Contemporary Mathematics
Volume 365, 2004

Non-commutative Conditional Expectations and their
Applications

Richard V. Kadison

ABSTRACT. The motivation for viewing certain idempotent linear mappings
from an operator algebra onto a subalgebra as “non-commutative conditional
expectations” is explained starting from the classical, measure-theoretic mean-
ing of “conditioned expectation.” The basic theory and several of the applica-
tions of non-commutative conditional expectations are studied in the operator-
algebra framework.

1. Introduction

This article is an extended version of a fifty-minute lecture delivered to a Special
Session of the American Mathematical Society on January 15, 2003 in Baltimore,
MD. My goal in that lecture was to explain how the classical, or what we shall
refer to as, “commutative,” case of measure and probability theory, with particular
emphasis on the concept of conditional expectation can be made non-commutative
and why it is important to do that. We include some of the beautiful results that
have been proved in the non-commutative case and a few of the applications of
non-commutative, conditional expectations. In many cases, the results along the
way to a main result are new or new formulations of an older result. In most
cases, there are new or “updated” proofs. Some of the concluding material, on
“Schur Inequalities,” is part of work-in-progress with W. B. Arveson. References
such as “Corollary 8.3.12” are to the correspondingly numbered result in [K-R
LILIIIIV]. We use the notation of [K-R] as well.

2. Background and preliminaries

We begin with a background discussion that establishes much of our notation
and many of the definitions we need.

We deal with a complex Hilbert space H on which (z,y) denotes the inner
product of z and y and ||z|(= (z,z)2) is the length or morm of the vector z.
We use notation of the form T to denote a linear transformation of H into H
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(referred to as an operator on H). Recall that such a T is continuous if and only
if sup{||Tz|| : |lz]] € 1} = |T|| < oo, in which case, we say that T is bounded
and ||T) is its bound or norm. Moreover, T — ||T'|| is a norm on B(H), the family
of all bounded T" on H. The family B(H) is an algebra under the operations,
(aA + B)z = a(Az) + Bz and (AB)x = A(Bz), of addition and multiplication,
respectively.

The metric topology defined by the norm on B(H) is referred to as the norm
topology.

The adjoint A* of an operator A in B(H) is the unique operator in B(H),
satislying (Az,y) = (z, A*y) for each pair of vectors z and y in H. A subset F of
B(H) is said to be self-adjoint when F = F*, where F* = {T* : T € F}. The
principal structure we study, and the basis for our “non-commutative” extensions
of classical analytic and measure-theoretic concepts is the C*-algebra. It is a norm-
closed, self-adjoint subalgebra A of B(H). For the purposes of this article, we may
assume that I € A, where Iz =z for all z in H.)

There are many reasons for studying operator algebras. One of the first moti-
vations for their study is their role as complex, group algebras for infinite groups,
discrete and topological. If you want to study the structure and representations of
a topological group, the operator algebra as group algebra provides a powerful tool
[Sed7]. An operator algebra is the main component of the most natural mathemati-
cal model of a quantum mechanical system. At the same time, operator algebras are
a prominent tool in the study of families of measure (and measurability)-preserving
transformations.

Aside from studying the properties of a general C*-algebra, the main approach
to understanding the structure of C*-algebras is to describe what families of C*-
algebras defined by certain common properties are like. Let me illustrate this, first,
by describing abelian (that is, commuting) C*-algebras.

THEOREM. FEach abelian C*-algebra A is isomorphic to the algebra C(X) of
complez valued continuous functions on a compact-Hausdorff space X (under point-
wise operations). Two such algebras are isomorphic iff the associated compact-

Hausdorff spaces are homeomorphic. Fach C(X) is isomorphic to some abelian
C*-algebra A.

This theorem can be drawn directly from a result by Stone {St40] or from one
in the famous 1943 Gelfand-Neumark paper [G-IN43].

Another class of C*-algebras of central importance are constructed from a
countably infinite, discrete group. Referring back to our introductory discussion,
they are an operator-algebra group algebra for that group.

Let G be a countable (discrete) group and H be l2(G), that is

Y le@P<ood,  (o¥) = ¢(9)¥(g).

geG geqG

Let (Lgp)(g’) be p(g7*g') (¢ € H). Then L, is a unitary operator. Let C}(G)
(the reduced C*-group algebra of G) be the norm closure of the algebra generated
by {Lg}.

For our measure-theoretic purposes it is necessary to introduce the strong-
operator topology on B(H). It is the topology in which convergence of {A4,} to
A means A,z — Ax for each z in H. Let Lg be the strong-operator closure of
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the algebra generated by {L,}. The algebra L is an example of a von Neu-
mann algebra — a C*-algebra that is strong-operator closed. Among the von
Neumann algebras, those whose centers consist of scalar multiples of I are called
factors. The general von Neumann algebra is not quite a direct sum of factors,
rather, a “direct integral.” (See Chapter 14 of [K-R2].) In a series of papers
[M-vN36|,[M-vN37],[M-vN43],[vIN40] from 1936 to 1943, Murray and von Neu-
mann studied these factors intensively. They separated them into three main types.
The factors of type I are those that have a minimal idempotent. Thus B(H) is a
type I factor, where the projections on one-dimensional subspaces are minimal
idempotents.

THEOREM (Murray—von Neumann). Each type I factor is isomorphic to B(H)
for some Hilbert space 'H.

If H has dimension n, where n is a finite or infinite cardinal, we say that the
factor is of type I,,. One of the classes of factors that Murray and von Neumann
discovered, the factors of type II;, has fascinating properties. Those factors have
no minimal idempotents and admit a trace-like functional (a linear functional 7
such that, for all A and B, 7(AB) = 7(BA)). The behavior of those II; factors
resembles that of M, (C) in many ways, among others, they are simple algebras —
but of course, they have infinite linear dimension. We have examples of them at
hand.

THEOREM. Lg is a factor iff all conjugacy classes in G but {e} are infinite.
In this case, Lg is a factor of type II;.

The free (non-abelian) group F,, on n(> 1) generators and II, the group of
“finite” permutations of the integers, are examples of these i.c.c groups.

THEOREM. L, is not isomorphic to Lyr.

If 2, is the function that is 1 at the group element g and 0 at each other
element of the group G, then z, is a generating and separating unit vector for
the von Neumann algebra Lg and the functional defined by: A — (Axg,zy) is a
(faithful, normal) tracial state on L. The vector z, is referred to as a unit trace
vector for L¢ in this case. The set {z4: g € G} is an orthonormal basis for I3(G).

In the case of abelian von Neumann algebras measure theory enters the picture
via deep results of von Neumann [vIN31]. Let (S, ) be a o-finite measure space,
‘H be Ly(S, 1), and f be an essentially bounded measurable function on S. Define
M¢(g) to be f- g for each g in H. Let A be the set {M;}. Then A is an abelian
von Neumann algebra in no larger abelian subalgebra of B(H). We say that A is
mazimal abelian. Let us look at some specific examples.

If S has a finite or countably infinite number of points, say n, and each point
has a positive measure (each is an atom), we write A, or A4 for A. If S is [0, 1] and
p is Lebesgue measure, we write A, for A. If S is [0,1] (with Lebesgue measure)
+ a finite or (countably) infinite number of atoms, we write A, ® A, or A. ® Aq
for A. The atoms in S correspond to the minimal projections in 4. Moreover, n is
the number of atoms in S, if there are any.

THEOREM. Fach abelian von Neumann algebra on a separable Hilbert space is
isomorphic to one of A,, Ac, or Ac ® A,. Fach maximal abelian von Neumann
algebra is unitarily equivalent to one of these.
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From these results, measure spaces and the associated algebras of bounded
measurable functions can be studied totally within the framework of abelian von
Neumann algebras. In this framework, the random variables, that is, the measur-
able functions, on the probability space correspond to operators in the abelian von
Neumann algebra. Where is the measure in the operator framework? What we
have is the integration process associated with that measure — a linear functional
p on the algebra A that assigns 1 to the identity operator I (that corresponds
to the probability space having total measure 1) and assigns a non-negative real
number to each positive A in A (corresponding to a positive measure). Such a
functional is called a state of A. The same definition and terminology apply to all
C*-algebras for that matter. For a von Neumann algebra R, we usually want p to
satisfy a strong-operator continuity condition (corresponding to countable additiv-
ity of the measure). Specifically, we are primarily interested in normal states p of
R: those such that p(3° ., Ea) = p(E), where {E,}4ca is an orthogonal family of
projections in R and E =), Fq.

3. Conditional expectations

To recall, the “expectation” or “expected value” of a random variable f or
an observable A is the average or ‘mean’ of a “large” number of values of f or
measurements of A at points of the measure (sample) space, or with the dynamical
system in a given state. The average is taken with reference to the measure p
on the total space, hence is [ fdu. The expectation of one random variable f
“conditioned” by another g is, again, the average value of f, but at (sample) points
at which ¢ fulfills the prescribed conditions. In the most primitive instance, the
condition may be that g have a given value A. Say, the set of points at which
that occurs is S. Then the “conditioned” expectation of f for that condition is
u(S)! /. s [ dp. If we do this for the various values g may assume, we partition the
space X into (disjoint) sets on each of which we calculate the expectation of f. The
result is then a function fj, constant where g is constant — so fy is a function of g
and lies in the algebra A(g) generated by g (and 1). When g takes on only a finite
set of values (that is, g is a “step function” ), fp is a polynomial in g. If we start
with a function f constant where g is constant, then fy is f. Thus the mapping
f — foisidempotent. It is linear and positive (that is, fo > 0 when f > 0). Notice,
t00, that if we multiply an arbitrary random variable f by a function h in A(g) and
form the “conditioned” expectation (hf)o of hf, then (hf)o = hfy, for on each of
the “level” sets of g we have multiplied the expectation of f by the (constant) value
assumed by h. Moreover, [ fdu = [ fodu, from the definition of fy and since the
distinct level sets are disjoint.

Of course, we could “condition” f by several random variables g, g2, ..., or an
arbitrary family, or a subalgebra A of the algebra B of all (bounded) random vari-
ables. It is appropriate, now, to define the entire process we have been discussing,
the mapping from random variables in B to those in a subalgebra A, by the features
we have noted, as a conditional expectation (from B onto .A). It adds no difficulty
to make this definition for the non-commutative case (that is, the general case —
s0, including the commutative case) and for a C*-algebra as well.

DEFINITION. A positive, linear, mapping ® of a von Neumann algebra S onto
a von Neumann subalgebra R (S and R may be general C*-algebras as well) is
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said to be a conditional expectation (of S onto R) when ®(I) = I and ®(R1SR,) =
Ri1®(S)Ry if Ri,R; e Rand S € S.

From some basic operator-algebra theory, a positive-linear mapping taking [
to I, such as ®, has norm 1 (as a mapping between normed spaces). If we choose
S and R; to be I in the preceding definition, it follows that ® is the identity on R,
and is, therefore, an idempotent mapping of S onto R.

PROPOSITION 1. Suppose that R and S are von Neumann algebras acting on
a Hilbert space H, R C S, and ® is a conditional expectation from S into R. For
all S in S,
(i) ®(S) =2(5)
(ii) ©(5)*®(S) < ©(5*S5)
(iii) () < [ISII-
)

Proor. (i) Each self-adjoint element H of & has the form H; — H;, where
H;,Hy € S*. Since ® is a positive linear mapping, ®(H;), #(Hz) € R* and
®(H)(= ®(H,) — ®(H2)) is self-adjoint. Each element S of S has the form H +¢K,
where H and K are self-adjoint elements of S. From the preceding paragraph,
®(H) and ®(K) are self-adjoint. Thus

P(S)" = [®(H) +i®(K)]* = ®(H) —i®(K) = ®(S¥).
(ii) When R € R(C S) and S € S, we have (S — R)*(S — R) > 0, and thus
0<®(S—R)"(S—R))=®(S*S—R'S—S*R+ R'R)
=P(S*S) — R*®(S) - ®(S)*R+ R*R.

When R is the element ®(S) of R, we obtain 0 < ®(S*S) — &(5)*®(S5), so
O(S)*®(S) < ®(5*9).

(iii) From (ii), and since S*S < ||S||%I, we have

®(5)*@(S) < ®(5*9) < |IS|*e(1) = |IS|*1,

and thus [|®(S)||” = [|2(S)*@(S)|| < [IS||?. Hence [|2(S)]| < ||S]I. .

PROPOSITION 2. Let U be the unitary group in a von Neumann algebra R
acting on a Hilbert space H. Suppose that cor(T)~ meets the commutant R', for
each T in B(H), where cor(T)~ denotes the weak-operator closure of the convex
hull cor(T') of the set {UTU* : U € U}. Let M be the set of all positive linear
mappings ¢ : B(H) — B(H) such that o(I) = I, o(R{TR}) = Rio(T)R}, and
o(T) € cor(T)~, when T € B(H) and R}, Ry € R'. Let D(C M) be the set of
all mappings o : B(H) — B(H) that can be defined by an equation of the form
a(T) = Z§=1 a;U;TU;, where Uy, ..., Uy € U and as,...,ar are positive scalars
with sum 1. Then

(i) ¢(R') = R' when ¢ € M and R’ € R'; moreover, ¢1 0 p3 € M when
P1,2 € M;

(ii) M can be viewed as a closed subset of the topological space HTEB(’H) Xr,
where X is cor(T)™ with the weak-operator topology.

(i) If Tp € B(H) and Aj € cor(To)~ NR’, then Ay = ¢(To) for some ¥ in

M.
(iv) If Ty, ..., T, € B(H), there is a ¢ in M such that o(T1),...,o(T,) € R .
(v) For each finite subset F of B(H), let My be {p € M : o(T) € R'if T € F}.
The family of all such sets Mg has non-empty intersection.
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(vi) There is a conditional ezpectation ® from B(H) onto R', with the property
that ®(T) € cor(T)™ NR' for each T in B(H). If Ty € B(H) and A} €
cor(To)” NR/, then ® can be chosen so that ®(Tp) = Aj.

ProoF. (i) If ¢ € M and R’ € R/, we have p(R') = ¢(R'II) = R'o(I)] =
R'. If p1,02 € M, then ¢; o 2 is a positive linear mapping from B(H) into
B(H), and p1(p2(I)) = ¢1(I) = I. Also, p1(p2(RiTR3)) = p1(Ryp2(T)Ry) =
Rio1(p2(T)) Ry, whenever R, R, € R’ and T € B(H). In order to complete the
proof that 1 o 3 € M, we have to show that ¢;1(p2(T)) € cor(T)~ for each
T in B(H). Since po(T) € cor(T)™ and ¢1(p2(T)) € cor(p2(T)), it suffices
to show that cor(T1)” C cor(T)” when T} € cogr(T)~. Now it is apparent
that USU* € cor(T) whenever U € U and S € cor(T). From this, together
with the weak-operator continuity of the mapping A — UAU*, it follows that
USU* € cor(T)~ whenever U € U and S € cogr(T)~. In particular, cog(T)~
contains the set {UT1U* : U € U}, and so contains its weak-operator closed convex
hull cor(T1)~, when 71 € cogr(T)~. This completes the proof that ¢; o w2 € M
when 1,2 € M.

(ii) The product space II is the set of all mappings 7 : B(H) — B(H) such
that 7(T) € cog(T)~ for each T in B(H), with the coarsest topology that makes
each of the “coordinate mappings” ©# — 7(T) : II — B(H) continuous relative to
the weak-operator topology on B(H). Since the bounded closed set Xt is weak-
operator compact, it follows from Tychonoff’s theorem that II is compact. The
set M consists of those elements ¢ of II that satisfy the conditions ¢(I) — I = 0,
©(aS+bT) —ap(S) ~bp(T) = 0, (R TRy) - R1p(T)Ry = 0, p(H) € B(H)™, when
H e B(H)*, S,T € B(H), R|,R, € R, and a,b € C. Since each of the mappings
7 —n(l)—1, 7 — n(aS+bT) —an(S) —br(T), 7 — n(R\TR,) — Rin(T)R5, and
7 — w(H), from II into B(H) (with the weak-operator topology) is continuous, M
is the intersection of a family of sets, each one of which is the inverse image of a
closed set (either {0} or B(H)™) under a continuous mapping. Hence M is a closed
subset of II, and is therefore compact in the relative topology.

(iil) If To € B(H) and Aj € cor(To)” NR/, there is a net {S;} in cor(Tp) that
is weak-operator convergent to Aj. For each index j, there exists an element a; of
D such that S; = a;(Tp). Since M is compact, the net {a;} has a subnet {a;, }
that converges to an element ¥ of M. Since the “coordinate mapping” m — 7(Tp)
is continuous,

w(T()) = 11]{711 gy (To) = h/in Sjk = 11;’1”1 Sj = A6

(iv) Given Ty in B(H), suppose A} is in cor(T1)” NR’. By (iii), A} = ¢(T1)
for some ¢ in M. This proves the stated result in the case in which n = 1. Now
suppose that r is a positive integer, and the stated result has been proved in the
case in which n = r. Accordingly, given T1,...,T,11 in B(H), there is an element
o of M such that @o(T1),...,¢0(Tr) € R'. If A’ € cor(po(Tr+1)) " NR’, from (iii),
Y(po(Tr+1)) = A’ (€ R') for some ¢ in M. Moreover, ¥(po(Tj)) = ¢o(T;) (€ R')
when 1 <j <7, by (i). f pis oy (in M), we have (T;) e R' (j =1,...,7+1).
This completes the proof by induction of the result stated in (iv).

(v), (vi) For T in B(H), the subset {¢ € M : o(T) € R’} of M is closed, since
R’ is (weak-operator) closed in B(H) and the mapping ¢ — ¢(T) : M — B(H)
is continuous. Thus My (a finite intersection of sets of the type just considered)
is closed in M, for each finite subset F of B(H). Moreover, Mp is not empty, by
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(iv). Since Mg, N Mg, = Mp,ur,, the family {Mp} of all such sets has the finite
intesection property. Since M is compact, the intersection of all the sets My is not
empty. With ® in this intersection, ® € M and ®(T') € R’ for each T in B(H).
Thus ® is a conditional expectation from B(H) onto R', with the property that
®(T) € cor(T)~ NR' for each T in B(H).

Given Tp in B(H) and A} in cor(Tp) " NR/, choose 9 as in (iii). Then Poryp € M,
and ® oy maps B(H) into R’ (because ® does so). Hence ® o ¢ is a conditional
expectation from B(H) onto R’, (® o ¢)(T) € cor(T)” NR' for each T in B(H),
and

(@0 9)(To) = D(U(Ty)) = D(Ap) = 4.
O

PROPOSITION 3. Suppose that R is a von Neumann algebra acting on the
Hilbert space H, and there is a family {Rs}aca of finite-dimensional *subalgebras
of R such that if a,b € A, then there is a ¢ in A for which Ry URp C R, and
R = (UgeaRa) ™. For each A in B(H), cor(A)~ meets R'. There is a conditional
expectation of B(H) onto R'.

PRrROOF. We may assume that I € R,, whence the unitary group of R contains
that of R, for each a in A. The unitary group of a finite-dimensional von Neumann
algebra S has a finite subgroup whose linear span is S. To see this, suppose first
that S is a type I, factor, and let {Ejx : j,k = 1,...,n} be a self-adjoint system
of matrix units for S. With S(n) the symmetric group of all permutations of the
set {1,2,...,n} and F the class of all mappings from {1,2,...,n} into {1,—1},
define V(f,m) = 337_, f(§)Er(j); where f € F and 7 € S(n). Then, the set
{V(f,m): f € Fym e S(n)} is a finite subgroup V of the unitary group of S. (In
terms of matrices relative to {Ejx}, V is generated by the group of permutation
matrices and the group of diagonal matrices with +1 at each diagonal entry.) The
linear span of V contains each Eji, and is, therefore, all of S. Note that V = —V.

The general finite-dimensional von Neumann algebra S is (*isomorphic to)
a finite direct sum Z;nzl ®S; of finite-dimensional factors Sy,...,Sy,. From the
preceding, the unitary group of S; has a finite subgroup V; (= —V;) whose linear
span is ;. Thus V (= {372, ®V; : V; € V;}) is a finite subgroup of the unitary
group of S, and has linear span S.

We note next that, for each a in A, cog(A4) meets R,. Let V be a finite
subgroup of the unitary group R,, whose linear span is R,: and define T to be
n~'Y ey VAV*, where n is the order of V. Then T € cogr(A) and, since left
translation by an element W of V permutes V, we have

WTW* =n~' Y (WV)A(WV)* =T
Vev
for each W in V. Thus WT = TW for every W in V. Hence T € R, N cor(A).

For each a in A, the convex set S, = R/ N cogr(A) is non-empty, from what
we have just proved, and is weak-operator compact since it is closed and bounded.
When a,b € A, we can choose ¢ in A so that R, URy, C R, and then S, NS, O S..
Thus the family {S,}.ca has the finite intersection property. Since S, is compact,

0# () Sa=[)ReNcor(4)” =R Ncor(4)".

a€A a€A
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One of the most profound uses of conditional expectations in the theory of
operator algebras is the partial converse of A. Connes [Co76] to Proposition 3:
Each factor of type II; on a separable Hilbert space H that is the range of a
conditional expectation from B(H) is isomorphic to Lg.

PROPOSITION 4. Let R be a von Neumann algebra of type I, acting on a Hilbert
space H. There is a family {Rq}eca of finite-dimensional *subalgebras of R such
that if a,b € A, then there is a ¢ in A for which RoURp C R, and R = (UgeaRa)™-

ProoF. Consider, first, the case in which R is n ® C, where C is an abelian
von Neumann algebra. Let K be a set with cardinality n, so that each element of
n ® C is represented by a matrix (Cj);kek with entries in C. Let A be the set
of all pairs (F,.A), in which F is a finite subset of K and A is a finite-dimensional
* subalgebra of C. When a = (F, A) € A, let R, be the set of all elements of
n @ C with matrices (Cj ) such that C;x € A for all j and k in K and Cjx =0
unless j, k € F. From the proof of Corollary 8.3.12, the set of all finite-dimensional
x-subalgebras of an abelian von Neumann algebra C is directed by the inclusion
relation C, and has union norm-dense in C. It follows that the set A is directed by
the relation <, in which (Fy,.A;) < (Fs, Az) if and only if F; C Fy and A; C Ao,
and that {R, : @ € A} is an increasing net of finite-dimensional *-subalgebras of
n ® C. For each finite subset F of K, let E(F) be the projection in n ® C whose
matrix has I in the (k, k) position when k € F and has 0 in all other entries. When
Ren®C, E(F)RE(F) has a matrix (C} ) in which C}x = 0 unless j,k € F, and
Cjr € C when j,k € F. Each of the finite set of non-zero elements C; can be
approximated in norm, as closely as we please, by an element A;  of some finite-
dimensional *-subalgebra A; of C. Then, E(F)RE(F) is approximated in norm
by an element of R,, where a = (F, A) with A a finite-dimensional * subalgebra of
C that contains |J; ;cp Ak It follows that the norm closure (U, Ra)™ and also
the weak-operator closure ({J,c, Ra)™, contains E(F)(n ® C)E(F) for each finite
subset F of K. Since \/ E(F) = I, we have (U,cp Ra)” =n®C.

Given any type I, von Neumann algebra R, by Theorem 6.6.5 there is an
abelian von Neumann algebra C and a *-isomorphism ¢ from n ® C onto R. With
Ra(a € A) constructed as in the preceding paragraph, {¢(R,) : a € A} is an
increasing net of finite-dimensional *-subalgebras of R. Now ¢ is isometric, and
gives rise to a homeomorphism between the unit balls (n®C); and (R); in the weak-
operator topology, by Remark 7.4.4. By Kaplansky density, (,cs Ra)1 is weak-
operator dense in (n ® C)1; 50 (U cp ¥(Ra))1 is dense in (R)1, and U,ep p(Ra) is
dense in R. ]

COROLLARY 5. If R is a type I von Neumann algebra acting on a Hilbert space
H, then there is a conditional expectation from B(H) onto R'.

PRrROOF. There is an orthogonal family {Q : k € K} of central projections in
R, with sum I, and (for each k in K) a cardinal n(k) such that RQy is of type
I,(x). By the result of Proposition 4, there is a family 73 of finite-dimensional *
subalgebras of RQ)j that is directed upward by the inclusion relation C, and has
union weak-operator dense in RQ. Given any finite subset {k(1),...,k(m)} of
K and any choice of R; in Fy(;) (for each j = 1,...,m), the linear span Ry +
<o+ Ry of U;’;l R; is a finite-dimensional * subalgebra of R. The set of all such
algebras R1 + - -+ R, is directed by C, with union ultraweakly dense in R. From
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Propositions 2 and 3, there is a conditional expectation ® from B(H) onto R’, such
that ®(T') € cog(T)” NR’ for all T in B(H). O

PROPOSITION 6. Suppose that R is a von Neumann algebra acting on a Hilbert
space H, and A is an abelian von Neumann subalgebra of R. Then there are con-
ditional expectations, ® from B(H) onto A, and ¥ from B(H) onto A’. Moreover,
there are conditional expectations, ®g from R onto A, and ¥y from R onto RN.A’.

PROOF. As in the proof of Lemma 8.2.3, the von Neumann algebra A’ is of
type I. From Corollary 5, there is a conditional expectation ® from B(H) onto
A”(= A). The restriction ®|R is a conditional expectation from R onto A.

Since A is of type I (in fact, of type Iy), there is a conditional expectation ¥
from B(H) onto A’. Since co4(T)~ meets A’, for each T in B(H) (Propositions 3
and 4), ¥ can be chosen in such a way that U(T") € cos(T)~ N A’ for each T in
B(H), by Proposition 2. Let U(C R) be the unitary group of A. When R € R, R
contains the set {URU* : U € U}, and therefore contains the weak-operator closed
convex hull co4(R)™ of that set. Accordingly, ¥(R) € RN A’ for R in R. Since ¥
is a conditional expectation from B(H) onto A’, it follows that the restriction U|R
is a conditional expectation ¥ from R onto R N A’. O

THEOREM 7. If R and S are von Neumann algebras acting on a Hilbert space
H, such that R C S and S has a faithful normal tracial state T, then, for each
element S of S, there is a unique element ¢(S) of R such that 7(SR) = 7(¢(S)R)
for each R in R. The mapping ¢ : S — R defined is an ultraweakly continuous
conditional ezpectation from S onto R, and is faithful in the sense that (S) # 0
when 0 # S € ST.

ProOOF. If H € 8™, the equation p(R) = 7(HR) defines a positive normal
linear functional p on R (for positivity, note that p(R) = r(H*/2RH'/?)). With
H replaced by ||H||I — H, it follows that the mapping R — 7(||H||R — HR) =
|H||7(R) — p(R) is a positive linear functional on R. Thus 0 < p < |H||7. From
Theorem 7.3.13, there is a Ko in (R1); such that p(R) = J||H||7(KoR + RKo) =
||H||7(KoR) for each R in R. This proves the first assertion when S is a positive
element H, with ¢(H) the element ||H| Ky of R*.

An arbitrary S € S can be expressed as a linear combination of four positive
elements of S. From what we have proved, there is an element Sy of R such that

(1) 7(SR) = 7(SoR) (ReR).

If S; (in the von Neumann algebra R) has the property just ascribed to Sy, then
7((S1 — So)R) = 0 for each R in R; in particular, 7((S1 — So)(S1 —Sp)*) = 0. Since
7 is faithful, S; = Sy. Hence there is a unique element Sy of R that satisfies (1),
and we define ¢(S) to be Sp.

Suppose that S,51,5, € S, Ry, Ry € R, and ay,a; € C. For each R in R,

T(p(a151 + a2S52)R) = 7((a1.51 + a252)R) = a17(S1R) + a27(S2R)
= a17(p(S1)R) + a27(0(S52) R) = 7((a19(51) + a2¢(52))R),
and
T(p(R1SR2)R) = 7(R1SR2R) = 7(SR2RR1) = 7(p(S)R2RR;) = 7(R19(S)R2R).

In addition,
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From these equations, and the uniqueness we have proved
@(a181 + a282) = a1¢p(S1) + a2p(S2), p(R1SR2) = R1p(S) Rz

and ¢(I) = I. Moreover, if H € ST, it follows, from the first part of the proof, that
©(H) is an element Hy of R™. Thus ¢ is a conditional expectation from S onto R.

Suppose that S € ST and ¢(S) = 0. Since 7 is faithful and 7(S) = 7(¢(S)) = 0,
S = 0. Hence ¢ is faithful.

In order to prove that ¢ is ultraweakly continuous, we have to show that wop €
Sy whenever w € Ry. Since Ry is the linear span of its positive elements (see Remark
7.4.4), we may assume that w is a positive normal linear functional on R. Then,
w o ¢ is positive, and we have to prove that w o ¢ is normal. Suppose that {H,}
is a monotone increasing net of self-adjoint elements of S, with least upper bound
H in S. Since ¢ is a positive linear mapping, the net {¢(H,)} in R is monotone
increasing, has ¢(H) as an upper bound in R, and therefore has a least upper bound
K(< ¢(H))inR. Since 7 is normal, 7(K) = lim, 7(¢(H,)) = limg 7(H,) = 7(H) =
T(p(H)); s0 p(H) — K > 0 and 7(¢(H) — K) = 0. Since 7 is faithful, o(H) = K.
Since w is normal, it now follows that lim, w(p(H,)) = w(K) = w(p(H)). Thus
w o p is normal (and ¢ is ultraweakly continuous). d

To better understand what Theorem 7 is telling us, it is helpful to examine the
case where S (and hence, R) is commutative. For the purposes of this illustration,
we assume that R and S have no atoms and that S acts on a separable Hilbert space
‘H. From Corollary 5.5.17, there is a separating unit vector u for S. The vector
state wy,|S is a faithful, normal, tracial state 7 of S and its restriction 7y to R is
such a state of R. Let Hy be [Ru]. Then R|H, is maximal abelian in B(Hy) (from
Corollary 7.2.16). From Theorem 9.4.1 (compare [vIN31]), we may identify Hy with
L([0,1], ), where p is Lebesgue measure on [0,1], u with the constant function
1 on [0,1], and R|Ho with the “multiplication algebra” of ([0,1],u). If X, is a
measurable subset of [0, 1], then multiplication by the characteristic (“indicator”)
function of X on Ls([0,1], u) corresponds to a projection Ep in R, and 7(Ep) =
To(Eo) = (Fou,u) = u(Xp). With S in S, the functional 7s on R defined by

7s(R) = 7(SR) = (SRu, u) (ReR),
gives rise to a measure pg on [0, 1], where
po(Xo) = 7s(Eo) = 7(SEp) = (SEou,u) = (EgSEgu,u) = (SEou, Egu).
If S >0, then
0 < (SEou, Eou) = po(Xo) < [IS|[| Eoul|®
= [ISI{Eou, Eou) = [|S]|{(Eou, u) = ||S]|n(Xo).
Thus when S > 0, po is absolutely continuous with respect to pu. From the

Radon-Nikodym theorem, there is a (positive) function fy in L; ([0, 1], ) such that

f[O,l] gdpy = f[O,l} gfodu, for each essentially bounded, pp-measurable function g
on [0,1]. In a formal sense, dug = fo du, or dug/dp = fo: fo is the Radon-Nikodym
derivative of po with respect to u.

Note that 7(SR,) = f[0,1] gdug = f[o,1] gfodp, where Ry is the operator in R
corresponding to multiplication by g. Since

IT(SRy)| = [{SRgu, u)| = [(Rgu, S™u)| < || Rg]l[| S]],
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for each p-essentially bounded g on [0, 1], ||Ry| = ||9/|c0, and

/ gfodu
[0,1]

3

< 151liglloo,

we have that fj is p-essentially bounded with || fo||oo < [|S||. Thus there is an Ry,
in R such that |Ry,|| = || folleo < ||S||. Moreover,

7(RgyRy) = (Rpog) = /[ Joodn=7(SRy)

From Theorem 7, there is a unique ¢(S) in R such that 7(SR) = 7(p(S)R) for
each R in R. Since each R in R is of the form Ry for some p-essentially bounded
g on [0,1], Rs, = ¢(S).

The foregoing discussion shows us that, when we have constructed ¢(S), we
have constructed the Radon-Nikodym derivative of py with respect to u, or referring
to the associated integration processes rather than the measures, ¢(.9) is the Radon-
Nikodym derivative of 79 with respect to 7. Theorem 7 applies to general (non-
commutative) S and R; there is every reason to regard ¢(S) as the general (non-
commutative) Radon-Nikodym derivative of 79 with respect to 7 in this case as well.
If S is not finite (hence, not abelian) and R is abelian, from Proposition 6 there
is still a conditional expectation of S onto R, though it may not be ultraweakly
continuous [Ta72], [To59], [K-S59].

Recall that the von Neumann algebra L has a faithful tracial state 7 defined
by 7(A) = (Az.,z.). When z € [(G), let M, (in B(l2(G))) be multiplication by
the function z.

THEOREM 8. Let G be a discrete group with unit element e, ® be a conditional
expectation from B(l2(G)) onto L, and p be the linear functional on 1o (G) defined
by

p(z) =7(®(M;)) (2 €l(G)).
Then p is an invariant mean on G.
The following three conditions are equivalent:

(1) There is a conditional expectation from B(l2(G)) onto Lo (= Re);
(2) There is an invariant mean on G;
(3) For each T in B(l2(G)), cors(T)™ meets Ry;.

PROOF. As defined in the statement, p is a bounded linear functional on I (G),
and ||p|| < 1, since ||7|| = 1, ||®|| < 1 by Proposition 1, and ||M,| = ||z|lcc When
z € loo(G). If u is the element of I, (G) that takes the value 1 throughout G, then

p(u) = T(®(My)) = r(®(I)) =7(I) = L.
When z € I(G), y € I2(G), and g, h € G, we have
(Lz, M L; y)(h) = (ML} y)(g~"h)
= 2(g7 R) (L}, y) (97 h) = 2(g7 h)y(h) = (M, y)(h)

and Ly M,L; = M,,, where z4 (in Iox(G)) is defined by z4(h) = 2(g7th). In
the notation of Exercise 3.5.7 (dealing with invariant means on groups), z4 is Tyz.
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Since L., and L* lie in the range L of the conditional expectation ®, and 7 is a
tracial state of Eg, we have

(T3p)(2) = p(Tyz) = p(zg) = T((Ms,))
= 7(®(Ley M2 L3 ) = 7(Lzy @(M:) L3 ) = 7(2(M)) = p(2)-

Hence Tg p = p for each g in G, and p is an invariant mean on G. Thus (1) implies
(2).

Suppose, now, that p is an invariant mean on G. Since I, (G) is a C*-algebra
with unit u (as defined before), and p is a bounded linear functional on /. (G)
satisfying ||p|| < 1 = p(u), it follows (Theorem 4.3.2) that p is a state of I (G).
Given T in B(I2(G)) and z,y in l3(G), the complex-valued function 2y, defined at
g in G to be (R; TR, ,y), is an element of loo(G), the mapping £ — 2z, is linear
for each fixed y, the mapping y — 2, is conjugate-linear for each fixed z, and
lzz,ylloo < ITINzllllyll. It follows that the equation b(z,y) = p(2z,y), for z and y
in l2(G), defines a bounded conjugate-bilinear functional b on l3(G); corresponding
to b, there is an element At of B(l2(G)) such that

(%) (Arz,y) = p(224) (2,9 € 12(G)).

If h € G, and 2,y € I3(G), we have (R}, ATR;,x,y) = (Aru,v) = p(2u0),
where u = R,z and v = Ry, y. Also, for each g in G,

zZuw(g) = (R* TR, u,v) = (R} Tngthz Rz.y) = (R}, TRg,,,y) = 2z y(hg).

zhg
Since p is an invariant mean, p(zu,») = p(2z,y); that is (R}, ArRs, z,y) = (Arz,9).
Thus R}, ArR,, = Ar, for each hin G, and Ar € {R,, : he G} =
If Ar ¢ cor(T)™, there is a weak-operator continuous linear functional w
on B(l2(G)) and a real number ¢ such that Rew(Ar) > ¢ > Rew(S) when S €
corg(T)). In particular,

(xx) Rew(Ar) > ¢ > Rew(R; TRy,) (9 €Q).

By expressing w as a finite sum of vector functionals w; ,, and using (*) and the
definition of zg y, it follows that w(Ar) = p(z.), where z, (in l(G)) is defined by
z,(9) = w(R; TRy,) for g in G. Since Rez,(g) < c for all g in G, by (**), and p
is a state of lo(G), we have ¢ < Rew(Ar) = Rep(z,) < ¢, a contradiction. Thus
Ar € cog,(T)~, and (2) implies (3).

From Proposition 2, (3) implies (1). O

THEOREM 9. No group containing F2 has an invariant mean. In particular,
F2 has no invariant mean.

PROOF. Let a and b be the two generators of F;, and let S be the set of reduced
words in F; that begin with a non-zero power of b. We note that 7, = S UbS and
that S,aS,a%S are disjoint. When X C F», the characteristic function fx is in
loo(F2), and

ngzTng (96-7:2)7
where T,y(h) is defined as y(g~*h) (h € G, y € lo(F2)). The inequalities

fs+ fos 2 fr, 2 fs + fas + fazs

can be written in the form fs+Tvfs > fr, > fs+Tufs+Taz2 fs. If p is an invariant
mean on F, these inequalities imply that 2p(fs) > 1 > 3p(fs) (recall that p is a
state of loo(G)), which is impossible. Thus F; has no invariant mean.
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Let G be a (discrete) group containing 72 and {gx : k£ € K} be elements of
G such that the cosets Faogr and Fpgr are disjoint unless k& = k' and such that
G = Ugek F29k- Let So be Uk Sgx. Then

SoUbSy = <U Sgk) Ub(U Sgk) = JsubS)g = | g =G

kekK keK kekK keK

and Sy, aSpy, a%Sy are disjoint. The argument given before applies now, with Sy in
place of S, to show that G does not have an invariant mean. 0O

LEMMA 10. Let B be a C*-subalgebra of the C*-algebra A, oo an idempotent
linear mapping of A onto B such that |@o|| = 1, A acting on H the universal
representation of A and, in this representation, E a projection in B~. Then

(i) wo is a positive linear mapping of A onto B such that po(I) = I;

(il) @o extends uniquely to an ultraweakly continuous idempotent linear map-
ping ¢ of A~ onto B~ such that ||p| =1, and ¢ is positive;

(ili) wzop is a state of A~ definite on E if ||z|| =1 andz € E(H)U(I-E)(H);

(iv) the equations Eo(EA)E- = E@(AE)E = E@(A)E, Ep(FAE)E =
Ep(A)E, and (I — E)p(EA)(I - E) = (I — EYp(AE)(I — E) = 0 hold for
each A in A, and o(EAE) = Ep(A)E for each A in U~ ;

v) i(Eg[(I — E)) = (I - E)e(EA(I - E))E + Ep(EA(I - E))(I - E) if

cx.

PRrOOF. (i) Since I € B, and yq is idempotent with range B, po(I) = 1. If p
is a state of B, then (p o po)(I) = 1. Since ||po wol < [[ollllgoll =1, po o is a
state of 2 by Theorem 4.3.2. If H is in A, p(po(H)) > 0 for each state p of B.
Since @o(H) € B, po(H) € B* by Theorem 4.3.4(iii). Thus ¢y is a positive linear
mapping of 2 onto B.

(ii) By assumption, g is a bounded linear mapping of 2 onto B. If w is an
ultraweakly continuous linear functional on B, then w o g is a bounded linear
functional on 2f and hence is ultraweakly continuous from Proposition 10.1.1. Thus
o is ultraweakly continuous and extends uniquely to an ultraweakly continuous
linear mapping ¢ of A~ into B~ such that ||| = ||¢oel| = 1. Since B~ C A, poop
is defined, ultraweakly continuous, and coincides on 2 with g o g (= o = @|2).
The ultraweakly continuous mappings ¢ o ¢ and ¢ agree on the ultraweakly dense
subset 2 of A~ so that they agree on 2~. Hence y is idempotent.

Since the unit ball of B is contained in the unit ball of 2 and ||| = 1, ¢
maps the ultraweakly compact unit ball of 20~ onto an ultraweakly compact (hence
closed) subset of B~ that contains (B);. From the Kaplansky density theorem
(B)] = (B7)1. Hence, p(/A~) = B~. From (i), ¢ is positive.

(iii) Since (I} = po(I) = I, (wz o )(I} = 1. From (ii), ¢ is a positive linear
mapping of A~ onto B~ so that w, o ¢ is a state of A~. As E? = E, the states
p of A~ that are definite on E are those such that p(E) = p(E?) = p(E)?; that
is, the states definite on E are precisely those that take the value 1 or 0 at E.
Since E € B~ and ¢ is idempotent with range B, (wz 0 ¢)(E) = wz(E). When
z € (I — E)(H), (wy o p)(E) =0, and when z € E(H), (wy o ¢)(E) = 1. Thus
wy 0 @ is definite on E when z is a unit vector in either E(H) or (I — E)(H).

(iv) From (iii) and Exercise 4.6.16, when z in E(H) or in (I — E)(H) has norm
1, for all A in A, then (wyo0p)(EA) = (wyop)(E)(wzop)(A) = we(E){wzop)(A).
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Thus, with z a unit vector in E(H), (p(EA)z,z) = (¢(A)x,z). This same equality
holds for all z in F(H), so that E@(FA)E = E@(A)E.

With z a unit vector in (I — E)(H), we have (p(EA)z,z) = 0. This same
equality holds for all z in (I — E)(H). It follows that (I — E)p(EA)(I — FE) =0.

In the same way, E@(AE)E = Ep(A)E and (I — E)p(AE)(I — E) =0 for all
Ain 2A~. Thus E@(EAE)E = Ep(AE)E = Ep(A)E.

Since ¢ is a positive linear mapping (by (ii)) and, with A self-adjoint, —||A||E <
EAE < ||A|E, we have that —[|A[|E = —[|A||p(E) < ¢(EAE) < ||A]p(E) =
||A||E. Hence o(EAE) = Eo(EAE)E = Ep(A)E.

(v) From (iv),

o(EA(I - FE)) = Ep(EA(I-E)E+(I-E)p(EA(I-E))E
+ Ep(EA(I-E)(I—-E)+(I—-E)p(EA(I-E))(I-E)
= (I-E)p(EA(I-E))E+ Ep(EA(I - E))(I-E),
for each A in A~ O

The theorem that follows is, in essence, the result first proved by Tomiyama in
[To57].

THEOREM 11. With the notation and assumptions of Lemma 10, ¢ is a con-
ditional expectation from A~ onto B~ and g is a conditional expectation from A
onto B.

PRrROOF. With x a unit vector in H,

|ET(I — E)x+ (I — E)SEz|*> = |[ET(I — E)z|* + ||(I — E)SEz|?
< |ET{ - E)|’|(I - E)e|* + (I - B)SE|||Ex|?
< max {||[ET(I - B)|% (I - E)SE|*}.

The last inequality follows from the fact that its left side is a convex combination
of ||[ET(I — E)|? and ||(I — E)SE||?. On the other hand,

IET(I - E)| = sup{|ET(I - E)yll: |yl <1}

sup {|[ET(I — E)z|| : 2= (I — E)y, |ly| < 1}

= sup{||[ET(I - E)z||: z € (I - E)(H), ||l2|| <1}

= sup{||[ET(I - E) + (I - E)SE]z|: z € (I - E)(H), ||2]| <1}
< |ET{-E)+ (- E)SE|.

Similarly, ||(I — E)SE| < |[ET(I — E) + (I — E)SE]|, so that
IET(I — E) + (I - E)SE| = max{||ET(I — E)||, |[(I - E)SE|}.
Suppose (I — E)p(EA(I — E))E # 0. Then for all large positive integers n,

IEo(EA(I — E))(I - E)|| < |[n(I - E)p(EA(I - E))E],
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so that from what we have proved and Lemma 10(v), and since ¢ is an idempotent
with range B~ and norm not exceeding 1,
n||(I — E)p(EA(I - E))E|

= max{||n(I — E)p(EA(I — E))E|, | E¢(EA(I - E))(I - E)|}

= ||E@(EA(I - E))(I - E) +n(I — E)p(EA(I - E))E|
|IE@(EA(I — E))(I - E)+ (I - E)p(EA(I - E)E

+ (n—-1)(I - E)p(EA(I - E)E|

le(EA(I - E) + (n—1)(I — E)p(EA(I — E))E)|
IEA(I - E) + (n = 1)(I — E)p(EA(I - E))E||
(n—=1)I(I - E)p(EA(I - E))E],

Il

Il

IN

a contradiction. Thus (I — E)p(FA(I — E))E =0.
From this and Lemma 10(v),

(*) p(EA(I - E)) = E9(EA(I — E))(I - E).
Thus for each A in %, from (%) and Lemma 10(iv),
¢(A) = p(EAE) + 9(EA(I - E))
+¢((I - E)AE) + ¢((I - E)A(I - E))
= Ep(EAE)E + E¢o(EA(I — E))(I - E)
+ (I = E)p((I - E)AE)E + (I - E)p((I - E)A(I - E))(I - E);
so that
Ep(A) = E@(EAE)E+ Eo(EA(I —E))(I—-E)
¢(EAE) + o(EA(I - E))
P(EA).
Similarly, ¢(AE) = ¢(A)E for each A in 2.
Let B be a self-adjoint element in B~ and A be in A~. From Theorem 5.2.2(v),

given a positive ¢, there is a (finite) orthogonal family {F1, ..., E,} of projections
in B~ and (real) scalars ay,...,an such that ||[B — 37, a; E;|| < e/(2|Al]). From

the preceding, we have
¢ ((Z ajEj) A) — Bi(4)
j=1

le(BA) — Bo(A)|
(Z ajEj) ¢(A) — Bp(A)

< |leBA) -0 | Y aE | A
j=1
< |BA- (D aE; | A
j=1

Thus ¢(BA) = Byp(A) and similarly, ¢(AB) = ¢(A)B for each B in B~ and each
Ain 2A™.

From Lemma 10(ii), ¢ is a positive linear mapping of 24~ onto B~ and ¢(I) = I.
From the preceding, ¢(BAC) = Bp(A)C for each A in A~ and B,C in B~. Thus
© is a conditional expectation from 2~ onto B~.

+

+ < e.
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Since g maps 2 onto B and is the restriction of ¢ to U, from the preceding, it
is immediate that ¢q is a conditional expectation from 2 onto B. (]

Sakai’s characterization [Sa56] of those C*-algebras that are *-isomorphic to
von Neumann algebras can be proved elegantly with the aid of Tomiyama’s theorem.

THEOREM 12. Suppose the C*-algebra U is (linearly isomorphic and isometric
to) the norm dual of a Banach space 2y. Then 2 is * isomorphic to a von Neumann
algebra (A is a W*-algebra).

PROOF. Let 7 be the natural injection of 2y into 2*. Suppose & € (y)1. Then,
with v an element of 2, since 7 is an isometry, ||(v o 7)(€)|| < Iv|lIn©)| < |Iv|,
and v on is a bounded linear functional on 2. By assumption, 2l is the norm dual
of 4. Thus there is an A in 2 such that v on = A, and A is unique. Let 2 acting
on 'H be the universal representation of 2, and let A — A be the (isometric linear)
isomorphism (of Proposition 10.1.21) between 2~ and 2*. Let ¢(B) be the unique
element of 2, just obtained, such that B on = ¢(B), where B € ™.

Let A be an element of 2 (in 2A~). We show that ¢(A) = A. Since ¢ is a linear
mapping of A~ onto A, this will show that ¢ is an idempotent mapping of A~ onto
2A. With £ in 2y,

p(A)(€) = (Aon)(§) = n(€)(4) = A(¢).
Thus p(A) = A. At the same time, if B € (27)y, then B € (2#), and ||¢(B) (&) =
(B om)(@Il < [n(©)Il = I§]l- Thus [lo(B)|| < 1. It follows that [¢|| <1, and from
Theorem 11, ¢ is a conditional expectation from A~ onto 2.

Let K be ¢~1(0). We show that K is a weak-operator closed two-sided ideal in
2A~. Note first that K is weak-operator closed. We have that A € K if and only if
(Aon)(€) =0 for all £ in 2y. Now n(£) € A*. Then there are vectors z(£) and y(¢)
in M such that 17(§) = wy(e) y(¢)|U. Thus A € K if and only if wy(¢),y(¢)(4) = 0 for
all £ in 2y. It follows that K is weak-operator closed.

Since ¢ is a conditional expectation from 2~ onto 2, p(BAC) = By(A)C for
each A in A~ and B,C in «A. Thus, if A € K, 0 = Bp(A)C = ¢(BAC), and
BAC € K. By weak-operator continuity of left (and then right) multiplication,
BAC € K when A € K and B,C € 2~. Hence K is a weak-operator-closed two-
sided ideal in 2A~.

Let P be the central projection in 2~ such that X = A~ P. (See Theorem 6.8.8.)
Since ¢ is idempotent, A — p(A) € K for each A in A~. Thus A — p(4) € AP
and A — p(A) = [A — ¢(A)]P. It follows that

A(I - P) = p(A)(I - P) e 4(I - P).

Hence A~ (I — P) =U(I — P).

IfAefand 0# A (= ¢(A)), then A ¢ K so that A ¢ A~ P. Thus A # AP
and A(I — P) # 0. Since P commutes with 2, the mapping A — A(I — P) of
A onto A(I — P) is a x-homomorphism and from the foregoing, this mapping is
a *-isomorphism. As we have just proved, %A(I — P) = %A~ (I — P), so that 2 is
*-isomorphic to the von Neumann algebra 2~ (I — P) (acting on (I — P)(H)). Hence
A is a W*-algebra. d

The theorem that follows is a formulation of Tomiyama’s “slice-mapping” tech-
niques [To70].
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THEOREM 13. Let R and S be von Neumann algebras and p and o be non-zero
elements of Ry and Sy, respectively.

(i) There is a unique element p ® o of (R®S)y such that (p @ 0)(R® S) =
p(R)o(S)(RER, S€S), o0l =lpllol-
(ii) There are unique operators ®,(T) and V,(T) in R and S, respectively,
corresponding to each T in R®S, satisfying
P (@(T) = (p @) T), o' (T,(T))=(p®')T)

for each p’ in Ry and each o’ in Sy.
(i) ®, and ¥, are ultraweakly continuous linear mappings of R®S onto R
and S, respectively, for which

3, (AR NT(B®I)) = A®,(T)B

V,((I®C)T(I® D)) =C¥,(T)D
for each T in R®S, A,B in R, and C, D in S, and
®,(R®S) =0(S)R, U,(R®S)=p(R)S (RER, SES).
(iv) ®,(T) € Ro and U,(T) € Sp if T € Ro®Sy, with Ry and Sy von Neu-
mann subalgebras of R and S, respectively.

(v) T € Ro®Sy if ®,/(T) € Ro and U, (T) € Sy for each o’ in Sy and each
P in Ry.

PROOF. (i) Theorem 11.2.10 assures us that we may consider R and S in their
universal normal representations on Hilbert spaces H and X, respectively, without
loss of generality. In this case, there are vectors z and y in H of length ||p||*/? and
u and v in K of length ||o|'/2 such that p = w; y|R and ¢ = wy,,|S from Corollary
7.3.3. The equation

(p®o)(T) = (T(z®u),y ) (T € R®S)

defines an ultraweakly continuous linear functional p ® ¢ on R®S. With R in R
and S in S, we have

(p®0)(R®S) = (R S)(z®u),y®v) = (Rz,y)(Su,v) = p(R)o(S).
fRe(R); and S € (S)1, then R® S € (R®S); and

lo(R)]|o(S) = (p®a)(R®S)| < [lp®a].
Hence ||p||||lo]l < |lp ® o||. On the other hand, with T in (R ® S)1, we have

(0 ® o)(T)| = (T(z ® u),y ®v)| < [lzllfulliylilvl = ool

Thus |le® | < |lelllle]l, and |[o® o] = ||elllle]l. Since operators of the form R&® S,
with Rin R and S in S, generate an ultraweakly dense linear submanifold of R®S,
there is at most one linear functional on R®S with the properties prescribed for
pRO.

(ii) From the uniqueness clause of (i),

(ap+p)®o=a(p®0)+p @0
Thus the mapping

S (T): 0~ (@YD) (o €Ry)
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is a linear functional on Ry. Since

(@o(D) () = 1" ® o)D) < [lo @ allITI = 1[I 1T

®,(T), as defined, is an element of (Ry)*. Thus ®,(T) € R from Theorem 7.4.2.
Symmetrically, ¥,(T) € S.
(iii) Since
P (@,(aT +T)) = (p@a)(al +T")=a(p @) (T)+ (o' ® o)(T")
= ap'(2.(T)) + p'(2o(T"))

= ' (a2e(T) + 2,(T"))
for each p’ in Ry, ®, is a linear mapping. Moreover,
T — p'(2(T)) = (0 ®0)(T) (T € RRS)

is continuous from R®S with its ultraweak topology to C for each p’ in Ry. Hence
®, is an ultraweakly continuous linear mapping from R®S into R.

With A,B,and Rin R, Sin S, p’ in Ry, and p” the element of Ry whose value
at Ry in R is p'(ARyB), we have

P (@, (ARI)(R®S)(B®I) = () ©@0)((ARB)®S)

p'(ARB)o(S)
p"(R)o(S)
= (" ®0)(R®S)
= p"(2:(R®S))
= p/(A®,(R® S)B).

Il

Thus
P, (AR (R®S)(B®I))=A?,(R® S)B.

Now the mappings
T—® (A T(B®I), T— A®,(T)B

are ultraweakly continuous linear mappings of R®S into R that agree on generators
of an ultraweakly dense linear submanifold of R®S. Hence they agree on R®S.
The symmetric argument applies to ¥,, and the first relations set out in (iii) are
established. With Rin R, S in S, and p’ in Ry, we have

P (2 (R®S)) = (p ®0)(R®S) =p'(c(S)R).

Thus ®,(R® S) = 0(S)R and ¥,(R® S) = p(R)S. It follows that ®, maps onto
R and ¥, maps onto S.

(iv) From the last relations established in the proof of (iii), ®,(T) € Ro when
T = Ry® S with Ry in Rp and S in S. Since operators of the form Ry ® Sy
(Ro € Ro,So € Sp) generate an ultraweakly dense linear submanifold of Ro®Sy
and ®, is an ultraweakly continuous linear mapping, ®, maps Ro®S, into Ryg.
Symmetrically, ¥, maps Ro®S into Sp.

(v) Suppose T in R®S is such that &, (T) € Ro and U, (T) € S for each o’
in Sy and p’ in Ry.
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With A’ in Ry, z and v in H, and y and v in K, let 0’ be wy ,|S, p’ be wy a7+ |R,
and p” be warzu|R. Then
(AeDT(z®y),udv) = (f@d)(T)= /(2. (T))
= (AP (T)z,u) = (Be(T)A'z, u)
= 0"(@(T)) = (p" ® o' )(T)
= (T(Az@y),udwv)

= (TA'RN(z®yY),u®v).

Thus 7 commutes with R ® CI. Symmetrically, T commutes with CI ® S}.
Thus T € (R{®S])’. From Theorem 11.2.16 and the double commutant theorem,
(RH®S)) = Ro®Sy. Hence T' € Ro®Sp. O

THEOREM 14. Let R and S be von Neumann algebras acting on Hilbert spaces
‘H and K, respectively. Suppose Rg and Sy are von Neumann subalgebras of R and
S, respectively.
(i) (RENR)B(SENS) = (Ro®Sp)’ N (RIS).
(i1) A®B is a mazimal abelian subalgebra of R®S if and only if A and B are
mazimal abelian subalgebras of R and S, respectively.
(iii) CRD is the center of RS when C is the center of R and D is the center
of S.
(iv) RgNR =CI and S§;NS = CI if and only if we have that the intersection
(Ro®Sp) N (RRS) is CI.

Proor. (i) If R€ RENR and S € §§NS, then R® S commutes with Ro®Sp.

Thus

(RENR)B(S;NS) € (Ro®Sp)' N (RES).
Suppose T € (Ro®S;)'N(R&S), A € Ro, p € Ry, and o € S. Then, from Theorem
13(iii),

A, (T) = B,(AR NT) = 3, (T(ARI)) = ®,(T)A.
Hence A®,(T) = ®,(T)A and ®,(T) € Ry NR for each ¢ in Sy. Symmetrically,
¥,(T) € S, NS for each p in Ry. From Theorem 13(v),
T € (RENR)B(SHNS).

Hence

(Ro®So) N (RRS) C (RyNR)B(SyNS).
Combining this with the reverse inclusion, noted earlier, we have the formula of (i).

(ii) If A and B are maximal abelian in R and S, respectively, then A/'NR = A
and B'NS = B. Thus

(ABB)' N (R&S) = (A NR)B(B' NS) = ABB,

from (i), and A®B is maximal abelian in R®S. If ARB is maximal abelian in R®S
and T in R commutes with A, then

TRIc(ANR)QB NS) =(ARB) N (RRS) = ARB.

From Theorem 13(iii) and (iv), T = ®,(T ® I) € A. Thus A is maximal abelian in
R. Symmetrically, B is maximal abelian in S.
(iii) From (i),
(R®S) N (R®S) = (R'NR)J(S'NS) =C&D.
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But (R®S)’' N (RRS) is the center of RAS.

(iv) If the tensor product of two von Neumann algebras is the algebra of scalar
multiples of I, then each of the von Neumann algebras is the algebra of scalar
multiples of I. From (i), then, each of R{ N R and S NS is CI if and only if

(Ro®Sp)' N (R®S) = CI.

4. Applications to Jones index

Although it is not our intention to carry the discussion of the Jones index to an
advanced level, we shall describe the basic role that conditional expectations play
in the development of the theory around the Jones index and give a careful presen-
tation of the initial portions of that subject in terms of conditional expectations.
The conditional expection described in Theorem 7 is an absolutely crucial element
of the Jones index theory. We denote the conditional expectation ¢ constructed in
Theorem 7 by 3. When the context makes clear the von Neumann algebra from
which we are mapping (S in the present case), we write ®% in place of ®3. We
begin by gathering some more information about that conditional expectation.

PROPOSITION 15. If M is a von Neumann algebra with a faithful tracial state T
and N is a von Neumann subalgebra then ®, is the unique conditional expectation
of M onto N that lifts the tracial state Tor (= Tm|N) to the trace Ta on M; that
18

™V (Bn(A) =Tm(A) (AEM).
If P is a von Neumann subalgebra of N, then
N = Y o D
PROOF. From the defining property () of @
N (Bn(A) = v (BN (A)) = T((AD) = Tm(A) (A eM),

whence ® s lifts 7o to Ta4.
If ® is a conditional expectation of M onto AN that lifts 7aor to T4, then

N (B (A)) = Tm(A) = v (2(4)) (AeM).
Thus 7A((Pn — @)(A)) = 0 for each A in M. Since &5 and ® are conditional
expectations onto N,
0=7x((Br — 2)(A(BN — @)(4)")) = 7 (DA — ©)(A)(Dy — ®)(A)").

As 7y is faithful, (®pr — @)(A) =0 (A € M), and O = &.

Of course, <I>j,¥ o ®3/ is a linear mapping of M into P. If A € P, then since
P CN, (BF 0 ®A1)(A) = @Y (A) = A. In addition, &Y o ®47 is positive since each
of &) and @}/ is positive. At the same time,

Tm(T) = Ta(BA(D)) = 7 (BF (BN(T) (T € M).

Thus & o ®47 lifts 7p to Trr, and P! = Y o PAL. a

PROPOSITION 16. If M is a factor acting on a Hilbert space H with a unit,
trace vector u, N is a von Neumann subalgebra, and E is the orthogonal projection
on H with range [Nu] (in N'), then ExTu = ®5(T)u for each T in M.
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Proor. With T in M, note that
(Tu — Oa(Tu, Su) = TMm(S™T) — A (S™ @A (T)) =0 (S e N),

from the defining condition for ®x/(T). Thus Tu — @ (T')u is orthogonal to [Nu]
and, since @ (T)u € [Nu],

0= Ex(Tu— &5 (T)u) = ExTu—op(Thu (T € M).
O

In the discussion of Jones index, that follows, we refer to Jones [Jo83], Pimsner—
Popa [Pi-Po86], and to the masterful account of this and many related matters in
[E-K98]. Let M be a factor of type II; acting on a Hilbert space H with a cyclic,
unit, trace vector u. If A is a subfactor of M such that A is of finite type, then
N is a finite factor with a tracial state 7. We call 7/(EN)~! the index of N in M
and denote it by ‘{M : N].” In this case, we say that N has finite indez in M. Note
that, since H = [M'u] C [N"u], 7(EN') = 1, and 7(EY")/7'(EN), the coupling
constant da(H) of N and N7, is 7/(EN)~1, the index [M : A] of the subfactor N’
in M.

As defined, [M : N] is an (isomorphism) invariant of the (ordered) pair (M, N).
To see this, let P be a factor of type II; with a cyclic, unit, trace vector v, acting
on a Hilbert space K, Q a subfactor, and ¢ a * isomorphism of M onto P that
carries N onto Q. From Theorem 7.2.9, there is a unitary transformation of H
onto K that implements . Thus da(H) = dg(K), and [M : N] =[P : Q]. Since
dm(H) =1 and dy(H) = [M : N], we have that

&y [M: N] = dn(H)/ dm(H).

This formula is valid no matter what the coupling constant is for M and M’. (See
Proposition A5 of the appendix to this section.)

PROPOSITION 17. If M is a finite factor and S and N are subfactors such that
S CN and 8 is finite, then

(i) M:M]=1;
(i) M:8]>1;
(il) M : S =[S : M'];

(1V M : 8] = [M: NN : S];
(v) f M:N]=[M:S8], then N =S.

ProOOF. We may assume that M acts on the Hilbert space H with a unit,
cyclic, trace vector u.
(i) Since T(EM) =1, M : M]=1.
(ii) Since 7/(ES) <1, [M:8] > 1.
(iii) Since ds(H) = 7(ES")/7'(ES) (for each unit vector z in H), ds/(H) =
ds(H)~*

M : 8] =ds(H)/dm(H) = dar(H)/ds/(H) = [S": M'].
(iv) Note that

o ds(H)  (ds(M)\ [dn(H)\ _ ., )
M:S) =3 0 = (dN(H)) (dm(H)> = MMV S
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(v) If [M : N] = [M : 8], then 7"(ES) = 7"(EY), where 7" is the tracial
state on S’. As ES < EN and 7" is faithful, ES = EN. Thus if H is
a self-adjoint operator in A/, there is a sequence {11,7T3,...} in S such
that T,u — Hu in ‘H. As u is a trace vector for M, Tu — Hu. Thus
H,u — Hu, where H,, = %(Tn—kT;). Let h be the continuous, real-valued
function on R that takes the value ¢ for each ¢ in [—| H]||, ||H||], vanishes
on [—oo,—||H| — 1] U [||H| + 1,00], and is linear on [—||H| — 1, —||H|]
and [||H||, ||H|| + 1]. Then h(H) = H, and ||h(H,)| < ||H]|| for each n.
Moreover, from Exercise 12.4.32(ii), h(H,)u — h(H)u = Hu. Of course,
each h(H,) € S. Since u is cyclic for N and {h(H,)} is a bounded set,
h(H,) is strong-operator convergent to H. Thus H € S and S = N.

O

PRrROPOSITION 18. If M is a finite factor acting on a Hilbert space H, u is a
cyclic trace vector for M and N is a von Neumann subalgebra, then

(i) EvMAEN =ON(A)Ey  (AEM);
(ii) A in M, isin N if and only if AEN = ExAEy, if and only if ExA =
AEy, and Ej is separating for M;
(iii) N is the von Neumann algebra generated by M’ and Enr;
(iv) the von Neumann algebra My generated by M and Ep is the strong-
operator closure F of {Ag + Z?:l A;ENBj: Aj,B; € M}
(v) NExy = ExM1Ey;
(vi) the central carrier of En relative to N' and to My is I;
(vii) My is a factor if and only if N is a factor;
(viil) My is finite if and only if N is.

PROOF. (i) With B in A/ and A in M, from Proposition 16
EnABu = ®p(AB)u = &5 (A)Bu.

Thus ExAEn = ®n/(A)Ey since {Bu: B € N} is dense in Ex(H).
(ii) Suppose A € M and AEyx = ExAEy. Then, from (i),

AExN = ExAEN = Op(A)EpN.

Hence Au = ®ar(A)u. As u is separating for M, Ej is separating for M, and
A = ®5(A) € N. From Proposition 16, Exr € N’, whence AEx = ExA in this
case. Of course, AEyn = ExrAExN when AEN = ExA .
(iii) From (ii),
N =Mn{Ex} = (M U{En})"

Thus N/ = (M’ U{Ex})”, the von Neumann algebra generated by M’ and E .
(iv) Since F contains M and Ejs, and F is a self-adjoint family, it remains to
note that F is an algebra. For this, note that, with A, B, C, and D in M,

(AENB)(CEND) = AENBCEND = A6 (BC)EnND,

from (i). As ®p(BC) € N, ADp(BC) € M and (AExB)(CEND) € F.
(v) Since Exr € N', AEy = ExAEN € ENFEny C ENM1Exn (A € N),
and NExy C ExMiEN. To establish the reverse inclusion, note that if A =
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Ag + Z?:l AjENBj, with Aj and B]' in M, then

EnAEy = |®n(Ao) + Y On(4;)8x(B)) | Ex € NE,
j=1

from (i). Thus ExFExy C NE). Since T — ExnTE)y is weak-operator continuous
on B(H) and M, is the strong, hence, weak, -operator closure of F, from (iv), we
have that Ex M1 Ex is the weak-operator closure of ExFEpy. It follows that
ExyMEy CNEN. Thus NEy = Ex M Ep.

(vi} From Proposition 5.5.2, the central carrier of Ex relative to A has range
WNW'En(H)], which contains [N'u] (2 [M'u] = H). Thus Ex has central car-
rier I relative to N’. The range of the central carrier of Exs relative to M is
[M1Ex(H)] which contains [MEx(H)]. But [MEx(H)] contains [Mu], which is
'H, by assumption. This proves (vi).

(vii) From Proposition 5.5.6, Exr M1 Ex has center CEys, where C is the cen-
ter of M;. From (v), ExM1Ex = NEj, whence CE)s is the center of N E.
From (vi), Ex has central carrier I relative to M;. As C C M/, C and CE,s are
isomorphic. At the same time, Ex has central carrier I relative to N’ from (vi),
whence N and N Ej are isomorphic. Hence M is a factor if and only if CEys is
one dimensional, which is the case if and only if A is a factor.

(vili) With A in M, let JoAu be A*u. then Jj is a conjugate-linear, involutive,
isometric mapping of the dense linear manifold {Mu} of H onto itself. Let J be its
extension to such a mapping of H onto itself. Note that, from (i) and Proposition
16,

JENJAu = JExA*u = JENA*Enu = JOuN(A")Enu
= JOpN(A)'u =By (A)u = ExAu
for each A in M. Thus JExJ = Ey.
Note, next, that JMJ = M’, whence M = JM’'J. To see this, choose A, B,
and C, in M. Then Ju = JIu = I*u = u, and
JAJBu = JAB*u= BA*u= BJAu= BJAJu.
Thus
JAJBCu = BCJAJu = BJAJCu,
whence JAJB = BJAJ (since [Mu] = H), and JAJ € M'. Tt follows that
JMJI C M.
From Theorem 7.2.15, for each A in M, there is a unique A’ in M’ such that
Au = A'u and A*u = A" u. Thus J’ defined, for M’ and u, as J was for M and
u, coincides with J. From what we have proved, then,
IMI=TMI CM' =M,
and M’ C JMJ. Hence JMJ = M'.
It follows, from (iii), that
IN'J = JIM U{EN}'J = {MU{Ex}Y = My,
whence M is finite if and only if N is. O

We refer to the process by which we arrived at M; and the projection FExr, with
the properties described as the basic construction for the factor M, the subfactor
N, and the trace vector u.
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PROPOSITION 19. Let M be a factor of type I, acting on a Hilbert space H
with unit, cyclic, trace vector u and N be a subfactor such that N is finite.

(i) The von Neumann algebra M generated by M and the projection Enr is
a factor of type I, Tpm,(Ex) = [M : N]7L, My : M] = [M : N], and
O (En) = [M : N]7LI, where ® o is the conditional expectation of M;
onto M that lifts Tam to Ta, .

(i) There is a subfactor P of N and a projection E in M NP’ such that
TM(E) = M : N|7L, @5 (E) = [M : N7, ETE = ®p(T)E for each
T in N, where ®p is the conditional expectation of N onto P that lifts
Tp to Tnr, and M is generated by N and E.

PROOF. (i) From Proposition 18 (vii), (viii), M, is a finite factor since N’ is a
finite factor. Since N’ is a finite factor and contains the factor M’ of type II;, N
must be a factor of type II;. From the proof of Proposition 18 (viii), M; = JN'J.
Hence M; is a factor of type II;.

The mapping A — JA*J (= ¢(A)) is bijective on B(H), since J?> = I and
0?(A) = A (A € B(H)). In addition, since J is conjugate linear and u is a trace
vector for M,

(J*Au, Bu) = (JBu, Au) = (B*u, Au) = (A*B*u, u)
= (B*A*u,u) = (JAu, Bu) (A,Be M).

Thus J = J*, and p(A*) = JAJ = (JA*J)* = p(A)* for each A in B(H). More-
over, we have that

@(AB) = JB*A*J = JB*JJA*J = p(B)p(A) (A, B € B(H)).

Hence p|M and ¢|M; are * anti-isomorphisms of M onto M’ and M; onto N’
respectively. Thus

(1) T, (Br) = Tae(Bx) = Tae(BY) = [M: N7,
by definition of the index [M : N]. At the same tlme,
My s M] = das(H)/ dpy (H) = divgs (H) ™ = dps (1)
= v (BY) [ (B = v (BY) 7 = M),
To see that ®pq(Ex) = [M : N]711I, we note, first, that 7o- = 7, where
7(T) = M : Nljtpm, (TEpN) (T eN).
Since A is a factor, it suffices to show that 7 is a tracial state on . Of course, 7

is linear. In addition, 7 is positive since Tpq, is and Exr is a positive operator (a
projection) in N”. Also, 7(I) = [M : N]7pm, (Ex) = 1, from (t1). Finally,

7(TS) = [M : Nltm, (TSEp) = M : Nltm, (TENS)
— [M: Nra (STEN) = #(ST) (S, T € N).
It follows that, with A in M,
My (ENA) = My (ENAEN) = Tm, (Ba(A)En)
= M NI (Bar(4)) = M N v (4)
=TMm(IM : N]THA),
whence ® v((En) = [M : N7, by definition of ® 4.



NON-COMMUTATIVE CONDITIONAL EXPECTATIONS 167

(ii) We note, first, that there is a faithful, normal representation of M on a
Hilbert space such that A has coupling 1. To see this, we start with M in its
trace representation on a Hilbert space ‘H with u a unit, cyclic, trace vector for
M. Choose a projection F’ in M’ such that (7ar(F') =) 7am¢ (F') = [M : N]7L =
a7 (EN). Since F’ and EY are equivalent in N7, F' is a cyclic projection in N’
(from Proposition 6.2.9). Let z be a unit vector in H such that F'(H) = [Nz].
From Theorem 7.2.12, EN' and EV' (= I) are equivalent in AV. Since N is finite,
EN' = I. Thus NF' and its commutant F'A”F’ acting on F'(H) (= K) have z as
a joint generating vector. As M and N are factors and F’ is a non-zero projection
in M’ (C N’), the mapping A — AF’ of M onto MF’ is a * isomorphism of M
onto MF’ and N onto N'F’, with commutants F' M'F’ and F'N'F’, respectively,
from Proposition 5.5.5.

Henceforth, we assume that M and A act on K. Since A has coupling 1, from
Lemma 7.2.8, there is a unit, cyclic, trace vector v for A/. We now form the basic
construction for the factor N7 of type II;, the type II; subfactor M’, and the trace
vector v. This gives us a projection E in M (= M") such that FA'E = ® . (A)E
for each A’ in N’, N and E generate M, T((E) = [N/ : M']7t = [M : N]7}, and
®p(E) = [M : N]71I, where ® is the conditional expectation of A, the von
Neumann algebra generated by N” and E, onto N that lifts 7 to Tp7.

The mapping Av — A*v (A € N) extends, as in the proof of (i), to a conjugate-
linear, isometric, involutive, self-adjoint mapping J’ of K onto itself such that J'v =
vand J'EJ' = E. If ¢'(T') = J'T*J', then ¢’ is an involutory, * anti-automorphism
of B(K) that maps M onto N}, N onto A, and M’ onto a subfactor P of N. Then
N:P]=[N": M| =[M:N]. Moreover, ¢’ o®pro0p = Bp, ' 0P pp 0 = Op,
and ¢/(E) = E. Thus E € MNP, T(m(E) = [M: N|7L, & (E) = [M : N7,
ETE =®p(T)E (T € N). O

PROPOSITION 20. Let M be a factor of type I acting on a Hilbert space H
with u a unit, cyclic trace vector and let N' be a subfactor. Then with My as in

Proposition 18 (viii), for each A in My, there is a unique element B in M for
which AExr = BEy, B = [M : N|®p(AEN), and ||B|| < [M: N]||A]|.

PROOF. We argue as in the proof of Proposition 18(v). If

A= Ao+ > A;EnB;
j=1
with A; and Bj in M, then A € F. In this case, AEx = [Ao+) 1 A;Pn(B;)]En,
and Ao +>_7_; A;®n(B;j) (= B) is in M. From Proposition 19(i),

M :N|OA(AEN) = l:Ao-f-Zqu)N(Bj)] M : NP ap(En)

Jj=1

= Ao+ ) A;®n(B;)=B.
j=1
Thus A — (A—[M : N]®pm(AEN))Ep is an ultraweakly continuous mapping that
vanishes on F and, hence, on M, the ultraweak closure of F. It follows that, with
Ain Ml,
|1B|| = M : N][|@pm(AEN)En|| < M : N]|IAl.
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In the theorem that follows, we construct a system of elements, known as a
Pimsner—Popa basis in a factor of type II; with special properties relative to a
subfactor of finite index.

THEOREM 21. If N is a subfactor of finite index n+a, withn a positive integer
and a in [0,1), of a factor M of type I, then there are elements By,...,Bpt1 in
M such that

(1) @ (BjBk) =0 when j # k;
(ii) (DN(B* ) =14fje{l,...,n}, and ®n(B;; 1 Bnt1) = F, where F is a
projection in N such that Tor(F) = a;
(i) 374} BEnB; = I
(iv) il BBy = [M: NI
(v) T = Z"H B;®x(B;T), for each T in M.

PROOF. Let M; be the von Neumann algebra generated by M and Exr. From
Proposition 19, M is a factor of type Il and ® p(En) = [M : N]7 = (n+a) 1.
There is a projection E; in M such that 7o, (E1) = 7am, (Ex) = [M : N]7L. There
is a subprojection Ey of I — E; in M, such that 7, (E2) = Taq, (En). Continuing
in this way, we produce a set Ei,..., E,41 of mutually orthogonal projections in
M such that 7aq, (Ej) = [M : N]7t when j € {1,...,n}, Epy1 =1 — Z;'L=1E
and 7o, (Bny1) = a[M : N]71. Since each E; is equivalent to Ex in My, for j
in {1,...,n}, there are partial isometries V,...,V, in M; such that VIV =Eyx
and V]VJ* = E;. As 0 < a < 1, there is a partial isometry V,,4; in Mj such that
Vii1Vas1 = Ep < Ex and Vn+1V ‘1 = Ent1. Thus V;En = Vj for all j. From
Proposition 20, there is a unique Bj; in M such that V; = V;Exr = B;E. Hence,
when j and k are distinct,

0=V EV = Vj*Vk = ENB;BkEN = @N(B;Bk)EN
and with j in {1...,n},
Ewn = V;'V; = ExB;B;Ex = ®x(B; B;)En.

Since Er has central carrier I in A/, from (vi) of Proposition 18, we conclude
that @ (B;Bx) = 0 when j # k, and ®x(B;B;) = I when j € {1,...,n}. In
addition,

Eo =V 11Vat1 = En By Bai1Exn = @n(Bj i1 Bat1) En.
Now, T — TE is a * isomorphism of N onto NEx. As ®x(Bj,1Bnt1)En

is a projection, ®x(B},{Bn+1) is a projection in . From the proof of (i) of
Proposition 19,

TM(B;+1Bn+1) = TN(‘I’N(B:LHBnH))
= [M:Nltam, (Pn(Bry1Bni1)En)
= [M:Ntm, (Eo) = M N]TMl nt1)
M:NaM: Nt =

This proves (i) and (ii).
At the same time,
n+1 n+1 n+1

IR DATES B
j=1 j=1 j=1
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which proves (iii). From this, (iv) follows since

n+1
I = ®u(I)=)_ ®m(BExB;)
7j=1
n+1 n+1
= Y B;j®m(Ex)B; =[M: N7 B;B;.
n=1 j=1

To prove (v), we note, from (iii), that

n+1 n+1
TEy = |Y_ BjExB; | TEx =Y  B;®x(B;T)Ey,
j=1 j=1

from which (v) follows, since Ex  is separating for M ((ii) of Proposition 18). O

COROLLARY 22. In the notation of Proposition 18, if [M : N] = n+ a, where
n is a positive integer and a € [0,1), then

n+1
My =N "TiENS;: T;,8; € M p = (Fo).

=1

PRrROOF. The preceding theorem implies that there is a Pimsner—-Popa basis
{Bi,...,Bnt+1} in M. With S in My, for each j in {1,...,n}, there is a (unique)
A; in M such that SB;Ex = A;Ex from Proposition 20. It follows from (iii) of
Theorem 21 that

n+1 n+1
S=Y SBEyB; =Y A;ENB; € F.

j=1 j=1

Thus M1 =.'F0. |

PrROPOSITION 23. If M is a factor of type II; acting on a Hilbert space H and
N is a subfactor such that N is finite, then ®pr(A) > M : N]71A (A € MT).

PROOF. From Proposition 19, there is a subfactor P of A" and a projection E
in M commuting with P such that ®y/(E) = [M : N|7I, ETE = ®p(T)E for
each T in N, and M is generated by E and N. If A is a positive element in M,
then A = BB* for some B in M. From Theorem 21, there is a Pimsner—Popa
basis By, ..., By, for A relative to P. From (the proof of) Corollary 22, there are
operators Ay, ..., A, in N such that B = 3"" | A;EB}. Thus

A= BB*

[
NIE

n * n
A;EB; <Z AkEB,:> = Y A;EB;ByEA;
j k=1

1 jk=1

A;®p(B;By)EA; = > A;®p(B; B;)EA;
1 j=1

Il
'M: :

>
Il

B
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and since E € P/,

O (A) = D A;%p(B;B))dn(E)A]

j=1

= [M:N]T'YA;0p(B;B;)A;

Jj=1

> [M:N]T'YA;8p(B;B;)EA;
j=1
= [M:N]'A
O

Jones index — Appendix. In this appendix, we prove the assertion (1) (Propo-
sition A5) as well as other basic identities involving da/(H) and daq(H).

LEMMA Al. If M is a finite factor acting on a Hilbert space H and E' is a
non-zero projection in M’, then

dme (E'(H)) = Tav (E") dm(H) .

ProOOF. Note that the mapping A — AE’ is a * isomorphism of M onto
ME' (acting on E’'(H) with commutant E’M’'E’) from Proposition 5.5.5. Thus
Tme (AE") = Tm(A) when A € M. At the same time, 7gpmp (E'A'E') =
Tm (B "Y7p (E'A’E') for each A’ in M.

Let z be a unit vector in E'(H). Note that EE'M'E’ = E'EM’ and EME =
EM. Thus

dme (E'(H) = Tme (BEME) 15 0 p (EME)
= T:me (E'EX) /1o (B an (B
= 7 (ENVTM(EN) 1w (BYY)
= 7pm(E")dm(H).
O

COROLLARY A2. If M is a finite factor acting on a Hilbert space H and N is
a subfactor, with N finite, then

dy (H)/dm(H) = dve (E'(H))/ dme (E'(H))
where E’ is a non-zero projection in M’.

LEMMA A3. If M is a finite factor acting on a Hilbert space H and K is an
n-dimensional Hilbert space, with n finite, and M = M@Clx, thend  (H®K) =

PROOF. Choosing an orthonormal basis for &, we represent HQK as H®- - -®H,
the n-fold direct sum of H with itself. In this representation, M appears as the
algebra of diagonal matrices with the same element of M at each diagonal entry.
(We write A for this matrix, corresponding to the element A in M and note that the
mapping A — A is a * isomorphism of M onto M.) The commutant M’ appears
as the algebra of n X n matrices with arbitrary entries from M’. The matrices act
on column vectors (z1,...,Z,) (z; € H).



NON-COMMUTATIVE CONDITIONAL EXPECTATIONS 171

Let = be a unit vector in H and Z be (,0,...,0) in H® K. Then Eé"‘ is the
matrix whose only non-zero entry is EM at the 1,1 entry and Eé‘;’l is the diagonal
matrix with EM" at each diagonal entry. Thus TM,(EQ;‘) = n"lrp (EM) and
T (BM) = T(m(EM). 1t follows that

d(H®K) = 75(EF")/700 (B
= Tm(EX)/n T an (BY) = ndm(H).
O

COROLLARY A4. If M is a finite factor acting on a Hilbert space H and N is
a subfactor, with N" finite, then

dy(H®K)/dg(H®K) = dm(H)/ dv(H),
where K and M are as in the preceding lemma.

In the cases described in Lemmas Al and A3, there are representations of
M involved. In Lemma Al, there is the isomorphism of M onto ME’, and the
coupling changes to 7a/(E’) dpm(H) (from daq(H)). In Lemma A3, there is the
isomorphism A — A of M onto M, and the coupling changes to nda(H). If we
apply these isomorphisms successively, in the appropriate order (to M and then
the image), we produce a representation of M with coupling nra (E') da (H).
Suitable choice of E’ and n yields any positive real number we please as coupling,
when M is a factor of type II; with M’ finite. If M acting on H’ is any of these
representations, we have noted that dy(H')/dm(H') = dy(H)/dm(H). Since
coupling is a unitary invariant for representations of M with finite commutant (see
Exercise 9.6.30), these representations constitute all representations of M (up to
unitary equivalence). On the other hand, when H is chosen such that dp(H) = 1,
we have defined the index [M : N] of N in M to be dy(H) (= dy(H)/ dm(H)).
From this discussion, we conclude the following result.

PROPOSITION A5. If M is a factor of type II; acting on a Hilbert space H and
N is a subfactor such that N' is finite, then [M : N] = dn(H)/dm(H).

In the discussion that follows we give an alternate proof of the fact that N' = M
when M is a factor of type II; and NV is subfactor such that [M : N] = 1. According
to our definition, we consider M in its trace representation with cyclic trace vector
u and [M : N] = 7o+ (EX). Thus when [M : N] = 1, we have that 7 (EY) =1
and EN = I. We have also proved that, with T in M, EN(Tu) = ®(T)u. Under
the present assumption, then, Tu = ®5(T")u (see Proposition 2). As u is separating
for M, T =®x5(T) e N,and M =N.

5. The Schur inequalities

In this section, we prove some tracial, matrix-operator inequalities that include
the “Schur Inequalities” [Sch23] and extend these inequalities to more general
(infinite-dimensional) situations. When we carry these results to the case of factors
of type II;, the conditional expectation of Theorem 7 will play a decisive role. The
material presented here is joint work with W. B. Arveson. It is part of a project-in-
progress and represents a second approach to certain results presented in another
way in that project.

We begin with a numerical inequality that underlies our later results.
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LEMMA 24. If a3,a9,..., are in [0,1], Z;’il a; < m for some integer m, and
A, A1y Ag,. .., are real numbers such that A; > A > 0 when 1 < j <m and A > A
when m+ 1 < k, then when n > m,

(%) D oNa; <>
Jj=1 Jj=1
If equality holds and A; > X when 1 < j < m, thena; = = ayn =1 and

a; =0 when j > m.

PROOF. Since 3_7_, a; < m, we have that 37 ., a; <377 1 —a;. Thus

n

Z)\j—Z/\jaj = Z (1-a,)- Z Aja;
j=1 j=1 =

= j=m+1

v v
NGERIANGERD
- =
| |
T
0 I 5
= >
| 8
Q@

j=1 j=1
= Sy -N(l-ay) >0
=1

If equality holds in (), then Y7 (A; — A\)(1 — a;) = 0. By assumption,
Aj —A>0whenl<j<m. Thusa; =+ =a, =1. Since ijla] < m and

a; > 0, it follows that a; = 0 when j > m. O

Note that if the condition ‘A; > X’ is not in force, in the case of equality, and
we let A1,...,A2 be 1 and m be 10, then we may choose % for ai,...,as and
equality will hold, or we may choose 1 for a,...,a;5. Thus uniqueness fails when
that condition is not in force (and nothing replaces it).

The theorem that follows is a version of the Schur inequalities extended to trace
class operators.

THEOREM 25. If A is a trace-class operator acting on the Hilbert space H and
{ej}jen is an orthonormal basis for H such that Ae; = Aje;, where A\; > XA >0
when 1 < j<m and A > A\, when k > m + 1, then

(%) sup{tr(HAH): H=H*, H> < I, tr(H?) < m} = A; = tr(AE),
J
=1

where E is the projection with range spanned by {ey, ..., em}.

If the supremum in (x*) is attained at Hy and A; > A when 1 < j < m, then
HZ = E. In particular, if \; > A\j+1 > 0 for all j, then (%) holds for each positive
integer m and the projection E is the unigque positive H at which the supremum is
attained.

PRrROOF. Note that, with H as in (%),

o0

tr(HAH) = tr(AH?) = > (AH?¢j,¢;) = > A;(H?ej,e5) = > \;|| He;lf?
j=1 ]

=1
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and that ) 22 ||He;||> = tr(H?) < m. By applying the preceding lemma with
|He;||? in place of a;, we conclude that

r(HAH) E r(AE) = tr(EAE)

from which (*x) follows.
For the last assertions, note that, by assumption,

Z,\ || Hoe;||? = tr(HoAHo) = ) _ \;,
j=1 j=1

and A\; > A > 0. From the equality condition of the preceding lemma, ||Hoe:||? =

- = ||Hoem|> = 1 and Hope; = 0 when j > m. From the equality condition
of the Cauchy-Schwarz inequality, ngj =¢; for j = 1,...,m. It follows that
H2=E. m

Without the condition A; > A, we can choose for A a projection of, say, dimen-
sion 20 and take m to be 10. Then the supremum is attained at each 10 dimensional
subprojection of A. Thus uniqueness requires some condition such as A; > .

COROLLARY 26. If A is a positive, trace-class operator acting on the Hilbert
space H with eigenvalues A1, Mg, - - - listed in decreasing order, then sup{tr(FAF) :
F = F* = F? dim F(H) < m} is attained when F is the projection E with range
spanned by an orthonormal set {fi1,..., fm} such that Af; = \; f; when1 < j < m.
If {e;}jen is an orthonormal basis for H, then 377", (Aej, e5) < 37701 Aj. If A >
Am+1 > 0, then E is the unique projection at which the supremum is attained.

PrOOF. With F a projection, dim(F(H)) = tr(F) = tr(F?). Hence the supre-
mum in the statement of this corollary is taken over a smaller subset than the
supremum in (xx). Nevertheless, for the projection E of the statement, tr(EAFE) =
S 1 Aj, the maximum in (x).

j=1
The last assertion of this corollary follows from the last assertion in the state-
ment of Theorem 25. d

The Schur inequalities are described in the next corollary.

COROLLARY 27. If A is an hermitian n X n matriz over C with eigenvalues
A1,y A and diagonal p1, ..., pn, both listed in decreasing order, then

pr+- e <A+ Ak ke{l,...,n}
andpr+ - +pp=A1+ -+ Ay,

PROOF. Both p; +---+p, and A\; + - -+ + \,, are tr(A). If F is the projection
with 1 at each of the first k£ diagonal entries and 0 at all other entries, then

p1+ -+ pkr =tr(FAF) <tr(EAE) = A1 + -+ + A,

where E is the projection matrix whose range is spanned by the orthonormal set
ei1,...,e such that Ae; = A\ieq,..., Aex = Irex. O

LEMMA 28. Let (X, pu) be a measure space, Xo a measurable subset of X with
indicator function xo, f and g integrable functions such that 0 < g < 1 a.e. and
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Jgdp < p(Xo), and X a non-negative real number such that both fxo > Axo and
F(l—x0) < A(1 = x0) a.e. Then

/fngS/fdeu~

If equality holds and fxo > Axo a.e.on Xy, then g = xo a.e. This same inequality
holds for all real A if u(Xo) = [ gdp.

PROOF. By assumption, [xodp > [xogdp + [(1 — x0)gdp. Consequently
J xo(1—g)dp > [(1— x0)gdp. It follows that

/fdeu—/fyd/z = /fdeﬂ—/fxOgdu—/f(l—xO)gdu

/fxO(l—g)du~/f(1—xO)gdu

/AXO(I —g)dp— //\(1 — Xo0)gdu > 0.

If equality holds and fxo > Axo a.e. on Xo, then

0=/fX0dﬂ—/fng = /fxO(l—g)du—/f(l—xO)gdu
/fX0(1 —-g)du— /A(l — Xo)g dp
/on(l —-g)dp— /)\Xo(l - g)du
= /(f = A)xo(1 —g)du 2 0.

(For the last inequality, recall that (1 —xo0)gdp < [ xo(1 — g) du and that A > 0
by assumption.) Thus [(f — A)xo(1 — g)du = 0. Since (f — X)xo > 0 a.e. on Xy
and 0 < g < 1 a.e., we conclude that g = 1 a.e. on Xo. Thus [ gxodp = p(Xo).
Since u(Xo) > [ gxodu+ [ g(1 — xo0) du by assumption, [ g(1 — xo) d = 0. Now,
g >0 a.e., whence g =0 a.e. on X \ Xo. Hence g = xo a.e.

If p(Xo) = [ gdu, then [Axo(1—g)du = [ A(1—x0)gdu = 0 for all X. Again,
[ fxodu > [ fgdp. O

We note that Lemma, 28 is an extension of Lemma 24. For this, choose X to be
N, the natural numbers, p the measure on N that counts the number of elements in
the intersection of a set with {1,...,n}, g the function that assigns to j (in N) the
real number a; (in [0,1]), X, the set {1,...,m}, and f the function that assigns A;
to j. With these choices, [ fgdu is 371 Aja; and [ fxodp is 372, ;.

Lemma 28 allows us to prove the appropriate version of the Schur Inequalities
for factors of type II;.

fl

v

Y

v

THEOREM 29. Let M be a factor of type II;, T the (unique) normalized tracial
state on M, A a mazimal abelian self-adjoint subalgebra (masa) in M, A a self-
adjoint operator in A, and a a number in [0,1]. There is a projection E in A and a
real number X such that 7(E) = a, AE > AE, and A(I-E) < MI—E). IfBe M,
0< B<I, and 7(B) = a, then T(AB) < 7(AE). If 7(B) < a and A > 0, then
again, T(AB) < 7(AE). If 7(AB) = 7(AE) and AE > NE, where X' > X\ > 0,
then B =E.
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PRrROOF. We note that 7(AB) is real since A and B are self-adjoint. To see this,
we may assume that B > 0 (otherwise, replace B by B + ||B||I, and observe that
||B|l7(A) is real). Since 7 is a tracial state, 7(AB) = T(B%AB%), which is real as
B3 AB:3 is self-adjoint.

Assume that we have found E and A as described. We give two proofs of the
stated inequality. Our first proof is a modification of the proof of Lemma 28 in
the von Neumann algebra setting that uses the properties of the trace to bypass
the commutativity missing in M and present in the measure-theoretic setting of
Lemma 28. The second proof uses the conditional expectation of M onto A to
reduce the problem to the commutative case and then, uses von Neumann’s results
to identify A with the algebra of bounded measurable functions on the appropriate
measure space. Lemma 28 then applies as it is stated.

For our first proof, we have that a = 7(E) = 7(B) = 7(EB) + 7((I — E)B) by
assumption. Thus 7(E(I — B)) = 7((I — E)B). It follows that

T(AE) — 1(AB) T(AE) —1(AEB) — 7(A(I — E)B)
7((I - B)AE(I — B)?) — 7(B2 A(I — E)B?)
r(A(I — B)*E(I — B)?) — r(AB%*(I — E)B?)
= AM(E(I-B))-XM((I-E)B)=0.

If we assume only that 7(B) < a, we must require that A > 0 in order to
conclude that \M((E(I — B)) — 7((I — E)B)) > 0.

Since 7(E) = a > 7(B) = 7(BE) + 7(B(I — E)), we have that 7(E(I — B)) >
7(B(I — E)). Suppose 7(AB) = 7(AE) and AE > NE where ' > A > 0. Then
7(AE) = 7(AB) = 7(AEB)+7(A(I-FE)B), whence 7(AE(I-B)) = 7(A(I-E)B).
Thus

v

o
|

r(AE(I - B)) — 7(A(I - E)B)
7((I - B)* AE(I — B)%) — (B2 A(I — E)B?)

)2
7((I = B)*AE(I — B)?) — 7(AB*(I — E)B?)

I

AV,

7((I - B)}AE(I - B)%) — 7(A\(I — B):E(I — B)?)
7((I - B)2(AE — AE)(I — B)%) > 0.

Hence 7((I — B)¥(A— M)E(I — B)2) =0, and (I — B):(A— A)E(I — B)z = 0.
It follows that

[(A=A)E]2(I - B)* = [(A— A)E]2E(I — B)? =
Now, (A—AI)E > (N —A)E and X’ — A > 0. Thus
0=(I-B)}(A-A)E(I-B)* > (I - B)}(N — A)E(I — B)? >0,

and E(I—B)% = 0. Hence E(I—B) =0, and a = 7(E) = 7(B: EB%) < 7(B) < a.
Therefore, 7(B) = 7(E) = 7(EB),and 0= 7((I — E)B) = 7((I - E)B(I — E)). As
B >0, (I - E)B(I — E) > 0, whence (I — E)Bz = 0. Of course, (I — E)B = 0,
from which B= EB = E.

For our second proof, we use the (unique) trace-lifting conditional expectation
® of M onto A. (The mapping ® is an idempotent, positive, linear, .4-bimodule
mapping of M onto A, and 7(®(T)) = 7(T) for each T in M. See Exercises 8.7.23—-
8.7.30, 10.5.85-10.5.87.) To show that 7(AB) < 7(AFE) under the given conditions
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on A, B, and E, we note that
T(A®(B)) = 7(®(AB)) = 7(4B).

Thus it suffices to show that 7(A®(B)) < 7(AE). Now, A, E, and ®(B), are in A.
Moreover, 0 < ®(B) < I since 0 < B < I and @ is a positive, linear, idempotent
mapping with [ in its range (so that ®(I) = ®(®(T)) = ®(T) = I). In addition,
7(®(B)) = 7(B) < 7(E). Thus A, E, and ®(B), satisfy the various conditions we
assumed for A, E, and B. To complete this second proof, we shall see that A with
the restriction of 7 to it is (equivalent to) the measure-theoretic situation of Lemma
28. After seeing that, we conclude that Lemma 28 applies to yield our inequality.

By applying the GNS construction to 7, we may assume that M acts on the
Hilbert space H and u is a separating and generating unit vector for M such
that 7(T) = (Tu,u) for each T in M. (We call u a trace vector for M. See the
discussion preceding and the proof of Proposition 12.1.4.) Let G be the projection
with range [Au] (the closure of {Tu : T € A}). Since u is a separating vector
for M (and hence, for A), the mapping T — TG of A into B(G(H)), is a normal
*isomorphism of 4 onto its range Ag. Let Hy be the Hilbert space G(H). As I € A,
u € G(H). By construction u is generating for the abelian von Neumann algebra
Ag. From Corollary 7.2.16, Ag is a masa in B(Hg). Since Ag is a masa in the
II; factor M, it follows from Exercise 6.9.17 that .4y has no minimal projections.
From Theorem 9.4.1, there is a unitary transformation U of Hg onto L2([0,1], i),
where y is Lebesgue measure, such that Uu is the constant function 1 on [0, 1], and
UAoU~! is the algebra of all bounded measurable functions on [0, 1]. Note that,
with T in M,

7(T) = (Tu,u) = (UTu,Uu) = (UTU 'Uu,Uu) = / UTU ! dp.

Lemma 28 now applies to yield the desired inequality and the uniqueness resulting
when equality holds.

It remains to establish the existence of the projection E and the real number A
with the properties posited in the statement of this theorem. Since A and E are to
be in A and 7 is a normal, faithful state of A, we may carry out the construction of
E and X in the von Neumann algebra — Hilbert space framework or in the measure
algebra — measure space framework. Let { E)} be the spectral resolution of A. (We
follow the construction of {E)} described in Theorem 5.2.2 and make use of the
properties proved there for {Ex}. Let @’ be 1 —a, F be V{E\ : 7(E)) < d'}, Ao
be sup{\: 7(E\) < a'}, G be A{E) : 7(Ey) > a'}, and A\; be inf{\: 7(E)) > a’}.
Since Ey < Ey when A < X and 7isnormal, Ey — F,and 7(E)) — 7(F)as A T Ag.
Similarly, Ex — G and 7(Ey) — 7(G) as A | A\1. Hence 7(F) < a’ < 7(G) and X <
A1- If Mg < A1 and we choose X in (Ag, A1), then either 7(Ey/) > o', contradicting
the choice of A1, or 7(Ey) < o/, contradicting the choice of A\g. Thus Ag = XAy
(= A). From Theorem 5.2.2(iii), Ey, = Ex=G,and F < E), =E), = Ex=G. It
is possible that F' < E), = G. However, if F = G (=1 — E), then 7(I — E) = d/,
I-E=E,,AI-E)=AE, < AE,=AI—-E),AE=A(I-E)) > MI—-E))=AE
from Theorem 5.22(iv), and 7(E) = a.

Suppose, now, that F' < GG and that N is a projection in A such that FF < N <
G. Since AG = AE), < MAE), = MG and N is a positive operator commuting with
A and G, AN = AGN < AGN = AN. We note, next, that A(G— F) = MG - F),
whence A(G— N) = AM(G— N) and A(N — F) = A(N — F). Since AG < )G,
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we see that A(G — F) = AG(G — F) < A\G(G - F) = MG — F). We show
that A(G — F) > MG — F). By construction, there are spectral projections E)/,
with A’ < A and XA — )\ as small as we wish, that are subprojections of F. Now,
G — F < I — Ey for all such )\, whence for each such X,

A(G-F)=A(I - Ex)(G-F)>XN(I - Ex)(G-F)=X(G-F).

As X 1 ), we conclude that A(G — F) > MG — F) and A(G — F) = \(G - F).
Hence

A(I-N)=A(I-G)+ AG - N)= A — E3) + NG — N)
> AI—-G)+ G - N)=XI-N).

From the proposition that follows, we have that there is a choice of N as above for
which 7(N) = a’. (Recall that 7(F) < @’ < 7(G) and M is a factor of type II;.)
Letting E be I — N, we have found a projection E and a real A\ with the desired
properties. (]

PROPOSITION 30. Let M be a factor of type I1;, A a masa in M, G a projection
in A such that 7(G) = s, where 7 is the unique tracial state on M, then for t in
[0, s] there is a subprojection F' of G such that F € A and 7(F) =t.

PROOF. Represent t in dyadic form as (.ajaz...)s, where each a; is either 0
or 1. From Exercise 6.9.15, GMG is a factor of type II;. Since G € A, GAG is
an abelian von Neumann subalgebra or GMG. If T € GM G and T commutes
with GAG, then T commutes with each A (= AG + A(I — G) in A, from which,
T e A AsT = GTG, we have that T € GAG, whence GAG is maximal abelian in
GMG. From Exercise 6.9.29, we have that G is the sum of n orthogonal equivalent
projections in GAG (C A). Using this observation, we can find an orthogonal
family {G1,Gs,...} of subprojections of G in A such that 7(G,) = s277, for j in
{1,2,...}, by “bisecting” G, then bisecting one of the resulting subprojections, and
so forth. Now, follow the “instructions” coded in the sequence a;,as,...; let F; be
Gj(1), where j(1) is the first a; that is 1, F; be Gj(3), where j(2) is the next a;
after a;(;) that is 1, and so forth. Let F be EEO=1 Fy. Since 7 is normal,

T(F)=r <Z Fk) = ZT(Fk) = (.a1az...)s =t.
k=1 k=1

O

Without the condition A’ > A, one cannot assert that B = E (that is, “unique-
ness of the maximum”) even in the commutative case, because the projection
E with the given properties is not, itself, unique. For example, the 4 x 4 di-
agonal matrix A with diagonal 3,2,1,1 has the two projections E; and E; of
trace 3 that are diagonal matrices with diagonals 1,1,1,0 and 1,1,0,1 as maxima
of {tr(AB): 0 < B < I, tr B = 3}. This same example is easily transferred to a
factor of type II; by working in a type I4 subfactor. The fact that “higher mul-
tiplicity” is the basis of this example suggests that, with the condition of simple
multiplicity imposed, the unique maximum of tr(AB), when 0 < B < I, tr B < 0,
and A > 0, is a projection F in A such that AE > AE and A(I — E) < A\(I — E).
Here, “simple multiplicity”is relative to the factor M of type II;, that is, A gener-
ates a masa A in M (as a von Neumann subalgebra). The argument of Theorem
29, when we assume that 7(AB) = 7(AE) and X\ > 0, allows us to conclude that
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[(A—=M)E]2E(I — B)z = 0 without the introduction of a ' such that AE > N'E
and N > \. If [(A— MI)E]= has (I — E)(H) as its null space (that is, has null space
(0) in E(H)), then E(I—B)? = 0 and the rest of that argument applies to yield that
B = E. With the “simple spectrum” hypothesis in force, we shall show that the
null space of [(A— AI)E]z is, indeed, (I — E)(H). If G is the projection on this null
space, then G € Aand (F =) G—(I—E) € A. Now, F < E and [(A-M)E|2F = 0.
Hence (A — M)F = [(A = M)E]z[(A— M)E]:F = 0. Thus AF = A\F = FA. If
T eMand FTF =T, then TA = FTFA = FTAF = A\FTF = AT. Since A is
assumed to generate the masa A, we see that T € A. It follows that FMF C A. If
F # 0, then FMF is a factor of type II; on F(H). But A is abelian. Thus F' = 0.
We have proved the following theorem.

THEOREM 31. If M is a factor of type I1;, A is a self-adjoint operator in M
that generates a masa A in M, E is a projection in A such that AE > M\E and
A(I — E) < X\(I — E) for some non-negative, real \, then 7(AB) < T7(AE), when
0<B<Iand 7(B) < 7(F), and 7(AB) = 7(AE) if and only if B=E.
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