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Abstract. A new structural result in the comparison theory of pro-
jections for von Neumann algebras is proved: two monotone-increasing nets
of projections indexed by the same directed set have unions that are equiv-

alent when pairs of projections with the same index are equivalent. The
same is not true, in general, for intersections of monotone-decreasing nets
of projections. Counterexamples are given indicating limitations on exten-
sions, variants, and methods for proving that result.

1. Introduction. The basic technique introduced by Murray and von
Neumann [MvN] in the analysis of “factors”, those von Neumann algebras whose
centers consist of scalar multiples of the identity operator I, is that of “compar-
ison” of the projections∗ in the von Neumann algebra R. Analysis of a spectral-
theoretic nature assures us of the existence of many projections E in R (E = E∗

and E = E2); the norm closure of their linear span in B(H), the family (algebra)
of all bounded linear operators on the Hilbert space H, is R. Murray and von
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∗From personal conversations with Murray, von Neumann, and Halperin (to whose memory
this article is dedicated), this author has concluded that a remark to von Neumann by Halperin
was fundamental to the development of the “comparison theory” of projections. Halperin, as
a young mathematician sent to the Institute for Advanced Study in Princeton (1935) for early
guidance by von Neumann, was invited to be a party to the very first discussions von Neumann
had with Murray. Murray, too, had been sent to von Neumann as a young post-doc. In those
early discussions, von Neumann was setting Murray on the project that was to become the
subject they called “rings of operators”, and more specifically, “the theory of factors”. The
day following Halperin’s remark, von Neumann mentioned to Halperin, excitedly, so I am told,
that it seemed to lead to significant consequences. He requested Halperin’s permission to use
that suggestion. The permission was granted, of course. That situation is reminiscent of von
Neumann’s request to B. O. Koopman, a day after Koopman had made his observation to
von Neumann that a measure-preserving transformation gives rise to a unitary operator on
the L2-Hilbert space of the measure (which became known, for a period, as “the Koopman
method”) that von Neumann be allowed to use it. Von Neumann had proved his “mean-
ergodic theorem” with the aid of Koopman’s construction a few hours after hearing of it from
Koopman. Evidently, von Neumann was punctilious where others’ ideas were involved.
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Neumann define “equivalence” of projections E and F in R (“equivalence mod
R” written as E ∼ F ) by comparing the ranges of E and F via operators in
R. More specifically, E ∼ F mod R, when there is a V in R that maps E(H)
isometrically onto F (H) and maps (I −E)(H) to (0). They write ‘E - F ’ when
E ∼ F0 ≤ F . The relation ‘-’ is a partial ordering of the equivalence classes of
projections in R under ∼. (The only non-trivial aspect of that assertion is the
equivalence of E and F when E - F and F - E, which involves a “Cantor–
Schröder–Bernstein” argument in a Hilbert-space setting.) This partial ordering
is a linear ordering exactly when R is a factor.

“Additivity” of equivalence, is easy to establish: If {Ea}a∈A and {Fa}a∈A are
each orthogonal families of projections in R such that Ea ∼ Fa, then

∑
Ea ∼∑

Fa. It provides the key to passing from algebraic properties of equivalence to
properties deduced from the algebraic assertions that require an analytic bridge.

Another route to such an analytic bridge proceeds through increasing nets of
projections and their strong-operator limits. If {Ea}a∈A and {Fa}a∈A are two
such nets indexed and directed by the same directed set A (they are “increasing”
in the sense that Ea ≤ Ea′ and Fa ≤ Fa′ when a ≤ a′) and Ea ∼ Fa for each
a in A, are the unions E of {Ea} and F of {Fa} equivalent in R? Offhand,
this would seem to follow from an easy conversion of this “monotone” analytic
bridge to the “additive” analytic bridge. Specifically, dealing with increasing
sequences for illustrative purposes, the union E of E1, E2, . . . is the sum of the
orthogonal set E1, E2 − E1, E3 − E2, . . . of projections E1, {Ej+1 − Ej}j∈N.
The problem with this “conversion” is that, even though Ej ∼ Fj , Ej+1 ∼ Fj+1,
Ej ≤ Ej+1, and Fj ≤ Fj+1, the projections Ej+1 − Ej and Fj+1 − Fj need not
be equivalent; one may be finite (in R) while the other is infinite (in R). At the
same time, the seemingly “dual” problem of the equivalence of the intersections
of termwise equivalent projections in decreasing sequences has a negative answer;
one intersection may be infinite and the other may be finite of any dimension
or the first and second may be finite with any given dimensions. To see this,
let {ej}j∈N be an orthonormal basis for H and Ej be the projection with range
spanned by {e1, . . . , ek, ek+j , ek+j+1, . . . }. Then

∧
∞

j=1 Ej is the projection Fk

with range spanned by {e1, . . . , ek}. Of course, Fk and Fk′ are not equivalent
in B(H) when k 6= k′, yet all the projections Ej have dimension ℵ0 and are
equivalent in B(H).

In Section 2 we shall see that equivalence holds in the case of unions (Theo-
rem 3). We restrict attention, though, to the case of a countably decomposable
von Neumann algebra to avoid an elaborate analysis in terms of higher infinite
cardinals. In Remark 4, we shall note some limitations on extensions of this
result.

On a number of occasions, we support our reasoning by reference to results
in [KR1]– [KR4]. These references will be made by citing the number of the
result alone. For example, ‘Theorem 8.2.8’ refers to the result numbered ‘8’
in Section 2 of Chapter 8 of [KR2], while Exercise 7.6.6 refers to the exercise
numbered ‘6’ in Section 6 of Chapter 7 as that exercise appears with its complete
solution in [KR4].
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2. Equivalence of limits. It was noted in the preceding section that
pairwise equivalent decreasing sequences of projections need not have equivalent
intersections. Since the intersections are the strong-operator limits of the se-
quences, that warns us that the strong-operator limits, necessarily projections,
of pairwise equivalent sequences of projections need not be equivalent, in general.
There is something positive to be said in that direction when R is finite.

Proposition 1. If {Ea}a∈A and {Fa}a∈A are nets of projections in the fi-
nite von Neumann algebra R that are strong-operator convergent to E and F ,
respectively, and Ea ∼ Fa for each a in A, then E ∼ F .

Proof. Let τ be the center-valued trace on R. From Theorem 8.2.8, τ is
ultraweakly continuous on R. For each x and y in the Hilbert space on which
R acts, {〈Eax, y〉}a∈A converges to 〈Ex, y〉. Thus {Ea}a∈A and {Fa}a∈A are
weak-operator convergent to E and F , respectively. Since the ultraweak and
weak-operator topologies coincide on the unit ball in R, {Ea}a∈A and {Fa}a∈A

are ultraweakly convergent to E and F , respectively. Thus {τ(Ea)}a∈A and
{τ(Fa)}a∈A converge ultraweakly to τ(E) and τ(F ), respectively. Since Ea ∼ Fa,
τ(Ea) = τ(Fa) for each a in A, whence τ(E) = τ(F ). From Theorem 8.4.3(vi),
E ∼ F . ¤

Remark 2. The preceding result is not valid, in general, when all the pro-
jections of the sequences and the limits are of finite (relative) dimension but
R is not a finite von Neumann algebra. To see this, let {ej}j∈N be an or-
thonormal basis for a Hilbert space H, R be B(H) and Ekn (n > k) be the
k + 1-dimensional projection with range spanned by e1, . . . , ek, en. The strong-
operator limit of {Ekn} as n tends to infinity is Ek, the projection with range
spanned by e1, . . . , ek, since Eknej = ej when j ∈ {1, . . . , k, n} and Eknej = 0
otherwise. Thus Eknej → Ekej as n → ∞ for each j. As {ej}j∈N generates
a dense linear submanifold of H and {Ekn, Ek} is a bounded subset of B(H),
{Ekn} is strong-operator convergent to Ek as n → ∞. (See [KR1, p. 114].)

Now, let Fkn (n > k − 1) be the k + 1-dimensional projection with range
spanned by e1, . . . , ek−1, en, en+1. By our earlier reasoning, {Fkn} is strong-
operator convergent to Fk, where Fk is the projection with range spanned by
e1, . . . , ek−1. Of course, Ekn ∼ Fkn for all n and Ek is not equivalent to Fk

(in B(H)).

With the caution inspired by our examples, we turn to the equivalence ques-
tion when R is not assumed to be finite.

Theorem 3. Let {Ea}a∈A and {Fa}a∈A be nets of projections indexed by
the directed set A and monotone increasing with respect to the usual projection
(operator) ordering. If Ea ∼ Fa in R, a countably decomposable von Neumann
algebra, for each a in A, then E ∼ F where E =

∨
a∈A

Ea and F =
∨

a∈A
Fa.
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Proof. From Proposition 6.2.8, the central carriers of Ea and Fa are the
same (since Ea ∼ Fa). From Proposition 5.5.3, the central carriers of E and F

are, respectively, the unions of the central carriers of {Ea} and {Fa}. Thus E

and F have the same central carrier P .
If there is a non-zero subprojection P ′ of P , central in R, such that P ′Ea is

finite for all a (whence P ′Fa is finite for all a since P ′Ea ∼ P ′Fa), let {Pb}b∈B

be a maximal orthogonal family of such subprojections and P0 be its sum. Then
P0Ea and P0Fa are finite for each a from Lemma 6.3.6. In addition, if P ′′

is a non-zero central subprojection of P − P0 (= P ′

0), then P ′′Ea and, hence,
P ′′Fa are infinite for some a. Thus P ′′E and P ′′F are infinite. It follows that
P ′

0E and P ′

0F are properly infinite (with the same central carrier P ′

0). From
Corollary 6.3.5, P ′

0E ∼ P ′

0F since R is countably decomposable.
It remains to show that P0E ∼ P0F . Changing notation, we may assume that

all Ea and Fa are finite in R. If E and F are infinite, then there are (unique)
non-zero, central projections P1 and P2 in R such that P1E and P2F are properly
infinite, while (I − P1)E and (I − P2)F are finite (from Proposition 6.3.7). We
show that P1 = P2 and that both of E and F are infinite if one is.

Since R is countably decomposable, a maximal orthogonal family of non-
zero projections in R cyclic under R′ must be countable. Let G1, G2, . . . be
such a family with unit cyclic vectors x1, x2, . . . , respectively. By maximality,
G1 +G2 + · · · = I. Let ω be

∑
∞

j=1 2−jωxj
|R. Then ω is a normal state of R with

support I (from Exercise 7.6.1), and ω is a faithful state of R from Exercise 7.6.6.
Thus the GNS representation π of R constructed from ω is faithful (from Exer-
cise 4.6.15(i)). From Proposition 7.1.15, π is a normal (faithful) representation of
R with a cyclic unit vector x0 such that ωx0

◦π = ω. Thus ωx0
|π(R) is a faithful

normal state of the von Neumann algebra π(R). If Ax0 = 0 for some A in π(R),
then 〈A∗Ax0, x0〉 = 0, and A∗A = 0. Hence A = 0, and x0 is a separating vector
for π(R). Passing to the representation π of R, we may assume that R has a
separating unit vector x0.

Since {Ea}a∈A is strong-operator convergent to E, P1Eax0 → P1Ex0. We
may choose an increasing sequence from {P1Ea}, say, P1Ea(1), P1Ea(2), . . . , such
that P1Ea(j)x0 tends to P1Ex0 as j → ∞. Since each P1Ea(j) has norm not
exceeding 1, x0 is generating for R′, and P1Ea(j)A

′x0 tends to P1EA′x0 for
each A′ in R′, P1Ea(j) converges to P1E in the strong-operator topology. Thus
P1E = P1Ea(1) +

∑
∞

j=1(P1Ea(j+1) −P1Ea(j)). Moreover, P1Ea(1) ∼ P1Fa(1) and
P1(Ea(j+1) − Ea(j)) ∼ P1(Fa(j+1) − Fa(j)) from Exercise 6.9.26. Thus

P1E = P1Ea(1) +
∞∑

j=1

(P1Ea(j+1) − P1Ea(j))

∼ P1Fa(1) +

∞∑

j=1

(P1Fa(j+1) − P1Fa(j)) ≤ P1F.

It follows that F is infinite if E is. By symmetry, E is infinite if F is. Since P1E

is properly infinite by construction, P1F is properly infinite, and P1 ≤ P2 (by
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definition of P2). By symmetry, P2 ≤ P1 and P1 = P2 (= P ). Since PE and PF

have the same central carrier and R is countably decomposable, the properly
infinite projections PE and PF are equivalent in R (from Corollary 6.3.5).

We show, next, that (I − P )E ∼ (I − P )F in R. From Theorem 6.3.8, the
union of (I − P )E and (I − P )F is a finite projection G in R. Thus GRG

is a finite von Neumann algebra containing each (I − P )Ea and (I − P )Fa.
Moreover, {(I − P )Ea} converges to (I − P )E and {(I − P )Fa} converges to
(I −P )F over a, in the strong-operator topology on GRG. From Proposition 1,
(I − P )E ∼ (I − P )F in GRG and, hence, in R. ¤

Remark 4. The result of Theorem 3 does not seem to lend itself to much
extension when we are in an “infinite environment”. Suppose, for example, that
{ej}j∈N is an orthonormal basis for the Hilbert space H. Let Ej and Fj be,
respectively, the projections in B(H) with ranges spanned by {e1, . . . , ej} and
{ej+1, . . . , e2j}. Then Ej ∼ Fj in B(H), {Ej} is monotone increasing, under the
usual projection ordering, to I, while {Fj} is strong-operator convergent to 0.

This example can be altered to yield one in which ∨∞

j=1Ej is a finite projec-
tion. For that, we work in a factor M of type II∞ on H. Let G1, G2, . . . be an
orthogonal family of infinite projections in M with sum I. Let D be a dimension
function on M based on a (finite) “unit” projection in M (so that unit projection
has dimension 1). We can find an increasing sequence {Ej} in M of subprojec-
tions of G1 such that D(Ej) = j

j+1 . Then ∨∞

j=1Ej = E, where D(E) = 1. Now,

let Fj be a subprojection of Gj in M such that D(Fj) = j

j+1 . Then Ej ∼ Fj in

M and {Fj} is strong-operator convergent to 0 (by an argument very close to
that of the corresponding observation in Remark 2).

In both of these examples, the sequences {Ej} and {Fj} are monotone with
respect to the ordering “-”. In neither of the examples are the strong-operator
limits equivalent and in the second example, the unions are not equivalent as
well. ¤

Remark 5. In the (primitive) case of a factor M acting on a separable
Hilbert space H, when the nets involved are monotone increasing sequences of
projections {Ej}j=1,2,..., {Fj}j=1,2,..., a (relatively) simple argument can be given
to show that

∨
∞

j=1 Ej (= E) ∼
∨

∞

j=1 Fj (= F ). We sketch that argument. Since
Ej ∼ Fj , for each j, by assumption, if either Ej or Fj is infinite, for some j,
the other is, as well, by Proposition 6.3.2, and both E and F are infinite. In
that case, E ∼ F , from Corollary 6.3.5. So, we may assume that all Ej and
Fj are finite. In this case, Ej ∨ Fj (= Gj) is finite (Theorem 6.3.8), whence
GjMGj is a finite factor (Exercise 6.9.15(iii)) and Ej −Ej−1 ∼ Fj −Fj−1 in M.
Let Vj be a partial isometry in M with initial and final projections Ej − Ej−1

and Fj − Fj−1, respectively, where we define E0 and F0 to be 0. Then
∑

∞

j=1 Vj

converges in the strong-operator topology on B(H) to a partial isometry in M
with initial projection E and final projection F .
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