed partition of type A. Thus the coefficient of k, in a, is

I | 1
% Y 80,0 A m) = l'%ﬂ Y 80,6 A m)
ogEn GER,TEA
A

_ Al

n!

Y 80,0 A7)

gcp, el

which is symmetric in A and u.

4. The functions 4, and f;

We now generalize the notions introduced at the beginning of Section 3 in a way
that will allow us to obtain the complete homogeneous symmetric functions h,.
Consider the domain set D to be a set of “balls”,and x,, x,, ... to be “boxes”. By a
placing p we mean an arrangement of the balls in the boxes in which the balls in
each box may be placed in some configuration. The kernel ker p is the partition
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ne [ [ (D) such that d, and d, are in the same block of = if they are in the same box.
The generating function y(p) of a placing p is the monomial [ [ x; (number of balls
in x;), or equivalently y(p) = [ | 4op(box in which d lies). The generating function y(P)
of a set P of placings is ), ¥(p).

The notion of a placing is a generalization of a function, since to a function
f:D — X we can associate the placing f in which ball d is in box f(d), and the balls
in each box are in no special configuration. (Actually placings are similar to reluc-
tant functions, a generalization of functions defined in [15]). It is important to note
that ker f = ker fand y(f) = y(f). If p is a placing, by the “underlying function”
of p we mean the mapping f:D — X given by: f(d) = x; if ball 4 is in box x; in the
placing p.

Using this terminology, the definitions at the beginning of Section 3 can be
restated as follows:

A, = {placings p with no configuration and kernel =}
= {ways of placing the blocks of 7 into distinct boxes}

o, = {placings p with no configuration such that no two balls from the same
block of = go into the same box}

7, = {placings p with no configuration such that balls from the same block of =
go into the same box}.

We now define two new families :

5, = {placings p such that within each box the balls from the same block of
are linearly ordered.}.

F, = {ways of placing the blocks of n into the boxes and within each box
linearly ordering the blocks appearing}.

Put h, = y(3¢,), f, = y(#,). We now determine h,.

THEOREM 5.
h, = Am)th,, (18)

Proof: Since a placing p € £, can be obtained by first placing the balls from B,
into the boxes and linearly ordering within each box, then placing the balls from B,
and linearly ordering again within each box (independently of how the balls from
B, are ordered), etc. (where B, , B,, ... are the blocks of = in some order), it follows
that i, is the product [ [,,.... 5 7(#3), where #5 is the set of placings of the balls from
B into the boxes and linearly ordering them within each box.

In p(#%), each monomial x!x}? - - - of degree |B| arises |B|! times, since there is a
one-one correspondence between {p e H#ly(p) = x!!xi2---} and linear orderings
of B, namely to each such placing associate the linear ordering obtained by taking
first the balls in x;, in the given order, then those in x;,, and so on.

Hence

W#p) = |B|!hp, s0 WH#7) = |By|![By}!- - -hig g, - -

Le.,
he= A1) h ).

The relationship between the h’s and the k’s is given by the following.
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384 Peter Doubilet

THEOREM 6.
h, =3 Mo A m)lk,. (19)

Proof : For each function f:D — X with kernel g, the number of pe #, with
underlying function f is the number of ways of putting balls D in boxes X as
prescribed by f and then linearly ordering within each box the elements from the
same block of =, i.e., the number of ways of independently linearly ordering the
elements within each block of ¢ A n. This number is just A(¢ A =)!. Since this
depends only on ¢ (for fixed =) and not on f, we have

he =Y Mo A m)tk,.

COROLLARY. If hy = 3 d; k,. thend,, = d,,.

Proof : same as the proof of Theorem 4, replacing the function §(0, ¢ A n) with
Mo A m)!, both of which are symmetric in ¢ and .
Formula (19) can be better dealt with using the following result.

LEMMA.

Y lulr, o) = A, m)! (20)

oelt,w)

Proof. Let
fmm) =} |y o)l

oelr,m]

It i1s clear that f(r,n) = Hi (Zﬂemm)l,u(O, o)) where B,, B,,... are the relative
blocks of [z, n]. Hence it suffices to show that Z.,Enn u(0, )] = n! But

2 w0,0)| = ¥ (2)0!"1!'2-.-(1' — e

OEN Arn
n!
AZ,, 17 122,

= ) (# of permutations ¢ in the symmetric group S, of type 1)

Arn
= |S,|] (where |A| = number of elements in A4)
= n!

Note: The lemma also follows easily from the results on the lattice of partitions in

[6].

We now obtain the relationship between the h’s and the k’s, a’s, and s’s.

THEOREM 7.

N v Mmo)

0 k. = g |0, o) ; (. o, @D
(ii) h, = Y, 110, 0)ls, (22)

gL
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(iii) s, = i (0 Y agn w(o, m)h, (23)
(iv) a, = Y (signo)d(s, n)'h, (24)
W) he = Y (sign a)(, 0)'a, (25)
(i) 1L+ ) hy" = exp( ¥ %snt"). (26)
Proof -

(i) h, =) Mo A m)k,

=;(ZZWMﬂ0h

T<g AR

= Z [4(0, 7} Z ka

T<T o221

Invert twice to obtain (21). :
(i) We showed in (i) that b, = 3 _ 1u(0, 7)) >, k,, and since Y __ k, = s,
the result follows.
(iii) Apply M&bius inversion to (ii).
(V) a, = Y w0, 0)s,

Z (0 ” Z u(t, o)h,
= ) (signo) z wt, o)h,
= Z( Z (sign o)u(r, cr))ht
t<n yoe[r,x]

3 (signr)( > lﬂ(f,a)l)ht
t<m gs[r,n]

= Y (signt)A(z, M)A,

Ts”n

(v) Proved in the same way as (iv).
{vi) Follows from (ii) and the corollary to theorem 4 in [6].

COROLLARY 1. {h,} is a basis for ..

COROLLARY 2. The mapping 0:%, — &, given by 8(a;) = h, satisfies
(i) 0 is an involution, i.e., 6° = I.
(1) The s;’s are the eigenvectors of 8, with 0(s;) = (sign 1) - s,.

Proof :
(i) This is equivalent to showing that if a;, = Z# c,,h, then by = Z# c;.4,. But
this follows from (iv) and (v} of Theorem 7.
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(1) Let z€ A. Then

1
Y. o, ma,

O(s2) = O(s,) = 0 0,7 2

1
= 0 Y (o, m)h,

1
(0, &, 1o ke

= (sign m)s,

=signn

= (s1gn A)s,.

It is now time to determine what f, = o(#,) 1s. If pe %,, then clearly ker p > 7.
For 7 > n and f:D — X with kernel 1, the number of pe %, with underlying
function fis the number of ways of placing the blocks of « in the boxes as prescribed
by f (which makes sense since ker f > n) and then linearly ordering the blocks in

each box. But the number of blocks of 7 in the various boxes is 4,,4,,...,4,,
where A(m,7) = (4;,4;,...,4,). Hence the number of pe %, with underlying
function fis A, !4,!... 4,1 = A(m, 7)!. Thus :

fo= 2 M=, )k, (27)
Hence,

fo= T MmOk,

t2n

£ 2 wnol,
t2n \oegln,t]
> =, )l 2, k.

Il

= ) lulm@, o)ls,. (28)
ozn

Thus

Ok,

6| X wlm, 6)8,)

azn

= Y =, o)(sign o)s,

a>T

= (signm) ), |u(m, o)ls,

axn
= (sign n)fn'
Thus we have proved that the f,’s are the images under 8 of the k’s. Defining
fi = 1/|A} f, (where n & A), which makes sense since y( f,,) depends only on the type of
7, we have proved the following theorem.
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THEOREM 8.
(1) 8(k;) = (sign A) f;

(i) fr=Y,..Mm )k,

(it)) f, =), .. lum o)ls,.

COROLLARY. I'n the image of k, under 0, all monomials appearing have coefficients
of the same sign, namely the sign of A.

Most of the relationships among the k. ’s, s,.’s, a,’s, h,’s, and f,’s have been stated
by this point. All others (for example the 4’s in terms of the f’s) can easily be
obtained from these, and are listed in Appendix I.

5. The vector space Z

It is interesting to note that for most of the results proved so far, no use is made of
the fact that k., a,, etc. are really symmetric functions and hence that k, = k, for
n, o of the same type. For example, not only is the matrix (c;,) given by a, =
Zu ¢;,k, symmetric, but so is the matrix ¢, givenby a, = ¥ ¢, k,, namely ¢, =
0(0, m A o). Another example is the fact that 0(s,) = (sign n)s,, which implies that
f(s;) = (sign A)s;, but which is a stronger result (for example, if we showed that
6(s,) = H(sign o)s, + (sign 7)s,) with 7, @, and 7 all of type 4, it would follow that
0(s;) = (sign A)s;).
These considerations lead us to define a vector space &, the vector space over 0

freely generated by the symbols {k|me[],}. We then define elements a,, §,, A,
f., in Z by
a,= Y Kk, (29)
ag:g Ar=0
S.= Y k, (30)
(=23
h, =Y Ao A m)'k, (31)
= ¥ Az, 0)'k,. (32)

a>T

Since all other formulas obtained in the previous two sections and in Appendix 1
can be obtained from these by Mobius inversion and similar techniques, they all
hold in & Hence {d,), {5,}, {h ),and {f,} are bases of Z Also, if we define the map-
ping 0:# — & by 8a,) = h,, using formulas (24), (25), and the same method as in
the proof of part (ii) of Corollary 2 to Theorem 7, it follows that 8 is an involution
with eigenvectors §,.

Summarizing the results obtained so far, we have

THEOREM 9.
() {@,}, {h}, (3.}, and { f,} are bases of F
(ii) The matrices (c,,) and (d,,) given by d, = ¥, c,.k, and h, = Y d .k, are
symmetric.
(iii) 8 is an involution
(iv) 8@,) = (sign n)3,
(v) 8(k,) = (sign ) f.
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Now we define a mapping ¢ P - S by dlk,) = k(= An)k 1m)- BY the results
of the previous two sections, we have

THEOREM 10. ¢(d,) = a,, ¢(3,) = s,, $(h) = h, A f,) = £

The interesting fact of this section, and one that will be useful in the next two
sections is that there is a map ¢*:.%¥ — & such that $¢* = I = identity map on ¥
To see this, we define elements K, 4,,5,,A,,and F, in Z by K, =Y __ k,,
A=Y, d,, etc, and elements K;,A4,,S;,H,;, and F, in K; =Y __ k =

ned R
!

(Z)M]k,l (where we recall that (:) = )LTnMT is the number of ne[] of type ),

n ~ ~
A; = Znel a, = {A)A!al, etc. Let ¢*:¥ > & be defined by ¢*(K,) = K;, and

let %" be the image under ¢* of & (i.e., “¥” is the subspace of & spanned by
{K,}). We then have the following theorem.

THEOREM 11. N

83 A}, 3., 31, F,areall in “%”.
(i) $*(4) = 4., 4%, = 5, etc.
(i) ¢po* = I = identity map on &,

Proof "

0A-Fa-3( 5 &

nei ned \o:o An=0

=Y (#ofneist.o An= O)k, -

But clearly (# of n € 4 s.t. ¢ A n = 0) depends-only on the type p of o (for
fixed A), so call this number ¢,,.
Then A, = 3, c3(Ype, ko) = 2, cuiKs
Therefore A, € “9”
Similarly for Sl, H,,and F,.
(i) 4, = Y, ¢, K, with ¢;, as above.
Therefore $(A) = > (K, = DIRIW O
Therefore 4, = 3 ¢;,K,.
Applying ¢*, d’*(Az) =2, cud*K) =Y e, K, = 4.
Similarly for §,, f,, and F,.
(iii) ¢p*(K)) = ¢(K,) = K, so the result holds since {K,} is a basis for &

6. Hall’s inner product

In this section we define an inner product on & in such a way that ¢*: & — &
is an isometry with respect to the inner product on & defined by Philip Hall
(see [10]). Again in this section, many familiar results holding for Hall’s inner
product hold in their stronger form for &%, and also certain computations of
inner products in & can be facilitated by translating them, via ¢*, to computations
in Z which are usually simpler.

Hall’s inner product on & is defined by taking (k;, k,) = N i (and extending by
bilinearity). We define an inner product on # by putting (h,,, k,)=n's_,. The
notation ( , ) for both inner products is the same, but this should cause no confusion.
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A number of important results about this inner product are given by the following
theorem.

THEOREM 12.

(i) This inner product is symmetric, i.e., (f,8) = &,f) for f, 8 e?.

(i) ¢*: ¥ — & is an isometry, i.e., (d*(f), ¢*(2) = ([, g) for f,ge &.

(iii} (5, 5,) = 0.5 - n/|u(0, m)).

(iv) 8:F - & is an isometry.

Proof :

(i) Follows from Theorem 9 (ii), together with the following easily proved fact
from linear algebra: If V is any vector space, {v;} and {w,} two bases such
that v, = Z c;Wj, then the inner (,) on V defined by (v;, w;) = J;; is sym-
metric if and only if the matrix (c;;) is symmetric. '

(i) It suffices to show that (¢*(b,), qS*(b )) = (b;, b;) for some pair of bases
{b,}, {3} of Z. Now,

(¢*(H,), o*K,) = (A, Ry = | ¥ by X fc})

TEA

=3 O.,n!

neld
oEu

=nlé,, - (# of mel)

=n!(n)5,1.
A ]

n n
(H,,K,) = (( ))L!h,u ( lulku)
A 1

Ap A ﬂ, :u
n 2
51#( ) A4
A
n\ n!

n
= d,, 3 -n!

Therefore (¢*(H,), $*(K,) = (H,, K,,).

And

. 1 ~ -~
(iit) (55 3,) = Iu(O A ; T, mh,, ; kv)
- i 5wl )
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n!
= T,T
|#(0= Tt)l teén] .u( )

n!

~ 7o w0, m)|

(iv) (0(3,), 8(3,) = ((sign n)3,, (sign 0)3,)
= (sign 7)(sign o)(5,, 5,)
= (5,,§8,) (since (5,,3,) =0if n # o).

COROLLARY :
(i) Hall's inner product on & is symmetric
(il) (51,8,) = 0,,1Mr 12r,! ..., where 4 = (17122 .- ).
(i) 0:& — & is an isometry.
Proof:
(@) (f, ) = (d*() d*(g) = (0*(2), *(/)) = (&.f)

(i) (51, 5,) = 71—,1(81, 5,) = —n—l-n—(&, 3)
(l)(u) (A)(u)
p— 1 o o
e
A \p

1
= 51;1__* Z (§1r9§1|:)

(n)z neA
A

1 n n!
=5, ——. . h A
w (n) (/1) 0, ) (Where 74

A

=5Au.(

n!
n
,1) |10, 7)|
=0, 1"r 12,0 .
(i) (B(s;), B(s,)) = ((sign d)s, (sign p)s,)
= (sign A)(sign p)(s;,3,)
= (s;,s,) (since (s;,s,) = 0if 4 # p)

All inner products involving the members of the bases studied so far are easily
calculated, and are listed in Appendix 2.
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7. The Kronecker inner product

The Kronecker inner product on & is a mapping from ¥ x . — & which reflects
the Kronecker inner product of representations of S, (the symmetric group of
degree n) in the same way as Hall’s inner product mirrors the inner product of
representations. Since we are assuming no knowledge of group theory, we can
define the Kronecker inner product, which we denote [, ], as follows:

1 n 1 n 1
o ots o)t e o

where ¢;,d; € Q and

h n! n 0 . ,
Al 1t et O, ) (for me A).

This mapping is bilinear, and it is easily verified that

n!

[Si.a S;;] = 6}.;,1 ‘T 3
n
i

In &Z, we define [,]: # x & — & to be the bilinear map with

Si = (5;,5,)5; (34)

n!

[§m §a] = (Er:, §a) : §7r = 57:0 ’ _Eu'
| (0, )|
Parallelling Theorem 11, we have

THEOREM 13 : _ 5

(@) [,] is symmetric on &, i.e., & with product given by [,] is a commutative
algebra. N

(i) ¢*(f,g] = [¢*(f), d*(©)]) for f,ge L, ie, d*: ¥ — & is an algebra homo-
morphism.

(ii)) [f,g] = $L&*(f), $*(2)] for f,ge &. o

(iv) 6:F — & satisfies [0(1),08)] = [[, 8] for f.ge S, ie, 8 is an algebra
homomorphism.

Proof:

(1) [3x, 5] = (34, 3,)3,
= (§,,5,)85, (since (5,,5,) = 01if n # o)
= (55,505,
= [5,,5,]

The result follows by bilinearity.
(1) It suffices, by bilinearity, to show that

@*[S.. 5.1 = [9%(S.), *(S;
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Now
nyin
$*[S,, 5] = "5*((/1) (p) ")
ol 7
= ¢*(9d,, —s, (for ne d)
* (e
o 110,y
!
= * 51 L_S
¢ ( *11(0, )| *)
!
=5, — 3%
w0
and

[6*(S2), 6*(S,)] =[S}, 8,]
= [Z gﬂ’ Z 50]

red aeu

= Y [B55]

red, o

= 6/1;1 Z (gn:& gu)§n
ned
n!
=0, —— Y5,
| (0, m) ,;Zi

n!

= 5lﬂm§l (for e A),

which proves (ii).
(1ii) Apply ¢ to (ii) and use the fact that ¢pP* = I.
(iv) (85). 6(3,)) = [(sign m)5,., (sign 0)3,] = (sign m)(sign o)[5,, 5,] = [,.5,],
since [§,,5,] = 0if n # o.
Part (iii) of the preceding theorem can be used to translate computations of the
Kronecker inner product in & to a computation in & which is usually easier. As
an example, let us compute [h;, h,]:

First,
(Ans Bp] = [Z (0, 7)I5,, Y 1O, V)|§v]
= Z |[.l(0, T)I ) I,U(O, V)l [§1:’ gv]
= ¥ |u0,9%[5,,5] (since [5,5] =0 ift # v)
= T 0,2 —"s
I L R T
=n! Y (w0, 75,
TSN A
= n!ﬁt Aag
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Thus,

(has b)) =

_ 1Al

393

1
P u! ’

1

_ 1Ald
(n!)

d[$*(H,), ¢*(H )]

Z d)( nl\a)

ned,oeu

Y, M A )y e

(n ') nel,gen

This shows that [h;, h,] is a positive linear combination of 4,’s, which can be
interpreted to say something interesting about permutation representations of S,.

Also, since

[an’&a] = [9(5,,), g(aa)] = [Ern Ea] = n!ﬁn Ao

it follows that [a;, a,] is a positive linear combination of h,’s, again a fact of interest.
A complete list of Kronecker products of the various bases is to be found in

Appendix 1: Connections between bases

Appendix 3.

Los,= ) k,

2a,= Y k,
gig An=0

3. a,= Y u0,0)s,

4. s, = Y sign(n, o)/,
S.h,= Y (signa)f,
cia An=0
6. hy =} |u(0,0)ls,

7. h, =

=) Am A o)k,

8. a, =) (signa)i(n A o)!f,

-4

k= 3 ulrok,

oo £ ‘;i’éz 3 2 e
T u(O

-3 I.u(n, o)is,
=X 1758 1 Z Mo
= )|,§, K, A,
o= E,,'ﬁ((ﬁ 3 2 Ho
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394 Peter Doubilet

9. k, = Y sign(m, o)A(r, o)! f, fo= 3 Mma)lk,

G2n o2n

10. a, = ). (sign o)A(o, m)'h, h, = Y, (sign 6)A(o, m)la,

agsn ag<n

Appendix 2: The inner product on &
1. (h,, k)= n'd,,

n!

2 (5,) =0y —
| (0, )|

- 1 foe<n
3. (h,,5,) = n'o, n), where {(o, n) = i
0 ifnot

4. (a,,$,) = nl(sign 0){(o, 7)
5. (a,,a,) = n'Mo A n)!
. n' faANe=0
6. (d, h,) = .
0 ifnAc#0

wr, t)ulo, T)
.tZTISVd !H(O, T)l

8. (d,,k,) = n'(sign 0)A(a, n)!¢(a, 7)
9. (h,, h,) = nlAc A n)!
s, M o)
10. (kns so) = n! |u(0’ G')‘C(n, 6)

1. (fy, k) = n! >ZV %‘ﬁ’ﬂ

12. (., ) = (sign n)(sign o)n! ng ,, ﬂ’ru%”i‘)”—”
13. (f,, h,) = n'An, 6)'(n, 6)

u(m, o)
|40, o)|

14. (f,,3,) = (sign 7)(sign o)n! m, o)

15. (f,,d,) = n!(sign m)d,,

Appendix 3: The Kronecker inner product on &

L[S n! 5

- ST[’SO' = Tto‘sT[
|10, m)]

2. [h,,5,] = nle,n),

3. [a,,S§,] = n'(sign o){(o, 1),
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11.

12.

13.

14.

9.

10.
11.

12.
13.

X © N R
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1f5,] = nt AN oy,

(0, o))

5] = A% oo

e lu(0,0) 77

[~n’ ~a] = n!ﬁn/\a

[an’&a] = nrﬁn Ao

[&n’ ~a] = n!éiﬂ: Ao

[kps Byl = n! Y p(m, 1)3,
te[n,a])

b =n! Y Iulm, 713,
te[n,o]

[féu>aa] - n!(Sign 7I) Z Iﬂ(n’ T)Igt

re[m,0)
il=nl Y ulr, )l 1),
tznVo |ﬂ(0,T)' !

|pu(, 7)o, T)|
— n!
UeJd=m' X o0 =

: : m, Do, 1)
R I T
(frd,] = nlsignn) Y p(m, 1)3,

teln,a]
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FINITE OPERATOR CALCULUS 685

1. INTRODUCTION

The so-called Heaviside calculus, invented by Boole and developed without
interruption to our day, is the mainspring of much contemporary work in
operator theory and harmonic analysis. The spectacular analytic develop-
ments in these fields in the last fifty years, coupled with current grandiose
plans for unification, cannot, however, be said to have been matched by
equal strides in the computational and algorithmic aspects. The algebraic
aspects of the theory of special functions have not significantly changed since
the nineteenth century. As a result, a deep cleavage is now apparent between
the breadth of theory and the clumsiness of special cases.

In this work we reduce to a minimum the analytic apparatus of harmonic
analysis on the line, by considering only polynomials. OQur objective is to
present a unified theory of special polynomials by exploiting to the hilt the
duality between x and d/dx.

The main technique adopted here is a rigorous version—perhaps the
first one—of the so-called ‘‘umbral calculus” or ‘‘symbolic calculus,”
widely used in the past century. This gives an effective technique for express-
ing a set of polynomials in terms of another. We have throughout emphasized
operator methods at the expense of generating functions, which were almost
exclusively used in the past. No doubt several results given later could be
rephrased in terms of generating functions, but only at the expense of con-
ceptual clarity. Umbral methods, we hope to show, are operators in disguise.
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686 ROTA, KAHANER, AND ODLYZKO

The three kinds of polynomial sequences studied are:

(a) sequences of binomial type, that is, sequences of polynomials p,(x)
satisfying the identities

n
pols +5) = 3, (3) 24(9) pus(y)-
k=0

These sequences were studied in the third part of the series (referred to as
III), but we repeat the main results here, both in order to render this work
self-contained and in order to give some results in greater generality.

(b) Sheffer sets, that is, sequences s,(x) of polynomials satisfying the
identities

sul® +9) = ¥ () 54(5) Pasl3),

k=0

where p,(x) is a given sequence of binomial type.

(c) Cross-sequences, namely doubly indexed sequences plM{(x) of
polynomials, satisfying

P +9) = ¥ ;) 20 PE).

k=0

This last theory is only touched upon here, and remains largely undeveloped.

One of the unexpected consequences of the present algebraic approach
is that the theory of eigenfunction expansions for polynomials can be rendered
purely algebraic. This gives a meaning to eigenfunction expansions for
Hermite polynomials of arbitrary variance and for Laguerre polynomials of
arbitrary o (except a negative integer, where the gamma function is not
defined).

A number of examples, each of which includes, we would like to hope, a
little novelty, is given at the end, both as an illustration of the theory and to
show how much of the past literature on special polynomials is the iteration
of a few basic principles. We have, however, resisted the temptation of
developing a theory of combinatorial identities as an application, outside of a
few hints.

2. Basic POLYNOMIALS

We shall be concerned with the algebra (over a field of characteristic zero)
of all polynomials p(x) in one variable, to be denoted P.

By a polynomial sequence we shall denote a sequence of polynomials p,(x),
1 =0, 1, 2,..., where p,(x) is exactly of degree ¢ for all z.
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A polynomial sequence is said to be of binomial type if it satisfies the infinite
sequence of identities

Palx F3) = 3, (Z) Pi(%) pu_i( ) n=20,1,2,..

k=0

The simplest sequence of binomial type is of course x%, but we give some
nontrivial examples. Other examples are found in III.

The present theory revolves around the interplay between the algebra of
polynomials and another algebra, to be presently introduced and to bedenoted
by Z, namely, the algebra of shift-invariant operators. All operators we consider
are, of course, tacitly assumed to be kinear. We denote the action of an operator
T on the polynomial p(x) by Tp(x). This notation is not, strictly speaking,
correct; a correct version is (7) (¥). However, our notational license results
in greater readability.

The most important shift-invariant operators are the shift operators,
written E°, that is, E*p(x) == p(x + a). Other examples are given later.

An operator T which commutes with all shift operators is called a shift-
invariant operator. In symbols, TE® = E°T, for all real 4 in the field.

We define a delta operator, usually denoted by the letter O, as a shift-
invariant operator for which Qx is a nonzero constant.

Delta operators possess many of the properties of the derivative operator,
as we will show. In fact our first objective is to exploit the analogy between
delta operators and the ordinary derivative,

PropPOSITION 1. IfQ is a delta operator, then Qa = O for every constant a.
Proof. Since Q is shift invariant, we have
QF°x = E°Qx.
By the linearity of O,
QFE%x =Q(x + a) =0x + Qa:: ¢ + Qa,
since Ox is equal to some nonzero constant ¢ by definition. But also
E'Qx = E*c = ¢

and so ¢ + Qa ='c. Hence, Qa = 0. Q.E.D.

ProrosiTiON 2. If p(x) is a polynomial of degree n and () is a delta operator,
then Qp(x) is a polynomial of degree n — 1.

254
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688 ROTA, KAHANER, AND ODLYZKO

Proof. It is sufficient to consider the special case p(x) = x™. From the
binomial theorem and the linearity of Q, we have

O +ap =Y (Z) a*Qxn-*,

k=0

Also by the shift-invariance of O
O(x + a)" = QFE%" = E*Qx™ =r(x + a)

say, so that

r(x +a) =Y, (1’:) a*Qxm*,

=0

Setting x = 0, we have expressed the polynomial r(x) as a polynomial in the
parameter a,

@) = ¥ (}) 0¥ sy

k=0

The coefficient of a” is

[an—n]w=0 = [Ql]m=0 =10

by Proposition 1. Further, the coefficient of 4" is

(n f_ 1) [Qxn—n+1], o = n[Qx],_q = nc # 0.

Hence r is of degree n — 1. Q.E.D.

Let Q be a delta operator. A polynomial sequence p,(x) is called the
sequence of basic polynomials for Q if:

(1) polx) =13
(2) p.0) = 0 whenever n > 0;
(3) Qpalx) = npp_(%).
ProPosITION 3. Every delta operator has a unique sequence of basic poly-
nomials.

Proof. Inducing on 7, assume that p;(x) has been defined for 2 <<z to
satisfy the foregoing conditions. We show that p,(x) also exists and is unique.
Indeed, a generic polynomial of degree n can be written in the form

n-1

p(x) = ax" + 3 apy(x), a0
k=0
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Now,

n—1

Op(x) = aQx™ + ];1 - kpp_a(x);

therefore, Qx™ being exactly of degree n — 1, there is a unique choice of the
constants ¢ ,..., €,y , @ for which Op(x) = np,_,(x). This determines p(x)
except for the constant term ¢, , but this is in turn uniquely determined by

the condition p(0) = 0. Q.E.D.

The typical example of a basic polynomial sequence is x*, basic for the
derivative operator D. Others are given later, or can be looked up in III.

Several properties of the polynomial sequence x™ can be generalized to an
arbitrary sequence of basic polynomials. A basic property of x™ is that it is of
binomial type. This turns out to be true for every sequence of basic polyno-
mials and is one of our basic results.

THeOREM 1. (a) If p,(x) is a basic sequence for some delta operator Q,
then it is a sequence of polynomials of binomial type.

(b) If pu(x) is a sequence of polynomials of binomial type, then it is a
basic sequence for some delta operator.

Proof. (a) Iterating property (3) of basic polynomials, we see that
O"pn(x) = (m) pail*),

where
M)y =mnn—1)(m—k+4+ 1)
And, hence, for & = n,

[ann(x)]m—ﬂo = nl,
while for & < n,

[Qkpn(x)]aczo == 0.

Thus, we may trivially express p,(x) in the form
2 = T 29 106 ().,
k=0 O

Since any polynomial p(x) is a linear combination of the basic polynomials
Pn(x), this expression also holds for all polynomials p(x), that is,

2 = ¥ 28 100,

k=0
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Now suppose p(x) is the polynomial p,(x + ¥) for fixed y. Then

Pl 3) = T, 29 08 (e 1 ).

k=0

But

[O%pnlx + P)aco = [Q¥E"Pa(*)]as
= [EVQ*p ()] emp = [E¥(1) Pril®)]zmp = (M1 Pnie ¥)>

and so

palx +3) = T (1) 24() Pak(5);

k=0

that is, the sequence p,(x) is of binomial type.

(b) Suppose now p,(x) is a sequence of binomial type. Setting y =0
in the binomial identity, we obtain

Puf®) = T () 2x) Punl0)

k=0

= pu(%) Po(0) - 1P, (%) p1(0) 4 -~ .

Since each p,(x) is exactly of degree , it follows that p4(0) = 1 (and, hence,
po(x) = 1) and p,(0) = O for all other 7. Thus. properties (1} and (2) of basic
sequences are satisfied.

We next define a delta operator for which such a sequence p,(x) is the
sequence of basic polynomials. Let O be the operator defined by the property
that Opy(x) =0 and Qp,(x) = np,_,(x) for n == 1. Clearly Ox must be a
nonzero constant. Hence, all that remains to be shown is that Q is shift-

invariant.
We may trivially write the property of being of binomial type in the form

pie 3 = T 2o (),
k=0
and, repeating the device used in (a), this may be extended to all polynomials:
P+ = ¥ 28 iy,
k=0

Now replace p by Op and interchange x and vy on the right—an operation
which leaves the left side invariant—to get

(09) (x -+ 3) = T 25 groapi.

k220
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But
(09) (x + y) = E¥(Qp) (x) = E*Op(x)
and

3 B8P 00 =0 (L 257 0t

k=0

= Q(p(x + ) = QEp(x).
Q.E.D.

3. Thue First ExpansioN THEOREM

We study next the expansion of a shift-invariant operator in terms of a
delta operator and its powers. The difficulties caused by convergence ques-
tions are minimal, and we refuse to discuss them in this paper (but see III).

The following theorem generalizes the Taylor expansion theorem to delta
operators and their basic polynomials.

THeoreM 2 (First Expansion Theorem). Let T be a shift-invariant
operator, and let Q be a delta operator with basic set p,(x). Then

=3

k>0
with
= [Tpx(x}]e—o -

Proof. Since the polynomials p,(x) are of binomial type (Theorem 1),
we may write the binomial formula as in the preceding proof:

Pl +3) = ¥ B gwy (),

k20
Apply T to both sides (regarding x as the variable and y as a parameter) and
get

Tpalx +9) = § 28 0ty (1),
k=0
Once more, by linearity, this expression can be extended to all polynomials p.
After doing this and setting x equal to zero, we can replace y by x and get

Tp(x) = ¥ L2z gy,

k=0

Q.E.D.
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The reader may apply the preceding theorem to derive several of the classical
expansion formulas of numerical analysis. Qur present application will be of a
more theoretical nature:

THeOREM 3. Let Q be a delta operator, and let F be the ring of formal power
series in the variable t over the same field. Then there exists an isomorphism
from F onto the ring 2 of shift-invariant operators, which carries

(g
fy=Y - e ¥ KON
k=0 k=0
Proof. The mapping is clearly linear, and by the first expansion theorem,
it is onto. Therefore, all we have to verify is that the map preserves products.
Let T be the shift-invariant operator corresponding to the formal power
series f(2) and let S be the shift-invariant operator corresponding to

2(t) = tE,
kg(] k‘
We must verify that
n
TSP’n X) [p—p = a bn— 3
(TSpulemo = X, (i) asbos

where p,(x) are the basic polynomials of Q. Now

(75pNomo = [( T 20 ¥ 2200) po()]

k=0 nz0 "’ =0
ab,

=4zzkwwww

k=0 n>20

But p,(0) =0 for » > 0 and py(x) = 1. The only nonzero terms of the
double sum occur when # = r — k. Thus,

[TSPr(x)]x—O = [ Z k|akbr— R)! erpr(x)]

=)

[ ) k|ak == ) r Po(x)]

k=0 x=0

_ (1:) @b, . Q.E.D.

k=0

CoROLLARY 1. A shift-invariant operator T is invertible if and only if
T1#0.
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In the following, we shall write P = p(Q), where P is a shift-invariant
operator and p(2) is a formal power series, to indicate that the operator P
corresponds to the formal power series p(#) under the isomorphism of
Theorem 3.

CoROLLARY 2. An operator Pis a delta operator if and only if it corresponds,
under the isomorphism of Theorem 3, to a formal power series p(t) such that

£(0) = 0 and p'(0) + 0.

Recall that to every formal power series p(¢) such that p(0) =0 and p'(f) 40
there corresponds a unique inverse power series pX(¢). In symbols, if

P(t) = Z % t*,

k=1

then

PO = T D) =1,

k=1

where the sum is well defined, since p~1(0) = 0 and (1)’ (0) 5 0. Similarly
we have p~1(p(t)) = t.

Essentially, the problem we wish to solve in the present paper is the
following: to what “‘operation” in the ring of shift-invariant operators cor-
responds the operation of composition p(g(f)) of power series with ¢(0) = 0,
under the isomorphism theorem? Remarkably, this question does have an
answer in the present context.

Next, we connect some of the preceding results with generating functions.

CoroLLARY 3. Let Q be a delta operator with basic polynomials p,(x), and
let (D) = Q. Let q71(2) be the tnverse formal power series. Then

Z _2"_(_‘76_)_ Ut = % (¥},

!
n=o

Proof. Expand E?in terms of O by the first expansion theorem, The coef-
ficients a,, are p,(a). Hence,

n\2 n — Ja

a formula which can be considered as a generalization of Taylor’s formula,
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and which specializes to several other classical expansions. Now use the
isomorphism theorem with D as the delta operator. We get

a
) pjz(g L glayr — e,
n=0
whence the conclusion, upon setting ¥ = ¢(¢) and a = x. Q.E.D.

This result will be interpreted more explicitly later (see Section 4). Finally,
we note a fact that has already been implicitly used.

CoRrROLLARY 4. Any two shift-invariant operators commute.

4, 'THE PINCHERLE DERIVATIVE

For the first time we introduce operators that are not shift-invariant. The
simplest is multiplication by x. Let p(x) be a polynomial. Multiplying each
term of p(x) by the variable x, that is, replacing each occurrence of x™ by
x"t1 1 > 0, we obtain a new polynomial xp(x). Call this the multiplication
operator and we denote it by x. Thus, x: p(x) — xp(x). For any operator T
defined on P, the operator

T = Tx — xT,

will be called the Pincherle derivative of the operator T.

ProrosiTion 1. If T is a shift-invariant operator, then its Pincherle
derivative,

T = Tx — xT,
is also a shift-invariant operator.

The proof is a straightforward verification.
As a special case of the first expansion theorem, it follows that any shift-
invariant operator 7" can be expressed in terms of D, that is

T=Y 2D~

k=0

where a; = [Tx*],_, . Further, by the isomorphism theorem (Theorem 3)
the formal power series corresponding to T is

We call f(2) the indicator of T.
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ProposITION 2. If T has indicator f(t), then its Pincherle derivative T' has
£'(t) as its indicator.

"The proof is a direct verification. Similarly, from the isomorphism theorem
and from the preceding proposition, we easily infer the following.

ProposiTiON 3. (TS) =T1'S 4+ TS§".

And just as easily from the isomorphism theorem, we can infer Propo-
sition 4.

PrRoPOSITION 4. O 15 a delta operator if and only if Q == DP for some
shift-invariant operator P, where the inverse operator P~ exists.

We come now to the main result of this section, which enables us to
compute basic sets for a given delta operator.

TueoreM 4 (Closed forms). If p,(x) is a sequence of basic polynomials for
the delta operator Q = DP (see Proposition 4), then for n > 0:

(1) palx) = QP 1a™;
(2} palx) = P — (P) a7
() Pa(x) = xPmam
(4) (Rodrigues formula) p,(x) = 2(Q") p._4(x).
Proof. We shall first show that the right sides of (1) and (2) define the
same polynomial sequence. Indeed,
Q'P-"-1 = (DPy P-»1
= (D’P 4 DP") P71,
Now, D' = I. Hence,
Q'P-n-l == P-n L P'P-n-1])

= P=" — (1/n) (P~")' D,
whence
Q’P—n—lxn = P-nypn __ (P—n)' xn—l’

as desired. Next, recalling the definition of the Pincherle derivative of (P,
we have

P—nxn - (P~n)' xn~1 — P—nxn . (P—nx — XP"_") x"“l
= gP-nxgn-1

and, thus, the right side of formula (3) equals that of formulas (2) and (1).
Setting

gn(x) = Q'P~"1x"
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and writing 0 = DP, we get

Qgn(x) = DPQ'P""1am = Q'P™ Da™ = ngy_4().

Thus, if we can show that ¢,(0) = 0 for z > 0, the proof that g,(x) is the
sequence of basic polynomials for Q will be complete, and it will follow that
formulas (1)—(3) are equivalent. From the equivalence of Eqgs. (1)~(3) we see
that

gn(x) = xP"x",

and hence ¢,(0) =0 for #» == 1. Thus, (1)-(3) have been proved, and
4u(%) = pul).
To prove (4), first invert formula (1),
x" = (Q")"1 Pr+lp (x).

Note that Q' is invertible (Isomorphism Theorem and Proposition 2). Change
n to n — 1 and insert the right side into the right side of (3):

Pulx) == xP~HQ') Prpy_y(x)
= #Q) Pua(),
which is Rodrigues’ formula. Q.E.D.
The following formulas relate the basic polynomials of two different delta
operators in an analogous way. Their proof is immediate.
CorOLLARY, Let R = DS and Q = DP be delta operators with basic
polynomials r,(x) and p,(x), respectively, where S~ and P exist. Then
(5) palx) = Q(R) P18 Hry(x), n = 0;
(6) pal®) = x(SPAY alr,(), n > 1.

A last (and useful) characterization of basic sets is the following theorem.

TueOREM 5. Let P be an invertible shift-invariant operator. Let p,(x) be a
sequence of basic polynomials satisfying

(%7 Pn(*)]a—0 = [P Pr(*)]sms »

for all n > 0. Then p,(x) is the sequence of basic polynomials for the delta
operator ) — DP.

Proof. Define the operator Q by setting Q1 =0,
Qpn(x) = npn—l(x)

263



FINITE OPERATOR CALCULUS 697

and extending by linearity. It is easily seen that Q is shift-invariant. In terms
of O, the preceding identity can be rewritten in the form

[#pn(®)]omo = [POPn(%)]1mo -

By linearity, this extends to an identity for all polynomials p(x) with p (0) =0
—an argument we have often used. Thus, recalling that

[%7p(%)]ao = [DP(¥)]oo

whenever p(0) = 0, we have

[Dp(6))z—0 = [POP(%)] 0

for all polynomials p(x), including those for which p(0) # 0, since the formula
trivially holds for constants. Setting p(x) = ¢(x 4 a) we obtain, using the
shift-invariance of P and 0,

Dy(a) = [PQE"®)]e
= [E*P-10q()].-
= P10g(a),

for all constants @. But this means that D = P-1Q, or Q = DP. Q.E.D.

CoROLLARY 1. Given any sequence of comstants ¢,,, n=12,.., with
€11 7 O there exists a unique sequence of basic polynomials p,(x) such that

[‘x_lpn(x)]m=0 =Cn1>

that is,
Pn(x) - Z cn,kxk= n == 1, 2,

E>1

CoRrROLLARY 2. Let g(x) be the indicator of Q) in the preceding corollary.
Then g = f1, where

tk
HOES) Cr1 77 -

k!

k=1

Proof. From Corollary 1
k
D=0Pi=¥ 6,2 =)

k>1 ;

and the result follows.
The preceding corollaries show that a sequence of basic polynomials is
completely determined by the coefficients of their first power x. This fact
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can be made the starting point for a connection between the present theory
and the theory of compound Poisson processes, as we hope to do elsewhere.

Note that the preceding corollary gives an explicit interpretation to the
generating function of a sequence of basic polynomials, which can now be
restated as

¥ f—’;gﬂ " = exp (x Y g t’“/k!) ,
nz0 ) k=1

a form which makes it almost evident.

5. SHEFFER PoOLYNOMIALS

A polynomial sequence s,(x) is called a Sheffer set or a set of Sheffer poly-
nomials for the delta operator Q if

(1) Sﬂ(x) =c 7& Oa
(2) an(x) = nsnﬂl(x)'

A Sheffer set for the delta operator Q is related to the set of basic poly-
nomials of Q by the following.

ProrosiTiON 1. Let Q be a delta operator with basic polynomial set q,(x).
Then s,(x) is a Sheffer set relative to Q if and only if there exists an invertible
shift invariant operator S such that

(%) = S1ga(x).

Proof. Suppose first that s,(x) = S~1g,(x), where S is an invertible shift
invariant operator. Then S7'1Q = 0S5, and

Osa(x) = QS7gn(%) = S70qn(*)
= §7ngp (%) = 1S 1(x) = s, 1(%).

Further, since S~1 is invertible S—11 = ¢ # 0, by the isomorphism theorem,
so that

so(x) = S7igy(x) = S =
Thus, s,(x) is a Sheffer set.

Conversely, if s,(x) is a Sheffer set for the delta operator Q, define S by
setting

S 1 5,(x) = ga(x),

and extending S by linearity, so that it is well defined on all polynomials.
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Since the polynomials s, and ¢, are both of degree #, and s5y(x) %0 S is
invertible. It remains to show that S is shift-invariant. To this end, note that S
commutes with Q. Indeed,

S0s,(x) = nSsy_y(%) = ng, _1(%)
= Q%z(x) = QSSH(x)’

and again by the linearity argument we infer that QS = SQ; whence
SQ" = O"S. Finally, recall that by the first expansion theorem one has

B =Y 2200 g, = [E(0)]s;

whence EtS = SE? for all . We conclude that S is shift-invariant.
Q.E.D.

Some of the properties of basic sets can be extended to Sheffer sets; one of
the most important is

THEOREM 6 (Second Expansion Theorem). Let Q be a delta operator with
basic polynomials q,(x), let S be an invertible shift-invariant operator with
Sheffer set s,(x). If T is any shift invariant operator, and p(x) is any polynomial
the following identity holds for all values of the parameter y:

T +3) = ¥ 20 ons ()

n=0

Proof. By the first expansion theorem we have

Qp e
Ey N nZ;IO HQ
with
ay = [EVqn(%)]aeg = [ga(® + Y)]ze0 = ¢u();
that is,

Ev — Z q'n('y) Qn

>0
Applying this to p(x),
Epx) = plx +3) = 3 2D gnpi),
n=>0 :
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We may interchange the variables x and y in the sum without affecting the
left side:

P +3) = ¥ B guyy.

n=0

Applying S-1, regarding x as the variable and y as a parameter, this becomes
_1 (%
S+ 9) = T 24 gmy(y)
$ul%) A
) —,51—) 0"(5),

for all y. Again interchanging the variables x and y

sip+3) = 3, ) gup),

nz=0

Now again regarding y as a constant and x as a variable, and applying S
followed by T

Tp(x 4 3) = ¥ igg—fi OrSTp(x). Q.E.D.

nz=0

CoroLLARY 1. Ifs,(x)is a Sheffer set relative to the invertible shift invariant
operator S and the delta operator Q, then

S-1 — z (0) Q’n

n =0

Proof. In the preceding theorem, set ¥ =0 and 7 = S-1. This gives
0
s7ipe) = 3 S8 gupay,
nz0
for any polynomial p(x), which by definition is the same as saying that

S-1=7% "(0) 0, Q.E.D.

nz=0

The defining property of polynomial sequences of binomial type has the
following analog for Sheffer polynomials.

ProposiTiON 2 (Binomial Theorem). Let Q be a delta operator with basic

267



FINITE OPERATOR CALCULUS 701

polynomials g,(x), and let s,(x) be a Sheffer set relative to Q) and to some invertible
shift-invariant operator S. Then the following identity holds

sul® +9) = ¥ () ) garl).

k=0

Proof. Since g,(x) is of binomial type we have by definition

Y () 909 gaa(3) = gulo + ).

k=0

Apply S~ to both sides, where, of course, x is the variable, to obtain

)} (Z) %) gni(¥) = S7gnlx + )

E>0
= S71Evg,(x) = EvS1g,(x) = EYs,(x)

= $a(% -+ ¥). QED.

We next show that s,(x) are completely determined by their constant terms:

CoroLLARY 1. Let the polynomials q,(x) and s,(x) be defined as in Prapo-
sition 2. Then

n®) = ¥ () 5+(0) dnca(®)

k=0

Proof. Immediate from Proposition 2 upon setting x = 0.
The following converse of the second expansion theorem is useful.

ProrposiTioN 3. Let T be an invertible shift-invariant operator, let Q be a
delta operator, and let s5,(x) be a polynomial sequence. Suppose that

Eof() = ¥ 4 gugyy

nz=0

Jor all polynomials f(x) and all constants a. Then the set s,(x) is the Sheffer set
of the operator T relative to the delta operator Q.

Proof. Operating with 7-! and then with T after permuting variables,

as we have already repeatedly done, we can recast the previous identity in
the form

Bof(x) = ¥ L@ gnpi;

n=0
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whereupon, setting f(x) = p,(x), where p,(x) is the basic set of O, we obtain
;
pix+a) = 3 () T50(@) pionlo)
nz0
and setting ¥ = 0, this yields p,(a) = Tsy(a) for all a. Q.E.D.
As an application, we obtain a simpler proof of Rodrigues’ formula for
basic polynomials (Proposition 4):

PrOPOSITION 4. Let p,(x) be the basic set for the delta operator Q. Then

pa(x) = 2(Q) Puaa(),

where Q' is the Pincherle derivative of Q.

Proof. From the first expansion theorem we have

Ea Z Pn(a) Qn

nz20

and taking the Pincherle derivative of beth sides,

ake — Z Pn+1(a) QnQ

nz0

By the preceding proposition, the polynomial set x-1p, . (x), # == 0, is the
Sheffer set for the invertible shift-invariant operator Q’ relative to the delta
operator (), as desired.

Next, using the notion of indicator developed in Section 4, we derive the
generating function for the Sheffer polynomials.

ProrosiTION 5. Let Q be a delta operator, and let S be an invertible shift-
invariant operator. Let s(t) and q(t) be the indicators of S and Q, and let ¢~1(t)
be the formal power series inverse to q(t).

Then the generating function for the sequence s,(x) is given by

1 1 Sq(x)
— e RTHE — O\t
s(th(t)) néo n!

Proof. From the proof of the first expansion theorem,

B2 — Y 9’“(’“) 4N gn and  SEr= Y "(‘”) 22 e,

n=0 n=0
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Also, since x™ is the basic set for the delta operator D, we have after a change
of variable

Er — zﬁipn,

1
20 nl

and consequently the indicator of E° relative to D is e**. By the isomorphism

theorem we may pass to indicators in the expansion for S—1E® thereby
obtaining

e = L =2 aor

|
n>0 "l

Now set # = g(t) and replace » by ¢ to obtain the conclusion.
As a further consequence of Proposition 3, we have the following charac-
terization of Sheffer polynomials by binomial identities.

PROPOSITION 6. A sequence s,(x) is a Sheffer set relative to a basic set
gu(x) if and only if

sale +9) = T () ss(#) gus()-

k=0

6. RECURRENCE ForMULAS

Given a set of polynomials p,(x), with py(x) = 1, under what conditions
are they Sheffer polynomials? A simple answer is given by

ProrosITION 1. Let p,(x) be a polynomial sequence with py(x) = 1. If

Pu(x) is a Sheffer set then for every delta operator A there exists a sequence of
constants s,, such that

Aps) = ¥ () 2@ snes  n 0. (*)

k=0

Also, if (*) holds for some delta operator A and some sequence s,, , then p,{x)
15 a Sheffer set.

Note that A need not be the delta operator associated with the set p,(x).

Proof. Assume that there exists a delta operator 4 and a sequence of

numbers s, so that (*) holds. We wish to show that p,(x) is a Sheffer set
associated with some delta operator Q.
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Define the linear operator Q by

Opn(x) = np,_,(x), n>0
Opy(x) = 0.

To prove that Q is a delta operator we need only show it is shift invariant,
First note that AQ = 04 since

04p,(x) =0 ¥ (;

=0

) Pri{%) 5

= Z (Z) (m — &) Pz (%) 5

k>0

= X (") prsa®) sy = ndpus(s) = Ap,(a),

k=0

where we have used the identity

an ()=,

The next to last equality is, by definition of the operator Q, the recurrence
formula (*) with z — 1 in the place of n. Thus, A0p,(x) = QAp,(x) for
all #; by the familiar linearity argument, this implies 4Q = QA4, whence
A¥Q = QA* for all positive integers k, and finally by the First Expansion
Theorem that Q is shift-invariant. Thus, p,(x) is a Sheffer set associated with
the delta operator Q.

To prove the converse, let p,(x) be a Sheffer set relative to the delta
operator Q with basic set g,(x), and let 4 be an arbitrary delta operator. By
the isomorphism theorem (see also Proposition 4 of Section 4) it is easily
shown that an invertible shift-invariant operator R exists with the property
that Q = AR. From this, the proof is concluded as follows. By the binomial
theorem (Proposition 6 of the preceding section) we have

pale +9) = L () 249 0nn()

Apply O = AR to both sides, recalling that y is a parameter, and obtain

(ARpn) (v +5) = ¥ () ARP() dn-sl):

k=0
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Now interchange x and y, as we may since the left side is symmetric in x
and y, and then operate with the operator R-1. This gives

Apals +3) = T (i) ARo3) R g ().

k=0

Again permute x with y, and recall that ARp,(x) = kpj_;(x). The right side,
therefore, equals

Y (i) #pea(x) Rgn ().

k=0

Setting y = 0 gives

Apus) =¥ (" ) 2erl®) IRl yoo (0 — & 4 1)

k=1

Defining

[R~19k-1(y)]y=0 (k) = & and so = 0,
we find

Apo(s) = T () ) 0

E20

QED.

7. UMBRAL COMPOSITION

In its most primitive form, umbral notation, or symbolic notation as it was
called by invariant theorists in the past century, is an algorithmic device for
treating a sequence 4, , @, , 45 ,... as a sequence of powers q, 4%, a?,.... Com-
putationally, the technique turned out to be very effective in the hands of
Blissard (after whom the device is sometimes named), Bell, and above all
Sylvester, to name only a few. Several authors attempted to set the *‘calculus,”
as it somewhat improperly came to be called, on a rigorous foundation; the
last unsuccessful attempt is Bell’s paper of 1941. The present author observed
in 1964 (in “The Number of Partitions of a Set”) that all the mystery of the
umbral calculus disappears, if we only consider a sequence a,, as defined by a
linear functional on the space of polynomials: a, = L(x"). The description
of the sequence is then condensed into the properties of the linear functional
L; only a prejudice would prevent anyone from placing such a definition of a
sequence &, on a par with a definition by recurrence or by generating function.
In fact, the success of the umbral notation shows that in many cases the
definition by a linear functional is preferable.
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If a,(x) is a polynomial sequence, then there is a unique linear operator L
on P such that L(x™) = a,(x). We say that L is the umbral representation of the
sequence a,(x).

We develop the umbral device in a form leading to a general result which
embodies some of the more recondite indentities satisfied by special poly-
nomials.

An umbral operator is an operator T' which maps some basic sequence
Pa(x) into another basic sequence ¢,(x), that is, Tp,(x) = ¢,(x). Note that an
umbral operator is in general not shift-invariant. To motivate this definition,
we require another definition, the umbral composition of two polynomial
sequences:

n
an(x) = Z aﬂkxk
k=0

and b,(x). This is the sequence of polynomials ¢,(x) defined by

cn(x) = i ankbk(x)'

=0

We use for umbral composition the notation
¢n(%) = an(b(x)).
When a,(x) = x", we simply write
ca(x) = b(x)™.

There is a simple (though, if we are to judge by historical standards, not
obvious) connection between umbral operators and the umbral composition
of basic polynomials. For if T maps x" to g,(x), then

ax(q(x)) = Tay(%),

so that umbral composition of polynomials is simply the application of
umbral operators, and conversely.

Umbral composition of polynomials has been widely used; our present
objective is to study the umbral composition of Sheffer and basic polynomials,
thereby ‘‘explaining” a great many formulas from the intricate literature on
special polynomials and mechanizing the device for guessing and proving
them.

A simple instance of the use of umbral notation is the definition of a
polynomial sequence of binomial type, which can be umbrally stated as

p + ¥)" = [p(x) -+ p()]"™;
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similatly, the binomial property of Sheffer polynomials becomes
s(* + )" = [p(*) + s(»)]"

ProrosiTioN 1. Let T be an umbral operator. Then T exists and

(a) the map S— TST-! is an automorphism of the algebra X of shift-
invariant operators;

(b) T maps every sequence of basic polynomials into a sequence of basic
polynomials;

(c) if O is a delta operator, then P = TQT is also a delta operator;

(d) T maps every Sheffer set into a Sheffer set;

(e) If S =s(Q), where s(t) is a formal power series, then TST-1 == 5(P),
where P is as in (c).

Proof. Tp,(x) == g,(x) for two given basic sets. To prove (a) we have the
string of identities:

TPp () = T(npp(%)) = nTpn(x) = 1gn1(%) = Oga(x) = QTpu(*)

and since every polynomial is a linear combination of the p,(x)’s, we infer
that TPp(x) = QTp(x) for all polynomials p(x); that is, TP = QT. It is clear
that T is invertible, since it maps polynomials of degree » into polynomials
of degree n, for all #. Hence, TPT-1 = Q; whence, TP*"T-* = Q" for all
n > (. Let S be any shift-invariant operator and let the expansion of S in
terms of P be (first expansion theorem)

a4y
S=2 b
Then
-1 ._a_"_'_ n —1 —_— _a_‘[l;_ n
TST T(};O Supn) T X aron (1)

and, thus, 7’ST-! is a shift-invariant operator. Furthermore, the map
S — T'ST! is onto since any shift-invariant operator can be expanded in
terms of Q. Thus, the map is an automorphism, as claimed.

Part (c) follows upon remarking that for delta operators the constant coeffi-
cient a, vanishes while a; # 0. This also proves ().

To prove (b}, let r,(x) be a basic sequence with delta operator R.

Let s,(x) = Tr,(x) and let S = TRT1. By (c), S is a delta operator. Now,

Ssu(x) = TRT-1s,(x) = TRr (x) = nTr,_(x) = ns,_i(x).
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To complete the proof that s,(x) are the basic polynomials of S we need
only show that 5,(0) = 0 for n > 0. Now we can write

rn(x) = z akpk(x)’

k=1
since @, = 0 because r,(0) = 0. Hence,
Tro(x) = Y, apga(x) = s,(x)
E>1

so that 5,(0) = 0, n > 0, as desired.

To prove (d), let s5,(x) be a Sheffer set relative to the delta operator Q,
and set £,(x) = Ts,(x) and P = TQT-. By (c), P is a delta operator, and
trivially Pt (x) = at,_,(x). Q.E.D.

In view of the preceding result, it follows that the umbral composition of
two sequences of basic operators is again a basic sequence. A similar pheno-
menon holds for Sheffer sets.

ProposITION 2. Let Wr,(x) = s,{x), where both are Sheffer sets. Then
W = S-ITR, where R and S are the invertible operators of r,(x) and s,(x)
and where T is the umbral operator mapping the basic set p,(x) of r,(x) to the

basic set of q,(x) of s,(x).
Proof. Obvious.
CoroLLARY. The umbral composition of two Sheffer sets is a Sheffer set.
The next result determines the operators corresponding to umbral compo-

sition.

TaeoREM 7 (Umbral Composition). Let s,(x) and t,(x) be Sheffer sets
relative to the delta operators Q and P, and to the invertible shift-invariant
operators S and T, respectively. Let q,(x) and p,(x) be the basic sets for Q and P,
and let the indicators of S, Q, and P be

S=sD), OQ=4qD), P=pD),

where s(t), q(t) and p(t) are formal power series. Define r,(x) to be the umbral
composition of s,(x} and t,(x), in symbols

7(¥) = $(t(%))-
Then r,(x) is a Sheffer set relative to the shift-invariant operator
Ts(P) = ¢D) s(p(D))
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and the delta operator

q(p(D)),

having as basic set the sequence

x(P(¥))-

Proof. We begin by establishing the special case where S and T are the
identity operators, so that we wish to find the delta operator of the sequence
u,(*) = gu(p(x)), which we know to be a basic sequence by Proposition 1.
Thus, let V: x* — p,(x) be an umbral operator. Then #,(x) = Vg,(x), and
by (c) of Proposition 1 the delta operator VQV-1 of u,(x) is of the form
g(P) = q(p(D)) as desired. Next, suppose that T is the identity operator, but
not S. We study the sequence s,(p(x)). But

so(p(%)) = Vs,(x) = VS g,(x), - (M

and from Vg,(x) = q.(p(x)) we infer that g,(x) = Vg,(p(x)), so that,
substituting in (*), we obtain

su(P(x)) = VSTV q,(p(*)) = VSTV 1uy(x).

This proves that it is a Sheffer sequence relative to the basic set #,(x) and the
shift-invariant operator VSV-1; and VOV = ¢(p(D)), VSV = s(p(D)),
as follows from part (e) of Proposition 1.

Now to the general case, S and T arbitrary. By definition we have

b3 = T, and  1,(x) = Ts,(p(s);

thus, we are reduced to the previous case, and the proof is complete.

Several special cases of the preceding theorems are worth stating. A Sheffer
set relative to the delta operator D, namely, ordinary differentiation, is called
an Appell set. The theory of Appell sets is quite old, in fact classical enough
to be included in Bourbaki.

CoroLLARY 1. If p.(x) and q,(x) are basic sets with delta operators
P =p(D) and Q = g(D), then p,(q(x)) is a basic set with delta operator
2(e(D))-

COROLLARY 2. If s,(x) and t,(x) are Appell sets, then 5,(t(x)) is an Appell
set with operator ST, in particular, s,(1(x)) = t,(s(x)).

COROLLARY 3. If r,(x) is a Sheffer set, then there is a unique Sheffer set
Sa(x), called the inverse set, such that r,(s(x)) = x™ If p,(x) and q.(x) are the
corresponding basic sequences, then the basic sequence of r,(s(x)) is p.(q(x)).
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The following result gives the solution of the so-called “problem of the
connection constants.”

CoroLLARY 4. Given Sheffer sets, u,(x) relative to the delta operator
U = u(D) and the invertible operator W = w(D), and t,(x) as in Theorem 7, the
constants s, such that

n

Spate(%) = u,(x), n=0,1,..
0

Jo=

are unmiquely determined as follows. The polynomial sequence,

(&) = Sppat,
k=0
is the Sheffer set with delta operator u(p~(D)) and invertible operator
w(p~H(D))/(p~HD)).
The following result gives one of several closed-formula expressions for
the coefficients of the Sheffer polynomials.

CorOLLARY 5. Let s5,(x) be Sheffer polynomials as in Theorem T and let V
be an umbral operator such that Vs,(x) = u,(x) and V7is,(x) = v,(x). Then

n

9) = Y. D (500 ()]

k=0

Proof. By the second expansion theorem we have

Vel +3) = ¥ B 15080, (5);

k>0

setting ¥ = 0 and applying the operator -1 to both sides the result follows.
The following special case is useful,

CorOLLARY 6. Suppose p,(x) and g,(x) are the basic sequences for the delta
operators P and Q, respectively. If q,(x) is inverse to p,(x), then

pule) = T G107

Conversely, if the foregoing identity holds for a given delta operator Q, then the
Pn(x) are the basic sets for the inverse operator.
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CoroLLARY 7 (Summation Formula). Let f(x) be any polynomial. Then,
in the notation of the preceding corollary.

SE) = § 10 (-

k=0

The prototype of this formula is the classical formula of Dobinsky for the
exponential polynomials (see I1I).

ProposITION 3. Let W : p. (%) — x™ be an umbral operator, and let Q be
the delta operator of p,(x). Then

Wap(x) = xWWQ'p(x)
for all polynomials p(x), or W' = xW(Q' — I).

Proof. Set r (%) =(Q')? p,(x), so that xr,(x)} = p,,1(¥) by Theorem 4.
Now, War,(x) = 2"+ = xWp,(x), so that

Wx(Q,)_l Pn(x) = prﬂ(x)

By linearity, this holds for all polynomials p(x);

Wx(Q') p(x) = xWp(),

replacing p(x) by O’p(x) the result follows.

It would be of interest to develop a theory of operator differential equations
in the Pincherle derivative strong enough to give an explicit solution to the
previous ‘‘differential equation” for the umbral operator W. An example of
umbral operator is Wp,(x) = a*p,(x), which is a Sheffer set whenever p,(x) is.
If Q is the delta operator of p,(x), then a~1Q is the delta operator of a*p,(x).
Similarly, p,(ax) is a Sheffer set, and if Q = f(D), then the delta operator for
pu(ax) is f(a=D). Finally, if g,(x) is a basic set, then the basic set of the
delta operator QE® is easily seen from formula (4) of Theorem 4 to be

7,(%) = x¢,(x — na){(x — na). This generalizes the idea behind the Abel
polynomials. Summarizing, we have the following.

ProrosiTION 4. If s,(x) is a Sheffer set, so is a®s,(bx) for any a and b;
if it is a basic set, so are a"s,(bx) and xs,(x — na)/(x — na).

The preceding result “explains” the so-called “‘duplication formulas”
found in the literature, namely, formulas expressing p,(ax) as a linear combi-
nation of p,(x). We shall see some instances of this device later.
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8. CROsS-SEQUENCES

A cross-sequence of polynomials, written pL)(x), where A ranges over the
field and n over the nonnegative integers, is defined by the following pro-
perties:

(a) for fixed A, pl*l(x) is a polynomial sequence;

(b) for any A and p in the field and any x and y, the identity,

n
A +9) = 3 () o) A0 (*)
holds for all n.

The theory of cross-sequences (of which several examples are uncon-
sciously present in the literature) parallels in many ways the theory of
sequences of binomial type, and we shall shorten the by now familiar devices
in the proofs. It will always be assumed that the upper variable ranges over
the field and the lower one over the nonnegative integets.

THEOREM 8. A sequence p)(x) is a cross-sequence if and only if there exists
a one-parameter group P2 of shift-invariant operators and a sequence p,(x) of
binomial type such that

pa) = P7p,(a). (*%)

(Thus, for fixed X a cross-sequence becomes a Sheffer sequence relative to the
operator P.)

Proof. We first show that every sequence defined by the right side of
(**) is a cross-sequence. Recall that the group property states that

P-w) . p-Ap-u

Thus, apply P~* to the binomial identity satisfied by the p,(x), thereby
obtaining

Ppule+3) = 3 (3) 2269 20 1(9)

Now permute x and y, and then apply P~ to both sides, to obtain (¥). Now
to the converse. First, note that the sequence p,(x) = pi®)(x) is of binomial
type; setting u = 0 in (*) and applying Proposition 3 of Section 5, we infer
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that pL(x) is a Sheffer set relative to a shift-invariant operator which we shall
call PA, as in (**). From (*) we have

n

P (x +9) =Y (Z) 2u(x) pP(),

k=0

and applying P~ to both sides, we infer that

PHP ol +3) = 3 (:) 22 ().

k=0

But the right side equals P*#p (x + y), again by (*). This gives
P-up-2 — P-4=2 and completes this proof,

CoROLLARY. If a sequence pl)(x) is a cross-sequence, then there exists delta
operators Q and RI*1 such that pi" = c + 0,

?2%0) =0, n>0
Op(x) = mpM(x), w1, (**%)

REpl) = mpli5 ().

Proof. Let O be the delta operator of p,(x), and let R[*l = P=Q; then
(***) follows from (**).

ProposITION 1. The coefficients c(n, k, A) of a cross-sequence,

P7p(x) = p ) = T e, k, 2) o,

k20

are polynomials of degree at most n in the variable M.

Proof. By Corollary 7 of Theorem 7 we have

22 = ¥ 5 P,

kz0 77

where Q is the delta operator of the inverse of this sequence p,(x).
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Writing P~} = p(D)* and ¢(D) =0, we have

kle(n, k, 2) = [PQFx" ] = [D"p(x)* q(x)]emo »

whence the conclusion.

The proof does not provide an explicit method for the computation of the
coeflicients ¢(n, &, A), but see Proposition 4.

A Steffensen sequence sl (x) relative to a cross-sequence pLi(x), is a sequence
satisfying the identities

29 +9) = T () ) 2elo),

k=0

for all n, A, p, x, y: Steffensen sequences are characterized by

ProposiTION 2. The following conditions are equivalent :

(a) s(x) is a Steffensen sequence;
(b) there exists a delta operator Q and a one-parameter group of shift-
invariant operators P~ such that

Ost(x) = nst (),

Psl(e) = ()

(c) There exists a cross-sequence pL\(x) and an invertible shift-invariant
operator T such that

s(x) = T o).
The proof follows well trodden paths and is omitted.

PrOPOSITION 3. Let sl'l(x) be a Steffensen sequence relative to a shift-
invariant operator T = (Q')2, as in the preceding proposition, with s§3(0) = 1
for all . Then the sequence

xs (),

is a sequence of binomial type.

Proof. Use Theorem 4. p,(x) = xsl’)(x) is the basic sequence for the
operator J, by the Rodrigues formula.
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Writing
wsi(x) = xP P, (%)

and comparing with (6) of the corollary to Theorem 4, we find that the
right side is basic with delta operator R = PQ.

PrROPOSITION 4. Suppose that I — P = Q, where Q is the delta operator
of p(x). Then for fixed a and for a Steffensen sequence pL(x) relative to Q
we have that

) (*)
is, for fixed a, a Sheffer sequence relative to the difference operator 4 = E — I.

Proof. We have

PLA+1_H](x) . PE:‘_-N](‘”)
— PMnYT — P) p,(x) = nP-Hn-1p, (x)

= ”Pg:lnﬂl (%),

which proves the assertion.

It follows from Corollary 1 to Proposition 2 of Section 5 that any linear
combination of polynomials of the form (*) is again a Sheffer set relative to 4.
In particular, the coefficients ¢(n, %, A) (polynomials, by Proposition 1) of

PE:\](x) —_ Z C(na}j’ ’\) xk’

k=0

have the remarkable property that c(n, 2, x — ) is a Sheffer set for 4. An
explicit expression could be constructed. We shall not develop in detail here
the theory of umbral composition of Steffensen sets, only a few remarks.

PropPoSITION 5.  For Appell cross sequences, namely of the form
) (x) = P-x", we have the umbral composition

P ™ () = p2H(x).

Proof. Apply Corollary 2 to Theorem 7.
Every invertible shift-invariant operator P can be written in the form
P = eF for some shift-invariant operator (which is never invertible). Indeed,
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say that P =1 -+ §, where S1 = 0. Then F = log(I 4 8) is well defined,
and P = ef. Thus,

P = exp(— AF).

Note that F is not necessarily a delta operator, though F1 = 0. We call F the
generator of the cross-sequence pl(x). Thus, an operator F is the generator
of a necessarily unique cross-sequence of polynomials, if and only if F(1) = 0.

ProposiTioN 6. (a) If F and G are the generators of cross-sequences
P(x) and gt {(x) having the same basic sequence, then F -+ G is the generator
of the cross-sequence

ey ["](x) — ¢ F, {)\](x)
(b) If P is any invertible operator, then

—A [A] ( x)

is a cross-sequence when pL(x) is one.

9. E1GENFUNCTION EXPANSIONS

It is reasonable to surmise that a Sheffer set of polynomials over the real or
complex fields should be obtainable by eigenfunction expansion of differ-
ential, difference or other Q-operators in a suitable Hilbert space. We establish
the truth of this expectation in the real case. The key step consists in singling
out a “‘natural” inner product associated with a given Sheffer set. To this end,
let 5s,(x) be a Sheffer set relative to the invertible operator S and the delta
operator Q. Let W : 5,(x) — x™ be the umbral operator sending s,(x) to x".
For arbitrary polynomials f(x) and g(x) set

(f(*), 8(x)) = [(WS)(Q) Sg(*)]a=o » (*)

we have then the following.

ProposiTION 1.  The bilinear form ( f(x), g(x)) defined by * on the vector
space of all polynomials is a positive-definite inner product.

Proof. It suffices to show that (sy(x), s,(x)) = (s,(x), sx(x)) = 0 for k £~ n,
and (s,(x), s,(x)) > 0O for all » and k. Now,

(51(%)> $u(%)) = [Q*S5a(*)]emo = [Q"Pn(*)]2mo = (i Pn-1(0) = (M) Opr

where p,(x) are the basic polynomials of Q. This completes the proof.
We shall call (*) the natural inner product associated with the Sheffer set
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sp(x). We shall now require some notions of Hilbert space theory, such as
one finds in any book on functional analysis.

TuaroreM 9. For any Sheffer sequence s,(x) with delta operator Q and
operator S there exists a unique operator of the form

U, + xv
4 = k k Nk
Lw—i?
with the following properties:

(a) A is essentially self adjoint (and densely defined) in the Hilbert space H
obtained by completing the space P of polynomials in the associated inner pro-
duct (*);

(b) The spectrum of A consists of simple eigenvalues at 0, 1, 2,...; the
eigenfunction associated with the eigenvalue n is the polynomial s,(x);

(c) the constants u;, and v, in the previous expression for A are given by
up = — [(log SY 7 pu(®)]zc0s  ¥r = 21(0),
where p;(x) are the basic polynomials for the delta operator Q.

Proof. We begin by taking the Pincherle derivative of both sides in the
expression

S-1Es =¥ $n(@) o,

]
=
obtained from the second expansion theorem:

py = 3 Aol

nz=1
multiplying by (Q’)~1 O and simplifying,
(— §18 +0) S1E(Q) 10 = ¥, D yon — 75ape, (o

nz=1
where we have set

T =(~ 5 + ) Q)0 = (@ — (log S)) (@)™

Next, expand the operator T in powers of (, that is, compute the coefhi-
cients b, in

T=} '%‘Qk; by = [TPr(*)] om0 » (F4%)

k=0
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as in the first expansion theorem. Set
Gn_q(%) = x71p,(x) forn > 0.
Rodrigues’ formula now reads
Q) pu(*) = gal(),
whence
(@) O0Pa(®) = ngy5(x).

Thus, for & = 0 we have b, = 0, and for £ > 0

[Zpu(*)]amo = Kl(@ — (log 5Y) ge-o{*)]a—o

= kage_4(0) — A[(log S qra(x)]e—p = kav; + kuy,

where

— [875'qa(®)]em0 = — [(log SY gr—a(*)]omo »
U, = g1(0), k> 0.

Now from (***) we have for any polynomial f(x),
b
TS (x + @) = Y, 1 QS (x + a)l.
=y K

But, as remarked previously,

S +a) = ¥, 22 ony(a),

n=0

so that placing the right side into the brackets we obtain

TS (s + ) = ¥ 06 [T ) guy(q)]

Tc>0 nzz0

= % [T 2 o] £ ea),

nz=0 k=0

where we have interchanged the order of summation. Permuting x and a once
more, we obtain

TS-1Fs = Y [2 —%—kan(a)] -%—

n=0 k=0
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and comparing this with the right side of (**), we see that the coefficients
of the two expansions must agree. Upon changing a to x, we obtain

S e Qi) = nea) om0,

k>0

with
by = k(u;, + xv;).

The operator

U, + xv
A-— k k N
LY

is clearly well defined on the set of all polynomials. We have shown that
Asg(x) = nsp(x) for all # > 0, so that the Sheffer set s,(x) is a set of eigen-
functions of A4; since it spans that Hilbert space H we infer that 4 is an
unbounded essentially self-adjoint operator in H having the nonnegative
integers as its simple spectrum, with eigenfunctions s,(¥), as we wanted
to show.

COROLLARY 1. Let R be a delta operator with basic polynomials r,(x). Then
the operator A defined previously can be expressed in the form

A=ZMRk’

= k!
with

a, = — [(log Y Q(Q') " ri()]amy
b = [Q(Q) " 74(®)]ao -

Proof. From the preceding proof we have

T—y ak—i—akak

|
k>0 k!

whence the conclusion upon interchanging the roles of the variables x and a,
as in the proof of Theorem 8.

The computation of the coefficients @;, and b, is greatly simplified by use
of the corollary to Theorem 4 and by various umbral devices.

The generating functions associated with the a, and &; are now easily
found; they are immediate consequences of the isomorphism theorem:
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CoroLLARY 2. Let Q = @(R) and S = {(R), where ¢ and  are formal
power series. Then

P eSOy s MO

So k0 ZCKIC)

$() ¢'(1)°

By changes of variables, these identities can be recast in a form suitable
for computation in any specific case. One question of interest is the following.
When is the operator A a polynomial in the operator R? The answer is
easily found.

CoroOLLARY 3. A is a polynomial in R if and only if
He) = exp ([ (1) )

4() = exp ([ a@)lp(e) dt) ,
where p and q are polynomials, and p(0) = 0 and p'(0) = 0, as well as ¢(0) = 0.

Proof. From the preceding corollary we find the differential equations

@ 1 O )

#(t) p() P p(®)’

whence, integrating

B(t) = exp ([ pordt),  d(t) = exp ([ a@p() i) .

Now, $(0) = 0 and ¢'(0) #~ 0, because Q and R are delta operators; it follows
that the partial fraction expansion of 1/p(¢) must contain the summand 1/,
and this happens only if p(0) = 0 and p'(0) # 0. Similarly, (0) # 0 because
the operator S is invertible. This requires that the partial fraction expansion
of q(£)/p(t) shall not contain the summand 1/¢, and, in view of p(0) = 0, this
requires that ¢(0) = 0. Q.E.D.

Another relevant question in the present context is the representability
of the inner product (*) by integral operators, evaluations of a function and its
derivatives at specific points, etc. It would take us too far afield to treat this
question here; suffice it to say that it can be completely answered.

The simplest case of (*) occurs when S =1I and Q = D, the ordinary
derivative. We have then

D) oo =~ [ [ FE T B gl + i) e ey,

P==—OY Y= O
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an inner product of frequent occurrence in quantum field theory. From the
recurrence relations for orthogonal polynomials it is easy to determine (follow-
ing Sheffer) all Sheffer sets which are orthogonal polynomials over an interval
of the real line. Except for linear changes of variable, they are the following:

() forQ = D, we must have S = E% exp(D?), and we find a generaliza-
tion of the Hermite polynomials, orthogonal over (— oo, ©);

(b) for Q = D/(D — I) we must have § = (1 — Dp*! with « > — 1,
and we find the Laguerre polynomials of order o, treated later;

(¢) for QO =log(1 + D) we must have S = E*(I 4 D)°, op # O;

(d) forQ = log[h(D — ¢)/(e{D — b))}, then S = (1 — D/ey* (1 — D/b);
b # ¢ and be # 0.

These are essentially the Pollaczek polynomials. A similar study can be made
in the case of discrete orthogonal polynomials. The polynomials under (c)
are Shefler polynomials relative to the exponential polynomials; they seem
not to have been studied. It is interesting to speculate on the possible
generalizations of the notion of classical orthogonal polynomial that are
suggested by the “natural” inner product (*).

10. HErRMITE POLYNOMIALS

We show that classical formulas pertaining to the Hermite polynomials, as
found for example in Jackson or Rainville, can be obtained by specializing the
preceding results. Define the Hermite polynomials of wariance v to be the
Appell set (as we shall see, the Appell cross-sequence) whose operator is
the Weierstrass operator (so dubbed by Hirschman-Widder)

W,p(x) = W f:c e—t2/2vp(x -+ t) dt. (*

The ordinary Hermite polynomials correspond to variance one. Thus,

HP(x) = W;%"  DH(x) = nH?, (%),

H:,")(x +y) =3 (2) y”_"H,(c”)(x), etc.,

k=20

trivially from Section 5. The indicator of the operator W, is computed by the
first expansion theorem:

(»)
sz Z En Dn’

n!
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with
1 i /2! (1+(—1)")
{0) v t5/2v¢m — .
b o) [ et i 37 2)! )
* K
_(o*2-1-3:5-(n—1) formeven ()
BR for n odd.
We set a\” = v"/%,, . Thus,
7 )2n
W, = Z ;_nllm — gvD¥2, (¥*%)

We infer that H{"(x) = HL"(x) is a cross-sequence. Note that the definition
of the Weierstrass operator by (*) is valid only for ¥ > 0, but (***) always
holds. Next,

Hy e 49) = ¥ () BEHw) B2

k=0
n

(+ )" = ¥ () B HEZ ()

k=0
setting ¥ = 0,
m _ v (21 gl (@) (20 — 24)
=2 (2]') He () i — 12

iz0

(ol .\ (2)" 21 — 2)!
) HZH—I x) 2n_j(n _])' )

2n + 1
x2n+1 — -
}.;0 (2] -+ 1

and finally

HE:’](x) . (Z) AH )2 p,

k>0

where b,, are given previously; whence we glean the simpler expressions in
terms of the classical Hermite polynomials

H ) = o H, (o)

as we could also have done by umbral methods.
Proposition 5 of Section 8 gives the umbral composition formula,

H(HY(x) = H ), (*)
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and in particular the classical

H(H(x)) = 2"H,, (_(2‘;‘1—,2) :

The generating function

e—tt/2pmt — Z E_’l(fﬂtn’
nt

nz0

is also immediate from Section 5, Proposition 5.
The (classical) Rodrigues formula follows using the Pincherle derivative.
Starting with

e2/2(uD) e #3tf(x) — (D) — 5) f(x)
and

e-Paf(x) = [(e-*P"2) + xe=P f(x) *)
= (— 1) (@D — =) e~P2f(x),

setting f(x) = x"1 and iterating,
2 —x2/20
H9(x) = (— 1)* e 2 (aD)" e = /27,

as desired.
Note that this also proves the recurrence formulas, stated for v =1
for convenience,

Hy(x) = xH (%) — Hy (%) = 2Hy(x) — (n — 1) H, (%),

from which the differential equation can be obtained by application of
H,'(x) = nH,_;(x) and iteration. We prefer, however, to derive the spectral
theory directly from the general results of Section 9. Operational identity (*)
can also be used to give a quick proof of the formulas of Burchnall-Feldheim—
Watson. Indeed, from

(D — x)" f(x) = e=2Dne=*"12f(x)

we find, upon applying Leibniz’s formula, that the right side equals (fol-
lowing Burchnall)

Y, (3) e Drotp(a) = 5 (= 1) (3) Hlo) DY),

k=0 k=0
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and setting f(x) = H;(x) we find
Hpyi(x) = (— 1)* (D — x)" Hy(x)

=Y ( )(— D% (Pnere Himpar(x) Hi(x),

k=0

as desired. Similarly we can derive a formula for expressing H(x) H,(x)
as linear combinations of Hy(x) by Theorem 6.
We find that

20 =%, 2 w3,

for any polynomial p(t). Now
(DrWy) Hy(x) Hy(x) = W,(D"(H{x) Hi(x)))

n

= W2 (3 (1) G Hioils) Ruci Hracned)

i=0

i ( )(J) (R)n_s Wi(H;_(x) Hy_p i (%))

i=0
Now (v. below)
[W1H (%) H(%)]amo = [HAx), H(x)],
=rld,.
Therefore, if j < & say, then
[(D"Wy) H(x) Hi(%)]a—o

()it Baopime i a=k+j@, i=@G+n— R

= 0<<i<y
0 otherwise,
and we conclude that
H(x) Hy(x)
1
= H (x) j1&! . . - .
anﬂ i (n+]—k)!(n+k—])!(k—|-]—n)!
n= ‘ng%‘f}‘)d 2 2 2
nzk—j
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Proposition 1 of Section 9 shows that the Hermite polynomials are ortho-
gonal relative to the inner product

(f(x): g('x))v = [(Wwf) (D) Wvg(x)]m=0 .

We next find out when this inner product coincides with the classical inner
product

[f(%), gx)]s = (77&13)?/? j T ef(x) g(x) dv, v >0. (1)

=00

By Rodrigues’ formula, followed by an integration by parts, we find

[H:zv)(x), g(x)]v = @%1—’? fi e_mZ/Zang(x) dx

— vn
L
= o"[D” Wvg(x)]m=-0

= [Wv(( w,T,H n) (D ) & (x ))]a:=0 )

where T',: f(#) — f(xv) is an umbral operator. By linearity it follows that

[f(=), g@)]o = [W((W. T, ) (D) g(*))]oes » (37)

for all polynomials f and g. On the other hand, we verify upon replacing f
and g by Hermite polynomials that

(f(x), g(x))y = [W(W, f) (D) g(=N]o=0 » (38)

so that the two inner products coincide only for = 1. Both inner products,
however, are symmetric and nondegenerate for all values of v; for (38) this is
true by definition, and for (37) it is verified as follows. Setting

f(x) = H(x)

U_m e Dng(x 4 1) dt]

o=0

we find
[H2(%), g(%)]s = [Wo((2D)" £(x))]amo »

and for g(x) = H(x) this becomes

[HP(x), HP(x)], = [Wo((9D)" H (%)) eo
= o™(k),, [WH (0)]owo

== 'Un(k)” [‘xk-n]m=0

= 'Unﬂ! Skn ’
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as desired. For v >> 0 this inner product is positive-definite. However,
definition (37) is valid for arbitrary v and combined with the results of
Section 9 gives a formally valid eigenfunction expansion, whose inner product
is nondegenerate but not positive definite in general. On the other hand,
the positive-definite inner product (38), as defined in Section 9, gives a
Hilbert-space eigenfunction expansion for arbitrary ©. The interaction of the
two bilinear forms for nonpositive v leads to interesting analytic developments
which we are forced to leave to a later publication. There are also interesting
applications to Feynman’s integral. There remains to be found the operator
of which the Hermite polynomials are the eigenfunctions, and this is given
at once by Theorem 9. We have (log S) = D, since S = W], so that the
formulas given there yield u, == —1, v; = | and all other coefficients 0.
We conclude that the Hermite polynomials are a complete sequence of
eigenfunctions, with eigenvalues #, of the operator

A =D*— xD

in the Hilbert space which is the closure of the polynomials in (). That such
a closure is the set of all square-integrable functions follows from a (well
known) limiting argument. The present treatment shows that, aside from
this one fact from analysis, the entire theory of Hermite expansions can be
made purely algebraic.

11. LAGUERRE POLYNOMIALS

One of the simplest cross-sequences is
M) = (I — D)™,

or, more explicitly,

M) = Y (3) O+ k= D™

k=0

These polynomials seem to have a scarce literature. For A = 1 they were

considered by Sheffer, with D replaced by D/2 they were studied by Peters

under the name ‘‘Boole polynomials of the second kind.” Note that for A =1

they give, after dividing by #!, the partial sums of the exponential function.
From the properties of cross-sequences we immediately infer that

MYy = F (7) O+ B — 1), M),

k=0
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as well as

M+ 3) = ¥ () M) MEL),

k=0

which explains several classical binomial identities. Moreover, since the
M™(x) are an Appell set, Corollary 2 to Theorem 7 implies the composition
law

M,[za](M[H](x)) . MgB](M[a](x)) — ML&+B](x).

The cross-sequence ML¥(x) is related to polynomials of Laguerre type,
which are the Sheffer sets relative to the delta operator

Kfw) = — [ e4'(x + 1) d,
4]
called the Laguerre operators. From the first expansion theorem we have
a [=2]
K= —2 Dm, a, = —n| el ldt=—nl
nZ>1 n! L
so that
K=—D—-—D*— - =D|D—1I).

The basic polynomials of the Laguerre operator are easily computed from
Theorem 4, formula (3):

Ly(x) = x(D — Iy a3, (%
called the basic Laguerre polynomials, From
e®De* =D —1T and eeD"e* = (D — I)",
we obtain the classical Rodrigues formula,
L, (x) = xe*Dne—%xn-1,

From formula (*) we find by binomial expansion that

o« nl o m—1 .
L) = L o (5 1) %
where the coeflicients
nl m—1
Rl (k — 1)

are known as the (signless) Lah numbers.
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We shall be concerned with Laguerre type sets relative to the operators
(Laguerre operators of order a):

K, = Ij(I — Dy,

Let us note here that for « > — 1,

K, f(x) = ¥ J tee=tf (x - 2) dt,

D

as is easily verified by the first expansion theorem. The Sheffer sets relative
to these operators are polynomial sets LI*)(x), classically known as Laguerre
polynomials of order . (Note that our definition of Laguerre polynomials
differs from that used by many authors by a factor of #zl. It does, however,
agree with Jackson’s notation.)

Again, by definition of the Sheffer polynomials we have

L) = (I — DY Ly(w),
(I — DY L (x) = Ly ™(x).
We infer from (*) the identity
L(x) = (I — DY+ %D — Iy" &,
Using the Pincherle derivative identity
(D—Iyrx — 5(D — I)y" = (D — I)*Y = n(D — I,

we simplify this expression to

L) = (= )= D7 = (7 T (= D D
= (= 1) k‘é‘o (— 1) (Z) R

= x~(D — I)* xnte = x—*e®Dre—2xm+,

which is the classical Rodrigues formula.
Expanding the third formula on the right of the string of identities gives
the coefficients of the Laguerre polynomials

L9 = (— 1" ¥ (= D ) g

k=0

=¥ (: T

1 =20
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The binomial theorem for Sheffer polynomials (Proposition 2 of Section 5)

yields the identity
n

L+ 3) = ¥ (o) Ial) L 9);

E>0

whence, upon applying the operator (1 — D)f+! to both sides, we obtain the
first composition law

LS:+B+1)(x +y) = Z (Z) Lgf)(x)Lﬁfﬂk(y)-

k=0

Further properties follow from the fact that
L) = (= )" M), or Me) = L) (— 1)

Next we apply Theorem 7 to study the umbral composition of two Laguerre
polynomials. A trivial identification of the various operators at hand yields

LALP(x) = (I — DY x" = My(x)
= (= "Ly ),
For 8 = o we obtain the remarkable identity
L)L) = o7,

showing that all the Laguerre polynomials are self-inverse sets. This is true
even of the basic Laguerre polynomials, which correspond to the case
x=—1.

So far we have considered only the umbral composition of L{”(x) with
L x) and of ML(x) with MPY(x). Umbral composition of M&(x) with
L®(x) gives, by an application of Theorem 7, the Sheffer set relative to—oh
surprise!~—the delta operator D/{(D — I) and the operator I/(I — D)8+l
that is, the Laguerre polynomials again! In symbols,

ML) = ML)
= L&),

Piecing together these results on umbral composition, we are led to the
following remarkable second composition law for Laguerre polynomials:

Lf:l)(L(az)(L(aa)(' - L(ak)(x)) )

Levestas— () fodd,

Mv[flﬂmzﬂ"_"'"“k](x), k even.
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When expanded in powers of x, this equation leads to several binomial
identities, of which we only give a sampling:
If % is even,

(—“1+0‘2_“3+"‘—|“°‘k)

m

T GV | (G [ G I

Tloesnr Tp—120

% ((xk—l — Ty ¥y — " — ”ic—z) (O‘k — == Tk—1)

3
(48] m — 1= = Ty

and if & is odd,

(al—a2+a3~ +ak)

m

_ y (— 1)+t e (0‘1) (O‘z - "1) (O‘ic et — r]a«-l)
Tireees Tg—1=>0 rl 1'2 m — rl —_— e rk—]_

The so-called “‘duplication formulas” for Laguerre polynomials (see, e.g.
Rainville} are trivial consequences of Theorem 7; we shall only derive
one of them to indicate the method. We are to express L,(ax) as a linear
combination of L,(x). By Section 7, the sequence L,(ax) is basic to the
operator @ 1Df(a"1D — I). We are, therefore, to find a formal power series
f(2) such that a't/(a't — 1) = f(¢/(t — 1)). An easy computation gives
f(@®) = t/[(1 — a) t + a]. Now, the basic polynomials for f(D) are computed
by Theorem 4; they are

.pn(x) = x[(l — a) D -+ aI]ﬂ xn—1
=3 (3) 0= ap et — D

=L G-

If we now apply the umbral operator ¥ : x* — L,(«x), then by Proposition 1
of Section 7 the sequence Ip,(x) will be basic for the delta operator

VID) V=1 = f(¥DV) = f(K) = f(D[(D — 1))

_a'D
T alD-I’

297



FINITE OPERATOR CALCULUS 731

whose basic sequence is, as we have remarked, L,(ax). Thus, we are led to
Erdelyi’s formula

“onl m— 1
L"(‘”‘):Z_k!“(k—l

k=1

) (1 — a)»% a*L,(x).

For the Laguerre polynomials of order «, Proposition 5 of Section 5 gives
us the generating function

(o)
Z L” (x) "= 1 ewt/it-1)
nso M (1 — )+t

Since the generating function of M is easily seen to be

M) ., -
go A

and
M) = (— "L (),

we obtain the following interesting relation:

)

nz=0

{a—n)
R
We will now generalize these relations and obtain generating functions for
the sequences Li*"™(x), where b is any fixed complex number. For b an
integer these were first obtained by Brown, and Carlitz later generalized
them to any &.

A routine calculation shows that L{***™)(x) is Sheffer relative to the delta
operator (), = — D(I — D)=L, Since, by formula (2) of Theorem 4, the
basic polynomials for Q, are

(—1)* (I — Dypr+n-1 (I + D) xn,

we discover that L& (x) is Sheffer relative to the invertible shift-invariant
operator

146D

Sb,a = (ITDW

If we now let O, = q(D), S, = s(b, «, D), and ¢;'(t) = A(5, t), then by
Proposition 5 of Section 5 we obtain

)

730

{a+bn)
I_"_‘_'_(ﬂ t* = (s(b, o, A(b, 1)) ez,
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which is the desired generating function. Further, since A(b, ¢) is the (unique)
formal power series solution to

— 4

—apT "

an easy calculation shows that

— A(b, — 1)

A(—b—1,t) = T

Similarly, we discover that
(—b—1,— o, A(—b—1,1)) = s(b, o, A(b, — 1)) - (1 — A(b, — ).

The spectral theory of Laguerre polynomials can only be sketched here.
The classical inner product,

L7 gl = [ " wremsf (x) gl) d,

can be redefined so as to make sense not only for « > 0, but for all « (except
when « is a negative integer). Indeed, as with the Hermite polynomials we
find

[ " e LD (x) () dx
1]

= fm DM(xxtre=) g(x) dx = Jm (— 1)y xetne=2Drg(x) dx
= [[7 (e Drgls + ) dt] = Ta+ 4 DIKK 4o

whereas, the inner product given by Proposition 1 of Section 9 is

[KK(f(K) g(*¥)]zo = (f(*), (%))s -

The two inner products do not coincide. The second inner product is,
however, positive definite for all «; whereas, the first is symmetric for all « and
gives

[L(x), L2(x)], = m! T(o 4 n + 1),

so that it is well defined, whenever « is not a negative integer. Nevertheless,
the eigenfunction expansion still makes sense, and Theorem 9 readily yields

the differential equation

L (%) + (@ + 1 — %) L (%) + nL,(x) = 0.
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Again we must leave a detailed analysis of these inner products to a later
publication,

We shall now generalize slightly the Laguerre operator K and consider the
delta operators

aD
LIX.B = la,B(D) = T-:-E— y o # 0.
The Laguerre operator corresponds, of course, to « = — B == — 1, From

formula (2) of Theorem 4 we find that the basic polynomials J®#(x) for
L, ; are given by
wx) = o1 — pD)" T am
gy 1 n—k qok
=% (o ) C B

Since
la.B(lrx'.B'(D)) = lo:c!'.ch'+B'(D)3

we see that the L, ; form a group under convolution and that this group is in
fact isomorphic to the multiplicative group of matrices

T—

This enables us to easily compute the umbral composition of the J&#(x).
Thus, for example, we obtain

iu.ﬂ)(}(v,ﬁ)(x)) _ ]ffv.ﬁv-ra)(x)’

which yields the binomial identity. Deeper properties can be obtained by
developing the theory of Sheffer sets relative to these operators.

12. VANDERMONDE CONVOLUTION

The difference analogs of Abel polynomials, with delta operator E-%4,
may be called the Gould polynomials and denoted by G,(x, b). By the corollary
to Theorem 4, we readily find the explicit expressions for the Gy(x, b);

A%, B) = Gy(x, b)/R! = x—j—bk; (x + BR),/&!

()
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We refer to Gould’s papers for comparison. The identity expressing that
these polynomials are of binomial type is sometimes known as the Vander-
monde convolution, though the name is also applied to other identities. Gould’s
(1961, 1.1) is the generating function, a special case of Corollary 3 to
Theorem 2. The binomial identity can be strengthened to

5 (7) (@ + 48) Gulx, ) Goale, ) = Pt tgmg Loy

k=0 x4

Gould’s inverse relations are straightforward applications of Theorem 2.
Since

(E-24)r = i (— Iyni (';) Ei-nb.

i=0

we find that

Fn) = 3. (= 113 (3) 1 = )

j=0

is the inverse of

X (x—I—Im

f(x):zx+bn n

n>=0

)F(n) —~ Y A4,(x, b)F(n),

nz=0

which can be considered as the basic inversion formulas associated with
Vandermonde convolution (a recasting of Gould (1962, 3.1 and 3.2)).
Several special cases are discussed by Gould, in particular, his Theorem 2
(1960).

We next obtain the connection constants of G,(x, ¢) in terms of
G,(x, c — b). This is done most simply by expanding the first set in terms
of the second. Now,

E*—cAG (%, ¢) = EYE-cAG (%, ¢))
= EnG,_(x, ¢) = nG, ,(x -+ b, ¢),
and, therefore,
(E>~c4)* Gu(x, €) = (1) Gnn(* + kb, €);
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whence, by Theorem 2

Gole + 0,0 = ¥, DL (e sy, v, o),

k=0

or

Gn(x + a, C) = Z (:) Gk(a, c— b) Gn—«k(x + bk’ C);

k>0
or, in Gould’s notation

Au(x +a,¢) =Y, Ayx, ¢ — b) A, (a + bk, ¢).

k=0

For convenience we also write the inverse formulas, obtained by a change of
parameters:

An(x+a,c—b) =Y, Ayx, c) A, 1(a — bk, c — b).
)

In more classical notation, this pair yields the inversion formulas:

fuw - a) = Y. Fy(x) Aysla — bk, c — B),

k=0

F,(x + a) = Zﬂ; Fi®) Ap_i(a + bk, c).

k=0

This implies Gould’s main theorem (1962, 5.3 and 5.4) and has the advan-
tage of a simpler formulation. Next, the polynomials (x + bk), are Sheffer
relative to the delta operator E-24. Hence, the binomial theorem for Sheffer
polynomials (Proposition 2 of Section 5) gives

(2 =% (% = ),

which is slightly deeper than the identity, obtained from the fact that the

EsGy(x, b) = —> 1@ (% + a + bh),

x+a-+b
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are a cross-sequence, namely

x+a+c (x—|~a+c+bn)

x-+a-4c-+bn n
_Z X+ a (x+a+bk) x4+ ¢ (x—|—c+b(n——k)
Sy a4 bk k x -+ ¢+ b(n — k) n—k )

A similar identity follows from the fact that E%x - bk), are a Steffensen
sequence. These identities also give the connection constants for expressing
G, (x, b) as a linear combination of G,(x, c). In short, the previous form reads

A 4 a+¢,b)y =Y Aux+ @, b) A, i(x + ¢, b),

k=0

and the Steffensen form is

(x+a+c+bn): Z Aﬂ_k(x+a,b)(x+c+bk).

n =0 k

The inverse set of the G,(x, b), call it [, (x, b), is easily computed by Theo-
rem 7.

Consider the umbral operator W sending x* to (x),, and, thus,
WDW=1 = A. The inverse operator sends E-*4 to D(1 + D)%, a delta
operator whose basic polynomials are

pax) = x(1 -+ DY 571 = xe~="berxn1

=% () e

k=0

which are polynomials of Laguerre type.

Gould’s summation formula 5.5 and Bateman’s alternating convolution
can also be obtained from the expansion theorem. We have thus “explained”
most identities for the polynomials 4,(x, 8) given in Gould’s two papers.

13. EXAMPLES AND APPLICATIONS

Appell Polynomials.

As already remarked, these are Sheffer polynomials relative to D. It is
impossible to summarize here the immense literature on these sets; a few
pertinent remarks must suffice.

If p,(x) = T-x", then an easy computation gives

pa(®) = (T T + #) ppsx),
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a useful recurrence formula which yields various classical formulas (for
example, the recurrence for Hermite polynomials).

Expansion of the product p,(ax) gi(bx) of Appell sets in terms of a third
set were considered by Carlitz (1963); his results are special cases of those of
Section 5.

By far the most widely studied class of Appell polynomials are the Bernoulli
polynomials (see Nérlund). They correspond to the operator J?, where

z+1
Joe) = [
(Since DJ = 4, J* is also defined by J* = (4/D)* = [(¢? — I)/Dj®.) For
a =1, we have J7x" = B,(x), the familiar Bernoulli polynomials, whose
elementary property can be gleaned from Section 5. The second expansion
theorem yields the Euler-MacLaurin sum formula; generalizations (Nér-
lund) are obtained by taking the Bl*(x) = J~%x. From (3) of Theorem 4 we
easily infer that the sequence xBI"%(x) is basic for the operator D J*. This
fact, combined with the general results given previously, yields all of
Norlund’s identities. The umbral properties of these polynomials are
remarkable, but require an extensive separate treatment.

Appell sets with the Bernoulli-like property,

Po(—x—1)= (— 1" pal),

were studied by Nielsen; Ward considered the more general functional
equation,

Palax + b) = c,p,(x), (*)

and called such Appell sequences regular. If a is not a root of unity, the only
regular sequence is

K. (%) = ¢ [x + bf(a — 1)]7; ¢, = a".

When a is 2 root of unity, however, we find a wealth of possibilities, as
follows: let @ be a primitive rth root of unity, then every Appell set satis-
fying (*) can be uniquely represented in the form

(%) = 5oK(%) + 8, Ky o(x) + -+ + 50K ,(%),
and conversely.

Another extensively studied (by Nérlund) class of Appell polynomials is

Ex) = [1 + (4/2)] o,
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and again their “properties” become special cases of the previous result.
Again (Steffensen) the sequence xEL*(x + na/2) is basic for the operator D
cosh (D/2). These sequences are variously called “Euler polynomials,” an
honor which is, however, bestowed upon a great many other polynomial
sequences. For a = — 1 we obtain, apart from a constant factor, the Genocchi
polynomials G, (x), and G,(0) are the Genocchi numbers. The second expansion

theorem applied to the Euler polynomials yields the Boole summation formula.

Inwverse Relations.

Given two polynomial sequences p,(*) and ¢,(x), suppose we can determine
the connection constants

pulE) = Y cortal),

=0
qn(x) = kz dnkpk(x),
=0

then we can derive a pair of inverse relations. Given any sequence g, , set
L(g,(x)) = a,; this defines a linear functional L on the space P. If
b, = L(pn(x)), we have

M=

b'n - Cnly

k=0

*)
an = Z dﬂkbk .

k=0

By specializing to suitable sets of Sheffer polynomials, a great many of the
inverse relations in the literature can be explained. In this context, Theorem 7
will help find the inverse of certain infinite matrices.

The simple inverse relations in Riordan (pp. 43-49) fall under the present
scheme. Glancing at Table 2.1 (Riordan, p. 49), we recognize that 1. and 2.
reduce to Theorem 2 for 4 and the backward difference V, and the rest result
from an umbral interpretation of the foregoing identities for Laguerre
polynomials. For example, 6 follows from the fact that the basic Laguerre
polynomials are self-inverse.

For the sake of clarity we discuss the simplest of all inverse relations,
namely

=Y (— ()b ba= T (— () a- (*)

kzz0 k=0
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This is immediately understood by defining the linear functional L(x*) = b, ,
which by the first identity gives a, = L((1 — x)"). Hence,

which is the second identity.
Klee's identity (Riordan, p. 13),

LG () e,

k=0

is another simple example of the use of such umbral techniques. Variants
of the two inversion formulas derived previously are discussed by Riordan
(pp- 49-54) and summarized in his Table 2.2 (p. 52). These inverse relations
can be treated by the methods developed here.

Generating Functions.

To relate a generating function identity in the literature to the present
techniques, we compare with the generating function of basic and Sheffer
polynomials, thereby identifying the operators involved. Take, say Example 2
of Riordan (p. 100). Changing variables,

___1____ — orlog—n—1 _ ﬂ
(1 _ t)a; =e - néo n! Pn(x):

where p,(x) i1s basic relative to backward difference; the inversion formula

N Ly L R o e A iy [

0 k=0

is, therefore, the umbral version of the expansion formula for V. Again
following Riordan (p. 101), taking

grlog(l-t—tH)=1 Z Pn('x) tn,
n!

nz0
we find that p,(x) are basic for Q = [(§ — 4E-1)/2 — 1]/2 and p,(1)/n! are
the Fibonacci numbers, whence a host of identities, and so forth to include
Riordan (pp. 99-106).

306
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The case of exponential generating functions (Riordan, pp. 106-114) is
simpler; most of the examples treated there reduce to Appell sets and their
inverse. The same can be said of the theory of Lagrange series (Riordan,
pp. 146-151).

The solution of transcendental equations is sometimes effectively carried
out by operator methods. Suppose we are to find a solution ¢ of y = ¢(z).
Letting O = ¢(D) (so that we require ¢(0) = 0 and ¢’(0) # 0), we find from

Fe — Z ﬂQn

1
=0 nl

that the solution ¢ (Theorem 3) is

The Heawtside Caleulus

Although the name should be Boole’s, the term is usually applied to the
study of shift-invariant operators which are polynomials in D (the analog
for 4, although easily derived, does not seem to appear in any treatise on
finite differences). There are two main applications. Any differential equation
(D) f(x) = g(x) with p(0) s 0 has 2 unique polynomial solution for every
polynomial g(x), as follows immediately from Corollary 1 to Theorem 3 (this
fact has been the point of departure for generalizations to functions of expo-
nential type), and the inverse operator can be written in closed form using
the Laguerre operator K and its iterations, which are easily simplified by the
Riemann-Liouville formula.

The second (and less well known) is the theory of expansions of formal
power series f(¢) in powers of a given polynomial p(¢) with p(0) = 0, p"(0) # 0:

fy =% -

n=0

How are the coefficients g, to be determined ? There is a unique inverse
power series p~(¢) of the polynomial p(¢). Suppose a delta operator ¢ can
be found for which both R = p~Y(Q) and f(R) have a simple enough form.
Then a, = [ f(R) pn(%)]s—q , Where p,(x) are the basic polynomials of QJ, by
Theorem 2. This technique works more often than it appears; we illustrate it
with an example from the literature.
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It was reputedly proved by Schur that in the expansion

w0

sinmx = Y, 2 (w(1 — )" (*

n=1

the coefficients a,, are positive, but no explicit expression was found. Carlitz
(1966) found an explicit formula for the coefficients, but it is not clear from
his result that the a,, are positive.

Now, it is obvious from (*) that the delta operator in question is
O = D(I — D), whose basic polynomials are p,(x), computed by

Pa(x) = x(f — D)= x™71,

that is,
(I— D)y "= (T_Lﬁ)n:(I+D 4+ DL DRy
—14m0 4 ("T D21
Ky  — 1 :
P =3 ("TI T  or— Dw
i=0

thus (Theorem 3)
R - AT

iz M
Setting A, = [pu(mt) — pu(— 71))/2in), Carlitz’s explicit expression is
obtained. The polynomials p,(x) and the coefficients a, can be expressed in
the closed form

X

Dal(%) = =) f: e i[t(x + t)]" 1 dt,

T /2

=) f [y(m — y)]**siny dy

0
easily derived from the integral form of (1 — D)~". From this, the positivity
of a,, can be inferred.

The well known Bessel polynomials y,(x) of Krall and Frink are not a
Sheffer set, but the related set f,(x) = %™y, _;(¥~1) is one. Its delta operator is
O = D — D?[2. This makes some of the results in Carlitz (1957) special cases
of the present theory. For instance, the generating function, (Carlitz’s 2.5)

Z fn("x) = grl1-(1-2011/2]
n=20 n

the property of being of binomial type (2.7); and Carlitz’s (2.8) are obtained
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by computing the connection constants with x”. The formulas expressing the
derivatives of f,(x) as linear combinations of the f,(x) follow from the expan-
sion theorems (2.10, 2.12) as do (3.1, 3.2). Burchnall’s 8,(x) are the Sheffer
set relative to Q' = 1 — D; this gives (— 2)? f,(x/2) = L{* (%) by an
easy umbral computation. Carlitz’s (4.4) gives the connection constants
between L{*'(2x) and f,(x), which follow from Theorem 7, and (4.6) connects

8,(x) with f,(x).

Difference Polynomials

They are the Sheffer sets associated with the difference operator 4 = E — I,
having the basic polynomials (x), = x(x — 1) - (x — n -+ 1). (The closely
related backward difference operator, V =1 — E-1, has the basic poly-
nomials ™ = x(x + 1) -*» (x + # — 1). Curiously, the connection constants
of x» with (x), are, apart from sign, the coefficients of the basic Laguerre
polynomials (an easy computation using Theorem 7).)

The generating function of a set of difference polynomials can be written
in the suggestive form s(z)~1 (1 4 #)=.

The first expansion theorem applied to 4 gives the Newton expansion. The
expansion of the Bernoulli operator [ in powers of 4 is Gregory’s formula.

Newton’s expansion, combined with the identity,

n
An — (— 1)»—* EF,
Z0
gives a pair of inverse relations which could simplify many a calculation in the
literature (e.g. Carlitz (1952)). Notable difference sets (cf. Boas and Buck) are:

(2) Poisson-Charlier polynomials, with S = E (apart from a parameter);

(b) Narumi polynomials, with S = D¥/(log({ + D))¥;

(c) Boole polynomials, with S =1+ (I 4 D)¥;

(d) Peters polynomials, with S = (I 4 (I + D)*};

(e) Bernoulli polynomials of the second kind b,(¥) = J(x), , extensively
studied by Jordan.

(f) The Stirling polynomials N (), introduced by Nielsen (p. 72), are
the basic set inverse to the upper factorial powers x™. They are, therefore,
easily reduced to the exponential polynomials. Nielsen’s notation yfi,(x) is
related to the present notation by (x + 1), (%) = N,(— » — 1)/nl. The
central difference operator S = [E/2 — E-1/2)/2 has an extensive literature
(but see Riordan, pp. 212-217); it is a special case of an Abel operator. Its

basic polynomials are written x["]; their connection constants (the central
factorial coefficient) with x" were computed by Carlitz and Riordan, and
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their results are derived from Theorem 7 and its corollaries. Expansions in
powers of .S, such as the formulas of Lubbock and Woolhouse, are heuristic-
ally derived by Steffensen; they can, of course, be verified by Theorem 2,
whose application becomes particularly useful when the sign of a square root
is to be chosen.

It does not seem to have been realized that Newton’s expansion and its
variants obtained from Theorem 6 yield a powerful technique for proving
binomial identities. We give a sampling, taken from Riordan (pp. 1-18).

The original Vandermonde formula (3a),

()= Z W6

k=0

follows from the expansion of (# 4 p), in terms of the basic polynomials
(n),, . Grosswald’s identity (Example 7),

R [ B

k=0

becomes clear when one replaces m by m — n:

Eea(, n 0 -cwenf),

with 2n — m = 2p. Again replacing & by 2p — % on the left, this reduces to

:é, (— 2 (Z) (m ; 2£ " k) _(— 1P (;) ’

and this is clearly a Newton expansion relative to the basic polynomials
(n);; the computation of the coefficient is routine.
The expansion of a product of two binomial coeflicients (10),

PO =2 (056 )

k=g
follows the same reasoning. Because of its importance, we derive it in full.
Jordan’s formula,

y 4
A(uv) =Y, (k) AiuA*~iEiy,
i=o *J
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gives, when # = (x), and v = (x), and g > p,

[

[44((x)p (£)pY]awo = {

(

(;) P!(g)k—:n (P)G-H?—k = (:’) (k i p) P!g!,

) U4 ER(), )y

T

l

) P!(g)k—:n [Ep(x):r—k+p]z=0

s,

I

as desired.
Shanks’ result that

with 4%; > 0, can be established in the same way, but the literature on the
A, is scarce.

Abel polynomials

They are the basic polynomials for the delta operator O = E*D, given by
(3) of Theorem 4 as

AR(x) = x(x — na)™ L.

Expansions into Abe! polynomials have an extensive theory (Hurwitz, Salié,
Boas, and Buck). The polynomials have notable statistical and combinatorial
significance. Identities for the Abel polynomials, as well as for the related
Sheffer polynomials (x — (z + 1) a)*, follow the same pattern as those for the
Gould polynomials. All identities in Riordan (pp. 18-23) can be obtained
either by one of the expansion theorems or by umbral composition (some-
times by both methods). Similarly, the Abel inverse relations of Riordan
(pp- 92-99) can be obtained by either of the foregoing methods or by recogniz-
ing a cross-sequence. As we have already described the techniques in deriving
Gould’s inversion formulas, we shall not repeat them here. As a simple
example of an inverse pair, we quote the following, due to Clarke:

b, = Y, (Z) kn**-lq,

k>0

ay = ¥ (— 1y () kot

k>0

which the reader will readily identify.
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Abel’s identity,

n

(x +9)r=> (Z) (y -+ ka)* % x(x — ka)*,

k=0

is nothing but an instance of the first expansion theorem as is the superficially
remarkable identity in Bernoulli and Abel polynomials

7

Bux+3) =Y (3) Bas(y + ka) a(x — ka)t-,

k=0

and many similar formulas stated by Norlund, Steffensen, and others. The
inverse set to the Abel polynomials does not seem to have been considered,
though they have a combinatorial significance, and we shall briefly derive
its properties here. Let

BY(x) = ¥ (p) #(ka)"*

k=0
%k
— Z _k_T_ [EkaDkx'n]m=0;
k=0 "

from the summation formula we recognize that these are indeed the inverses
of the Abel polynomials. Their umbral recursion formula is

B@(x) (B9(x) — na)*! = xn,
and the identity stating that the two sets are inverse is
n
xn = (Ra)"* x(x — ka) L.
Z )
The summation formula (Corollary 7 of Theorem 7) becomes
xk
fBOE) = Y 5 fO(ka).
k=0

This identity gives ample evidence of the simplicity of the umbral method.

Various authors have considered basic polynomials relative to the operator
Q = E%(1 + D)® D. The connection constants with the Abel polynomials are
easily found by Theorem 4;

n1 nh +k— 1
2l =Y (= DF (" TS T ) 0= 10 48w
=0
For Q = E%?’ 2D we find a generalization of the Hermite polynomials
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considered by Steffensen. The theory of crosssequences expresses them at
once in terms of the Hermite polynomials H (), that is,

n
n(n—-l)/2an_1 ( & — ) (oc)(x)

nl/2

The connection constants with x™ can be computed by the summation
formula, in view of the fact that the inverse polynomials can be expressed in
terms of the inverses of the Abel polynomials. This gives

(m)(x) Z (" “/; 1) a2 Hk[a(nuz)] X

k=0

The inverse connection constants can also be computed by Theorem 7; for
a =0 we have

2 (2?1)211;;7'4: Lk (0)(.76),

k=1

n 20 4 Dgp_or (2R + 1
it =y, @0t Do (B2 100 ),

k=0

two Hermite-reminding identities.

Cotlar Polynomials

An interesting class of Sheffer operators associated with the difference
operator 4 has been studied by Cotlar. It is easy to see that a polynomial
sequence p,(x) has the property that p,(k) = p(n) for all nonnegative integers
k and =, if and only if it can be written in the form

n

pal®) = 3 (7) A

=0

for some sequence A; 7~ 0. Such sequences of polynomials are said to be
permutable. There is one and only one permutable Shefler set—except for a
parameter; it must be a Sheffer set for the delta operator 4 and the invertible
operator (I — ad)™; it has the explicit expression

(@) - (1) @ @aa + o+ 1= pale).

Again, all Sheffer sets p,(») such that the sequence g,(x) = p,(«}/n! is per-
mutable can be classified (Cotlar). The delta operator is log(l + aD/(D — I))
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and the invertible operator is (1 — D)~ In particular for a = — 2 one
obtains a sequence of Sheffer polynomials M,(x) enjoying the remarkable
properties

Mn(_ X — 1) = (— 1)71 Mn(x)’
M(k) = My(n), By >0,
(=D My (—m)y=(—1)"M,(—%); kn=L

It can be shown that the three foregoing properties uniquely determine the
sequence M, (x), which is in fact explicitly given by

-1

M) = 2 (3 gy (s o+ L

The inverse set of the M, (x) can be expressed in terms of Bernoulli poly-
nomials.

Exponential polynomials

Also of statistical origin are the exponential polynomials ¢,(x), introduced by
Steffensen and studied further by Touchard and others. Some of their
properties were developed in III. We recall that they are the basic poly-
nomials for the delta operator log( + D), and that they are inverse to (x),, ,
so that

H(— 1) (¢ —n+ 1) = an,

and

balo) = T[4

k=0

= 3 S(n, k) %,

k=0

where, following Riordan’s notation, the S(n, £) denote the Stirling numbers
of the second kind (and s(, k) those of the first). Also, the Rodrigues formula
((4) of Theorem 4) says that

Pn(%) = H(pna(*) + ra(%))-

The generalized Dobinsky formula follows most easily by umbral methods.
Let p,(x) = (%), . Then

Pud() = = 3 PO

k=0
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and, hence, by linearity

o) == 3 20

k=0

for every polynomial p(x). Setting p(x) = x™ we obtain finally

bulo) == 3 B0

k=20

Similarly one establishes the recursion

Pnia(%) = 2($(x) -+ 1)

We shall add to the properties developed in III the generating function,

X
Z ‘ﬁn( ) i — ea:(et—l),

{
n=0 n!

and Rodrigues’ formula, implicitly established in III, that
$n(¥) = e~%(xD)" €,

which shows the roots of these polynomials to be real. Also, recall that the
connection constants with x” are the Stirling numbers of the second kind.
The connection constants between x™ and ¢,(x) are the Stirling numbers of
the first kind, since the ¢,(x) are the inverse set of the (x), .

As an example of computation of a “new” set of connection constants, we
shall connect the Laguerre polynomials with the polynomials ¢,(— x). It is
easy to see that the ¢,(— x) are basic for the delta operator log( — D). Thus,
we must find a formal power series f(¢) such that f(log(1 — ?)) = ¢/(t — 1).
Clearly f(t) =1 — e~* is the desired series. The connection constants are
therefore given by the coefficients of the basic sequence for the back-
ward difference operators V = I — E-!, namely the polynomials
x(x+ 1) - (x + n — 1). In symbols,

Laft) = #() (8() + 1) (83) + 7 — 1)
— 3, 150 Bl (o).

Riordan’s treatment of operators (pp. 200-205) furnishes a further batch
of examples of the present theory. We shall now briefly develop some of the
properties of the polynomials

Pa(@) = 3. s(m, k) (%),

k=0
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which are the difference analogs of the exponential polynomials. The umbral

theory of these two sets of polynomials can be used to systematically develop
identities for the Stirling numbers.

If V is the umbral operator defined by V{(x),, = ,(x), then by Proposition 1
of Section 7 ¢,(x) is basic for V4V~ But Vx* = (x), , since

(%) = Y s(n, k) &,

k=0

and so VDV = A. Therefore, ,(x) is basic for
Q=VAV1=V(e? -NV1=e!— L

But then, by Theorem 7,

P D)) = Sa(b(x)) = (%) ,
which give orthogonality relations for the Stirling numbers. The reader

should convince himself that Stirling number identities can be inferred

from identities relating the ¢,(x) and the i, (x). We give 2 sampling, leaving
the umbral proofs as exercises.

1) ) = (o)
(2) fusale) = (9(a) + 1" gives

Sn+1,k=7Y (Z’) SG, k— 1),

(3) du(P(x)) = (x), gives

Y S(n, &) s(k, i) = 8, .

kz0

i (P(x)) = (%), gives

s k) =Y s(n, k) s(k, i) SG, ).

() ) =e= ¥ I

k=0
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Taylor’s expansion gives

o) = T o [Die(0]:mo

k=0

which implies

k=Y (f) it S(n, i).

iz=0

Also by Taylor,

which implies
1 k 4
S(n, ky = —— ) (— DFEn
(n %) k! i;; (z) =1
(5) ¢n(x) of binomial type gives

(i +~j) Stri+j) = ¥ (,) Sthi) Sn — &, j).

t E=>0

(6) ¢,.(x) of binomial type gives

(i —j—]) s(n, i +j) = 3, (Z) s(k,7) s(n — k, ).

k=0

14. ProBLEMS AND HISTORY

We have assembled in random order some open questions suggested by the

preceding theory. Other problems are mentioned in the text.

(1) The present work unifies and extends the identities given by
Riordan (pp. 1-23, 43-54, 92-116, 128-131, 141-152, 200-205, 212-217),
that is, 82 out of 146 pages of text or 56%,. We have excluded the exercises
for reasons of time. Notable exceptions are Riordan’s theory of Chebychev
and Legendre inversions, the Bell polynomials, and differential operators of
the type xD. Each of these topics calls for a development along a similar line

but with a different invariance property than shift-invariance.
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(2) Expansions of products of polynomials of one set in terms of those
of another can be carried out by the foregoing methods but with difficulty.
Indications from special identities (e.g. Hermite, Laguerre) are that there
should be a general technique, which could apply more successfully to
summing multiple binomial coefficients.

(3) LetQx = 1 for the delta operator Q. Then Q can be embedded in a
one-parameter group of operators Q'Y whose indicators satisfy the functional
equation

q(t)(q(S)(x)) — q(.‘H—i)(x)_

The corresponding basic sets satisfy

gNq (=) = ¢ %)

Develop the theory of such sets. How can the “infinitesimal generator” be
computed ? The simplest example of this is the basic Laguerre set.

(4) It has been suggested by Gould that some of the identities in
Vandermode convolution are analogous to Kapteyn series. Several other
analogies with classical eigenfunction expansions can be noted, which suggest
an extension of the theory to classes of special functions. Truesdell’s theory
is helpful in this connection. Another possible extension is to exponential
polynomials.

(5) Statistical, probabilistic and combinatorial interpretations of the
identities are worthwhile. Several special sets, e.g. Abel, are connected with
particular distributions of statistics (see e.g. Dwass, Pyke). There are at least
three possibilities; interpretation as compound Poisson processes; inter-
pretation through stationary stochastic processes, as in the relation of Hermite
polynomials to Brownian motion of the Poisson—-Charlier polynomials by
the Poisson process, and, finally, the combinatorial interpretation through
counting binomial type structures such as reluctant functions (see III). Very
little is known about combinatorial interpretation of Sheffer polynomials;
occasionally (Laguerre) they arise in counting permutations with restricted
position. A major step forward would be a combinatorial or probabilistic
interpretations of Bernoulli numbers; we surmise that the fact that these are,
apart from a factor, the cumulants of the uniform distribution is relevant,

(6) One of the most difficult open problems is that of estimating the
remainder after # terms in the expansion formulas. Little is known except in
the Appell case. For p-adic convergence, the results are comparatively simple
(see LeVeque, p. 55f.), but undeveloped.

(7) Which Sheffer sets are orthogonal relative to some weight function
in some region of the complex plane ? Such a region is probably related to
the convergence region of Boas and Buck.
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(8) Another approach to the present theory is through the techniques of
Hopf algebras. The algebra of polynomials in the variable x is a Hopf algebra,
with diagonal map

[ . “ n c n--k
4d:x kgo(k)xk®x k,

The dual Hopf algebra is the algebra of differential operators with constant
coefficients, the pairing between the two being given by

D), 9(x)> = [P(D} g(*)]as -

An umbral operator can be defined as one that commutes with the diagonal
map, for example. The greater elegance of this approach is evident, as are
some of its advantages: one can consider differential operators acting or
polynomials or polynomials p(x) as operators on operators. In addition, this
point of view should point the way to a generalization to several variables, to
the exterior algebra (in infinite dimensions) and to more general Hopf
algebras. The theory of spherical harmonics should fit in one such generaliza-
tion.

(9) There is a curious relationship between the coefficients of the
expansion of a probability distribution into Hermite polynomials, and the
cumulants. If the mean is zero and the variance one, the two coincide up to
n = 5; this led Jordan (1972) to mistakenly conclude (p. 150) that they all
coincide, but see Kendall and Stuart (p. 158). At any rate, the relationship
between the two sets of coefficients seems fairly simple and should be worked
out, especially in view of the mystery underlying the cumulants. Note that
one can define cumulants relative to any sequence of binomial type, e.g. the
factorial cumulants (Kendall and Stuart). Do these lend themselves to easier
interpretations ?

(10) There is no special reason for choosing polynomials instead of
trigonometric polynomials; various identities relating Fourier and Dirichlet
expansions might become clearer, for example the relationship between
Bernoulli numbers and the values of the zeta function.

(11) Work out formulas for p,(Q), when p,(x) is a Sheffer set relative
to the delta operator Q.

(12) There are several relationships between the factorization of dif-
ferential operators with polynomial coefficients (of which no general theory
exists) and Sheffer sets, see e.g. the last chapter of Riordan and various papers
of Klamkin and Newman. One should begin by developing the theory of
xD; for example, L,(xD) has a simple expression (why ?). See also Rainville
(1941), Carlitz (1930), and Carlitz (1932).
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(13) The Laguerre polynomials are formally related to the gamma
distributions as the Hermite to the normal, the Poisson-Charlier to the
Poisson; nevertheless, a specific construction of the corresponding stochastic
process or a group of transformations relative to which they are the “spherical
harmonics’ seems to still be missing.

(14) Various representations of the inner product making the Sheffer
polynomials orthogonal are possible, and they should be investigated. The
classical theory of orthogonal polynomials may have extensions to inner
products “‘involving derivatives.” In what sense is the inner product of
Section 9 “‘natural” ? The inner product for the Hermite polynomials with
negative or imaginary variance is particularly interesting, in view of possible
connection with the Feynman integral.

(15) The explicit representation of umbral operators leads to operator-
differential equations in the Pincherle derivative, and is an untouched subject
of great interest.

(16) The theory of factorial series (see e.g. Norlund or Nielsen)
indicates that expansions in series of the form -, a,/p.(%) are at least
possible in some cases. Is it possible to extend the present theory in this
direction ?

(17) In the same vein, the divided difference operation,

s oy - FL=IO)

@ ===
is easily checked to be coassociative. This suggests that the theory be best
developed in the context of coalgebras (Sweedler) and that a suitable notion of
shift-invariance may be at hand. The same may be said of Thiele’s inverse

differences (Norlund).

(18) An operational calculus, as understood in the last fifty years, is an
isomorphism of a function algebra into an algebra of operators. In this respect,
the isomorphism in the present calculus possesses one extra feature: it
preserves functional composition, in fact, it gives meaning to it in terms of an
operation on operators. Can this feature be carried over to other operational
calculi ?

(19) Work out representations of shift-invariant operators analogous
to Post’s inversion formula for the Laplace transform.

(20) Under what conditions are the zeros of a Sheffer set real ?

(21) Evidently the kind of umbral composition we have considered is
not as general as it should be, as it does not explain why H,,(x)isa constant
multiple of L{1/2(x?),
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(22) The analogy between the functions ¢?* and (a — x)~! suggests
that there should be a theory of operators where shift-invariance is replaced
by the functional equation

@5 —(@— 9 =@ —3)a— 9 @—
This suggests parametrized families T, of operators such that
T.Ty = (T, — Ty)/(x — ).
Some work of Redheffer supports this feeling.

(23) It is easy to see that a polynomial p(x) is positive for all integer
values of x if and only if its expansion in a Newton series has nonnegative
coeflicients. We conjecture that analogous results exist for Laguerre and
Hermite polynomials and relate to the position of the zeros of these poly-
nomials.

History

It is impossible to account for the detailed development of the Heaviside
calculus from its beginnings; we shall only mention the works that relate to
the present approach. Perhaps the most striking feature of this subject is that
each author in the past would develop one approach to the exclusion of
others. Thus, Carlitz, Riordan, and Steffensen, while feeling at home with
generating functions, are somewhat ill-at-ease when handling operators,
called by Steffensen “‘symbols.” Pincherle, on the other hand, is fully aware of
the abstract possibilities of the concept of operator, but ignorant of the nitty-
gritty of numerical analysis, where he would have found a fertile ground for
his ideas. Sheffer also uses power series in preference to operators, with a
resulting lack of completeness.

The characterizations of basic polynomials, Sheffer polynomials and cross-
sequences in terms of a binomial property (Theorems 1 and 8, and Proposi-
tion 6 of Section 5) are new. Other authors have used characterizations in
terms of operators, thereby missing one of the main techniques.
The two expansion theorems may also be said to be new, although
various partial versions may be found in the literature from Pincherle on.
"The notions of a delta operator and basic sets are due to Steffensen (who,
however, did not give them a name and did not realize that they were one and
the same as sequences of binomial type) as is that of a cross-sequence (again
unnamed and uncharacterized). The isomorphism theorem was at least
intuited by Pincherle, and has been tacitly—and often unrigorously—used by
several authors.

The idea of applying the Pincherle derivative (the name is ours) in the
present context is new; it greatly simplifies the proof of Theorem 4 (first
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guessed by Steffensen) as well as the theory of Laguerre and Hermite poly-
nomial, to name only a few instances. Theorem 5 is new (first stated in III).
The recurrence formulas are due to Sheffer, as are the eigenfunction expansion
formulas, with the exception of the explicit inner products; his proofs,
however, use power series. Section 7 is new, as are most of the results in
Section 8. In the examples, detailed references are given.

An extended bibliography has been appended as a hunting ground for
further applications and extensions of the present methods. Items cited in
the bibliography of Mullin-Rota will not be repeated here.
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1. Introduction

We develop an algebraic system designed for computation with subspaces of a
finite-dimensional vector space over an arbitrary field, based upon two operations,
which we call join and meet. The join is the same as the wedge product in exterior
algebra, and the meet roughly corresponds to Grassmann’s regressive product,
with one important difference. Whereas Grassmann and all other authors up to
and including Bourbaki defined the regressive product by means of the duality of
vector spaces, we introduce a special device which enables us to define the meet
directly. This device is the notion of Cayley space, namely, a vector space endowed
with a non-degenerate alternating multilinear form, called the bracket. It seems
astonishing that this notion should not have been previously singled out, as it is
the basic tool—recognized or not—of classical invariant theory. A Cayley space

* Supported by NSF Contract # P36739
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186 Peter Doubilet, Gian-Carlo Rota, and Joel Stein

should be thought of as a natural companion to Hilbert space and symplectic
space.

The present definition leads to the derivation of a complete set of identities
holding between join and meet, an undertaking that in the past would have been
notationally impossible to carry out. We call these identities the alternative laws.
The body of this work consists in various applications of the alternative laws. We
show that these laws easily yield the classical identities holding among minors of
a matrix, as well as a systematic procedure for translation of universal theorems
of synthetic projective geometry into identities. The main application we derive of
the alternative laws is the straightening formula; this can be considered to be the
end product and the definitive version of a train of thought which began with
Clebsch, was developed by Gordan and Capelli, and later by Young and Turnbull.
The straightening formula can be interpreted as giving the solution of a word
problem. It is a central result in the characteristic-free theory of the projective
group; in fact it holds over commutative rings.

As an application of the straightening formula we obtain a characteristic-free
version of the classical theory of representations of the symmetric group, as well
as two elementary proofs of the First Fundamental Theorem of invariant theory
over arbitrary fields. The only previous work on this subject is Igusa’s.

Various other applications, which we hope to further develop elsewhere, are
sketched throughout the paper. These will include a thorough treatment of classical
invdriant theory over arbitrary fields, as well as of the symmetric group.

2. Cayley spaces

Throughout this work ¥ will denote a vector space over an arbitrary field. A
bracket, written
[Xys---,X,], wherex;eV,

is a non-degenerate (that is, not identically zero) multilinear alternating form,
taking values in the field.

A Cayley space is the pair consisting of the vector space V, together with a
bracket.

A-standard Cayley space is a Cayley space over a vector space V of dimension n,
whose bracket has the additional property that for every vector x in V, there
exist vectors x,,. .., x, such that

(X, X5, 00X,

1s not equal to zero. In a standard Cayley space the length of the bracket equals
the dimension of the space, and conversely. Unless otherwise stated, all Cayley
spaces occurring in this work will be standard.

The exterior algebra of a standard Cayley space is constructed by imposing an
equivalence relation on sequences of vectors. Given two sequences of vectors of
length k, we shall write

al...ak~bl...bk
when for every choice of the vectors x,,,,...,x, we have

TR P M N (L | U , S N i )
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On the Foundations of Combinatorial Theory: IX On the Algebra of Subspaces 187

An equivalence class under this relation will be called an extensor, or decomposable
k-vector, and will be written as

alvaz\/"'vak.

The operation V is called the join (and is elsewhere written A ; our departure from
customary notation is well motivated). Note that the join is non-zero if and only
if {a,,...,a,} is a linearly independent set.

A non-zero extensor is of step k if it is the join of k linearly independent vectors.
If it is of step zero it is called a scalar.

The extensors of ¥ span a vector space of dimension 27, called ¥, whose elements
are called antisymmetric tensors. The algebra of V together with join is the exterior
algebra of V. It is an antisymmetric associative algebra with identity (the scalar,
one) with the usual properties which will not be recalled here.

The extensors of step n form a one dimensional sub-space of V. Choosing a
basis {a,,...,a,} of V, whose bracket [a,,...,aq,] equals one, or a unimodular
basis, we may construct a basis for this subspace, the element

E=a, V- Va,

E is calied the integral.
We shall frequently indicate the join of extensors by simple juxtaposition of
symbols,
ab=aVb

Also, if A and B denote two extensors the sum of whose steps is n, we shall write
[A4, B] = [AB] for their bracket.
Every extensor 4 defines a unique subspace of the vector space ¥, namely

*

A = span{a,,...,a,}
where {a,,...,a,} is any set of vectors such that
aIV"'Vak=A.

The subspace A is called the support of A. If A and B are extensors, then A V B
is non-zero if and only if A n B = 0, in which case the support of 4 V B is the
sub-space A U B spanned by 4 and B.

A linear transformation T of V into itself is said to be unimodular if it preserves
the bracket.

Given an extensor A of step n—k in a standard Cayley space, we define the
bracket relative to A by

[xl...xk]A == [xl...xkA].

A relative bracket is an alternating k-linear form on a vector space of dimension n.
Conversely, any alternating k-linear form on an n-dimensional vector space
defines a unique relative bracket. The pair consisting of a vector space V with a
relative bracket is a non-standard Cayley Space, called the contraction of the
standard Cayley Space by the extensor A.

In a non-standard Cayley space on V, a vector in V is said to be of rank zero
when for all choices of the vectors x,,...,x,_,in ¥V

[x,xl,...,xk_l] =0.
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Otherwise it is said to be of rank one.

3. Splits and shuffles

A split of the linearly ordered set, or sequence A = a...bc...de...fis a partition
of A into blocks which are intervals of 4, namely

B, =(a,...,b), B, =(c,...,d),..., B, =(e,....[)

If B; contains i; elements for each j we call the split the (i, .. .,i,)-split of A.

A shuffle of the (i, ..., i,)-split of A is a permutation 6 : A — g(A) of the elements

of A with the property that each block of the(i, .. . ., i;)-split of 6(A4) is a subsequence
of A. That is, the linear order of A4 1s preserved in each block of o(A).

A bracket product is an expression of the form

la,...a]b,...b)...[c;...c,}d, V...V d

P

for some arbitrary number of brackets.
Let
ay...a; by...bj...c,...c, dy...d,

denote a subsequence of the vectors in a bracket product. We define the split-
sum of their (i,),... ., k, m)-splig as the expression
Z sgn(a)[ola,). .. ala)a;, ... a,)[a(by)...a(b)b;s,...b,]...

g

x [G'(CI). T g(ck)ck-t-l s Cn]a(dl) L a(dm)dm+ 1+ dp

where the sum ranges over all shuffles of the above split. Alternatively, we write
this as

[af...a! a;y,...a)[b5...b] b, ...b]...
[c]...c8 Cuyy--.Cld]...dy dpyy...d,.

The split-sum is thus formed by applying to the sequence of variables marked
by the superscript ¢ in a bracket product, the shuffles of the split whose blocks
are determined by the brackets.

One can iterate a split-sum. When the sets are digjoint, iteration reduces to an
interchangeable double summation. In the general case, split-sums are not

commutative.
As an example,

[a®bPc d’ef ](g°h i%jkl]

denotes the split-sum of the (2, 1)-split of a, b, g either followed or preceded by
the split-sum af the (2, 2)-split of ¢, d, h, i. However,

[a®b% Odef [g""h”i”jkl]

denotes the (non-commuting) split-sum of the (3, 3)-split of a, b, c, g, h, i followed
by the split-sum of the (2, 1)-split of the sequence 6((_;),' 0(b), 6(2).
In a single split-suym, we eften replace the superscripts by dots. Thus,

[a"b%cd][e"fgh) = [abed] [éfgh).
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The use of dots to indicate split-sums will be called the Scottish Convention after
H. W. Turnbull who used it informally.

4. Cayley algebras

We now define a second operation on a Cayley space, called the meet. Let
A=a,...aq.and B = b, ...b,beextensors of indicated steps satisfyingk + p > n.
We define their meet

AANB=a,...a, ANb, ... b

r

by the expression

AN B =Y sg{6)[a,(1)802)- - Qoin-mP1 - - D)ot ps 1)+ + - Boiiy
a

where ¢ ranges over all shuffles of the (n — p, k — n + p)-split of a, ... a,. Alter-
natively, we may write this as

A /\ B = [dl'--a(.n—p)bl"'bp]d(n—m+l."-dk*

where the dots indicate the split-sum of the (n — p,k — (n — p))-split of a, ... a,.
if Kk + p < n the meet is defined to be zero and in either case it is extended by
linearity to all linear combinations of extensors.

PROPOSITION. The meet satisfies the identity

: . . . . N . .
[al F .a("_r,)bl e bp]a(n_m.,,, . ak = bl e b,,_(n_k,[al e akbp,.(,,_k)_,_l e bp].

The verification is a simple consequence of the alternating property of the
bracket.
THEOREM 1. The meet is associative and anticommutative following the rule

BAA=(—1)n"Pr-bg A B

where A is an extensor of step k, and B of step p.

The verification is a straightforward computation.

The Cayley algebra of a Cayley space is the algebraic structure obtained by
eridowing the exterior algebra with the additional operations of bracket and meet.
Thus, a Cayley algebra is the vector space V endowed with three operations in the
sense of universal algebra: meet, join and bracket.

COROLLARY. The integral E is an identity for meet in the Cayley algebra, that is,

EANA=ANE=A

for all A. N

The meet of two extensors has an important geometric interpretation:

PROPOSITION. If A and B are extensors of step k and p, suppo;'ting subspaces A
and B of a standard Cayley space over V, and the span A U B equals V, then the
meet A A B supports the intersection A N B.

Proof: Take a basis e,,...,e, of V such that e,,...,e, is a basis of A N B,
€,,....e,abasisof dand e, ,....e,.e,,...,e, a basis for B. We may therefore
write, for some scalars ¢ and d,

A=ce, ... ¢

B=de, ...e,e;,,...¢€,.
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Expanding A A B, we get
AANB=cdle, ...ee ...e, g.e.d.

COROLLARY. The meet of two or more extensors is an extensor.

5. Duality

Let A,,..., A, be extensors of step n — 1 in V, which we call covectors. We
define a new alternating multilinear form on covectors in V, called the double
bracket, by setting

([A,-. . A]] =4, A AA,.

We infer from the properties of meet that the double bracket is non-degenerate
and of step zero (that is, a scalar). Thus, since the vector space spanned by covectors
is of dimension n, the double bracket defines a Cayley space on covectors. The
associated Cayley algebra is called the dual Cayley algebra. A Cayley algebra and
its dual are isomorphic. The role of join and meet are interchanged under the
canonical isomorphism.

A set of covectors 4,,..., A, with non-zero double bracket constitutes a basis
of covectors. In such a case, a corresponding basis of vectors a,,. .., a, can always
be found satisfying

Ai=a,...4, ..a

n?

where g, indicates that a; is deleted. It is verified in Section 7 that
[[Al" . ’An:l] = {al’- " 1an]n_l’

an identity known as Cauchy’s theorem on the adjugate. By duality and Cauchy’s
theorem, we may construct from every identity between joins and meets, another
identity where the roles of join and meet are interchanged, step k is replaced by
step n — k, and suitable powers of the bracket appear as multipliers to restore
homogeneity.

For example, if 4 is an extensor of step k and the b; are covectors, the identity

AV By A Ab =0 A~ ANB)VANDb, A~ ANb,,)
is immediate, as it is the dual of the identity

BA@ V- Va,)=@, V- Va)ABVa,, V---Va,,,

where B is an extensor of step n — k and the g, are vectors.

The principle of complementary minors which associates with every identity
holding among the minors of a matrix another identity holding among the com-
plementary minors of the adjugate matrix, is a special case of the duality between
joins and meets.

By introducing the analogue of the contraction of a bracket by an extensor 4,
in the dual Cayley algebra, we may construct in the given Cayley algebra the dual
operation, called the co-contraction or reduction by A. Thus, if A is of step k and the
Xx; are covectors, write A as the meet of n — k covectors and define the reduction
by A as

[xls- .. axk]A = [[xl," . ’xk]]A

= [[%:,. .., X, AY].
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The notions of contraction and reduction in the Cayley algebra correspond
roughly to the meanings these terms have in combinatorial geometry.
6. Identities in the Cayley algebra

We present a sampling of identities which describe how joins and meets are
distributed through each other, or alternative laws.

We begin with some notation. Juxtaposition of vectors denotes join and juxta-
position of covectors denotes meet. The inner product of a vector a and a covector x
is defined as

{alx> =a A x.

Similarly, if extensors 4 = a,...a, and X = x; A--- A x, are given, where the
a; are vectors and the x; are covectors, we define their inner product of length k

as
CAIXY =La,...aqlx,...x»
=(a,...q) N (x;...x).

THEOREM 6.1. Let a,....,a, be vectors and x,,...,x, be covectors.
Ifk = s, then

(ay...a) N(xp...x)=aylx ... Lax a0, ... 4,
If k < s, then
(@ ...a;) V(xg. ..xy) =X, X Ladx> .. Lalx ).
Proof: We verify the first identity. From the definition of meet,
@y ...a) N(x,...x))=<afixp@%...af) A(xy...xy)

= (@Ix,) aFx,) (g af) A (x5 x,)

Here ¢ ranges over the split-sum of the (1, k — 1)-splitofa, ... a,, 6 ranges over
the split-sum of the (1, k — 2)-split of a,,, . .. a,,. and so forth. But by an elemen-
tary coset argument this is equal to the split-sum of the (1,..., 1,k — s)-split of
a,...a,.

THEOREM 6.2. Let a,...,a; be vectors and x,. .., x, be covectors.

If k > s, then

(al...ak)/\(xl...x3)=(al...aqzlxl...x,-)...

X itoopjpr e Wl X gjpr e Xlogy - o O
If k < s, then

(ak. . .al) V (xs. ..xl) = ‘).CS' . .xk+1<ak...a"+.4.+j+l|.x‘k . ..)'Ci+.._+j+1> e
{a;...alx;...x .
Proof: By the associative law,

(@ ...a)N(xy...x)=(a . ..aq) N X)) A ANXpg iy X)

334



192 Peter Doubilet, Gian-Carlo Rota, and Joel Stein

whence proceed as in Theorem 6.1. The second expression is derived similarly.
COROLLARY 1. Let C,...,C, be extensors of stepn — i,...,n — j,n — l and let
k=1i+---+j+ 1 Then

al.-.ak A(Cl /\ "'/\ CS)= [fll...dicl]...[ai+,.,+j+1...dkcs]

If A=a,...a,and X = x, ... x, are vector and covector decompositions of
flats we shall sometimes employ the notation

A=a;...a, and X=2%...%,.

COROLLARY 2. Let A; and X, be extensors of complementary step for each j.
Then

(A Voo VAL ) AKX A A X = <A-11X1>"'<Ak|Xk>A.k+l
AV VAY V(X A A X)) = Xk+l<AkIXk>---<A1IX1>
THEOREM 6.3. Let Ay, B;, Cp. Dy, X, sy, and Y, _,, ., be extensors of indicated
steps. Then
AVX)ABCADVY)=2(AVBAX)V{(CVDAY)
Proof-
(AVX)YABCAMDV Y)= +[ABXICA(D VYY)
=+((AVBAXXADVY)
= +((4 V B) A X)[CDY]
=3+((AVBAX)V(CVD)AY)

THEOREM 6.4. If A V B is of step n, then
AVB=(AANB)VE

where E is the integral.
The proof is a simple verification.
We now present the main result of this section.
THEOREM 6.5. Let C*),... C"® be extensors of step n — q,,...,n — q, and let
k+s=gq,+: - +4q, Then
(@,...ab,...bJ ACHA--- AC”=(b,...b) V Y (=)

i+ tip=s

X {dy ..., -, CPY A Ay~ vt =t g1+ GCPY

where the integer (i,,...,i,) is specified below.
Proof: For simplicity of notation take s < g,. By Theorem 6.2, we have, calling
the left side I,

I={a;...a,CP A4y, 1. 8,4 5,CP). [y ssg ger--- @by ... BLCY].
The permutations acting in this equation may be separated into classes according

to their effect on the b’s. Thus, a given permutation positions, say, i, of the b’s in
the bracket containing C'V), ..., i, of the b’s in the bracket containing C. Affixing
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the appropriate sign,
I = Z (_)(i: ..... ir)[bfi_“bl‘?laq'”aa -C“)]

41—
i+ tip=s

7] (] ¢ a (2)
X [Bfe1 o B+l —ig+1 - Fgy -ty +g2-iC -+

[} [ ] (r)
X [blil+"'+ir-1]+1"'bsa[41‘f1+"'+4r-1‘ir-i]+1 - CT],

Here 0 ranges over the split-sum of the (i,,...,i,)-split of b, ... b,, and ¢ ranges
over the split-sum of the (¢, — i,....,q, — i,}-splitofa,...aq,.
We first evaluate (i,,...,i,):

(PR A
=ifg,+--+q,—5s)+ig,+ -+q,—s+i)+--+ilg,—s+i,...+i._,)
=q,(i) + qo(i, + i)+ -+ qliy + o+ i) — sl + -0 + )

+oip(ig) + il + i)+ i + e+ )
=q,(i,) + qali; + i) + -+ qli, + -+ 0)+ hy(iy...0)

where h,(i;...i,) is the homogeneous symmetric function of degree two on
| PR
We now factor out the b’s using Theorem 6.2. This gives the desired identity.
We conclude this Section with two examples which illustrate the correspondence
of theorems of projective geometry with identities in Cayley algebras.
DESARGUES’S THEOREM. The corresponding sides of two collinear triangles intersect
in collinear points if and only if the joins of corresponding vertices are concurrent.
Proof: Let a, b, ¢ be vectors and x, y, z be covectors in a Cayley space of three
dimensions. Juxtaposition of vectors denotes join and juxtaposition of covectors
denotes meet. The identity

abc AflaV yz) AbV zx) A(c V xy)] = xyz A [(be A x)V (ca A y) V (ab A 2)]

’

is easily verified. Now let x = b’c’, y = c’a’, z = a’b’ so that xyz = [a’b’c']%.

This gives
[(bc Ab'c"y V (ca Ac'a’) V (ab A a'd’)] = [(aa’) A (bb’) A (cc’)][abc][a’b’c’].
Desargues’s theorem for triangles whose vertices are a, b, c and &, V', ¢’ is then the
statement that one side of this identity is zero if and only if the other side is zero.
Pappus’ THEOREM. If a, b, ¢ are collinear, and a’, b’, ¢’ are collinear and if all six

points are distinct, then ab’ A a’b, bc” A b'c, and ca’ A c’a are also collinear.
Proof: The theorem is a restatement of the identity

(bc" Ab'c)V (ca’ A c'a) V (ab’ A a'b)
= [aa’b’][bb'c'][cc’a’][abc] — [abb'][bcc']{caa’][a’b c"].

Note that the algebraic version of each of these theorems is the stronger one,
as it includes the geometric result as well as degeneracies.

7. Determinant identities
Identities between minors of matrices find elegant verification in the language
of Cayley algebras. We illustrate with some examples.
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Let {e,.....e,} be a unimodular basis of vectors. With it we associate a basis of
covectors {1,...,n} by setting j = x; = e, ...2;...e,* Thus any extensor 4 of
step k may be uniquely expressed as a linear combination of monomials of the
formi,...i,_,, where i, < -~ <i,_,€l and juxtaposition indicates meet. It is
easily verified that {1,..., n} is also unimodular, that is, that 1...n is equal to
unity.

Given an extensor A = a,...a, of step n we may re-express its determinant
[a; ...a,] in coordinate form by applying the alternative lawsto A A 1...n:

AN1...n=1ay...q,) = {ali) ...<ajn)>

where <a;|j> = a; A jis the j-th coordinate of g, relative to e, , e,,...,¢e,.
A similar procedure may be used to coordinatize a flat of any step. Thus, if 4
is of step k we may write

A=A /\el...e,,=é1...ék(A/\ék_,.l...é,,)
or

A =A V 1...n=5€1)‘€2...5€n_k(/1 /\xn_k+l...x'n).

The first expansion represents a covariant coordinatization while the second
represents the associated contravariant coordinatization. The numerical coeffici-
ents occurring in these expansions are the well known Pliicker coordinates of the
flat relative to the indicated basis.

Given a determinant A = [a,, a,,...,qa,), the adjugate of A is the determinant
A*=a,ANa,_, A A a,

n—1

where @, = a,...4;...a,. The adjugate is thus the determinant of (n — 1) x
(n — 1) minors of A. Many determinant identities describe the relationships

between these two determinants.
We begin with the expansion of A due to Laplace.

(1) The Laplace expansion: This describes how to expand A in terms of the set of
minors of A in a given subset of {4,,...,a,}. Thus by Theorem 6.2,

A=a;...a, N1...n
=(a,...a)AN(1...k)A(k+1...n)
=day...all... k>as,...alk + 1... 1.
The Laplace expansion is thus a consequence of one of the alternative laws.

(2) Cauchy’s Theorem on the adjugate: The adjugate is the (n — 1)th power of
the original determinant. By the associative law for meet,

A* = (—y"=V25 A .. A G,
= (=)=, . .a)A(aay...a)N---ANlay...a,_,)

= —(=)y@"Y2g . .alay...a,) A(aaa,...a)A---Afa,...a,_,)

= A"l

* Note our unconventional usage of integers as variables.
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(3) Jacobi’s Theorem on the adjugate : A minor of order r of the adjugate is equal to
the complementary minor in the original determinant multiplied by the
(n — r — 1)th power of A.

We illustrate with the case r = 2. Consider the identity

a, A - ANa,=aaydsy...a, N aa,ad,...a, \--- Naa,...4,
—2)n—3)2 .
= (=)~ 20=32g g.la,a,85...4,)...[ay ... 8, ,4,]
= (—)("_2)("_3)/2(1102A"_3.
Now meet both sides with

ij=el...éi...é'...

FERERLY

This gives
<a" “ee a3|el [ éi ‘e é_} s e”> = A"‘3<a1a2iij>,
which is the desired result.

(4) The Bazin-Reiss—Picquet Identity: Starting with Cauchy’s theorem on the
adjugate, meet both sides witha b...c @y...a, This gives

[@a b...c Gg4yi...a.0la;...a,)""!
=[a a,...a)[a;b as...a][aia;...¢ aprq...a)[a:...Qq...a,).. . [ay... 4]
so that
@ b...c Guyy...a) A =[da,...a){a;b...a,)... [a;...¢...a,
as desired.

(5) Sylvester’s Theorem on Compound Determinants: Form the set of monomials

a; ...a, wherei, < --- < i from the sequence-{a,,...,a,} and order them lexico-

graphically as {4,,..., 4 (,,)}. Also, let the set {X,,..., X (,,)} be formed from the
k k

set {1,...,n} of covectors, in the same way. The determinant
= (. A X
Ay = (ALK - A o

n—1
is called the k-th compound of A. Sylvester’s theorem states that 4, = A("' ‘).

n—1
We illustrate the method for the case n = 4 and k = 2, so that (k 1) =3

By Cauchy’s theorem,
[abcd]® = (abc) A (abd) A (acd) A (bed)
= (ab [acbd)) A ([adbc] cd)

= (ab V (ac A bd)} A ((ad A bc) V cd).
Similarly,
(12341 = (12 V (13 A 24) A (14 A 23) V 34)

Now substitute for [abcd]® and {1234]° on the left hand side of
[abed)® V [1234)® = [abcd)?

and expand the resulting expression by the alternative laws. This gives the result.
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Sylvester’s identity shows how to construct a Cayley space on the extensors of
step k.

8. The Straightening Formula

We now derive the basic result of the theory of Cayley algebras. In its simplest
form, it can be viewed as stating that a set of vectors is a basis of a certain vector
space. It can also be interpreted as the solution to a word problem in the Cayley
algebra, (see Section 12).

Our main application of the Straightening Formula is a characteristic-free
proof of the First Fundamental Theorem of invariant theory. We also sketch
applications to the classification of identities in associative algebras dand to the
theory of symmetric functions.

Some of the results below can be extended to spaces of arbitrary dimensions,
but we have preferred to preserve the more elegant approach by Cayley algebras.
The finite-dimensional case proved here is actually the stronger.

Let K be a field of arbitrary characteristic and let Ry be the polynomial ring over

K obtained by adjoining mn transcendentals (ajx;) where ie{l,...,m} and
je{l,....n} _
Leta = (¢;,...,2,) and B = (8,,..., B, be sequences of non-negative integers.
We define
Vos

to be the vector space over K spanned by all monomials in the (a;|x;) which contain
a; occurences of a; and f; occurrences of x;, or all monomials of content («, B) for
short.

A double tableau of content (a, p) is denoted by the double matrix

ayy ... Gy, X11 ... Xy,
T=

4y ... 4ag, Xy oo Xy,

where n > 4; > -+ > A, and where the elements a;; of the left tableau are chosen
from {a,,...,a,} and the elements x;; of the right tableau are chosen from
{xy,...,X,}, such that each g; occurs with multiplicity «; and each x; occurs with
multiplicity B;.

The tableau T is defined to be the expression

T=(ay; - @ua,%11---X1a,) - (@1 G X1 - - - Xg3,),
where we set
(@j1---a,|%j1- .. Xjz,) = Z sgn(o}a;1/X;0(1)) - - - (ajz,lxjau,)),
the above sum extending over all permutations o of the sequence 1,...,4;.
Assign to the a; and x; the linear orderings
a,<---<a, and x, <---<Xx,.
Relative to these orderings, a double tableau is said to be standard when in each

tableau the entries in each row are increasing from left to right and the entries in
each column are non-decreasing downward.

339



On the Foundations of Combinatorial Theory: IX On the Algebra of Subspaces 197

The shape of a double tableau T is the row length vector
A[T] = (Ay,. .., Ay

Shapes of tableaux are ordered lexicographically by 4 > u when 4, > y; and
4= u;forj<i

Using this ordering on shapes we now linearly order all tableaux. Associate
with T the sequence

n[T] = 4aq ...al,_lan...as;tsx“...xs;.s,

and order the set of these sequences lexicographically.

If S denotes another double tableau then set T > § if A[T] > A[S], or if
AT)=24S)and n[T] < xn{S).

Remark: Identities in a Cayley algebra between inner products may be inter-
preted in Ry. To do this, substitute for each inner product <a; ...a;|x; ... x;
the double tableau (q;, ...a,|x; ... x;) Conversely, any identity in Ry may be
interpreted in a Cayley algebra over the integral domain Ry, and we shall use the
two notations interchangeably.

LEMMA 1. Let k > | and
B=b1...bj_1 Y'—‘YI.Vk
C=Cj+1...C, Z=21"'ZI

where the b; and c; are vectors taken from the set {a, ... a,} and the y, and z; are
covectors from {x, ...x,}. Then the expression

I=(Bb;.. bJYY(é...¢,C1Z)

is equal to a sum of products of pairs of inner products, each pair containing one
inner product of length at least k +: 1.

Proof: By Theorem 6.3 we have
I=(£)BVY)A(;...by ¢;...c) A(CV 2).
Setting ;... b, ¢, ...c; = D, we now use Theorem 6.5 to distribute B through
the other factors. This gives

j—1
I=(£)YA Y (—)HObT...bJV D} A(bIe,...b].) V(CV 2Z)}
s=0

Distributing Z by the dual of Corollary 1 to Theorem 6.2, this becomes

ji-1
I=(1) ZO(—)“‘
{(bT...BDY A Y A(2y. .. 20410} V {lbsy. .. bj_1C) A (24 1)),

or
i (b',’...b;'D

Yzl...z,ﬂ)
bisy...b]_,C '

2eya... 4

which concludes the proof.
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THEOREM 1. (Straightening Formula) The double standard tableaux of content
(a, 18) span V;ﬂ‘

Proof: Any monomial of step zero equals a linear combination of monomials
of the form

o

}l
alx>{blyy ... {clz)> = .

clz/

We show that any double tableau equals a linear combination of double
standard tableux. We proceed by induction on the linear ordering of tableaux,
and show that every non-standard double tableau T of content (o, f) equals a
linear combination of greater tableaux of content (a, §). Since there are only
finitely many double tableaux of content (a, f) iteration of this argument must
then eventually express T as a linear combination of double standard tableaux.

If two entries in T satisfy t,; > t; ;,, ort;; > t;,, ;call this a violation of standard

ij = Yigj+
formin T.
Assume a violation occurs in the left tableau. If it is a row violation, a;; > q; .,
then set T = —S where S is obtained by reversing the positions of g;; and g, ;. ,

in T. Note that n[T] > n[S] so that § > T.

Now assume a column violation a;; > @;,  ; occurs.

Let T, denote the first i — 1 rows of T, T, denote the next two rows of 7,and T,
denote the remaining rows. We are primarily concerned with T;, which we display

as
Y
Z 7

B=b1...b‘_1 Y=Y1.Vk

J

J

c,...c; C

J

(B b,...b,

where

C=Cj+1...C, Z=Zl...2,.
Y
zI

Since any indicated permutation o, except the identity, exchanges elements from
the first row of I with elements from the second row, and since

Consider the expression

/- [B b,...b
¢p...¢ C

J

;< -<cp<b<.<b,
it must be true that o(c;) > o(b;). Thus we have that
I=T,+ ) dS)S

§>T;

where ¢(S) are integers. By Lemma 1 we also have

I= Y Q)

Q>T:
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Combining these results gives
T,= ) @)@+ Y «S)S
g>T; §>T,;
which expresses T, as a linear combination of greater tableaux. Appending this
expression for T, to T yields an expression for T as a linear combination of greater
tableaux. Similarly, if violations occur in the right tableau of T, they may be
straightened by an analogous procedure.

This completes the proof.

In the course of the proof the following result has been implicitly established :

CoROLLARY. Let P and Q be elements of V,,, and let

P={(a; alx;...x;)Q.
Then P equals a linear combination with integer coefficients of double standard
tableaux, whose first rows are of length s or greater.

Theorem 1 has an interpretation in a Cayley algebra over K.

THEOREM 2 (Straightening Formula for Cayley Algebras). Any monomial of
content (a, f3) of step zero in the vectors a; and the covectors x ;, built out of joins and
meets-in the Cayley algebra of a vector space of dimension d equals a linear combina-
tion with integer coefficients of double standard tableaux of content (a, ), whose
rows are of length at most d.

We next establish the linear independence of the double standard tableaux,
using a new kind of polarization. We begin with some definitions.

The set-polarization operator

Db, a) = DY,

acts on a monomial in V,; by replacing it by the sum of the monomials obtained
by replacing in turn every subset of k entries equal to a by a subset of k entries equal
to b. If the given monomial has p occurrences of the symbol a, then the result of

applying the operator Df, is the sum of (z ) terms. If the monomial has fewer than k

occurrences of the symbol a, the result is 0. For k = | the operator D!(b, a) is the
classical polarization operator.
The substitution operator

Stb.a) = §,,

acts on monomials in V,; by replacing each occurrence of the symbol a by an
occurrence of the symbol b.

Now extend set-polarization and substitution to all of V, ; by linearity.

The following combinatorial lemma is easily proven by the pigeonhole principle :

LEMMA 1. Let S and T be single tableaux of the same content with A[S] < A[T).
If in each tableau the entries in each row are strictly increasing, then one of two
alternatives occurs:

(1) S and T are of the same shape, and the entries in each column of T are obtained
by permuting the entries in the corresponding column of S, or

(2) Some row of T contains at least two entries which appear in the same column
of S.

We are now ready to prove the linear independence of the double standard
tableaux in Ry.
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THEOREM 3. The double standard tableaux of content (a, B) form a basis for V,,.
Proof: It suffices to produce for any double standard tableau {T,|T,} a linear
transformation P(T;|T,) from V,, to some vector space satisfying

P(MITD){TTL) =w
P(T1|T2){D1|D2} =0

for w # 0 and where {D{|D,} is any other double standard tableau {D,|D,} of
shape >/, where A = shape of {T}|T,}. For then, if the double standard tableaux
were not independent, there would be a non trivial linear combination £ of
double standard tableaux equalling zero, and if we were to take a tableau {T;|T;}
of least shape with non zero coefficient in & (say the coefficient of {T}[T,} is d),
then applying P(T;|T;) to ¥ would yield d - w = 0 which is impossible since d # 0
and w # 0. Hence the double standard tableaux would have to be independent.

Let My be the polynomial ring over K obtained by adjoining transcendentals
(s;;lta) and (b,y,) where indices range over finite sets of sufficient size to perform
the following constructions. Let W denote the vector space with the (s;;[t,,) and
(b,y,) as a basis. .

In the double tableau {T;|T;} let «;; be the number of entries equal to g, in
column j of T; and let §;; be the number of entries equal to x; in column j of T;. Set

D(T|IT,) = n D*i(sy;, ay) H DPu(ty;, x;)
i,j LJ

*)

Now let
ij ij

By the above definitions, the operator
P(T)|T;) = S(T,| T,)D(T,| T;)

is a linear operator which maps ¥, 5 into W.
To see that P(T;|T) satisfies (*), we begin by computing D(T,|T,){T}| T>}. This
is a sum of the form '
D(TITTIT:} = {THT + ) {(VilVy)

where {T|T’,} is obtained by replacing the «;; entries in the j-th column of T,
which are equal to g; by s;; and simultaneously replacing the §;; entries in the j-th
column of T, which are equal to x; by t;;. Each term {V,|V,} has the property that
it may not be obtained from { 7|7} by permuting the elements within a column.
We claim that

PTIT){ T T2} = {T{IT3} # 0,

where all entries in the jth column of T7 or T3 equals b, or y;, respectively. Clearly
{TIT3} is one term in P(T,|T){Ty|T>} since it is the image of {T}|T%} under
S(Ty|T;). But by the above property of the other terms {V}|V,}, and since D(T;|T;)
preserves the shape of a double tableau, we have by the preceding lemma that
S(LIT) (VIV} = 0. ,

Now consider any other double standard tableau {G,/G,} of shape >A.
D(T,|T,){G,|G,} is a sum of terms {Y,|Y,} of shape >4 which are not equal to
{T1|T5} or obtained from it by rearranging elements within a column. Hence by
the Lemma P(T;|T,{G,|G,} = 0. This completes the proof.
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The Straightening Formula for Ry states that V,; has two bases, the monomials
of content («, B) and the double standard tableaux of content (@, ). This result can
be related to an identity in the theory of the symmetric group.

Let M(, B) be the dimension of ¥, ,;, and note that this number equals the
number of matrices with non-negative integer entries and with row sums («, 5, .. )
and column sums (f,;pB,,...). Let K(o, 4} be the number of single standard
tableaux of content a and shape 4. Then the above yields the identity

M(a’ ﬂ) = ; K(a, i)K(:B’ ’l)s

as A ranges over all partitions of the integer n.

We now extend the linear independence of the standard tableaux to a more
general ring. We begin by motivating our construction with imprecise but, we
hope, suggestive language. In a vector space of dimension d, monomials in the
inner products {g;|x;> are not always linearly independent. This leads to con-
structing a homomorphic image of R, which is isomorphic with the ring of inner
products of vectors and covectors in dimension 4.

Consider the ideal J; in Ry generated by the elements

det(a;x,)
ik

as I and K range over all subsets of d + 1 elements of {1,...,m} and {1,...,n},
where d is a given integet.

The ideal J, is invatiant under permutation of the variables g; and x;. Further-
more, every double tableau having one row longer than d belongs to J,. By
Theorem 3, these double standard tableaux are independent, and by the Corollary
to Theorem 2, every element of J, equals a linear combination of double standard
tableaux each of which has a row longer than d. Concluding, we have proved the

LeEMMA. The ideal J, has a basis consisting of all double standard tableaux in the
entries a; and x; having at least one row of length greater than d.

We can now state the main result of this Section:

THEOREM 4. In the quotient ring G,(K) the double standard tableaux whose rows
are of length at most d form an integral basis.

Proof: By the preceding lemma, taking the quotient by the ideal J, amounts to
setting to zero all double standard tableaux having one row longer than d, and
only these. Hence, the conclusion follows from Theorem 3.

_Finally we note the remarkable fact that by Theorem 4, even though monomials
in the (ajx ;) are not independent, nevertheless the double standard tableaux are.

9. The First Fundamental Theorem

We now apply the Straightening Formula to derive the main results on vector
invariants over arbitrary fields. The technique is simpler than the ones classically
used, which apply only to fields of characteristic zero.

Let V be an n-dimensional vector space over a field K, and let

Flxy,....x5)=F(x{,....Xy;€1,....8,)

be a polynomial function of the coordinates of the vectors x,,..., xy relative to
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the basis of covectors e, ,...,e,. Since the jth coordinate of the vector x; may be
written as

ixfj =x; A e; = (xilel) = <-\',-U>,
the function F(x,,..., xy) equals a linear combination of double tableaux in the
vectors x; and the covectors e;.

A polynomial is invariant when for every non-singular linear transformation T
onV,

F(Tx,,....Txy:e;,....e,) = MT)F(x,,....xy:€,.....8,)

where /(T) is some scalar function.
Since T induces through its adjoint T*, a non-singular linear transformation
on covectors satisfying

<Txi|ej> = (x| T* ej)»

and since F depends only on the {xje;>, we may alternately define an invariant as
a polynomial which satisfies

F(xq{,....xy: T*ey,..., T*e,} = f(T*)F(xy,...,xn:€4,....€,)

for all non-singular linear transformations T* acting on covectors.

We also define a formal invariant as a polynomial F(x,,...,xy) which is an
invariant when considered over the extension field K(x,,,...,xy,), where K is
the ground field of V' and the coordinates x;; are transcendentals.

We shall prove the following result over an arbitrary field.

THEOREM 1. Every invariant (or formal invariant when the field K is finite) in the
vectors xq,...,Xy is expressible as a linear combination of products of brackets in
the x;, where each summand has the same number of bracket factors. In other words,
every invariant is a word in the Cayley algebra, built out of joins and meets of x ..., xn
alone with no explicit reference to e, ..., e,, in which every summand is of the same
total degree.

Proof: As noted F may be written as a linear combination of double tableaux,
and thus, by the Straightening Formula, as a linear combination & = 3, 2,{C,|D;}
of double standard tableaux. We must therefore show that the right tableau of
each summand in % is given by—writing j in place of e,—

12 ... n
D =
12 ... n

where D has (say) g rows.

We begin by showing that each right tableau in % contains each variable
€,,€,,...,e, the same number of times. From the definition of an invariant, by
considering the linear transformation

T*e. = ce.

T*e, = ¢, Jj#A,

J J

for some scalar ¢, we may conclude that each integer i occurs the same number of
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times, say g;, in each right tableau in .. Now by considering the linear transform-
ation

* .
T*e, = ¢;

* =
T*e; = ¢

T*e, = ¢, k #1ij,

we conclude that g; = g; for all i and j, and call the common value g.

Let us now analyze the possible order of the entries in a right tableaux D,
more particularly in the rows. If in each row of every D,, every integer j is
immediately followed by j + 1, then the proof is concluded. We may therefore
assume that there is a smallest integer j and a first row, say the (k + 1)th, such that
j is not followed by j + 1 in this row. The rows with this property will be adjacent
and below the kth. Say there are Q such rows, R, ,..., R, . Then there are
Q entries equal toj + 1 out of position. They cannot be in any of the rows preceding
R, .., because these rows already contain an entry equal to j + 1. Hence they
must lie in the rows following R, 5. Let R be one such row containing an entry
equal to j + 1. Then j + 1 must be at the left of this row. For it cannot be to the
right of the jth place, otherwise the tableau would not be standard in the corres-
ponding column, and it cannot be between the first and the jth place, otherwise
the minimality of j would fail.

Hence, following row R, ., there are Q further rows Ry,g41,..., Rysa9 for
each of which the left entry is j + 1.

Thus, the tableau must be of the following form:

1 2 ... j o+l
krows<1 2 g oj+1
A 2 oo+l
(1 2 *
Qrowsli
1 2 *
j+1
Q rows
J+1

where the stars stand for entries greater than j + 1.

Since this analysis accounts for all (j + 1)’s out of position, we must have
Q = g — k. Thus, since k was chosen to be minimal Q is the maximal number of
Jj’s not followed by j + 1 in any D;. Say this occurs in the tableaux {C,|D,},...,
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{C,D,} of %, so that
F =% 2,{C|D;} + other terms.
i=1
Consider the linear transformation

T*ej = ej + €j+1
T*ei = ei i #j

Under T*, each tableaux {C,|D,} is sent into the sum of the tableaux obtained
by replacing in turn every subset of Q or fewer entries equal to j by j + 1. Of
course the resulting tableaux may not be standard or may even equal zero.

Let us see what happens to the first a tableaux by this substitution. Replacing
the Q entries equal to j in rows Ry,,,..., R4 by j + 1 we obtain standard
tableaux with Q fewer entries equal to j. These standard tableaux have fewer j’s
than necessary, and must be cancelled out by tableaux obtained from other
substitutions. By the maximality of Q and the linear independence of the standard
tableaux this is impossible. We have thus reached a contradiction which concludes
the proof.

We now give an alternative version of the First Fundamental Theorem valid
for all fields.

The following lemma is a simple consequence of the multinomial expansion :

LEMMA 1. Let F(x, . .., z) be a homogeneous polynomial function, of degree g, of the

coordinates of the vectors x,...,z. Then for any scalars A;,...,u; and vectors
X;,...,2Z; we have
{17 kq, .k
F(Zl,-x,-,...,z,u,-z,- = Z . Z 111122_“#11’122
i i iz, kika...
Fiiy. ke (K15 X250 521, 22,.. )

where the sum ranges over all i,,...,k,,... such that
Z.if"*'""tki:g
J

and the F, ;, ;... are homogeneous of degree g.

The proof is omitted, as the result is well-known.

LEMMA 2. In a Cayley space of dimension n, let F(x,, x,, ..., x,) be a scalar valued
Junction of vectors x,,...,x, which is invariant under all non-singular linear
transformations T, that is, such that for some scalar function A(T),

F(Tx,, Tx,,...,Tx,) = MT)F(x;,...,x,)
Then
F(xy,X3,...,%,) = ¢[X1,X3,..., X,

for some constant ¢ and integer g.

The proof is omitted, as the result is well known to hold over an arbitrary field,
and an easy consequence of the fact that the determinant is an irreducible poly-
nomial.
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LEMMA 3. Let F(x,,...,xy) be a homogeneous invariant of degree g. Then the
polynomial

(X1sens X BF(X 5. .., Xp)

equals a polynomial in the brackets {x; , x;,,...,x; ).
Proof : Since the function F is homogeneous of degree g,

Deyseees X BF(xq,. .., Xy)

= F([X1,. 0 s X)X 10 e s [Xaoe e s XndXms (X 10w e o s Xnd Xt 15- 000 L1 e v s XplXn):

Using the identity
n
[xl,...,xn]x]'= Z [xl,-..,xk_l,x_",xk+l,...,x"]xk
k=1

and expanding as in Lemma 1, we find that
(*) (X0, X BF(X g, xN) = Y, CnF(Xy, X250 -0, X,)

where the subscript m ranges over a set of multi-indices, and the coefficients c,,
are products of brackets of the form
bj = [xl,xZ,. s Xm0 Xjy Xpt 150 ,x,,].

Note that for j > n the b; are algebraically independent (in the case of finite
fields of p elements, after making the reduction x? = x). This follows from the
algebraic independence of the {x;le;>.

Because of Lemma 2, the proof will be concluded if we can show that each of
the F,(x;,...,x,) is an invariant. Since multiplying an invariant by a product of
brackets preserves invariance, we may conclude that

(X1 X, J8F(xy ... xy)
is an invariant. Thus
[Txy... Tx,J*F(Txy ... Txy) = AT)[xy ... x,JfF(x; ... xy)
Substituting in (*) we get, since the c,, are also invariants,
g:cm(Tx1 e TXNF(TX, ... Tx,) = u(T)gc,,,(xl,...,xN)F,,,(xl ceeX,)

Since both sides are polynomials in the b;, and since the b; are algebraically
independent, their coefficients must coincide. This gives

F(Tx,... Tx,) = (T)F,(x,...x,)

which concludes the proof.

THEOREM 2. (First Fundamental Theorem of Invariant Theory). Every homogeneous
invariant in the vectors x,,...,xy is expressible as a word in the Cayley algebra,
built out of joins and meets alone.

Proof: By Lemma 3, there is an integer g such that

(X150 X0 BF (X4, ..., Xp)

is a polynomial in the brackets, that is, a linear combination of double tableaux
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of the form
,Z {TAD}
where
12 ... n
D=
12 . . n/.
We wish to show that it is possible to cancel [x,,..., x,]t while retaining the

rectangular form of the right tableaux. By the Straightening Formula, F may be
written as

a linear combination of double standard tableaux. Let
X{ oo X, 1 ... =n
U = V! = ,
X4 X, 1 n
U; V

where vertical dots indicate that a total of g rows have been placed above each of
U; and V as shown. U; and V| are clearly standard. Now note that

[X1s. oo X BF(Xy,...,%,) = Z {ujvil.
We have thus written [x,,..., x,]8F(x,,..., X,) as a linear combination of double
standard tableaux in two different ways. By the linear independence of the double
standard tableaux these must agree, giving

Vi = D.

It follows from this that V; is also rectangular with rows equal to 1...n, which
concludes the proof.

10. Time-ordering (sketch)

We consider here the space V, , introduced in the statement of the Straightening
Formula, and now assume that the entries of the vector f are all equal to zero or
one; that is, that there are no repeated covectors in any monomial in V, ;. We now
treat ¥, 5 as a module over the group-ring of the symmetric group acting on the
set of covectors. The proof of the Straightening Formula, considered in this
context, says that every submodule of V, ; which is invariant under permutations
of vectors is spanned by linear combinations of double standard tableaux.

We shall begin by determining the structure of minimal submodules. In charac-
teristic zero, these give an irreducible representation of the symmetric group; but
these representations make sense over any field, although they may not be irreduc-
ible.
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A submodule M of V., which is spanned by inner products of the form (x;}X ;> is
minimal if and only if the set of double standard tableaux in M is the set of all possible
right tableaux of some fixed shape A, adjoined to one left tableau L of shape A with
the property that the vectors in row i + 1 of L are a subset of the vectors in row i

or all i.
3 Proof. We need to show (a) that a submodule of V, ; which has as a basis any
proper subset of S is no longer invariant under the given permutation group,
and (b) that if the covectors in the right tableau of any double standard tableau
in S are permuted, then the resulting double tableau may be written as a linear
combination of tableaux in S,

Part (a) is true since the set M is transitive under the given permutation group.
Part (b) is a consequence of the straightening algorithm, since upon straightening,
any tableaux of higher shape which occur will have repeated elements in some
row of the left tableau.

An example of minimal invariant module is associated with shape 4 as follows.
One takes the set S to be the set of all tableaux whose first column on the left
side has all entries equal to x,, whose second column has all entries equal to x,,
etc. These tableaux give explicitly the matrix units of a representation of the
symmetric group which in characteristic zero i1s always irreducible; it can be
shown that one obtains in this way all the irreducible representations of the
symmetric group.

By extending the above reasoning one can classify all submodules of V,; which
are spanned by double standard tableaux. A submodule A of V, ; spanned by
double standard tableaux is spanned by the set of all standard tableaux obtained
from a given set S of standard tableaux by iterating the straightening algorithm
until no further standard tableaux may be obtained.

In characteristic zero, one obtains in this way the complete reducibility of
invariant submodules. However, the algorithm gives an analog of complete
reducibility for arbitrary fields.

The preceding idea can be applied to the study of submodules of free associative
algebras which are invariant under arbitrary permutations of the variables, by
the device of entangling and disentangling, which we now describe.

Let  be a partition of the integer n which we write asn = n, + *-- + m, where
n, < < m, and let W, be the submodule of the free associative algebra in the
variables x,,...,x, spanned by all monomials whose content is the vector
d, = (T,,,--.,n,) for some permutation ¢ of {1,2,...,k}.

Such a monomial is of the form

X . X

iyt in

where the multiplicities of the x; are the integers m,, ..., m, in some order.
Associate with this monomial the product

il - (g Jmp

in the commutative variables {x; |1),...,{x;|n). This association extends to a
linear operator F, the entangling operator, from W, to the vector space

V,I=Z;V;ﬂ-

where we sum over all 8 such that § has n ones and all other entries zero.
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Conversely, given an element of V,, we can recover an element of W, by applying
the disentangling operator F~'. For example, from

Cxg[1D€x,12> — {x4125<x,[15

we obtain, by disentangling, the element
X1Xz — XXy

of W,. In other words, the Roman numerals in the brackets of ¥, indicate the
positions of the variables x; in W,.

Now, any set of commutative symbols {x] /> can be interpreted as inner products
of vectors x; and covectors j. We can theréfore apply the Straightening Formula,
and by the entangling and disentangling operators express every element of W,
in a canonical way as a linear combination of the polynomials obtained in this
way from the double standard tableaux.

In this way, the classification of identities in associative algebras is reduced
under suitable homogeneity assumptions to the classification of the identities
defined by double standard tableaux. Consider an associative algebra A in the
variables x,,..., xy. An identity holding in A is an expression of the form

Z a,-l___inxil v xi" = 0,
where the g; .., are elements of the field F which are invariant under any permuta-

tion of the variables x,,..., xy. This identity is associated with the submodule
generated by the monomials

g, inXaliy) - Xolin)

as o ranges over all permutations. Upon applying the entangling operator, this
submodule is mapped into a subspace V,. The Straightening Formula now yields
a basis of double standard tableaux. The image of this basis under the disentangling
operator F~! yields a canonical set of monomials in A which generate the sub-
module. For example, the tableau

{x, ...x,,|12...p>
gives after disentangling the standard identity

Z (Sig[l a)xdlx62 <o Xon-

a

An interpretation of the First Fundamental Theorem in this context gives some
pertinent information.

11. Symmetric functions (sketch)

The classical identities between symmetric functions can be obtained from identities
in a Cayley algebra.

Let the field F be obtained from a base field K by adjoining as many trans-
cendentals (variables) as will be needed in the sequel. Choose a doubly infinite
sequence of vectors

XD 5@ x3)
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’ D 3 3o oa s

in an n-dimensional vector space V over F, and assume that all coordinates,
relative to a coordinate system which will remain fixed from now on, are indepen-
dent transcendentals x!” and U{".

Let K, be the field obtained from K by adjoining n transcendentals 4; and let L
be the linear map of the field F into K, defined as follows

L(xf-"’Uﬂ-")) = d;4;,
LI UPPUD . xPUR) = LEPUDLEDUS) .. LEpU)

and so forth, where the indices are not necessarily distinct. Other values of L on
monomials are set equal to zero. Note that

L(x(i) /\ U(J)) = Z lkéij
k

The polynomial
L((xY .. x® iy pWy)
equals k!a;, the kth elementary symmetric function in the variables A,.

We shall carry out the proof only for the case k = 2, the general case being
similar. Thus, in terms of the given basis e, .. .e,, and dual basis E, ... E,,

XDV x@ =% (x{UxP ~ xPxiDye, V ¢;
i<j
UM A UP = Y (UPUP ~ UPUME, A E;
i<j
so that the induced inner product becomes
OXDUOUDY = F (xIxP — xIxW)UPUP - UDUM),
i<j
Applying the linear functional L, this becomes
Y Lx"xPUPUP + x@PxOu@uh),
i<j

as the other two terms vanish when L is applied. But it is seen from the definition
of L that the above equal 2!a,, as desired.
The polynomial

L((xm A U(Z)) \V; (x(Z) A U(3)) VoV (x(k) A U(”))

equal s, the power-sum symmetric function in the 4;.
Again we carry out the proof for k = 2, where we find, upon expanding,

i,j

L(x" AUV (x@ A UYY = L(}: xS”U‘iz’xS-l’U}”)
all terms with i # j vanish, by the definition of L, and this reduces to
L (Z x%”UP’x%”U}”) =Y

as desired.
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Every polynomial in the inner products {x“|U"}» which contains as many
occurrences of the vector variables x'” as of the covector variable U for each i,
equals a symmetric function of the 4,.

Indeed, every such polynomial can be written as a sum of products of disjoint
cycles as in (*), and each such cycle equals a symmetric function s,.

Identities for symmetric functions may have analogs in the Cayley algebra.
The analog of Newton’s formula, expressing the g, in terms of the s, is obtained
as follows. Expanding the inner product defining q,, we find

<x1...xk|U1... Uk> = <x1|U1><x2...xklU2... Uk>
+ Z i <xl'|U1><X1...2i...xk|U2... Uk>

i>1
The second term on the right is further expanded, giving k¥ — 1 summands of the
form

(*) c; AUV (X AU Y Byxy. .. % .. xJ0U,... 0, UD

as well as other terms. The remaining terms are further expanded, giving terms of
the form

(**) (x; ANU) V{x; AUy V (x; AUy V (Inner Product)

as well as other terms. Clearly terms of the form (*) correspond to s,a,_-,, and
terms of the form (**) to products sja,_ 3, etc.

Waring’s formula, expressing the a, in terms of the s,, is even easier. It reduces
to the remark that the determinant

<x1 “on xk|U1 e Uk> = det(x,~| U}>

is a sum of terms, each of which splits into disjoint cycles of a permutation of the
indices.

We can define the Schur functions e, corresponding to a tableau of shape u to
be L applied to the symmetrized tableau (v. below) of shape p in the variables x;
and U,. It is then not difficult to derive the determinant expression for the Schur
functions in terms of the elementary symmetric functions a,. Various results on
characters of the symmetric group can be derived and extended by the present
approach.

12. Further work

We sketch some lines of work indicated by the present investigations. Some are
intended to display applications of the present technique; others are topics which
might be further pursued.

(1) The Gordan—Capelli formula

The Gordan—Capelli formula is a consequence of the Straightening Formula;
we state it without proof—and in greater generality than is found in previous
work—avoiding the use of polarization operators which distract from the
combinatorial simplicity of the result.

By changing the linear ordering of the variable vectors in all possible ways, and
adding the corresponding expressions, one obtains an expansion which is inde-
pendent of the choice of a linear order, and in some ways simpler. The drawback
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of such an expansion is that it holds in general only in characteristic zero, unlike
the Straightening Formula.

Define a symmetrized tableau o(7T,|T,) as the sum of all the double tableaux
obtained by permuting all the elements of each row of T; in turn and independently,
repetitions allowed. Thus if a row has k entries, these will be k! terms, even if the
row contains repeated entries.

One can show that in characteristic zero the symmetrized tableaux form a basis
for V, 4; this is, in the case of distinct variables, the Gordan—-Capelli expansion.

(2) Strength of identities

The Birkhoff-Witt theorem can be read as stating that, in an associative algebra,
the product xy can be recovered from the bracket xy — yx; in other words, the
bracket is sufficiently strong to give back the product. On the other hand, it is
known that the Jordan product xy + yx is in general not strong enough to give
back the product. The question can be posed more generally when a given non-
commutative polynomial is strong enough to yield another. We hazard the
conjecture that these questions can be attacked by the time-ordering device, where
xy — yx becomes (xy|12), together with the Straightening Formula.

(3) Syzygies
The Cayley algebra analog of the Second Fundamental Theorem of invariant
theory is the problem of finding a set of identities on joins and meets which, in a
suitable sense, form a basis for the set of all identities.
More important is the problem of the identities between identities, or syzygies
of the second order. Little work has been done on this difficult subject.

(4) Other groups

There are analogs of the Straightening Formula for the orthogonal and the sym-
plectic groups, which could not be included here. For the orthogonal group it is
closely related to identities for spherical harmonics and Hermite polynomials.
For the symplectic group, the result is similar to the Straightening Formula,
except that determinants are replaced by Pfaffians. One obtains a systematic
way of deriving and proving identities for Pfaffians, as well as an explanation
of the oft-noted analogy between the two.

(5) Invariants

The age-old problem of the computation of projective invariants for sets of linear
varieties can be attacked by the present techniques, and we shall limit ourselves
to a remark here. Plethysm can be reinterpreted in the Cayley algebra as the
relationship between the induced Cayley algebra built on extensors of step k
endowed with the bracket obtained from Sylvester’s identity, and the given
Cayley algebra.

(6) Word problems and invariant theory

The version of the Straightening Formula given above is not the most general;
we have chosen it because the proof requires fewer notational artifices. A more
general version is concerned with words in the Cayley algebra built out of vectors
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and covectors, and not necessarily of step zero. The result is similar, except that
one requires double standard tableaux where the left and right side are not neces-
sarily of the same shape. In this more general verston, the Straightening Formula
can be viewed as the solution of the word problem in the Cayley algebra for words
containing at most vectors and covectors. Several generalizations are suggested by
this viewpoint. One may ask in which cases other word problems in the Cayley
algebra are solvable, for words containing symbols for extensors of all steps in
prescribed numbers. This problem seems not to have ever been previously treated.
While it is possible that all such word problems may be solvable, there is one
subclass which lends itself to a more straight-forward treatment. This is the word
problem for sets of extensors whose supports generate a semimodular lattice of
flats in projective space.

(7) Hopf algebras

We have neglected the coalgebra structure of the exterior algebra. However, the
Hopf algebra structure is indispensable for a better understanding of some of the
problems mentioned here especially for syzygies of higher order. The symbolic
method of invariant theory is a Hopf algebra technique in disguise.

(8) Matching Theory

We have stated elsewhere that matching theory can be systematized by the
methods of linear algebra. In support of this contention we sketch a proof of
Philip Hall’s Marriage Theorem. Thus, given a bipartite graph G on 4 x B with
the property that every subset of k vertices in 4 connected to at least k vertices in
B, we must show that there exists an injective function f: 4 — B such that for
every a€ A, (a,f(a)) is an edge of the graph. The function f is called a matching
of A to B.

We define a ring F(G), called the free ring of the graph G. following an idea that
goes back to Frobenius. Let K’ be the free extension of the rational field K ob-
tained by adjoining independent transcendentals (a]x;) as 4, ranges over the set A
and x; over the set B and let F(G) be the homomorphic image of K’ obtained by
setting (a]x;) = 0 whenever the pair (¢;. x;) is not an edge of the bipartite graph G.
We can find a vector space V, and in it vectors ¢; and covectors x;, such that
<ai|xj> = (alxj)~ _

The Marriage Theorem states (assuming for simplicity that there are as many
vectors as there are covectors) that the matrix of the (g;|x)) is non-singular under
the stated hypotheses, or equivalently, that the vectors g; as well as the covectors x;
form a basis under the stated hypothesis.

Proof: Suppose the conclusion fails. Then we can find a minimal dependent set
of vectors a,,...,a;, say, such that a,a,...a; = 0. Let X be an extensor of step
j — 1. Expanding

X Alayay...a)=0

by the alternative law, we find that
j
Z i<a|...a[‘...ajlx>ai=0. (*)
i=1

Since g;...a;_, are independent, we can find covectors x,,..., Xj- 1. say. such
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that {a;...a;_4|x{...x;-1> # 0. Since a,,...,a; is a minimal dependent set, it
follows that {a,...4;...ajx,...x;_,)> # 0 for all i. Expanding in the field F(G),
we find

ay...4;...aix,...x;_) = det(a)x,) = ¢

where 1 <k <jwithk #i,and1 <p <j — 1. Thus

i‘ Cl'(ailxq) = Oa

i=1

where c; # 0 for all i.

If g > j and (a]x,) # O then (a]x,) is transcendental over the field obtained by
adjoining the c; to K. Hence the above equation can hold only if (a)x;) = 0 for
1 <i<jandj < g < n, where n is the dimension of the space. We conclude that
the set a, ... a; of vertices of A is related at most to the j — 1 vertices x;,...,x;_,
of B, contradicting the hypothesis and ending the proof.

(9) Translating Geometry into Algebra

The identities developed in Section 6 indicate that the formalism of Cayley
algebra should yield a technique for verifying geometric statements by algebraic
methods. Such a hope was indeed the moving force behind much of the work
on invariant theory carried out during the Nineteenth Century. Strangely, however,
this hope remained unfulfilled, and treatises on invariant theory written at the
time limit themselves to a few generalities, such as Gram’s theorem. This para-
doxical situation, which contributed in some measure to the downfall of classical
invariant theory, is partly due to the lack of a clearly developed system of first-
order logic in which to express geometric statements.

We confine the discussion to joins and meets of subspaces. If A and B are sub-
spaces of a projective space S then we write A N B for their intersection, and
A U B for their sum, that is, for the smallest subspace spanned by 4 and B, at
times also called the join.

The problem of translating an assertion of projective geometry into an equivalent

assertion in the Cayley algebra can be subdivided into two headings:

(1) Develop an algorithm for verifying whether an identity involving inter-
sections and sums (that is,a word in U and n) of subspaces of projective space holds.

(2) Develop a decision procedure for the first-order theory of projective
geometry.

Let L(V) be the lattice of subspaces of the vector space V, where lattice-joins and
lattice-meets are written U and n. We shall be concerned with translating, and,
insofar as possible, verifying a first-order logic statement in the algebra of lattice-
joins and meets, into the language of Cayley algebras. We only consider universal
sentences. These are sentences constructed from identities in the lattice of sub-
spaces using the logical connectives “and”, “not” and “implies”, which we shall
call propositions.

(a) Let the variables a,b,...,c,x,y,...,z denote generic vectors; in other
words, any identity in these variables states that the identity holds no matter what
values are given to the variables. It follows from the Straightening Formula that

356



214 Peter Doubilet, Gian-Carlo Rota, and Joel Stein

the ring of brackets whose entries are generic vectors is an integral domain: it
follows further that the word problem for any conjunction of identities in the
algebra of brackets is solvable. Indeed, the proof of the Straightening Formula
gives an explicit algorithm for the solution of the word problem (see remarks
under Word Problems). Thus, if a given proposition can be shown to be equivalent
to an identity in the algebra of brackets, then the truth of the proposition can be
decided.

(b} It has been shown by Scarpellini and Whiteley that every true proposition
in an integral domain is equivalent to the conjunction of equalities and inequalities.

This result is a logical equivalent of Hilbert’s Nullstellensatz. It is not known
whether, in the special case of the algebra of brackets, the equivalence can be
obtained from an explicit algorithm.

An identity involving sums and intersections can be shown to be equivalent to
a conjunction of identities and inequalities in the algebra of brackets by the
following steps.

(c) An identity of the form

A=B

in the lattice L{V') can be “translated” into an identity in brackets as follows. Let
A and B = b;b, ... b, be extensors supporting A and B. The above identity is
equivalent to the conjunction of the k identities

bVA=0 i<i<k

Completing to brackets if necessary, we see that this is equivalent to a conjunction
of bracket identities.
(d) An identity of the form

can be translated into an identity in brackets as follows. The above is equivalent

to the proposition:
or every X,

(*) X>B and X>C ifandonlyif X > 4

Each of the containment relations is constructively equivalent to a conjunction
of bracket identities by (c); further, by (b) the implication is equivalent to a bracket
identity.

() An identity of the form
(*#) _

A
is translated similarly.

(f} Alattice-identity (or inequality) is decomposed into a succession of identities
of the form (c), (d), and (e), by introducing extra variables if necessary.

(g) An alternative approach to steps (d) and (e) is the following. In the special
case when Bu C = V then the verification of (**) becomes trivial, as it reduces to
checking that 4 = B A C. This can be done constructively, by (c), verifying
A>2BnCand A <BuCinturn. If Bu C # V then we can use the reduced
bracket modulo a generic extensor X. Then 4 = B n Cifand only if 4 is equivalent

to B A C modulo every extensor X. The definition of B A C depends on the
choice of X.

=BnC
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The verification can be cut down to a finite number of extensors X by a process
that can be considered as the Cayley algebra analog of Herbrand’s theorem. In
fact,a reduced bracket can be considered as the Cayley algebra analog ofa quantifier.
Just as in Herbrand’s theorem, the reduction to a finite number of X does not
yield a decision algorithm.

(h) If a proof of a lattice proposition is available which uses ordinary projective
coordinates, then this proof can be translated step by step into the algebra of
brackets, and be made to yield constructively a conjunction of identities and
inequalities which is equivalent to the lattice proposition. This idea was partially
exploited by Whiteley, but can be made very simple in the language of Cayley
algebras.
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On the Foundation of Combinatorial Theory.
X. A Categorical Setting for Symmetric Functions

By Flavio Bonetti,* Gian-Carlo Rota,” Domenico Senato,* and
Antonietta M. Venezia*

A categorical setting is developed for the theory of symmetric functions.

1. Introduction

It has been said that every generation of mathematicians rewrites the theory of
symmetric functions to suit the problems of the day. This work may be viewed as
an instance in point.

One of the classical-—and perhaps one of the earliest—interpretations of
symmetric polynomials in several variables (or symmetric functions, as they have
come to be improperly called) was given in terms of the combinatorial theory of
distribution and occupancy {sometimes known as “placing balls in boxes”). It
has been known for a long time that some of the best-known symmetric
functions (for example, the elementary symmetric functions and the complete
homogeneous symmetric functions) can be interpreted as generating functions
for the number of subsets and of multisets of a finite set. To the best of our
knowledge, the first systematic development of this point of view i1s due to
Doubilet, who provides a combinatorial (or “bijective”) interpretation of some
of the fundamental identities holding among symmetric functions. Doubilet’s
paper is the starting point of the present work.

Our objective will be to develop the theory of symmetric functions along the
lines of the theory of species initiated by André Joyal. More specifically, in
keeping with the classical view of symmetric functions as polynomials of sorts,
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we define a functor on the category of sets which may be rightfully viewed as a
categorical analog of an ordinary polynomial, in finitely or infinitely many
variables. For these functors we propose the name “polynomial species.” In
fact, we provide a suitable extension of the notion of the generating function to
polynomial species, and we verify that the coefficients of the generating function
of a polynomial species is indeed a polynomial (in general, a polynomial in
infinitely many variables).

We believe the notion of polynomial species to be of independent interest in
the theory of enumeration, In the present work, it is systematically exploited to
achieve only one objective: the interpretation in categorical language of the
theory of symmetric functions. More specifically, our objective is to associate to
every identity holding among symmetric functions a categorical (and thus
“natural’) identity among polynomial species. The classical identities are recov-
ered by taking generating functions. This objective is attained in the present
work for identities with nonnegative coefficients (requiring infinite sums and
possibly infinite products) holding among the classical symmetric functions, with
the notable exception of identities involving the Schur functions, which we hope
to treat in a subsequent paper.

Our starting point was all but forced upon us by reflecting on what is to be
meant by a symmetric function. Previous authors have been content to consider
symmetric functions in a finite set of variables, or to solve the sometimes
delicate limiting problems that arise when the number of variables is infinite, by
linearly ordering the variables as a sequence x,, x,, x5,.... These ad hoc and
sometimes misleading devices had to be replaced by a more subtle technique
that led to a definition of the notion of a symmetric function in any unordered
set of variables. Symmetric functions, in the present general setting, are ele-
ments of a ring which we call the ring of formal polynomials. A formal
polynomial in the set of variables X consists, intuitively speaking, of arbitrary
sums of monomials in the variables belonging to the set X, subject only to the
requirement that it become an ordinary polynomial whenever any cofinite set of
variables is set equal to zero. We devote the first section to the study of the ring
Z[(X )] of formal polynomials with integer coefficients, defined as the comple-
tion of the ring of ordinary polynomials in the variables X in an obvious
topology. Symmetric functions are then defined as symmetric formal polynomi-
als.

The simplicity of the topology of the ring of formal polynomials leads to a
simple but useful theory of convergent infinite sums and—what is more impor-
tant—of infinite products (Theorem 1).

The next section gives the main result of this work, namely, the definition of
a polynomial species. This definition can be motivated as follows. The “cate-
gorical” analog of a monomial is a function defined on a subset of a set E, with
values in a set of “variables” X. Thus, a “sum” of monomials has as its
categorical counterpart the disjoint sum

U Hom(A4,X) = H[E].

AcCcE
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Thus, H is a functor from the category of finite sets (of which E is an object) to
the category of sets.

Next, we consider the categorical analog of a sum of monomials, each with a
suitable coefficient (that is, the categorical analog of a polynomial). This is done
in two steps. First, one chooses a functor M from the category of finite sets and
bijections to the category of sets (generalizing the notion of species in the sense
of Joyal). The functor M will be the categorical analog of the set from which the
coefficients are chosen. Second, one must naturally choose for each finite set E
a subset of the product

M[E]x H[E] (1)

which will correspond to the assignment of “coefficients” to each monomial.
Fortunately, the categorical notion of subfunctor comes to our aid here. We
define a polynomial species with coefficients in the functor M to be a subfunc-
tor of the functor (1). Actually, the definition given in Section 3 is slightly more
technical because of finiteness conditions (which are in turn a categorical
counterpart of the finiteness conditions that define formal polynomials).

To every polynomial species one assigns ‘“‘generating polynomials,” which
turn out to be formal polynomials. In a “natural” sense, every homogeneous
formal polynomial with nonnegative integer coefficients turns out to be the
generating polynomial of a polynomial species. In this sense, we may claim that
the notion of a polynomial species is indeed the categorical counterpart of the
notion of a polynomial.

A symmetric polynomial species is then defined as a polynomial species
which is invariant under all automorphisms of the set of “variables” X.

In Section 4 we define infinite sums and products of families of polynomial
species. Again, the motivation here is to give categorical definition of these
operations among polynomial species that correspond—via generating polyno-
mials—to infinite sums and products of formal polynomials. We find it surpris-
ing that this objective can be achieved within the category of finite sets.

The last operation we introduce is an assembly of a polynomial species, in
Section 6. Here we closely follow Joyal’s ideas and show that an assembly of
polynomial species does indeed correspond to the exponential of their generat-
ing polynomials.

In Section 5 we introduce the species-theoretic equivalents of the classical
symmetric functions, to wit:

the elementary symmetric species A, namely, the functor such that for any
finite set E, the set A[E] consists of all injective functions defined on E and
with values in X;

the species H of dispositions, such that H[ £] is the set of all dispositions of E
to X, that is, of all enriched functions from E to X bearing a permutation on
each fiber;

the cyclic species C, such that C[E] consists of all functions from E to X
taking only one value, and enriched by a cyclic permutation of the set E.
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One easily shows that the generating polynomials of these polynomial species
are, respectively, the elementary symmetric functions, the complete homoge-
neous symmetric functions, and the sums-of-powers symmetric functions.

We also define two nonsymmetric polynomial species: the species A, de-
fined for every element x of X, whose generating polynomial is the polynomial
x, and the species H,, whose generating polynomials have 1 /(1 — x) as sum.

In Section 7 we prove the following identity:

IT (1+A) = A. (2)

xeX

This is the categorical counterpart of the well-known infinite-product expression

for the generating function of the elementary symmetric functions. We stress

the fact that the identity (2) for polynomial species is stronger, since it provides

a set-theoretic, or “bijective,” interpretation for such an infinite product.
Similarly, for the species of dispositions we prove the identity

[T (1+H,) = H,

xeEX

which again provides a bijective interpretation of the infinite-product expression
for the homogeneous product sums. Finally, we give a bijective version of
Waring’s formula by the identity

H = Exp(C).

In closing, we stress the preliminary and introductory character of the
present work. Despite the elegant identities above, most of the spadework
remains to be done, notably the interpretation in a categorical setting of
identities among symmetric functions with alternating signs (which Doubilet
elegantly interprets by Mgbius inversion, and which we conjecture can be
carried to a categorical setting by a “super”’-theory of symmetric functions with
positively and negatively signed variables), and most importantly the categorical
interpretation of the Schur functions. We surmise that such interpretation will
require a combinatorial theory of “super”’-symmetric functions.

2. Formal polynomials

Let X be a set, possibly infinite, The elements of X will be called variables,
and X will remain fixed throughout. ‘

To define the ring A of symmetric function with integer coefficients in
infinitely many variables, ordinarily one assumes that X is numerable and
linearly ordered: X ={x,, x,, x5,...}. One can define A by either of two devices:
first, as the direct sum of the Z-modules A" of symmetric functions of degree 4,
where A" is defined as the inverse limit of the Z-modules A*[x,,...,x,] as
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n— +o; or second, as a subring of the ring of formal power series in the
variables x,;, x,, x5,....

We follow another approach, which we believe to be close to the combina-
torics of symmetric functions, by introducing a suitable generalization of the
notion of polynomial to any set X of variables, which we call formal polynomial.

Recall that a multiset m on X is a pair (X, m: X — Z) where m is a function
such that m(x) > 0 for any x € X. In other words, a multiset is a set X together
with a function m which is to be interpreted as the multiplicity of every element
of X.

The support of a multiset m on X is the set

supp(m) = {x € X:m(x)>0}.
A finite multiset is a multiset whose support is a finite (possibly empty) set.
We shall denote by .# the set of finite multisets on X, and by m, the

multiset whose support is empty.
The cardinality of a finite multiset m is the following integer:

|m| = Y, m(x).

x € supp(m)
The sum m,;+ m, and product m,-m, of multisets are defined as follows:

where
(7, +15)(x) = my(x) + my(x),
and
my-m, = (X,m;-m,: X >2),
where

(m-m,)(x) = my(x)-my(x).

The sum and product of several multisets are defined similarly.

We omit the well-known construction that, given a set X, gives the ring Z[ X]
of all polynomials in the variables of the set X. A basis of the module Z[ X] is
given by all monomials

xM = l_[ xﬁ(x)

x € supp(m)

as m ranges over all finite multisets on X.
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Thus we write a polynomial p as follows:

p =3 coeff(p,m)x™

m

as m ranges over all finite multisets on X, where the integers coeff( p, m) equal
0 for almost all m € .#.

When F is a finite subset of X, we denote by e, the linear operator from
Z[ X] to Z{ X ] defined as follows:

ex(p) = q,

where

g = Y, coeff(q,m) x™
and

coeft(q, m) = {coeff(p,m) if sup'p(m)cF,
0 otherwise.

In other words, the polynomial g is obtained from the polynomial p by setting
to zero all coefficients of all monomials not supported on F.

Let J be a directed set (that is, a partially ordered set, whose order relation
is denoted by =, such that for all i,j € J there is a A €J such that £ >i and
h = j). We say that a family

(pj)je.l

of polynomials is Cauchy when for every finite subset F of X there exists an
element j(F)e J such that for all j > j(F) the integers

coeff( er(p;), m>

depend on F and on m but not on j, in other words, when the family of
polynomials

(GF(pf'))jeJ

is eventually constant.

This condition for directed sets defines a Hausdorff topology on the ring
Z[ X'], which with this topology is a topological ring. Clearly the operators e,
are continuous in this topology. The ring of formal polynomials Z[(X)] is
defined to be the completion of the ring Z[ X'] in this topology.
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We shall write

limpj = f
]

whenever f is a formal polynomial and (p;);, is a generalized Cauchy
sequence in Z[ X] that converges to f.
The continuous linear operator
er:Z[(X)] - Z[(X)]

defined (by an abuse of notation) as

er(f) = li]m ex(Di), p, € Z[X]

extends the continuous linear operator e, :Z{ X]— Z[ X ] to the space Z[(X)] of
formal polynomials. The operator

epZ[(X)] = Z[(X)]

leads to a simple expression for the condition for a family of formal polynomials
to be a (generalized) Cauchy sequence, to wit: a family (f)),., of formal
polynomials is Cauchy if and only if for any finite subset F of X the family
(ep(f;));c ; of polynomials is eventually constant. Similarly, a family

(ff)jej

of formal polynomials converges to a formal polynomial f if and only if for any
finite subset F of X, the family

(GF (f;) ) jel
of polynomials converges to

er(f)-

Every formal polynomial f is the limit of the family of polynomials

(er(F))r

as F ranges over the set of all finite subsets of X. In symbols,

lime.(f) = f.
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In fact if F, F' are subsets of X such that F C F’, we have

6F(‘EF'(f)) = €x(f),

namely,

coeff( ex( f),m) = coeff( e.(f), m)

for any m whose support is contained in F.

Let ( pr)r be a family of polynomials (indexed by the finite subsets F of X)
such that if FCF’ then e (pp)= pge. Thus (pg)r is a generalized Cauchy
sequence in Z[ X'] indexed by the directed set of all finite subsets of X. The
formal polynomial

= lim
f = limp,
is well defined [that is, the family ( pz) converges], and we have

er(f) = pr

for every finite subset F of X.
Let

(fi)iel

be an indexed family of formal polynomials when I is any set. We say it is
summable if the directed family

(Z4).

iel J

as J ranges over the directed set of all finite subsets of I, is convergent in the
topology of Z[(X)]. Under these conditions, the limit is denoted by

2 fi-

iel

ProrosiTioN 2.1. A family (f)), o, of formal polynomials is summable if and
only if the set

I(F) ={icl:ex(f)+0)

is finite for every finite subset F of X.
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Proof: For every finite subset F of X, the definition of summability gives a
finite subset J(F) < I such that

| T 5) e

ie J(F)

L £),

eJ

where J is a finite subset of I, and J(F)c J.
If i & J(F), take J = J(F)U{i} to obtain the conclusion. The converse follows
by the same argument.

ProrosiTioN 2.2. Every formal polynomial f is a convergent sum of monomi-
als, i.e.,

f= ) coeff(f,m)x™,

me.#

where
coeff{ f,m) = coeff( €quppemy( ) m).
Proof: Set

p; = Yy coeff( esupp(m)(f),m)x”’,

mei

where [ is a finite subset of .#. We prove that
limp, = f,
I

namely, that the family (e-(p,)), converges to e (f) for every finite subset F of
X. In fact, if F is a finite subset of X, the set

I(F) = {m:coeff( e-(f),m) #0}

is finite, since e (f) is a polynomial. Namely, the set

I(F) = {m:supp(m) cF, coeff( esupp(m)(f),m> #* O}

is finite and we have

er(pr) = €r(Pyry) = ) COBff( eF(f),m>x”' = €x(f)
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for any I 2 I(F). Thus f=1lim, p,, and from the definition of summability we
have

f =Y coeff( Euppemy( ) m) x™.

This completes the proof of the proposition.

A formal polynomial

f =Y coeff( f,m)x™

is said to be positive whenever f # 0 and coeff( f,m) > 0 for all multisets m.
When coeff( f, m,) = 0, we say that the formal polynomial f is without constant
term.

The identity of the ring of the formal polynomials is the formal polynomial 1
such that

coeff(l,my) = 1,
coeff{l1,m) = 0 otherwise.

Let f=X,coeff(f,m)x™ and g =X, coeff(g,m)x™. The sum and prod-
uct of the formal polynomials f and g are defined as the formal polynomials
having the following coefficients:

coeff(f + g,m) = coeff( f,m) + coeff{g,m),

coeff(f-g,m) = Y coeff(f,m')coeff(g,m").

m+m'=m
A formal polynomial f such that coeff{ f,m) # 0 only if

lm| = h

is said to be homogeneous of degree h.

Let o:X — X be a bijection. Then ¢ induces an automorphism of the ring
Z[( X)), which we again denote by o. If f is a formal polynomial which is a finite
sum of homogeneous formal polynomials and such that of = f, we say that f is
a symmetric function.

Let (f,),o; be a family of formal polynomials without constant term. We say
it is multipliable when the family of products:

(Oa+n)

ielJ

converges, as J ranges over the directed set of finite subsets of I. When such is
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the case, we say that the infinite product

[T+

iel

iS convergent.
We come to the main result of this section.

THEOREM 2.1. A family of formal polynomials

(fi)tel

without constant term is multipliable if and only if it is summable.

Proof: We first prove that the family is multipliable, under the assumption
that it is summable.
From the definition of summability follows that the set

I{(F) ={iel:es(f)+0}
is finite for any £ € X. Thus if J is a finite subset of [ and I(F)CJ, set
I(F)ul'=J and JI'NI(F)=0.

Then we have

[Ta+f)= I1 a+f+(T[1a+f)-1) T1 (a+f)

ielJ ie I(F) (ieJ' )iel(F)

On the other hand

coeff<eF( I1 (1+f,.)—1),m> - 0;

iel
hence
coeff<eF(( I1 (1+f,-)-1) I1 (1+f,.)),m> = 0.
ier ieI(f)
Thus
coeff(ef( I (1+fi)),m> = coeff(eF( I'T (1+f,~)),m>,
i€ I(F) ier

as desired.
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Conversely, let (f;),., be a multipliable family of formal polynomials. Then
for every F there exists a finite subset J(F) of I such that

e IT (1)) = e [T 1+ 1)

i€ J(F)
for any J 2 J(F). We shall prove that the set
I(F) = {iel:e(f;)+0)

is finite, whence the conclusion by Proposition 2.1.
Given j & J(F), set

J = J(F)u{j}.

Then we have

e T (+£)) = er(ITA+ 1)) = e T (1+£)]-ec14£),

i€ J(F) il i€ J(F)
from which
1=ep(1+f;) = ep(1) + €(f;) = 1+ €x(f)),
and hence
e(f;) =0

for every j & J(F). This proves that
I(F) c J(F)

and hence that the set I(F) is finite.

3. Polynomial species

The central notion of the present work is that of polynomial species. We shall
see that this notion is the set-theoretic counterpart of the notion of a formal
polynomial. In fact, the ordinary algebraic operations of sum and product of
formal polynomials (both finite and infinite) turn out to have fitting set-theo-
retic counterparts for polynomial species.

Let Ens be the category of sets and functions, and let % be the category of
the finite sets and bijections. We define a covariant functor H from % to Ens
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as follows: first,
H[E]l]={f:A-> X:ACE},

where E is a finite set and A ranges over all subsets of E. Next, when
u.E— E' is a bijection, and f: A — X is an arbitrary function, we define

H[ul(f) = fou""tu(4) - X.

Thus H[E] is the set of all functions defined on some subset of E, with values
in the set of variables X.
Recall that, by convention, there exists a unique function from the empty set
to the set X. We shall call it the empty function and we shall denote it by f.
For all functors

M:% — Ens
we denote by Pol(M) the functor from & to Ens that associates the set
M{E]lx H[E]

to every finite set E. When u:FE — E’ is a morphism, the definition of
Pol(M )[u] is obvious.
We shall write

P < Pol(M)

whenever the functor P is a subfunctor of the functor Pol(M).
Let P c Pol(M), and let F be a finite subset of X. We define the functor

€s(P):# — Ens
by setting
er(P)[E] = {(s,f) €P[E]:Im f C F},
where Im f denotes the set of all elements f(e) where e € A and where f is a
function from A4 (C E) to X. In other words, € -(P) E] is the subset of P[E]
whose elements are the pairs (s, f) such that s € M[E] and f is a function from
some subset of £ to X whose image is contained in F.

A polynomial species P with coefficients on M is defined to be a subfunctor of
the functor Pol( M) such that the set

e(P)[E]

is finite for any finite set E and for any finite subset F of X. Note that e is an
endofunction in a category that will be defined shortly.
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It is easy to see that

(1) F c F' implies e (P E]Ce(P)E];
(2) PLE]= Upe(P)E]

The functor of coefficients of a polynomial species P is defined to be the
functor P from & to Ens given by

Pl[E] = {s:(s,f) €P[E]}.

One verifies that if PCPol(M) then Pc M and PcCPol(P). Thus P is
“minimal” among functors M : % — Ens such that

P C Pol(M).

A polynomial species P is said to be symmetric when for every bijection
o:X — X we have

(s,o°f) € P[E]
whenever (s, f) € P[E].
Our next objective is to associate to every polynomial species a formal power
series with coefficients in the ring Z[( X)] of formal polynomials. To this end, we

proceed as follows. First, if f: A — X and A is a finite set, we denote by gen( f)
the monomial in Z[ X']:

gen(f) = T f(a) = TT /7,

xe X

where | f~(x)| denotes the number of elements of the set f~'(x). The right side
is a finite product, since for almost all x € X we have |f~'(x)|=0.
Next, set

gen(s,f) = gen(f),

where (s, f) is an ordered pair, with s an element of an arbitrary set.
Finally, let P be a polynomial species. The family

(gen(s, f)),

as (s, f) ranges in P{ E], is summable in Z[(X)]. In fact, for every finite subset F
of X, the set

er(P)[E] = {(s.f) €P[E]:ex(gen(s, f)) # 0}
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is finite. Therefore the family

(gen(s, f))es. prerel

verifies the summability condition (see Proposition 2.1). We can therefore set

gen(P[E]) = )}  gen(s,f).

(s,f)ePE]

If P is a symmetric species, then gen(P[ E]) is a symmetric function.
Note that gen(P[ E']) depends only on the cardinality of E. We are therefore
justified in writing

gen(P[E]) = gen(P,n)  with |E| = n.

We define the generating function of the polynomial species P to be the formal
power series

Gen(P,z) = Y. gen(P,n) %

n=0

The generating function of a polynomial species P is a formal power series in a
new variable z, whose coefficients are elements of Z[(X)], that is, formal
polynomials.

As promised, we now define a category of polynomial species by setting
Hom(P,Q) equal to the set of all natural equivalences 7 between P and Q
whose components 7. :P{ E]— Q[ E] are bijections such that

(s, f) = (+.f).

In other words, 7.(s, f) is an element of Q[ E] whose second coordinate is f.
We write P=Q, when P and Q are naturally equivalent in the category of
polynomial species. Clearly, if P = Q then Gen(P, z) = Gen(Q, z). One verifies
that e, is a functor from the category of polynomial species to itself that
associates to every polynomial species P the polynomial species € (P).
The functor €, is the set-theoretic analog of the linear operator

er:Z[(X)] - Z[(X)].
In fact, it is easy to prove that

er(gen(P[E])) = gen(e(P)[E]).
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4. Operations on polynomial species

We define the sum and product of polynomial species, as well as a notion of
convergence. By passing to generating functions, these notions are seen to be
the set-theoretic counterparts of the corresponding notions for formal polyno-
mials.

A. Sum and product of a finite family of polynomial species

Let I be a finite set. The sum L,_,P, of the family of polynomial species
(P,), o, is defined as follows:

Y PIE] = {((s,0).f):(s,f) € P[E] for some i € I}.

iel

That is, for each element s such that (s, f) € P[E], and for any i € I, the pair
((s,1), f) belongs to the set

LP[E]
i
Passing to generating functions, we clearly have
Gen( Y P,-,z) = Y. Gen(P,z).
iel iel

The product of polynomial species is defined using the notion of composition,
which we introduce next.

A composition of a set E indexed by a set I (not necessarily finite) is a
function

k:I - P(E)
such that:

D) kDOnk(= if i+,
@) U, k() =E.

In some instances we shall denote a composition of E by

LE,

iel
it being understood that

ENE =@ if i+#j
and

E=- UE.

iel
when E; # O for all i € I, we say that the composition is strict.
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Let I be a finite set and (P.),.; be a family of polynomial species. The
product I1;.,P; is defined as follows. For every finite set E, let [1,.,P{E] be
the set of all pairs (s, f) obtained by the following steps:

(1) Choose a composition k£ of E indexed by the elements of /.

(2) Choose (s;, f;) € PLk(i)] for every i € I.

(3) Set s =(k,(s;);c ), and define f to be the function whose restriction to
the set k(i) is f;; in symbols,

fley = f, forevery i€ I
Note that the set I'T, . ;P E]is empty whenever there is an index i € I such that
Plk(i)]= & for every composition £.
ProposiTioN 4.1. Gen(I1,. P, z) =11, ., Gen(P, z).
Proof: Let P, and P, be polynomial species. We prove that

gen(P, XP,,n) = Y (’;)gen(Pl,i)gen(Pz,j).

i+j=n
When |E| = n, we have

gen(P, XP,, n) = ) gen(s, f)
(S,f)e Pl XPz[E]

= Y ( Y T (x|f1*(x)+|fz’(x)|))

E\+E;=E (Sl,fl)EPl[El] reX
(Sz,fz)e Pz[Ez]

= P ( E gen(slafl)gen(52=f2))
E\+ E;=E \ (s,,f)€P|E|]
(52, f2) € PRl E,)]

)» ( ) gen(sy, fy) ) gen(sz,fz))

Ey+E;=E (s,f)eP[E|] (52, f2) € Pyl Ey]

= T (7)een(pp.i)gen(Py, ).

i+j=n
It is easy to verify that
(P +P;) = €p(P) + €:(P,),
€ (PP} = €(P) - ep(Py).
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B. Infinite sum and infinite product of polynomial species

We first give the definition of the limit of a family of polynomial species.

Let J be a directed set. We say that the family of polynomial species (P,); . ,
converges to the polynomial species P when there exist an index j(n,F)eJ
(dependent on n >0 and F C X alone) and a bijection

¢(J,F,E):ep(P)E] = e (P)[E] forevery j = j(n,F)

gen(C[E]) = (IEI-1)!pg(X),
such that:

(1) ¢(j, F,EXs, f)=(s', f). In other words, ¢(j, F, EXs, f) is an element of
€ -(P) E] whose second coordinate is f.
(2) For every bijection u: E — E' the diagram

() E] —LDE, o (p)[E]

Wl XP[n]

(P ET L0 e ()]

is commutative.
When P is the limit of the family (P)), ., we write

lir_nPj = P,
j

We remark that if P and P’ are limits of the family (P)), o ;, there exists a natural
equivalence in the category of polynomial species between P and P'.
ProposiTiON 4.2, lim; Gen(P,, z) = Gen(lim, P, 2).

Proof: The family (gen(P;, n)); converges to gen(P, n). In fact, for every F and
for every j > j(n, F) we have

er(gen(P,n)) = gen(ep(P;),n) = gen(ep(P),n) = e(gen(P,n)).
We note that every polynomial species is the limit of the family

(GF(P))F

as F ranges on the (directed) set of all finite subsets of X,
We say that a family (P,),., of polynomial species is summable when the
family

(Ze).

ieJ 7
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as J ranges on the set of all finite subsets of 7, converges. We denote the limit
of the family (P,),., by

) P.

iel

ProrosiTioN 4.3. A family (P,);., of polynomial species is summable if and
only if the set

I(n,F) = {icl:ex(P)[E]+ O}

is finite for every finite subset F of X and for every n = |E|.
Proof: Suppose that the family (P,), ., is summable. Then there exists the
limit
lim ) P, = P.

J ieJ

This means that whenever F is a finite subset of X, there exist a finite subset
J(n, F) of I and a bijection

c;b(J,F,E):eF(.EJP!)[E] - ex(P)[E]

for every finite subset J of / that contains J(n, F).
Now, if j & J(n, F), taking J = J(n, F)U{j}, we have that the following map
is also bijective:

X RlE].

ieJ

¢(J,F,E)“o¢(f(n,F),F,E):ep(l_EJ%,F)P,-)[E] =

(4.4)

On the other hand,

o

Thus, from (4.4) and (4.5), we infer

LRl I B)+e) (45)

iel ied(n,F)

¢-(P) E] =2

for every j & J(n, F).
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Conversely, if the set I(n, F) is finite for every n and F, the polynomial
species P defined as

rel- Y lene( T R)(E)ims - r),

F ieln,F)

where F ranges on the set of all finite sets of X, is clearly the sum of the family
(P

We say that a polynomial species P is without constant term if P[] = .
We denote by 1 the polynomial species defined as follows:

1[E] =@ if E+J.
The species 1 is not a species without constant term.

" A family (P,), ., of polynomial species, almost all without constant term, is
said to be multipliable when the family

( Il (1+Pi))J’

el

as J ranges on the direct set of all finite subsets of I, converges. When this is
the case, we denote the limit by

[T(+p).

iel

PROPOSITION 4.6. A family of polynomial species (P,); _ ;, all without constant
term, is summable if and only if it is multipliable.

Proof: Suppose that the family (P,), ., is summable. From Proposition 4.3 it
follows that the set

I(n,F)y ={iel:ex(P)[E]* D)

is finite for every F and n =|E|. Thus the polynomial species P defined as

P[E]=LFJ{(s,f)e( I 1+P,.)[E]:Imf=F},

ieKn,F)

as F ranges on the set of all finite subsets of X, is the product of the family
(Pi)iel'
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Conversely, if the family (P;), ., is multipliable, then the limit

1im(1‘[1+1>,.) - P

J NieJ

exists. Hence, whenever F is a finite subset of X, there exists a finite subset
J{(n, F) of I and a bijection

8(J,F, Ey: s [TR)(E] > ex(P)[E]

iel

for every finite subset J of I that contains J(n, F).
If j & J(n, F), take J = J(n, F)U{j}. Then the following map is also bijective:

S(J,F,E) "o d(J(n, F), F,E)ie[ TT 1+B](E]

ielln,F)

- EF(H1+P,.)[E]. (4.7)

el

On the other hand,

eF(]‘[1+P,.)=eF( I1 1+P,.)»EF(1+P,.). (4.8)

il iel(n,F)
Thus from (4.7) and (4.8) we have
«+(B)[E] =2

for every j & J(n, F), that is, the family (P,);., is summable.

We remark that when (P,), ., is a multipliable family of polynomial species,
then the infinite sum and the infinite product are explicitly given as follows:

(Ze)iel- U{ene T piElms-F),

iel F ie I(n,F)

and

(H1+R)[E]=g{(s,f)e( Il 1+P,-)[E]:Imf=F},

iel ie(n,F)

where I(n, F)={ie I.e(P) El+ &}
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5. Some special polynomial species

Example 5.1: We define the polynomial species A, for every x € X, as
follows:

AX[E]:{gXHom(E,{x}) if |El=1,

if |E|l#1.
The generating function of the polynomial species A, is clearly

Gen(A,,z) = xz.

Example 5.2: (The elementary symmetric species): This polynomial species,
denoted by A, is defined as follows:

A[2] = {(@:ffa)}’
A[E] = {(E,f):f:E— X is an injective function}.
One verifies that
gen(A[E]) = |Elie,z(X),
where ¢,(X) is the elementary symmetric function defined by

e(X) = L™,

where the sum ranges over all multisets m such that |m| = n = [supp(m)| (that is,
over all multisets that “are” sets).
The generating function of the elementary symmetric species is

Gen(A,z) = Y n!en(X)'Zl—'; = Y e (X)z".

n=0 n=0
Example 5.3: The species H, is defined, for every x € X, as follows:
H,[2] =2,
and if £+,
H.[E] = {(o,f)}

where f:E — X is the function taking the constant value x, and o is a
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permutation of the set E. One verifies that
gen((1+H,)[E]) = |E|!x'®,

and hence that

n

Gen(1+H_,z) = Y. n!x"%—,— = (1-xz)"",
n=0 ’

We digress to present what we believe to be a fundamental combinatorial
result.
THEOREM 5.4. Let m be a finite multiset on X, and let E be a finite set such
that |m|=|E|. Denote by
[m: E]

the set of all pairs (d, f) where:

(1) f:E— Xis a function such that gen(f)= x™;
(2) d ={o,: B = Ker f} is a family of permutations, one defined on each block
B of Kerf.

Under these conditions, the cardinality of the set [m; E] is |E|.

We stress the fact that the cardinality of the set [m; E] does not depend
on m.

Proof: Set

xM = 1_[ xﬁ(x)’

xeF

where F is the finite subset of X such that #(x) > 0 for every x € F. Then we
have

Y, m(x) = |ml.

xeF

Let
[[m; E]]
be the set of all pairs

(7.k)
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where:

(1) k is a composition of E indexed on F such that [k(x)! = mi(x) for every
x €F;

(2) 7 is a family {0,}, c  of permutations, where o, is a permutation of the
set k(x).

We claim that the sets [m; E] and [[m; E]] are naturally bijective. To see this, it
suffices to realize that every function f from E to F defines a composition k by
setting

k(x) = f~'(x).
Conversely, given a composition k, we obtain a function f: E — F by setting

f(s) =x

whenever s € k(x).
Now, the cardinality of the set [[m; E]] is

|E|! _
m(—x)—! 1_[ m(x)!= lEI!s

xEF

since |E|'/T1, c pm(x)! is the number of compositions k of the set E such that
lk(x)| = m(x).

Let us now continue to define new polynomial species.

Example 5.5: The symmetric species H of dispositions is defined as follows:

H[@] = {(g’fg)}
and if E+¥ O
H[E] = {(d./)},

where f:E — X is an arbitrary function, and for each fiber f~'(x), a permuta-
tion is defined on f~!(x). The set of such permutations is denoted by d.
The generating function of the polynomial species of dispositions is

Gen(H,z) = ¥ nth(X)ir = ¥ h(X)z",

n>0 n>0

where A,(X) is the complete homogeneous symmetric function of degree n,
that is,

hn(X) = me’
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where the sum ranges over all multisets m such that |m|=n. In fact, the
preceding theorem gives

gen(H[E]) = |Elth z(X).
Example 5.6: The cyclic polynomial species C is defined as
Clg] =2
and if E # &
CLE] = {(v, )},
where f: E — X is a function such that
f(e) = f(e") forall e,e' € E,

and y: E — F is a cyclic permutation.
One verifies that

gen(C[E]) = (IEI-1)!pg(X),

where p,(X) is the power-sum symmetric functions, defined as

P(X)= ¥ x%;
xe X
thus
z" z"
Gen(C.2) = ¥ (n=1)!p,(X) 77 = T pu(X) 5.
n>1 n>1

6. Assemblies of polynomial species

Let P be a polynomial species without constant term, and let E be a finite set.
An assembly of polynomial species P on the partition 7 ={B}z_,, of E is a
pair (r, f) defined as follows:

(1) Choose a pair (sg, fg) in P{B], for every block B € 7.
(2) Set r=(m,(s5)p).
(3) Let f be the function defined as follows: f|z = f, for every B € .

We define the hth divided power P of the polynomial species P without
constant term, by setting P“’[E] equal to the set of all polynomial assemblies
(r, f) on all partition 7 of E with A blocks.
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Note that P[] = &. We set P©© =1, We have now

)
Gen(P™, z) = ge_n({'_,ﬂ' (6.1)

It is easy to prove the identity (6.1) by the following remark. Let k and k' be
strict compositions of E indexed on [ and [I' respectively. Say that the
compositions k and k' are equivalent when there exists a bijection

b: 1 - T
such that k'o ¢ = k. An equivalence class of strict compositions determines a

partition of E, and conversely.
From (6.1) and from the product identity for generating functions we have

Gen(P*,z) = Gen(P, z)"

and hence
h
Gen(P®, z) = GLn(hP',_z)_.

The family {P*: s > 0} is summable, since for any finite set E, the sets
p(h)[ E]

are almost all equal to the empty set.
We can therefore define the exponential species Exp(P) of the polynomial
species P as the sum of the family (P*?), that is,

Exp(P) = ) P®.
hz0

Note that Exp(P) E]= U, P"[E]. Clearly

Gen(Exp(P),z) = ), GLH(EI;’Z—)hx" = exp(Gen(P, z)).

>0
7. Some identities on symmetric species

We first prove the following species-theoretic generalization of the classical
product identity for elementary symmetric functions:

ProposiTioN 7.1. T, o x(1+A,)=A.

Proof: Recall that the equality sign stands for natural equivalence in the
category of polynomial species.
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We note that the family (A ), . , is multipliable. Indeed, we have:

(1) A, is without constant term.
(2) The set I(n,F)={x€ X:e.(A NE]+ D} is equal to F; thus I(n,F) is
finite and does not depend on |E|.

The infinite product of the family (A,),. » is the polynomial species P
defined by

PIE]= U {(s:/)e [T (1+A)[E):Imf=F).

xeF

and if (s, f) € P E], then the function f is injective.
On the other hand, there is a natural bijection 7. between the set P[E] and
the set A[ E] given by

me(s,f) = (E,f),
where (s, f)€ P[E]. Thus P = A.
We have thus provided a bijective interpretation of the classical identity

Y n!en(X)—zn—: = T (1+ x2).

n=0 xe X

ProrosiTioN 7.2. H=T1, . ,(1+H)).
Proof: Note that the family (H,), - , is multipliable. Indeed, we have:

(1) The polynomial species H, is without constant term.
(2) The set I(n,F)={x € X:e;(H JE)+ &} is equal to F; thus I(n,F) is
finite and does not depend on |E|.

The infinite product of the family (H,), ., is the polynomial species P
defined by

PE] - U {(s,f)exI;IF(lJer)[E]:Imf:F}.

We define a natural equivalence between P and H as follows. Let (s, f) € P[E]
then (s, f) is an element of 1, _(1+H)[E], where F=1Im f. That is, s =
(k,{o,}, c r), where k is a composition of E indexed on F, and o, is a
permutation of k(x)= f(x) when k(x)# &,

Let d be the set defined by

d = {0, : 0, is a permutation of f~'(x)}.

Thus the bijection that associates the pair (s, f) € P[ E] to the disposition (d, f)
is natural.
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We have thus obtained a bijective interpretation of the symmetric-function
identity

¥ nlh(X) 7 = I a-x)7"

nx=0
Our last example will be a bijective interpretation of Waring’s formula.
ProrosiTioN 7.3. H = Exp(C).

Proof: Let a be an element of Exp(C) E]. Thus, a contains the following
data:

(1) a partition 7 of E,
(2) for each B €, a pair (yg, fg), where fz:B — X is a function taking a
constant value, and where vy, is a cyclic permutation of the set B.

Now, for every x € X, set

B(x) = U {B:fs(B)=x}.
The set of sets

{B(x):x€ X, B(x)+ &}

is a partition of E.
The set of cyclic permutations

{’)’B:BGW’BQB(X)}

defines a permutation of the set B(x), which we denote by a(x).
We define a function f: E — X by setting

fls = fg-
Then f|p.) takes the constant value x, and the pair
({o(x):B(x)# 2}, f)

is a disposition and thus an element of H[E].
Conversely, let (d, f) € H[ E] be a disposition. Let

m={f"(x):f(x)*2)}.

Thus 7 is a partition of E. On every block B <7 a permutation o(B) is
defined. Let w(B) be the partition of B such that for every B'€ w(B) the
restriction o (B’) of ¢(B) to B’ is a cyclic permutation.

Clearly, for every B'e w(B) the restriction f|g is a function taking a
constant value. Thus,

(o(B),flg) € C[B]
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defines an assembly of cyclic species on the partition {B': B’ w(B), B € ).
The algorithm is clearly bijective.

We have thus provided a bijective interpretation of Waring’s formula:

Y n!h,,(x);—’; = Y h(x)z" = CXD( > (h_l)!Ph(x)%;

n>0 n=0 h>1

= exp( Y ph(x)%h).

h>1

Our interpretation is valid for any set X of variables.
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