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A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present
a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then
describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von
Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only
derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions
of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative
and may even contain unbounded elements.
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Section 1: Derivations and Quantum Physics
A derivation of an algebra A into an A-bimoduleM is a linear mapping δ of A intoM such that δðABÞ=AδðBÞ+ δðAÞB for each A and
B in A. When we are talking about the natural A-bimodule structure of A (as an A-bimodule) arising from the addition and mul-
tiplication operations on A, we say that δ is a derivation of A into itself or, simply, a derivation of A. The study of derivations of
operator algebras is a large, complicated topic that underwent a vast development in the 60s and 70s.
The term “derivation” is (visibly) closely related to “derivative.” Proceeding informally, if we consider the process of finding

the derivative df
dt of functions f, we see that it is linear and satisfies the Leibniz rule for products of functions, d

dt ðfgÞ=
df
dt g+ f dg

dt.
In effect, differentiation acts as a derivation on the ring of functions. Of course, something as basic as differentiation and its
algebraic counterpart, derivations, must find their way into fundamental physics. And indeed they do; derivations appear as the
generators of one-parameter groups that express the symmetries and dynamical evolution of quantum-mechanical systems. We
can see this relation to derivations by examining Dirac’s Program (1) for a mathematical formulation of the fundamentals of
quantum mechanics. Since this connection with quantum physics is a major motivation for the present study of derivations, we
expand on it.
In the early chapters of ref. 1, Dirac is pointing out that Hilbert spaces and their orthonormal bases, if chosen carefully, can be used

to simplify calculations and for determinations of probabilities, for example, finding the frequencies of the spectral lines in the visible
range of the hydrogen atom (the Balmer series), that is, the spectrum of the operator corresponding to the energy “observable” of the
system, the Hamiltonian. In mathematical terms, Dirac is noting that bases, carefully chosen, will simultaneously “diagonalize” self-
adjoint operators in an abelian (or “commuting”) family. We shall be doing precisely that in the proof of Theorem 12, one of our
main results.
The early experimental work that led to quantum mechanics made it clear that, when dealing with systems at the atomic scale,

where the measurement process interferes with what is being measured, we are forced to model the physics of such systems at a single
instant of time, as an algebraic mathematical structure that is not commutative. Dirac thinks of his small, physical system as an
algebraically structured family of observables––elements of the system to be observed when studying the system, for example, the
position of a particle in the system would be an observable Q (a “canonical coordinate”) and the (conjugate) momentum of that
particle as another observable P––and they are independent of time. As the particle moves under the “dynamics” of the system, the
position Q and momentum P become time dependent. By analogy with classical mechanics, Dirac refers to them, in this case, as
“dynamical variables.” He recalls the Hamilton equation of motion for a general dynamical variable that is a function of the canonical
coordinates {qr} and their conjugate momenta {pr}:

dqr
dt

=
∂H
∂pr

;  
dpr
dt

= −
∂H
∂qr

;

where H is the energy expressed as a function of the qr and pr and, possibly, of t. This H is the Hamiltonian of the system. Hence,
with v a dynamical variable that is a function of the qr and pr, but not explicitly of t,
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dv
dt

=
X
r

�
∂v
∂qr

dqr
dt

+
∂v
∂pr

dpr
dt

�
=
X
r

�
∂v
∂qr

∂H
∂pr

−
∂v
∂pr

∂H
∂qr

�
= ½v;H�;

where [v, H] is the classical Poisson bracket of v and H. Dirac is using Lagrange’s idea of introducing canonical coordinates and their
conjugate momenta, in terms of which the dynamical variables of interest for a given system may be expressed, even though those qr
and pr may not be associated with actual particles in the system. Noting the fundamental nature of the Poisson bracket in classical
mechanics, and establishing its Lie bracket properties, Dirac defines a quantum Poisson bracket [u, v] by analogy with the classical
bracket. So, it must be “real.”Dirac then argues “quasi”mathematically, to show that uv − vumust be iZ[u, v], where the real constant
Z has to be set by the basic quantum mechanical experiments (giving Z= h

2π, with h Planck’s constant). Again using classical analogy,
the classical coordinates and their conjugate momenta have Poisson brackets

½qr; qs�= ½pr; ps�= 0;    ½qr; ps�= δr; s;

where δr,s is the Kronecker delta, 1 when r = s and 0 otherwise. So, Dirac assumes that the quantum Poisson brackets of the position
Qs and the momentum Ps satisfy these same relations. In the case of one degree of freedom, that is, one Q (and its conjugate
momentum P), QP − PQ = iZI, the basic Heisenberg relation. This relation encodes the noncommutativity needed to produce the so-
called “ad hoc quantum assumptions”made by the early workers in quantum physics. At the same time, this relation gives us a numerical
grip on “uncertainty” and “indeterminacy” in quantum mechanics. In addition, the Heisenberg relation makes it clear (regrettably) that
quantum mechanics cannot be modeled using finite matrices alone. The trace of QP − PQ is 0 when Q and P are such matrices, whereas
the trace of iZI is not 0 (no matter how we normalize the trace). It can be shown that the Heisenberg relation cannot be satisfied even
with bounded operators on an infinite-dimensional Hilbert space. Unbounded operators are needed, even unavoidable for “repre-
senting” (that is, “modeling”) the Heisenberg relation mathematically. An extended and thorough study of this modeling appears in ref.
2, where, among other things, the result that the Heisenberg relation cannot be satisfied with self-adjoint operators, unbounded and
affiliated with factors of type II1, appears. (Such operators and operator algebras will be described presently.) Of course, we do not
abandon finite matrices and finite factors on this account. They can still play a crucial role in describing key aspects of quantum physics.
When we move to physical systems with infinitely many degrees of freedom, fields, or statistical mechanical systems, infinite systems of

finite matrices, now of arbitrarily large orders, give us the Glimm algebras (3), and from the Glimm algebras, the Powers factors (4), and
the complete theoretical description of the representations of the infinite, canonical, anticommutation relation (5)(IV; p. 663–669).
Included in this is one of the most useful factors of type II1, the “hyperfinite II1 factor.” The key component of the structural description
of all factors is a factor of type II1. The main Murray–von Neumann algebras we shall study consist of operators affiliated with a factor
of type II1 (see refs. 2, 6). Their basic algebraic properties follow from the pioneering results of Murray and von Neumann in ref. 7.
We continue our description of Dirac’s program, and incorporate some of the techniques and advances from the theory of operator

algebras, especially those from the sources just cited (toward which Dirac was working in the latter part of his life). Associated with
the physical system is a family of observables having some algebraic structure and representable by self-adjoint operators on an
infinite-dimensional complex Hilbert spaceH. Along with this family of observables is a family of states (of the system). Loosely, each
state is an “attitude” of the system in which a set of measurements can be performed during an experiment. (Much more austerely, a
state is an assignment of a probability measure to the “spectrum” of each observable.) Dirac, in a more tentative manner, associates
a unit vector in H (up to a complex multiple of modulus 1, a “phase factor”) with each state. If A is an observable and x corresponds
to a state of interest, 〈Ax, x〉, the inner product of the two vectors Ax and x, is the real number we get by taking the average of many
measurements of A with the system in the state corresponding to x. Each such measurement yields a real number in the spectrum of A.
The probability that that measurement will lie in a given subset of the spectrum is the measure of that set, using the probability
measure that the state assigns to A. The “expectation” of the observable A in the state corresponding to x is 〈Ax, x〉.
With this part of the model in place, Dirac assigns a self-adjoint operator H as the energy observable and, by analogy with classical

mechanics, assumes that it will “generate” the dynamics, the time-evolution of the system. This time-evolution can be described in two
ways, either as the states evolving in time, the “Schrödinger picture” of quantum mechanics, or the observables evolving in time, the
“Heisenberg picture” of quantum mechanics. The prescription for each of these pictures is given in terms of the one-parameter
unitary group t → Ut, where t∈R, the additive group of real numbers, and Ut is the unitary operator exp(itH), formed by applying the
spectral-theoretic, function-calculus to the self-adjoint operator H, the Hamiltonian of our system. If the initial state of our system
corresponds to the unit vector x, then at time t, the system will have evolved to the state corresponding to the unit vector Ut x. If the
observable corresponds to the self-adjoint operator A at time 0, at time t, it will have evolved to Up

t AUtð= αtðAÞÞ, where, as can be
seen easily, t→ αt is a one-parameter group of automorphisms of the “algebra” (perhaps, “Jordan algebra”) R of observables. In any
event, the numbers we hope to measure are 〈AUt x, Ut x〉, the expectation of the observable A in the state (corresponding to) Utx, as t
varies, and/or hðUp

t AUtÞx; xi, the expectation of the observable αtðAÞ in the state x, as t varies. Of course, the two varying expectations
are the same, which explains why Heisenberg’s “matrix mechanics” and Schrödinger’s “wave mechanics” gave the same results. (In
Schrödinger’s picture, x is a vector in H, viewed as L2ðR3Þ, so that x is a function, the “wave function” of the state, evolving in time
as Utx, whereas in Heisenberg’s picture, the “matrix” coordinates of the operator A evolve in time as αtðAÞ.) Loosely speaking, the
symmetries of the system (and the associated conservation laws) are modeled by the corresponding symmetry groups as groups
of automorphisms of R. The time evolution of the system, with a given dynamics, corresponds to a one-parameter group of
automorphisms, t→ αt of R. Again, very loosely, αt will be exp(itδ) for some linear mapping δ (of the algebra of observables). Thus,

dðαtðAÞÞ
dt

����
t=0

=
d
dt
e−itHAeitH

��
t=0 =− iHe−itHAeitH + e−itHAeitHðiHÞ

��
t=0 = − iHA+ iAH = i½A;H�;

while

dðαtðAÞÞ
dt

����
t=0

=
d
dt
eitδðAÞ

��
t=0 = iδðAÞeitδðAÞ

��
t=0 = iδðAÞ:

Thus, δðAÞ= ½A;H�. Compare this with what we discussed in the case of Hamilton mechanics, time differentiation of the dynamical
variable is Poisson bracketing with the Hamiltonian (the total energy). In quantum mechanics, differentiation of the “evolving
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observable” is Lie bracketing with the (quantum) Hamiltonian. Of course, this bracketing, δ, is a derivation of the system as the other
generators of the one-parameter automorphism groups of the “operator algebras” that describe our physical system and its symme-
tries are likely to be––hence, our interest in studying those derivations.

Section 2: Derivations and Hochschild’s Cohomology
At a conference held in 1953, Kaplansky asked Singer if he had an idea of what the derivations of C(X), the algebra of continuous
functions on a compact Hausdorff space X, might be. A day later, Singer gave Kaplansky a short, clever argument that such deri-
vations are the 0-mapping (that is, must map all of C(X) to 0) (see ref. 8). Kaplansky’s paper (9) and the strong interest in derivations
of operator algebras grew out of Singer’s result. Kaplansky showed that each derivation of a type I von Neumann algebra (for ex-
ample, BðHÞ, the algebra of all bounded operators on H) into itself is “inner” (that is, has the form Ad(B), where AdðBÞðAÞ=
AB−BA). In the course of his argument, Kaplansky proves that each such derivation is (norm-)continuous and conjectures that that
“automatic” continuity is true for all C*-algebras. This conjecture was proved a few years later by Sakai (10) and extended by Ringrose
to derivations of a C*-algebra into a Banach bimodule (11). These were among the earliest automatic-continuity results. In refs. 12
and 13 (see also refs. 14 and 15) it was proved that each derivation of a C*-algebra acting on a Hilbert spaceH extends to a derivation
of the strong-operator closure of that algebra, a von Neumann algebra, and that each derivation of a von Neumann algebra is inner.
The proof of this last result is not simple. Surprisingly enough, this theorem is an extension of Singer’s result. Of course, the von
Neumann algebra is a C*-algebra. If it is abelian, it is isomorphic to a C(X), and each inner derivation, Ad(B) is the 0-mapping. One
may object that not all abelian C*-algebras are von Neumann algebras, but this can be easily remedied by adducing the possibility of
extending a derivation of a C*-algebra to its strong-operator closure. It is not, however, in this primitive sense that we see the von
Neumann algebra derivation theorem as an extension of Singer’s derivation theorem, but, rather, in the sense that it tells us that each
such derivation is 0 as an element of the 1-cohomology group of the von Neumann algebra (16).
In Hochschild’s cohomology of associative algebras (17, 18), an n-linear mapping φ (an “n-cochain”) of an associative algebra A

into an A-bimodule M is transformed by a precisely defined process, the (n-coboundary) operator Δn, into an n + 1 cochain ΔnðφÞ:

ðΔnφÞðA0;A1; . . . ;AnÞ= A0φðA1; . . . ;AnÞ+
Xn
j=1

ð−1Þjφ
�
A0; . . . ;Aj−2;Aj−1Aj;Aj+1; . . . ;An

�
+ ð−1Þn+1φðA0; . . . ;An−1ÞAn:

If ΔnðφÞ= 0, φ is said to be an “n-cocycle.” In any event, Δn−1ðφÞ is said to be an “n-coboundary” and is an n-cocycle (as ΔnΔn−1 = 0,
the main property of coboundary operations). The coboundary operators are linear, from which the n-cocycles form a linear subspace
of the linear space of n-cochains (“on A with coefficients in M”) and the n-coboundaries form a linear subspace of the n cocycles
whose quotient (as additive groups) is the “nth cohomology group” of A with coefficients in M.
KerΔn: n-cocycles; ImΔn−1: n-coboundaries; ΔnΔn−1 = 0; ImΔn−1⊆KerΔn;

KerΔn=ImΔn−1 =HnðA;MÞ:

As it relates to our derivations, the Leibniz rule for derivations “embodies” the coboundary operator

ðΔ1ðφÞÞðA;BÞ=AφðBÞ−φðABÞ+φðAÞB;ð

which is 0 for all A and B in A precisely when φ is a derivation. At the same time, by convention, C0ðA;MÞ is M, and
Δ0 : C0ðA;MÞ→C1ðA;MÞ is defined by

ðΔ0mÞðAÞ=Am−mA;

for A∈A and m∈M. (Note that (Δ0m) is a inner derivation of A.) Therefore,

H1ðA;MÞ=KerΔ1=ImΔ0 = “derivations”=“inner derivation:”

The theorem of refs. 12, 13 is the statement that the first cohomology group of a von Neumann algebra (with coefficients in itself) is
0 (that is, that each cocycle is a coboundary––that each derivation is an inner derivation). Singer’s theorem tells us that insisting that
a derivation apply to all functions in C(X) (that is, in a commutative C*-algebra) to yield functions, once more, forces the derivation
to be the 0-mapping (“numerically”) on C(X). This same insistence for a derivation of a noncommutative C*-algebra (or its extension
to a von Neumann closure of that algebra), again, forces the derivation to be “0” (“cohomologically”). The view of the basic derivation
theory of operator algebras from the vantage point of Singer’s seminal answer to Kaplansky’s question and the corresponding result
for noncommutative von Neumann algebras raises a number of highly provocative, related questions. For the present article, we
concentrate on the questions referring to derivations of the algebras of unbounded operators. The central questions in this connection
are as follows: Are there cohomological and numerical 0-nullification results for those algebras? There are, and these are the two
main results of this paper.

Section 3: Murray–von Neumann Algebras and Derivations
Returning to the physics discussed in Sec. 1, note that the (physical) Hamiltonian will, in general, correspond to an unbounded
operator on our Hilbert space H as will likely be the case for the other operators K such that Ad(K) generates a group of symmetries
of the quantum system. Of course, these unbounded operators will not lie in a von Neumann algebra, but they may be “affiliated” with
the von Neumann algebra corresponding to our quantum system. This makes it very desirable to study derivations of algebras that
include such unbounded operators. Regrettably, the tendency of unbounded operators not to combine effectively under the oper-
ations of addition and multiplication severely limits the possibility of forming algebras that include these affiliated operators, and
along with that, we cannot speak of “their derivations.” There is, however, one intriguing exception discovered by Murray and von
Neumann, the “finite” von Neumann algebras and their families of affiliated operators. We say that a closed densely defined operator
T on a Hilbert space H is affiliated with a von Neumann algebra R when U′T = TU′ for each unitary operator U′ in R′, the com-
mutant of R. Murray and von Neumann show, at the end of ref. 7, that the family of operators affiliated with a factor of type II1 (or,
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more generally, affiliated with a finite von Neumann algebra, those in which the identity operator is finite) admits surprising
operations of addition and multiplication that suit the formal algebraic manipulations used by the founders of quantum mechanics
in their mathematical model. (Unbounded operators, even those that are closed and densely defined, can often neither be added
nor multiplied usefully. They may not have common dense domains.) In ref. 2, it is proved that the family of operators affiliated
with a finite von Neumann algebra is a * algebra (with unit I, the identity operator) under the operations of addition +̂ and mul-
tiplication ·̂ . (If operators S and T are affiliated with R, then S + T and ST are densely defined, preclosed and their closures, denoted
by “S+̂T” and “S ·̂ T,” respectively, are affiliated with R.) We refer to such algebras as Murray–von Neumann algebras.
If R is a finite von Neumann algebra, we denote by “A fðRÞ” its associated Murray–von Neumann algebra. The complete co-

homological 0-nullification result would say that each derivation of A fðRÞ is inner (that is, is Ad(T) for some T in A fðRÞ). The
authors feel that this is true, but it is still open. (It is a work in progress for us.) In this article, we prove that the extended derivations
of A fðRÞ (those that map R into R) are inner (Theorem 5). In Theorem 12, we prove that each derivation of A fðMÞ with M a factor
of type II1 that maps A fðMÞ into M is 0. In other words, the restriction that the range of the derivation is in M, the “bounded”
part of A fðMÞ, allows us to recapture Singer’s numerical 0-nullification in the (noncommutative, unbounded) case of A fðMÞ. For
the general result whenM is a von Neumann algebra of type II1, a proof appears elsewhere (19) (the “transcription” from a II1 factor
to a II1 von Neumann algebra is not an easy one in this case).

Section 4: Matrix Representation of Murray–von Neumann Algebras
Let R be a ring with unit I, and involution A→Ap ðA∈RÞ.
Definition 1:We call a set fEabga;b∈A a matrix-unit system inR when each Eab ≠ 0, EabEcd is 0 if b ≠ c and EabEbd =Ead, for all a, b, c,

and d in A. If, in addition, Ep
ab =Eba, we say that {Eab} is a self-adjoint matrix-unit system. If fFcdgc;d∈B is a matrix-unit system in R

such that A⊆B and fEabga;b∈A⊆fFcdgc;d∈B, we say that {Fcd} is a larger matrix-unit system than {Eab}. If {Eab} is maximal relative to
this partial ordering of matrix-unit systems in R, we call fEabga;b∈A a complete matrix-unit system for R. Each Eab in a matrix-unit
system is said to be a matrix unit (in the system). The matrix units Eaa, a∈A, are said to be principal (or diagonal) matrix units in the
system fEabga;b∈A.
The classic example of a system of matrix units is that of the set of n × n matrices each of which has a single nonzero entry 1. If that

entry is in the jth row and kth column, the resulting matrix is Ejk of our matrix-unit system for MnðCÞ, the algebra of n × n matrices
with complex entries (in which it is complete). The examples that are most relevant for our present purposes are the finite, complete,
self-adjoint matrix-unit systems for factors of type II1. If M is such a factor, the principal matrix units E11; . . . ;Enn are equivalent
projections (self-adjoint idempotents) and each Ejk is a partial isometry with initial projection Ekk and final projection Ejj. The key result
that allows us to begin the process of constructing matrix-unit systems is in ref. 5 (II; sec. 6.5). Lemma 6.5.6 asserts that each projection in
a von Neumann algebra R with no central portion of type I (equivalently, with no nonzero abelian projections), in particular, in a factor
of type II1, is the sum of n equivalent (orthogonal) projections inR, where n is any preassigned positive integer. In ref. 20, corollary 3.15,
it is proved, among other such results, that each maximal abelian, self-adjoint subalgebra of a von Neumann algebra of type II1 has n
orthogonal equivalent projections with sum I. This possibility for choosing the principal matrix units for special purposes directed by
spectral analysis is a technique that will be vital to our proof of Theorem 12.
With the ring R and a finite, self-adjoint matrix-unit system fEjkgj;k∈f1;⋯;ng, such that

Pn
j=1Ejj = I, there is a procedure for asso-

ciating a ring of matrices whose entries lie in the subring T of R consisting of the elements of R that commute with all of the matrix
units of our system. This procedure is described in ref. 5 (II, lemma 6.6.3). That lemma directs us to assign to T in R the n × n matrix
whose (j, k) entry Tjk is

Pn
r=1ErjTEkr . That this element lies in T follows from EstTjk =Estð

Pn
r=1ErjTEkrÞ=EstEtjTEkt =EsjTEkt =

EsjTEksEst = ð
Pn

r=1ErjTEkrÞEst =TjkEst   for  j; k∈ f1;⋯; ng:
If we denote by φ the mapping that assigns to T the matrix [Tjk] in the n × n matrix ring n⊗ T over T , then φðEjkÞ is the matrix

with I at the (j, k) entry and 0 at all other entries, as the following calculation shows. The (s, t) entry for φðEjkÞ is
Pn

r=1ErsEjkEtr = 0
unless s = j and k = t, in which case that entry is

Pn
r=1ErjEjkEkr =

Pn
r=1Err, which is I, by assumption. With the present notation:

Theorem 2. The mapping φ is a * isomorphism of R onto n⊗ T .
The proof of Theorem 2 appears in ref. 19. Note that R in the theorem is a general * ring (with unit I).

Section 5: Derivations–Main Results
Let R be a finite von Neumann algebra acting on a Hilbert space H.
Definition 3: We say that δ, a derivation of A fðRÞ, is an extended derivation of A fðRÞ if δ maps R into R.
Lemma 4. Let T be an operator affiliated withR. Suppose that there is a sequence {Fn} of operators inR with strong-operator limit I, the

identity operator, such that TFnx = 0 for all x in D ðTFnÞ, the domain of TFn, and for each n. Then Tx = 0 for all x in H.
Theorem 5. Suppose that δ is an extended derivation of A fðRÞ. Then there is an operator B in R such that, for each operator A in

A fðRÞ, δðAÞ=AdðBÞðAÞ=A ·̂B−̂B ·̂A.
Proof: By definition of extended derivations of A fðRÞ, the restriction of δ on R is a derivation ofR. Since every derivation of a von

Neumann algebra is inner (12, 13), there is an operator B in R such that δðAÞ=AB−BA for all A∈R.
Define AdðBÞ :A fðRÞ→A fðRÞ by AdðBÞðAÞ=A ·̂B−̂B ·̂A; ðA∈A fðRÞÞ. Note that for every A in R, AdðBÞðAÞ=A ·̂B−̂B ·̂A=

AB−BA= δðAÞ. Let δ0 = δ−AdðBÞ. Then δ0 is a derivation of A fðRÞ and δ0ðRÞ= 0: We shall show that δ0ðA fðRÞÞ= 0, which will
complete the proof.
For any operator A in A fðRÞ, let VH be the polar decomposition of A and let En be the spectral projection for H corresponding to

the interval [−n, n] for each positive integer n. Then, the sequence {En} is strong-operator convergent to I, and for each n, AEn is
a bounded everywhere-defined operator in R. Moreover,

0= δ0ðAEnÞ=Aδ0ðEnÞ+ δ0ðAÞEn = δ0ðAÞEn:

From the preceding lemma, δ0ðAÞ= 0 ðA∈A fðRÞÞ.
We shall prove (Theorem 12, Corollary 13) that the only derivation of A fðMÞ, with M a factor of type II1, that maps A fðMÞ into

M is 0. Recall that factors are von Neumann algebras whose centers consist of scalar multiples of the identity operator I. A von
Neumann algebra is said to be finite when the identity operator I is finite. Factors without minimal projections in which I is finite are
said to be of type II1. The following results (whose proofs appear in ref. 19) are used in the proof of Theorem 12, where the harder
argumentation occurs.
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Definition 6: We say that a von Neumann algebra R is diffuse if it has no projection minimal in R .
Lemma 7. Each von Neumann algebra R with no central portion of type I, in particular, a von Neumann algebra of type II1, is diffuse.
Proposition 8. Every maximal abelian self-adjoint subalgebra (masa) A in a diffuse von Neumann algebra R is diffuse.
Lemma 9. Suppose that B is an operator in R, a finite von Neumann algebra, and that B is not in the center of R. Then, if there is an

operator T in A fðRÞ such that AdðBÞðTÞ∉R, there is a self-adjoint operator S in A fðRÞ such that AdðBÞðSÞ∉R.
Lemma 10. Suppose that B is an operator in R, a finite von Neumann algebra, and that B is not in the center of R. If AdðBÞðTÞ is in R

for every self-adjoint operator T in A fðRÞ, then there is a self-adjoint operator S inR, not in the center ofR, such that AdðSÞðTÞ is inR for
every self-adjoint operator T in A fðRÞ.
Proposition 11. Let A be an abelian von Neumann algebra acting on a Hilbert space H. Suppose fFaga∈A is a family of mutually

orthogonal, nonzero projections in A with sum F, and fHaga∈A is a family of self-adjoint operators affiliated with A such that HaFa =Ha

for each a in A. LetD a beD ðHaÞ∩FaðHÞ andD A be the linear span of ffD aga∈A; ðI −FÞðHÞg. If H0 is the linear operator with domain
D A that maps xa in D a to Haxa and x′ in ðI −FÞðHÞ to 0, then H0 is closable with closure a self-adjoint operator affiliated with A .
The theorem that follows is formulated in terms of a II1 factor rather than a general II1 von Neumann algebra (that appears in ref.

19) to simplify a complicated argument to a certain extent. In the case of a general II1 von Neumann algebra, quite a bit of difficulty
resides in the nature of the center of the von Neumann algebra. This should not be surprising; we are dealing with derivations and
(Lie) bracketing and the crucial hypothesis in our main result (following this discussion) is that the operator B about which the
assertion is made does not lie in the center. Before we can succeed in constructing what we need in the case where the von Neumann
algebra has a robust center, we must transform the condition of “noncentrality” into detailed spectral information about B. Manipu-
lation of central carriers to find a nonzero central projection over which B has distinct spectrum (bounded apart) is necessary. This was
quite a difficult task, accomplished by making use of Stone’s characterization of norm-closed, self-adjoint subalgebras of C(X) (21).
Theorem 12. IfM is a factor of type II1 and B is an operator inM and B is not a scalar multiple of the identity operator (that is, B is not

in the center of M), then there is an operator H in A fðMÞ such that AdðBÞðHÞ∉M.
Proof: Of course, if AdðBÞðHÞ∉M with B in M and H in A fðMÞ, then H ∉M. From Lemma 9 and Lemma 10, it suffices to

consider the case in which B is a self-adjoint element in M, and even a stronger result should be true, that is, a self-adjoint H can be
found for each self-adjoint B in M (not in the center of M) such that AdðBÞðHÞ∉M. We reduce our problem further. Since Ad(B)
and AdðB+ aIÞ are the same mapping of A fðMÞ, for each a in C, by appropriate choice of a, we may assume that both jjBjj and −jjBjj
are in sp(B), the spectrum of B. Again, since AdðaBÞðHÞ=AdðBÞðaHÞ= aAdðBÞðHÞ, for each positive real a, by appropriate choice of
a, we may assume that the maximum jjBjj of the spectrum of B is 1, and, with the present reduction, the minimum −jjBjj is −1.
Let A be a maximal abelian, self-adjoint subalgebra (masa) of M containing B. From ref. 5 (I; Theorem 5.2.1), A ≅CðXÞ, with X

an extremely disconnected compact Hausdorff space. Suppose that the operator B corresponds to B̂ in C(X). Since 1 and −1 are the
maximum and minimum of sp(B), there are x and x′ in X such that B̂ðxÞ= 1 and B̂ðx′Þ= − 1. Let S0 be the closure of the open set on
which B̂ takes value greater than 7

8, and let S′0 be the closure of the open set on which B̂ takes value less than −7
8. These sets, S0 and S′0,

are nonnull, since x ∈ S0 and x′∈ S′0. Let E0 and E′0 be the projections in A corresponding to the characteristic functions of S0 and S′0,
respectively. Then from the function representation in C(X), BE0> 7

8E0 and BE′06− 7
8E′0. If E∈A is a subprojection of E0, then

BE=BE0E> 7
8E0E= 7

8E. Similarly, if E′∈A is a subprojection of E′0, then BE′6− 7
8E′.

Without loss of generality, let us assume that τðE0Þ6τðE′0Þ, where τ is the trace onM. Applying corollary 3.14 of ref. 20, there is, for
a suitably large positive integer n with 1

n< τðE0Þ, a subprojection E in A of E0 with τðEÞ= 1
n. Similarly, there is a subprojection E′ in A

of E′0 with τðE′Þ= 1
n.

Let E be E1 and let E′ be En with n the positive integer in the preceding paragraph. From corollary 3.15 of ref. 20, there are n − 2
orthogonal equivalent projections each with trace 1

n in A , E2;E3; . . . ;En−1, with sum I −E1 −En. (Let F = I −E1 −En. According to
the corollary, there are n − 2 orthogonal equivalent projections in A F with sum F, the identity of A F.)
Let Vj be the partial isometry with initial projection E1 and final projection Ej. Then V p

j Vj =E1 and VjV p
j =Ej. Let Ejk =VjV p

k .
Then Ejk is a partial isometry with initial projection Ek and final projection Ej, and Ejj =VjV p

j =Ejðj= 1; 2; . . . ; nÞ and
Pn

j=1Ejj =Pn
j=1Ej = I. Moreover, EjkEkl =VjV p

k VkV p
l =VjE1V p

l =VjV p
l =Ejl;EjkElm =VjV p

k VlV p
m = 0ðif   k≠ lÞ;   and Ep

jk =Ekj. Hence, fEjkgj;k=1;⋯;n

is a self-adjoint system of n × n matrix units for M (and for A fðMÞ as well).
Employing the discussion, results, and notation of Sec. 4, when we compute the matrix in n⊗ T of the matrix unit E1n in M, the

result is the n × nmatrix with I at the (1, n) position and 0 at all other positions. The mapping fromM to n⊗ T described in ref. 5 (II;
sec. 6.6) and in Sec. 4 is a * isomorphism of M onto n⊗ T .
Returning to the operator B, a self-adjoint element in the masa A , with 1 and −1 as maximum and minimum of its spectrum, re-

spectively; from our construction, A contains the principal matrix units E11; . . . ;Enn of our matrix unit system fEjkgj;k=1;...;n, and
BE11> 7

8E11,BEnn6− 7
8Enn. Suppose, also, that we have chosenH, a self-adjoint operator inA fðMÞ as well as in the algebra of operators

affiliated with A . Without specifying H precisely, at this point, we assume that HE11>E11 and H ·̂Bð=HBÞ∉M. Our goal, now, is to
show that HE1nð=H ·̂E1nÞ and B form a commutator ðAdðBÞðHE1nÞÞ that is not in M (hence, is in A fðMÞnM)).
The final step is a precise construction of the operator H. For this step, we make use of the fact that each masa in a factor of type II1

is diffuse (see Proposition 8). Using this, we construct a sequence of nonzero mutually orthogonal subprojections F1;F2; . . . of E11 in
A . We note, from Proposition 11, that 2F1 + 3F2 + 4F3 +⋯ is an operator with closure H affiliated with A (here, A= f1; 2; . . .g;
Hj = ðj+ 1ÞFj;DðHjÞ=H;Dj =FjðHÞ), and that HE11 = H. Moreover, E11Fj =Fj, and Fj ·̂H =HFj = ðj+ 1ÞFj, because FjFk = 0 when
j ≠ k. (Recall that, if T is a closed operator and B is a bounded operator on the Hilbert space H, then the operator TB is closed.
So, we write HFj instead of H ·̂ Fj.) Now, Fj and B are in A . Thus,

Fj ·̂HB= ðj+ 1ÞFjB= ðj+ 1ÞBFj = ðj+ 1ÞBE11Fj>ðj+ 1Þ 7
8
E11Fj =

7
8
ðj+ 1ÞFj

for each j. As Fj is a nonzero projection,
��Fj ·̂HB

��> 7
8 ðj+ 1Þ

��Fj
��= 7

8 ðj+ 1Þ for each j. Thus, HB is unbounded and affiliated with A . At
the same time,
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��Fj ·̂HBE1n
��>����78 ðj+ 1ÞFjE1n

����= 7
8
ðj+ 1Þ;

because E1n is a partial isometry with final space E11ðHÞ, containing FjðHÞ. It follows that HBE1n is an unbounded operator in
A fðMÞ. We shall use this construction to provide us with the desired commutator AdðBÞðHE1nÞ in A fðMÞnM.
The operator B ·̂HE1n corresponds to the n × n matrices over T with

Pn
r=1ErjB ·̂HE1nEkr at the (j, k) entry. Since B is in A and H is

affiliated with A , they commute with all of the principal matrix units Ekk ðk= 1; . . . ; nÞ, this (j, k) entry is
Pn

r=1ErjB ·̂HEjjE1nEkkEkr ,
which is 0 unless j = 1 and k= n. It follows that the (j, k) entry for the n × n matrix corresponding to B ·̂HE1n is 0 at all entries
except, possibly, the (1, n) entry, which is

Pn
r=1Er1B ·̂HE1r . At the same time, each of B, H, and B ·̂H, has diagonal matrix in n⊗ T

corresponding to it. To see this, note that the (j, k) entry of the matrix corresponding to B is ðBjk = Þ
Pn

r=1ErjBEkr , which isPn
r=1ErjEjjBEkkEkr =

Pn
r=1ErjBEjjEkkEkr . Since EjjEkk is 0 unless j = k, in which case EjjEkk =Ejj, the (j, k) entry of the matrix

corresponding to B is 0 unless j = k, in which case the (j, j) entry is ðBjj = Þ
Pn

r=1ErjBEjr for each j. Thus, B corresponds to the diagonal
matrix with Bjj at the diagonal positions (j, j) ðj= 1; . . . ; nÞ, and 0 at every off-diagonal position. If we compute AdðBÞðHE1nÞ
ð= ðHE1nÞ ·̂B−̂B ·̂ ðHE1nÞÞ in terms of the n×nmatrices corresponding to it, we have that AdðBÞðHE1nÞ corresponds to the n× nmatrix
with (j, k) entry,

Xn
r=1

Erj ·̂HE1nBEkr−̂
Xn
r=1

ErjB ·̂HE1nEkr =
Xn
r=1

Erj ·̂HEjjE1nEkkBEkr −̂
Xn
r=1

ErjB ·̂HEjjE1nEkkEkr;

which is 0 unless j = 1 and k = n, in which case it is the (1, n) entry,

Xn
r=1

Er1 ·̂HE1nBEnr−̂
Xn
r=1

Er1B ·̂HE1r =

 Xn
r=1

Er1 ·̂HE1r

! Xn
s=1

EsnBEns

!
−̂

 Xn
r=1

Er1BE1r

!
·̂

 Xn
s=1

Es1 ·̂HE1s

!
=H11Bnn −̂B11 ·̂H11:

We want to show that this entry is not in M (and is, hence, unbounded). If this (1, n) entry is in M, then multiplying it on the left
by −E11 and on the right by E11 results in

−E11

�
H11Bnn−̂B11 ·̂H11

	
·̂E11 = −E11

 Xn
r=1

Er1 ·̂HE1nBEnr−̂
Xn
r=1

Er1B ·̂HE1r

!
E11=B ·̂HE11−̂HE1nBEn1;

which is also in M. We argue, by contradiction, to show that this is not the case.
In the construction of H, we defined projections Fj in A such that Fj ·̂H = ðj+ 1ÞFj. Thus,

��B ·̂HE11−̂HE1nBEn1
��=��Fj

����B ·̂HE11−̂HE1nBEn1
����Fj

��>ðj+ 1Þ
��BFjE11Fj −FjE1nBEn1Fj

��>ðj+ 1Þ
��BFj −FjE1nBEn1Fj

��:
Now, by choice of E11,

BFj =BE11Fj>
�
7
8
E11

�
Fj =

7
8
Fj;

while

−FjE1nBEn1Fj = −FjE1nBEnnEn1Fj>FjE1n

�
7
8
Enn

�
En1Fj =

7
8
FjE11Fj =

7
8
Fj:

Hence,

BFj −FjE1nBEn1Fj>
14
8
Fj;     

��BFj −FjE1nBEn1Fj
��> 14

8
;

and

��B ·̂HE11−̂HE1nBEn1
��> 14

8
ð j+ 1Þ> j;

for each positive integer j. It follows that B ·̂HE11−̂HE1nBEn1 is not bounded, not in M, and that AdðBÞðHE1nÞ∈A fðMÞnM.
Corollary 13. Suppose that δ is a derivation of A fðMÞ that maps A fðMÞ into M, where M is a factor of type II1. Then δðAÞ= 0 for

every A in A fðMÞ.
Proof: Since δ maps A fðMÞ intoM, δ mapsM intoM. So, δ is an extended derivation of A fðMÞ. From Theorem 5, δ is inner, that

is, there is an operator B in M such that, for each operator A in A fðMÞ, δðAÞ=AdðBÞðAÞ=A ·̂B−̂B ·̂A. If the operator B is in the
center of M, then B is in the center of A fðMÞ (see proposition 30 of ref. 6) and hence for each operator A in A fðMÞ,
AdðBÞðAÞ=A ·̂B−̂B ·̂A= 0. If B is not in the center of M, from Theorem 12, there is an operator H in A fðMÞnM such that
AdðBÞðHÞ∉M, contrary to the assumption that δ maps A fðMÞ into M. Thus, the only derivation of A fðMÞ into M is 0.
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Section 6: Further Questions
The question of what is involved, mathematically, when AdðBÞðTÞ is bounded in the circumstances where B∈R with R a finite von
Neumann algebra and T ∈A fðRÞ, especially when T is unbounded, is of vital interest to the program of describing the derivations of
A fðRÞ. The simple observation that AdðBÞðTÞ is bounded when T is bounded or when T is in the center of A fðRÞ leads us, at once, to
the guess that AdðBÞðTÞ is bounded if and only if T is the sum of an operator in A fðRÞ commuting with B (the set of such operators
will be denoted by “(B)′”) and an operator in R. We prove this result, here, when B is a projection. For the general case, it is still
open. It seems necessary to develop a calculus of which operators produce a bounded commutator with T, given that A does. So, for
example, we have proved that polynomials in A do, as do At, where A is positive with spectrum in (0, 1) and t ∈ (0, 1). When this
“calculus” has reached a certain state of development, one might begin to show that T is in ðBÞ′+R.
Theorem 14. If E is a projection in R, with R a finite von Neumann algebra, then AdðEÞðTÞ∈R, for some T in A fðRÞ, if and only if

T ∈ ðEÞ′ +̂R, where (E)′ is the commutant of E in A fðRÞ.
Proof: Note that T =E ·̂T ·̂E +̂E ·̂T ·̂ ðI −EÞ +̂ ðI −EÞ ·̂T ·̂E +̂ ðI −EÞ ·̂T ·̂ ðI −EÞ. It follows from this decomposition that

AdðEÞðTÞ=E ·̂T ·̂E +̂ ðI −EÞ ·̂T ·̂E −̂E ·̂T ·̂E −̂E ·̂T ·̂ ðI −EÞ= ðI −EÞ ·̂T ·̂E −̂E ·̂T ·̂ ðI −EÞ:

Assuming that AdðEÞðTÞ is a bounded operator in R, AdðEÞðTÞEð= ðI −EÞ ·̂T ·̂EÞ and −AdðEÞðTÞðI −EÞð=E ·̂T ·̂ ðI −EÞÞ are
bounded, as is E ·̂T ·̂ ðI −EÞ +̂ ðI −EÞ ·̂T ·̂E (= B). It follows that T =E ·̂T ·̂E +̂ ðI −EÞ ·̂T ·̂ ðI −EÞ +̂B∈ ðEÞ′ +̂R.
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