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Non-commutative Conditional Expectations and their 
Applications 

Richard V. Kadison 

ABSTRACT. The motivation for viewing certain idempotent linear mappings 
from an operator algebra onto a subalgebra as "non-commutative conditional 
expectations" is explained starting from the classical, measure-theoretic mean-
ing of "conditioned expectation." The basic theory and several of the applica-
tions of non-commutative conditional expectations are studied in the operator-
algebra framework. 

1. Introduction 

This article is an extended version of a fifty-minute lecture delivered to a Special 
Session of the American Mathematical Society on January 15, 2003 in Baltimore, 
MD. My goal in that lecture was to explain how the classical, or what we shall 
refer to as, "commutative," case of measure and probability theory, with particular 
emphasis on the concept of conditional expectation can be made non-commutative 
and why it is important to do that. We include some of the beautiful results that 
have been proved in the non-commutative case and a few of the applications of 
non-commutative, conditional expectations. In many cases, the results along the 
way to a main result are new or new formulations of an older result. In most 
cases, there are new or "updated" proofs. Some of the concluding material, on 
"Schur Inequalities," is part of work-in-progress with W. B. Arveson. References 
such as "Corollary 8.3.12" are to the correspondingly numbered result in [K-R 
I,II,III,IV]. We use the notation of [K-R] as well. 

2. Background and preliminaries 

We begin with a background discussion that establishes much of our notation 
and many of the definitions we need. 

We deal with a complex Hilbert space 1i on which (x, y) denotes the inner 
product of x and y and llxll ( = (x, x)!) is the length or norm of the vector x. 
We use notation of the form T to denote a linear transformation of 1i into 1i 
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(referred to as an operator on H). Recall that such aT is continuous if and only 
if sup{ffTxff : ffxff ::; 1} = ffTff < oo, in which case, we say that T is bounded 
and ffTff is its bound or norm. Moreover, T--+ ffTff is a norm on B(H), the family 
of all bounded T on H. The family B(H) is an algebra under the operations, 
(aA + B)x = a(Ax) + Bx and (AB)x = A(Bx), of addition and multiplication, 
respectively. 

The metric topology defined by the norm on B(H) is referred to as the norm 
topology. 

The adjoint A* of an operator A in B(H) is the unique operator in B(H), 
satisfying (Ax, y) = (x, A*y) for each pair of vectors x andy in H. A subset F of 
B(H) is said to be self-adjoint when F = F*, where F* = {T* : T E F}. The 
principal structure we study, and the basis for our "non-commutative" extensions 
of classical analytic and measure-theoretic concepts is the C* -algebra. It is a norm-
closed, self-adjoint subalgebra A of B(H). For the purposes of this article, we may 
assume that IE A, where Ix = x for all x in H.) 

There are many reasons for studying operator algebras. One of the first moti-
vations for their study is their role as complex, group algebras for infinite groups, 
discrete and topological. If you want to study the structure and representations of 
a topological group, the operator algebra as group algebra provides a powerful tool 
[Se4 7]. An operator algebra is the main component of the most natural mathemati-
cal model of a quantum mechanical system. At the same time, operator algebras are 
a prominent tool in the study of families of measure (and measurability)-preserving 
transformations. 

Aside from studying the properties of a general C* -algebra, the main approach 
to understanding the structure of C* -algebras is to describe what families of C*-
algebras defined by certain common properties are like. Let me illustrate this, first, 
by describing abelian (that is, commuting) C* -algebras. 

THEOREM. Each abelian C* -algebra A is isomorphic to the algebra C(X) of 
complex valued continuous functions on a compact-Hausdorff space X (under point-
wise operations). Two such algebras are isomorphic iff the associated compact-
Hausdorff spaces are homeomorphic. Each C(X) is isomorphic to some abelian 
C* -algebra A. 

This theorem can be drawn directly from a result by Stone [St40] or from one 
in the famous 1943 Gelfand-Neumark paper [G-N43]. 

Another class of C* -algebras of central importance are constructed from a 
countably infinite, discrete group. Referring back to our introductory discussion, 
they are an operator-algebra group algebra for that group. 

Let G be a countable (discrete) group and H be h (G), that is 

{ 'P : :L fcp(g)f 2 < oo}, (cp,'l/J) = :L cp(g)'l/J(g). 
gEG gEG 

Let (L9 cp)(g') be cp(g- 1g') (cp E H). Then L 9 is a unitary operator. Let c;(G) 
(the reduced C* -group algebra of G) be the norm closure of the algebra generated 
by {L9 }. 

For our measure-theoretic purposes it is necessary to introduce the strong-
operator topology on B(H). It is the topology in which convergence of {An} to 
A means Anx --+ Ax for each x in H. Let .Cc be the strong-operator closure of 
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the algebra generated by {L9 }. The algebra £c is an example of a von Neu-
mann algebra - a C* -algebra that is strong-operator closed. Among the von 
Neumann algebras, those whose centers consist of scalar multiples of I are called 
factors. The general von Neumann algebra is not quite a direct sum of factors, 
rather, a "direct integral." (See Chapter 14 of [K-R2].) In a series of papers 
[M-vN36],[M-vN37],[M-vN43],[vN40] from 1936 to 1943, Murray and von Neu-
mann studied these factors intensively. They separated them into three main types. 
The factors of type I are those that have a minimal idempotent. Thus B(H) is a 
type I factor, where the projections on one-dimensional subspaces are minimal 
idempotents. 

THEOREM (Murray-von Neumann). Each type I factor is isomorphic to B(H) 
for some Hilbert space 1i. 

If 1i has dimension n, where n is a finite or infinite cardinal, we say that the 
factor is of type In. One of the classes of factors that Murray and von Neumann 
discovered, the factors of type II1 , has fascinating properties. Those factors have 
no minimal idempotents and admit a trace-like functional (a linear functional T 

such that, for all A and B, T(AB) = T(BA)). The behavior of those II1 factors 
resembles that of Mn(C) in many ways, among others, they are simple algebras-
but of course, they have infinite linear dimension. We have examples of them at 
hand. 

THEOREM. £c is a factor iff all conjugacy classes in G but { e} are infinite. 
In this case, Lc is a factor of type Ih. 

The free (non-abelian) group Fn on n(> 1) generators and II, the group of 
"finite" permutations of the integers, are examples of these i. c. c groups. 

THEOREM. L:Fn is not isomorphic to Ln. 

If x9 is the function that is 1 at the group element g and 0 at each other 
element of the group G, then x 9 is a generating and separating unit vector for 
the von Neumann algebra £c and the functional defined by: A----+ (Ax9 , x9 ) is a 
(faithful, normal) tracial state on Lc. The vector x 9 is referred to as a unit trace 
vector for f:c in this case. The set {x 9 : g E G} is an orthonormal basis for l2 (G). 

In the case of abelian von Neumann algebras measure theory enters the picture 
via deep results of von Neumann [vN31]. Let (S,f.L) be a IT-finite measure space, 
1i be L 2 (S, f.L), and f be an essentially bounded measurable function on S. Define 
Mt(g) to be f · g for each gin H. Let A be the set {Mt }. Then A is an abelian 
von Neumann algebra in no larger abelian subalgebra of B(H). We say that A is 
maximal abelian. Let us look at some specific examples. 

If S has a finite or countably infinite number of points, say n, and each point 
has a positive measure (each is an atom), we write An or Ad for A. If Sis [0, 1] and 
f.L is Lebesgue measure, we write Ac for A. If Sis [0, 1] (with Lebesgue measure) 
+ a finite or ( countably) infinite number of atoms, we write Ac EB An or Ac EB Ad 
for A. The atoms inS correspond to the minimal projections in A. Moreover, n is 
the number of atoms in S, if there are any. 

THEOREM. Each abelian von Neumann algebra on a separable Hilbert space is 
isomorphic to one of An, Ac, or Ac EB An- Each maximal abelian von Neumann 
algebra is unitarily equivalent to one of these. 
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From these results, measure spaces and the associated algebras of bounded 
measurable functions can be studied totally within the framework of abelian von 
Neumann algebras. In this framework, the random variables, that is, the measur-
able functions, on the probability space correspond to operators in the abelian von 
Neumann algebra. Where is the measure in the operator framework? What we 
have is the integration process associated with that measure - a linear functional 
p on the algebra A that assigns 1 to the identity operator I (that corresponds 
to the probability space having total measure 1) and assigns a non-negative real 
number to each positive A in A (corresponding to a positive measure). Such a 
functional is called a state of A. The same definition and terminology apply to all 
C*-algebras for that matter. For a von Neumann algebra R, we usually want p to 
satisfy a strong-operator continuity condition (corresponding to countable additiv-
ity of the measure). Specifically, we are primarily interested in normal states p of 
R: those such that p(I:aEA Ea) = p(E), where { Ea}aEA is an orthogonal family of 
projections in Rand E = I:aEA Ea. 

3. Conditional expectations 

To recall, the "expectation" or "expected value" of a random variable f or 
an observable A is the average or 'mean' of a "large" number of values of f or 
measurements of A at points of the measure (sample) space, or with the dynamical 
system in a given state. The average is taken with reference to the measure J..l 
on the total space, hence is J f dJ..L. The expectation of one random variable f 
"conditioned" by another g is, again, the average value of J, but at (sample) points 
at which g fulfills the prescribed conditions. In the most primitive instance, the 
condition may be that g have a given value .\. Say, the set of points at which 
that occurs is S. Then the "conditioned" expectation of f for that condition is 
J..L(S)- 1 fs f dJ..L. If we do this for the various values g may assume, we partition the 
space X into (disjoint) sets on each of which we calculate the expectation of f. The 
result is then a function / 0 , constant where g is constant- so fo is a function of g 
and lies in the algebra A(g) generated by g (and 1). When g takes on only a finite 
set of values (that is, g is a "step function" ), fo is a polynomial in g. If we start 
with a function f constant where g is constant, then fo is f. Thus the mapping 
f----> fo is idempotent. It is linear and positive (that is, fo 2 0 when f 2 0). Notice, 
too, that if we multiply an arbitrary random variable f by a function h in A(g) and 
form the "conditioned" expectation (hf) 0 of hf, then (hf) 0 = hfo, for on each of 
the "level" sets of g we have multiplied the expectation of f by the (constant) value 
assumed by h. Moreover, J f dJ..L = J fo dJ..L, from the definition of fo and since the 
distinct level sets are disjoint. 

Of course, we could "condition" f by several random variables g1 , g2 , ... , or an 
arbitrary family, or a subalgebra A of the algebra B of all (bounded) random vari-
ables. It is appropriate, now, to define the entire process we have been discussing, 
the mapping from random variables in B to those in a subalgebra A, by the features 
we have noted, as a conditional expectation (from B onto A). It adds no difficulty 
to make this definition for the non-commutative case (that is, the general case -
so, including the commutative case) and for a C* -algebra as well. 

DEFINITION. A positive, linear, mapping <I> of a von Neumann algebraS onto 
a von Neumann subalgebra R (S and R may be general C*-algebras as well) is 
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said to be a conditional expectation (of S onto R) when <I>(I) =I and <I>(R1SR2) = 
R1<I>(S)R2 if R1,R2 E RandS E S. 

From some basic operator-algebra theory, a positive-linear mapping taking I 
to I, such as <I>, has norm 1 (as a mapping between normed spaces). If we choose 
S and R2 to be I in the preceding definition, it follows that <I> is the identity on R, 
and is, therefore, an idempotent mapping of s onto n. 

PROPOSITION 1. Suppose that R and S are von Neumann algebras acting on 
a Hilbert space 1i, R ~ S, and <I> is a conditional expectation from S into R. For 
all SinS, 

(i) <I>(S*) = <I>(S)* 
(ii) <I>(S)*<I>(S) ~ <I>(S* S) 

(iii) II<I>(S)II ~ IISII· 
PROOF. (i) Each self-adjoint element H of S has the form H1 - H2, where 

H1,H2 E s+. Since <I> is a positive linear mapping, <I>(H1), <I>(H2) En+ and 
<I>( H)(= <I>(H1)- <I>(H2)) is self-adjoint. Each elementS of S has the form H +iK, 
where H and K are self-adjoint elements of S. From the preceding paragraph, 
<I>(H) and <I>(K) are self-adjoint. Thus 

<I>(S)* = [<I>(H) + i<I>(K)]* = <I>(H)- i<I>(K) = <I>(S*). 
(ii) When R E R(~ S) and S E S, we have (S- R)*(S- R) 2 0, and thus 

0 ~ <I>((S- R)*(S- R)) = <I>(S* S- R* S- S* R + R* R) 
= <I>(S* S) - R*<I>(S) - <I>(S)* R + R* R. 

When R is the element <I>(S) of R, we obtain 0 ~ <I>(S* S) - <I>(S)*<I>(S), so 
<I>(S)*<I>(S) ~ <I>(S* S). 

(iii) From (ii), and since S* S ~ IISII 2 I, we have 

<I>(S)*<I>(S) ~ <I>(S* S) ~ IISII 2<I>(I) = IISII 2 I, 

and thus II<I>(S)II 2 = II<I>(S)*<I>(S)II ~ IISII 2. Hence II<I>(S)II ~ IISII· o 
PROPOSITION 2. Let U be the unitary group in a von Neumann algebra R 

acting on a Hilbert space 1{. Suppose that con(T)- meets the commutant R', for 
each T in B(1i), where con(T)- denotes the weak-operator closure of the convex 
hull con(T) of the set {UTU* : U E U}. Let M be the set of all positive linear 
mappings 'P : B(1i) --+ B(1i) such that tp(I) = I, tp(R~ T R~) = R~ tp(T)R~, and 
tp(T) E con(T)-, when T E B(1i) and R~, R~ E R'. Let V(~ M) be the set of 
all mappings a : B(1i) --+ B(1i) that can be defined by an equation of the form 

a(T) = L:~= 1 ajUjTUJ, where U1, ... ,Uk E U and a1, ... ,ak are positive scalars 
with sum 1. Then 

(i) tp(R') = R' when 'P E M and R' E R'; moreover, 'Pl o tp2 E M when 
'Pl, 'P2 EM; 

(ii) M can be viewed as a closed subset of the topological space TirEB('H) Xr, 
where Xr is con(T)- with the weak-operator topology. 

(iii) If T0 E B(1i) and A~ E con(T0 )- n R', then A~ = '1/;(To) for some '1/J in 
M. 

(iv) IfT1, ... , Tn E B(1i), there is a 'Pin M such that tp(T1), ... , tp(Tn) E R'. 
(v) For each finite subset IF of B(1i), let Mw be { 'P EM : tp(T) E R'if T E IF}. 

The family of all such sets Mw has non-empty intersection. 
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(vi) There is a conditional expectation <I> from B (H) onto R', with the property 
that <I>(T) E coR.(T)- nR' for each Tin B(H). IfTo E B(H) and A~ E 
coR.(T0 )- nR', then <I> can be chosen so that <I>(To) =A~. 

PROOF. (i) If tp E M and R' E R', we have tp(R') = tp(R' II) = R'tp(I)I = 
R'. If tp1 ,tp2 E M, then tp1 o tp2 is a positive linear mapping from B(H) into 
B(H), and 'Pl('Pz(I)) = 'Pl(J) =I. Also, 'PI('Pz(R~TR~)) = 'Pl(R~tpz(T)R~) = 
R~tp 1 (tp 2 (T))R~, whenever R~,R~ E R' and T E B(H). In order to complete the 
proof that tp 1 o tp2 E M, we have to show that tp1 (tp2(T)) E coR.(T)- for each 
Tin B(H). Since tp2(T) E coR.(T)- and tp 1 (tp2(T)) E coR.(tp2(T))-, it suffices 
to show that coR.(TI)- <;;; coR.(T)- when T1 E coR.(T)-. Now it is apparent 
that USU* E coR.(T) whenever U E U and S E coR.(T). From this, together 
with the weak-operator continuity of the mapping A ---+ U AU*, it follows that 
USU* E coR.(T)- whenever U E U and S E coR.(T)-. In particular, coR.(T)-
contains the set { UT1 U* : U E U}, and so contains its weak-operator closed convex 
hull coR.(TI)-, when T1 E coR.(T)-. This completes the proof that tp 1 o tp2 EM 
when 'Pl,'P2 EM. 

(ii) The product space II is the set of all mappings n : B(H) ---+ B(H) such 
that n(T) E coR.(T)- for each Tin B(H), with the coarsest topology that makes 
each of the "coordinate mappings" n ---+ n(T) : II ---+ B(H) continuous relative to 
the weak-operator topology on B(H). Since the bounded closed set Xr is weak-
operator compact, it follows from Tychonoff's theorem that II is compact. The 
set M consists of those elements tp of II that satisfy the conditions tp(J) -I = 0, 
tp(aS+bT)-atp(S)-btp(T) = 0, tp(R~TR~)-R~tp(T)R~ = 0, tp(H) E B(Jt)+, when 
H E B(Jt)+, S, T E B(H), R~, R~ E R', and a, b E <C. Since each of the mappings 
n---+ n(I)- I, n---+ n(aS + bT)- an(S)- bn(T), n---+ n(R~TR~)- R~n(T)R~, and 
n---+ n(H), from II into B(H) (with the weak-operator topology) is continuous, M 
is the intersection of a family of sets, each one of which is the inverse image of a 
closed set (either {0} or B(Jt)+) under a continuous mapping. Hence M is a closed 
subset of II, and is therefore compact in the relative topology. 

(iii) If To E B(H) and A~ E COR.(To)- n R'' there is a net { sj} in COR.(To) that 
is weak-operator convergent to A~. For each index j, there exists an element a.J of 
V such that SJ = a.J(T0 ). Since M is compact, the net {a.J} has a subnet {a.Jk} 
that converges to an element '1/J of M. Since the "coordinate mapping" n---+ n(To) 
is continuous, 

'1/!(To) = li~ a.Jk (To) = li~ SJk = li_F SJ = A~. 

(iv) Given T1 in B(H), suppose A~ is in coR.(T1)- n R'. By (iii), A~ = tp(T1 ) 

for some tp in M. This proves the stated result in the case in which n = 1. Now 
suppose that r is a positive integer, and the stated result has been proved in the 
case in which n = r. Accordingly, given T1 , ... , Tr+l in B(H), there is an element 
tpo of M such that tp0 (T1 ), ... , tpo(Tr) E R'. If A' E coR.('Po(Tr+l))-nR', from (iii), 
'lj!(tpo(Tr+I)) =A' (E R') for some '1/! in M. Moreover, '1/!(tpo(Tj)) = tpo(Tj) (E R') 
when 1::::; j::::; r, by (i). If tp is 'I/Jotp0 (in M), we have tp(Tj) E R' (j = 1, ... , r+ 1). 
This completes the proof by induction of the result stated in (iv). 

(v), (vi) ForT in B(H), the subset {tp EM: tp(T) E R'} of M is closed, since 
R' is (weak-operator) closed in B(H) and the mapping tp ---+ tp(T) : M ---+ B(H) 
is continuous. Thus MJF (a finite intersection of sets of the type just considered) 
is closed in M, for each finite subset F of B(H). Moreover, MJF is not empty, by 
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(iv). Since MJF, n MJF2 = MJF,uJF2 , the family {MJF} of all such sets has the finite 
intesection property. Since M is compact, the intersection of all the sets MJF is not 
empty. With <I> in this intersection, <I> E M and <I>(T) E R' for each T in B(H). 
Thus <I> is a conditional expectation from B(H) onto R', with the property that 
<I>(T) E coR(T)- n R' for each Tin B(H). 

Given T0 in B(H) and A~ in coR(T0)-nR', choose '1/J as in (iii). Then <I>o'l/J EM, 
and <I> o 'ljJ maps B(H) into R' (because <I> does so). Hence <I> o 'ljJ is a conditional 
expectation from B(H) onto R', (<I> o '1/J)(T) E coR(T)- n R' for each Tin B(H), 
and 

(<I> o 'l/J)(T0 ) = <I>('l/J(T0 )) = <I>(A~) =A~. 
D 

PROPOSITION 3. Suppose that R is a von Neumann algebra acting on the 
Hilbert space H, and there is a family {Ra}aEA of finite-dimensional *subalgebras 
of R such that if a, b E A, then there is a c in A for which Ra U Rb ~ Rc, and 
R = (UaEARa)-. For each A in B(H), coR(A)- meets R'. There is a conditional 
expectation of B(H) onto R'. 

PROOF. We may assume that IE Ra, whence the unitary group of R contains 
that of Ra, for each a in A. The unitary group of a finite-dimensional von Neumann 
algebra S has a finite subgroup whose linear span is S. To see this, suppose first 
that S is a type In factor, and let { Ejk : j, k = 1, ... , n} be a self-adjoint system 
of matrix units for S. With S(n) the symmetric group of all permutations of the 
set {1, 2, ... , n} and F the class of all mappings from {1, 2, ... , n} into {1, -1 }, 
define V(f, 1r) = 2:?=1 f(j)E1C(j)j where f E F and 1r E S(n). Then, the set 
{V(f, 1r) : f E F, 1r E S(n)} is a finite subgroup V of the unitary group of S. (In 
terms of matrices relative to { E1k}, V is generated by the group of permutation 
matrices and the group of diagonal matrices with ±1 at each diagonal entry.) The 
linear span of V contains each E1k, and is, therefore, all of S. Note that V =-V. 

The general finite-dimensional von Neumann algebra S is (*isomorphic to) 
a finite direct sum 2:;'=1 tBS1 of finite-dimensional factors S 1 , ... , Sm. From the 
preceding, the unitary group of S1 has a finite subgroup V1 ( = - V1) whose linear 
span is S1. Thus V ( = {2:;:1 tB V1 : Vj E V1}) is a finite subgroup of the unitary 
group of S, and has linear spanS. 

We note next that, for each a in A, coR(A) meets R~. Let V be a finite 
subgroup of the unitary group Ra, whose linear span is Ra: and define T to be 
n-1 l:vEV V AV*, where n is the order of V. Then T E coR(A) and, since left 
translation by an element W of V permutes V, we have 

WTW* = n-1 L (WV)A(WV)* = T 
VEV 

for each Win V. Thus WT = TW for every Win V. Hence T E R~ n coR(A). 
For each a in A, the convex set Sa = R~ n coR(A) is non-empty, from what 

we have just proved, and is weak-operator compact since it is closed and bounded. 
When a, bE A, we can choose c in A so that Ra URb ~ Rc, and then Sa nSb :2 Sc. 
Thus the family {Sa}aEA has the finite intersection property. Since Sa is compact, 

0 i= n Sa= n R~ n COR(A)- = R' n COR(A)-. 
aEA aEA 

D 
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One of the most profound uses of conditional expectations in the theory of 
operator algebras is the partial converse of A. Connes [Co76] to Proposition 3: 
Each factor of type II1 on a separable Hilbert space 1i that is the range of a 
conditional expectation from B(1i) is isomorphic to .Crr. 

PROPOSITION 4. Let n be a von Neumann algebra of type In acting on a Hilbert 
space H.. There is a family {Ra}aEA of finite-dimensional *subalgebras of R such 
that if a, bE A, then there is a c in A for which RaURb ~ Rc, and R = (UaEARa)-. 

PROOF. Consider, first, the case in which n is n ® c, where c is an abelian 
von Neumann algebra. Let lK be a set with cardinality n, so that each element of 
n ® C is represented by a matrix (Cj,k)j,kEK with entries in C. Let A be the set 
of all pairs (IF, A), in which IF is a finite subset of lK and A is a finite-dimensional 
* subalgebra of C. When a = (IF, A) E A, let Ra be the set of all elements of 
n ® C with matrices (Cj,k) such that Cj,k E A for all j and k in lK and Cj,k = 0 
unless j, k E IF. From the proof of Corollary 8.3.12, the set of all finite-dimensional 
*-subalgebras of an abelian von Neumann algebra C is directed by the inclusion 
relation ~' and has union norm-dense in C. It follows that the set A is directed by 
the relation:::;, in which (IF1,Al):::; (IF2,A2) if and only if IF1 ~ IF2 and A1 ~ A2, 
and that {Ra : a E A} is an increasing net of finite-dimensional *-subalgebras of 
n ®C. For each finite subset IF of !K, let E(IF) be the projection in n ® C whose 
matrix has I in the (k, k) position when k E IF and has 0 in all other entries. When 
R En® C, E(IF)RE(IF) has a matrix (Cj,k) in which Cj,k = 0 unless j, k E IF, and 
Cj,k E C when j, k E IF. Each of the finite set of non-zero elements Cj,k can be 
approximated in norm, as closely as we please, by an element Aj,k of some finite-
dimensional *-subalgebra Aj,k of C. Then, E(IF)RE(IF) is approximated in norm 
by an element of Ra, where a= (IF, A) with A a finite-dimensional* subalgebra of 
C that contains Uj,kEJF Aj,k· It follows that the norm closure (UaEA Ra)=, and also 
the weak-operator closure (UaEA Ra)-, contains E(IF)(n ® C)E(IF) for each finite 
subset IF of lK. Since V E(IF) =I, we have (UaEA Ra)- = n ®C. 

Given any type In von Neumann algebra R, by Theorem 6.6.5 there is an 
abelian von Neumann algebra C and a *-isomorphism t.p from n ® C onto R. With 
Ra(a E A) constructed as in the preceding paragraph, {rp(Ra) : a E A} is an 
increasing net of finite-dimensional *-subalgebras of R. Now t.p is isometric, and 
gives rise to a homeomorphism between the unit balls (n®Ch and (Rh in the weak-
operator topology, by Remark 7.4.4. By Kaplansky density, (UaEA Rah is weak-
operator dense in (n ® Ch; so (UaEA t.p(Ra)h is dense in (R)1, and UaEA t.p(Ra) is 
dense inn. 0 

COROLLARY 5. IfR is a type I von Neumann algebra acting on a Hilbert space 
H., then there is a conditional expectation from B(1i) onto R'. 

PROOF. There is an orthogonal family {Qk : k E JK} of central projections in 
R, with sum I, and (for each k in JK) a cardinal n(k) such that RQk is of type 
In(k)· By the result of Proposition 4, there is a family :Fk of finite-dimensional * 
subalgebras of RQk that is directed upward by the inclusion relation ~' and has 
union weak-operator dense in RQk. Given any finite subset {k(1), ... , k(m)} of 
lK and any choice of Rj in :Fk(j) (for each j = 1, ... , m), the linear span R1 + 
· · · + Rm of Uj:1 Rj is a finite-dimensional * subalgebra of R. The set of all such 
algebras R 1 + · · · + Rm is directed by ~' with union ultraweakly dense in R. From 
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Propositions 2 and 3, there is a conditional expectation <I> from !3(H) onto R', such 
that <I>(T) E con(T)- n R' for all Tin !3(H). D 

PROPOSITION 6. Suppose that n is a von Neumann algebra acting on a Hilbert 
space H, and A is an abelian von Neumann subalgebra of R. Then there are con-
ditional expectations, <I> from !3(H) onto A, and\]! from !3(H) onto A'. Moreover, 
there are conditional expectations, <I> 0 from R onto A, and w 0 from R onto RnA'. 

PROOF. As in the proof of Lemma 8.2.3, the von Neumann algebra A' is of 
type I. From Corollary 5, there is a conditional expectation <I> from !3(H) onto 
A"(= A). The restriction <I>JR is a conditional expectation from R onto A. 

Since A is of type I (in fact, of type II), there is a conditional expectation \]! 
from !3(1i) onto A'. Since coA(T)- meets A', for each Tin !3(H) (Propositions 3 
and 4), \]! can be chosen in such a way that w(T) E coA(T)- n A' for each T in 
!3(H), by Proposition 2. Let U(~ R) be the unitary group of A. When R E R, R 
contains the set {U RU* : U E U}, and therefore contains the weak-operator closed 
convex hull COA(R)- of that set. Accordingly, w(R) En n A' for R inn. Since \]I 

is a conditional expectation from B(H) onto A', it follows that the restriction wJR 
is a conditional expectation w0 from R onto RnA'. D 

THEOREM 7. If R and S are von Neumann algebras acting on a Hilbert space 
H, such that R ~ S and S has a faithful normal tracial state T, then, for each 
elementS ofS, there is a unique element <p(S) ofR such that T(SR) = T(<p(S)R) 
for each R in R. The mapping 'P : S ----> R defined is an ultraweakly continuous 
conditional expectation from S onto R, and is faithful in the sense that <p(S) -/:- 0 
when 0 -/:- S E s+. 

PROOF. If H E s+, the equation p(R) = T(HR) defines a positive normal 
linear functional p on n (for positivity, note that p(R) = T(H 112RH112)). With 
H replaced by JJHJJI- H, it follows that the mapping R ----> T(JJHJJR- HR) = 
IIHIIT(R)- p(R) is a positive linear functional on n. Thus 0:::; p:::; IIHIJT. From 
Theorem 7.3.13, there is a Ko in (R+)I such that p(R) = ~ IIHIIT(KoR + RKo) = 
JJHJJT(K0R) for each R in R. This proves the first assertion when S is a positive 
element H, with <p(H) the element IIHIIKo of n+. 

An arbitrary S E S can be expressed as a linear combination of four positive 
elements of S. From what we have proved, there is an element So of R such that 

(t) T(SR) = T(S0 R) (R E R). 
If S1 (in the von Neumann algebra R) has the property just ascribed to S0 , then 
T((S1- So)R) = 0 for each R in R; in particular, T((S1- So)(Sl- S 0 )*) = 0. Since 
T is faithful, s1 = So. Hence there is a unique element So of n that satisfies (t), 
and we define <p(S) to be S 0 . 

Suppose that S, S1, S2 E S, R1, R2 E R, and a1, a2 E C. For each R in R, 

T(<p(a1S1 + a2S2)R) = 7((a1S1 + a2S2)R) = a1 T(S1R) + a2T(S2R) 

= a1T(<p(SI)R) + a2T(<p(S2)R) = T((a1<p(SI) + a2<p(S2))R), 

and 

In addition, 
T(<p(I)R) = T(R) = T(IR). 
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From these equations, and the uniqueness we have proved 

<p(a1S1 + a2S2) = a1<p(SI) + a2<p(S2), <p(R1SR2) = R1<p(S)R2 

and <p(J) =I. Moreover, if H E s+, it follows, from the first part of the proof, that 
<p(H) is an element H 0 of R+. Thus <pis a conditional expectation from S onto R. 

Suppose that s E s+ and <p(S) = 0. Since Tis faithful and T(S) = T(<p(S)) = 0, 
S = 0. Hence <p is faithful. 

In order to prove that <p is ultraweakly continuous, we have to show that w o <p E 
Su whenever w E Ru. Since Ru is the linear span of its positive elements (see Remark 
7.4.4), we may assume that w is a positive normal linear functional on R. Then, 
w o <p is positive, and we have to prove that w o <p is normal. Suppose that { Ha} 
is a monotone increasing net of self-adjoint elements of S, with least upper bound 
H in S. Since <p is a positive linear mapping, the net { <p(Ha)} in R is monotone 
increasing, has <p(H) as an upper bound in R, and therefore has a least upper bound 
K(~ <p(H)) in R. Since Tis normal, T(K) =lima T(<p(Ha)) =lima T(Ha) = T(H) = 
T(<p(H)); so <p(H)- K 2 0 and T(<p(H)- K) = 0. Since Tis faithful, <p(H) = K. 
Since w is normal, it now follows that lima w(<p(Ha)) = w(K) = w(<p(H)). Thus 
w o <p is normal (and <p is ultraweakly continuous). D 

To better understand what Theorem 7 is telling us, it is helpful to examine the 
case where S (and hence, R) is commutative. For the purposes of this illustration, 
we assume that R and S have no atoms and that S acts on a separable Hilbert space 
1{. From Corollary 5.5.17, there is a separating unit vector u for S. The vector 
state Wu IS is a faithful, normal, tracial state T of S and its restriction To to R is 
such a state of R. Let 1{0 be [Ru]. Then RIHo is maximal abelian in B(Ho) (from 
Corollary 7.2.16). From Theorem 9.4.1 (compare [vN31]), we may identify 1{0 with 
L2([0, 1], f.L), where f.1 is Lebesgue measure on [0, 1], u with the constant function 
1 on [0, 1], and RIHo with the "multiplication algebra" of ([0, 1], f.L). If X 0 is a 
measurable subset of [0, 1], then multiplication by the characteristic ("indicator") 
function of X on L2([0, 1], f.l) corresponds to a projection Eo in R, and T(Eo) = 
To(E0 ) = (E0u, u) = f.l(Xo). With SinS, the functional Ts on R defined by 

Ts(R) = T(SR) = (SRu, u) (R E R), 

gives rise to a measure f.lo on [0, 1], where 

f.lo(Xo) = Ts(Eo) = T(SEo) = (SEou, u) = (EoSEou, u) = (SEou, Eou). 

If S 2 0, then 

0 ~ (SEou, Eou) = f.lo(Xo) ~ IISIIIIEoull 2 

= liS II (Eou, Eou) = liS II (Eou, u) = IISIIf.l(Xo). 

Thus when S 2 0, f.lo is absolutely continuous with respect to f.l· From the 
Radon-Nikodym theorem, there is a (positive) function fo in L1 ([0, 1], f.1) such that 
f[o,l] g df.lo = f[o,I] gfo df.l, for each essentially bounded, f.lo-measurable function g 
on [0, 1]. In a formal sense, df.lo = fo df.l, or df.lo/df.l = fo: fo is the Radon-Nikodym 
derivative of f.lo with respect to f.l· 

Note that T(SR9 ) = f[o,l] g df.lo = f[o,l] gf0 df.l, where R9 is the operator in R 
corresponding to multiplication by g. Since 
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for each JL-essentially bounded g on [0, 1], IIR9 II = ll9lloo, and 

I r gfo djLI :::; IISIIII9IIoo, 
}[0,1] 
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we have that fa is JL-essentially bounded with llfolloo:::; IISII· Thus there is an Rto 
in R such that IIRto II= llfolloo:::; IISII· Moreover, 

T(Rt0 R9 ) = T(Rt09 ) = { fogdJL = T(SR9 ). 
}[0,1] 

From Theorem 7, there is a unique cp(S) in R such that T(SR) = T( cp(S)R) for 
each R in R. Since each R in R is of the form R9 for some JL-essentially bounded 
g on [0, 1], Rto = cp(S). 

The foregoing discussion shows us that, when we have constructed cp(S), we 
have constructed the R.adon-Nikodym derivative of JLo with respect to JL, or referring 
to the associated integration processes rather than the measures, cp(S) is the Radon-
Nikodym derivative of To with respect to T. Theorem 7 applies to general (non-
commutative) S and R; there is every reason to regard cp( S) as the general (non-
commutative) Radon-Nikodym derivative of To with respect toT in this case as well. 
If S is not finite (hence, not abelian) and R is abelian, from Proposition 6 there 
is still a conditional expectation of S onto R, though it may not be ultraweakly 
continuous [Ta72], [To59], [K-S59]. 

Recall that the von Neumann algebra £a has a faithful tracial state T defined 
by T(A) = (Axe,XeJ· When z E l00 (G), let Mz (in B(l2(G))) be multiplication by 
the function z. 

THEOREM 8. Let G be a discrete group with unit element e, <I> be a conditional 
expectation from B( l2 (G)) onto Co, and p be the linear functional on l00 (G) defined 
by 

p(z) = T(il>(Mz)) (z E l00 (G)). 

Then p is an invariant mean on G. 
The following three conditions are equivalent: 

(1) There is a conditional expectation from B(l2 (G)) onto Co (= R'c); 
(2) There is an invariant mean on G; 
(3) For each Tin B(l2(G)), con0 (T)- meets R0. 

PROOF. As defined in the statement, pis a bounded linear functional on l00 (G), 
and IIPII :::; 1, since IITII = 1, II<I>II :::; 1 by Proposition 1, and IIMzll = llzlloo when 
z E l00 (G). If u is the element of l00 (G) that takes the value 1 throughout G, then 

p(u) = T(il>(Mu)) = T(il>(I)) = T(I) = 1. 

When z E loo(G), y E l2(G), and g, hE G, we have 

(Lx MzLx* y)(h) = (MzL~ y)(g- 1h) 
g g g 

= z(g- 1h)(Lx* y)(g- 1h) = z(g- 1 h)y(h) = (Mz y)(h) 
g g 

and Lx 9 MzL; 9 = Mz 9 , where z9 (in loo(G)) is defined by z9 (h) = z(g- 1 h). In 
the notation of Exercise 3.5.7 (dealing with invariant means on groups), z9 is T9 z. 
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Since Lx and L~ lie in the range £c of the conditional expectation <I>, and Tis a 
9 9 

tracial state of £c, we have 

(Tgp)(z) = p(T9 z) = p(z9 ) = r(<I>(Mz9 )) 

= r(<I>(Lx 9 MzL~ 9 )) = r(Lx9 <I>(Mz)L;9 ) = r(<I>(Mz)) = p(z). 

Hence TJp = p for each gin G, and pis an invariant mean on G. Thus (1) implies 
(2). 

Suppose, now, that pis an invariant mean on G. Since l00 (G) is a C*-algebra 
with unit u (as defined before), and p is a bounded linear functional on l00 (G) 
satisfying IIPII :::::; 1 = p(u), it follows (Theorem 4.3.2) that pis a state of l00 (G). 
Given Tin B(l2 (G)) and x,y in l2(G), the complex-valued function Zx,y, defined at 
gin G to be (R~ 9 TRx 9 X, y), is an element of l00 (G), the mapping x-+ Zx,y is linear 
for each fixed y, the mapping y -+ Zx,y is conjugate-linear for each fixed x, and 
llzx,ylloo:::::; IITIIIIxiiiiYII· It follows that the equation b(x,y) = p(zx,y), for x andy 
in h (G), defines a bounded conjugate-bilinear functional b on l2 (G); corresponding 
to b, there is an element Ar of B(h(G)) such that 

(*) (Arx,y) = p(zx,y) (x,y E l2(G)). 

If hE G, and x,y E l2(G), we have (R~hArRxhx,y) = (Aru,v) = p(zu,v), 
where u = Rxhx and v = RxhY· Also, for each gin G, 

Zu,v(g) = (R; 9 TRx 9 U,v) = (R; 9 TRx9 RxhX,RxhY) = (R;h 9 TRxh9 X,y) = Zx,y(hg). 

Since pis an invariant mean, p(zu,v) = p(zx,y); that is (R~h ArRxhx, y) = (Arx, y). 
Thus R~h ArRxh = Ar, for each h in G, and Ar E { Rxh : h E G}' = R'c. 

If Ar rJ. coRa (T)-, there is a weak-operator continuous linear functional w 
on B(h(G)) and a real number c such that Rew(Ar) > c ~ Rew(S) when S E 
coRa ( T)). In particular, 

(**) Rew(Ar) > c ~ Rew(R;9 TRx9 ) (g E G). 

By expressing w as a finite sum of vector functionals Wx,y, and using ( *) and the 
definition of Zx,y, it follows that w(Ar) = p(zw), where Zw (in l00 (G)) is defined by 
Zw(g) = w(R~ 9 TRx 9 ) forginG. Since Rezw(g) :::::; c for all gin G, by (**),and p 
is a state of l00 (G), we have c < Rew(Ar) = Rep(zw) :::::; c, a contradiction. Thus 
ArE coRa(T)-, and (2) implies (3). 

From Proposition 2, (3) implies (1). D 

THEOREM 9. No group containing :F2 has an invariant mean. In particular, 
:F2 has no invariant mean. 

PROOF. Let a and b be the two generators of :F2 , and letS be the set of reduced 
words in :F2 that begin with a non-zero power of b. We note that :F2 = S U bS and 
that S, aS, a2 S are disjoint. When X <:;;: :F2 , the characteristic function fx is in 
loo(F2), and 

f 9x = T9 fx (g E F2), 
where T9 y(h) is defined as y(g- 1 h) (hE G, y E l2(:F2)). The inequalities 

fs + fbs ~ fF2 ~ fs +!as+ fa2s 

can be written in the form fs+nfs ~ fF2 ~ fs+Tafs+Ta2fs. If pis an invariant 
mean on :F2 , these inequalities imply that 2p(fs) ~ 1 ~ 3p(fs) (recall that pis a 
state of Zoo (G)), which is impossible. Thus :F2 has no invariant mean. 
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Let G be a (discrete) group containing :F2 and {gk : k E ll{} be elements of 
G such that the cosets :F2gk and :F2gk' are disjoint unless k = k' and such that 
G = ukEIK :F2gk. Let So be ukEIK Sgk. Then 

SoU bSo = ( U Sgk) U b ( U Sgk) = U (S u bS)gk = U :F2gk = G 
kEIK kEIK kEIK kEIK 

and So, aS0 , a2So are disjoint. The argument given before applies now, with So in 
place of S, to show that G does not have an invariant mean. 0 

LEMMA 10. Let B be a C* -subalgebra of the C* -algebra !l, 'Po an idempotent 
linear mapping of !l onto B such that II'Poll = 1, ~ acting on 1i the universal 
representation of~ and, in this representation, E a projection in B-. Then 

(i) cp0 is a positive linear mapping of~ onto B such that cp0 (I) =I; 
(ii) cp0 extends uniquely to an ultraweakly continuous idempotent linear map-

ping cp of~- onto B- such that II'PII = 1, and cp is positive; 
(iii) wxo'P is a state of!l- definite onE ifllxll = 1 and x E E(1i)U(I -E)(1i); 
(iv) the equations Ecp(EA)E = Ecp(AE)E = Ecp(A)E, Ecp(EAE)E = 

Ecp(A)E, and (I- E)cp(EA)(I- E) = (I- E)cp(AE)(I- E) = 0 hold for 
each A in ~-, and cp(EAE) = Ecp(A)E for each A in ~-; 

(v) cp(EA(I- E)) = (I- E)cp(EA(I- E))E + Ecp(EA(I- E))(I- E) if 
AE~-. 

PROOF. (i) Since I E B, and cp0 is idempotent with range B, cp0 (I) = I. If p 
is a state of B, then (p o cpo)(I) = 1. Since liP o 'Poll ::::; IIPIIII'Poll = 1, p o 'Po is a 
state of !l by Theorem 4.3.2. If H is in~+, p(cpo(H)) 2:: 0 for each state p of B. 
Since cpo(H) E B, cpo(H) E B+ by Theorem 4.3.4(iii). Thus 'Po is a positive linear 
mapping of !l onto B. 

(ii) By assumption, cp0 is a bounded linear mapping of~ onto B. If w is an 
ultraweakly continuous linear functional on B, then w o cpo is a bounded linear 
functional on !land hence is ultraweakly continuous from Proposition 10.1.1. Thus 
cp0 is ultraweakly continuous and extends uniquely to an ultraweakly continuous 
linear mapping cp of~- into B- such that II'PII = II 'Poll = 1. Since B- ~ ~-, cp o cp 
is defined, ultraweakly continuous, and coincides on !l with 'Po o 'Po (='Po = cpl~). 
The ultraweakly continuous mappings cp o cp and cp agree on the ultraweakly dense 
subset !l of !l- so that they agree on~-. Hence cp is idempotent. 

Since the unit ball of B is contained in the unit ball of ~ and II'PII = 1, cp 
maps the ultraweakly compact unit ball of~- onto an ultraweakly compact (hence 
closed) subset of B- that contains (B)I. From the Kaplansky density theorem 
(B)1 = (B-)1. Hence, cp(~-) =B-. From (i), cp is positive. 

(iii) Since cp(I) = cpo(I) =I, (wx o cp)(I) = 1. From (ii), cp is a positive linear 
mapping of !l- onto B- so that Wx o cp is a state of~-. As E 2 = E, the states 
p of~- that are definite on E are those such that p(E) = p(E2) = p(E)2; that 
is, the states definite on E are precisely those that take the value 1 or 0 at E. 
Since E E B- and cp is idempotent with range B-, (wx o cp)(E) = wx(E). When 
x E (I- E)(1i), (wx o cp)(E) = 0, and when x E E(1i), (wx o cp)(E) = 1. Thus 
Wx o cp is definite on E when x is a unit vector in either E(1i) or (I- E)(1i). 

(iv) From (iii) and Exercise 4.6.16, when x in E(1i) or in (I- E)(1i) has norm 
1, for all A in~-, then (wx o cp)(EA) = (wx ocp)(E)(wx o cp)(A) = Wx(E)(wx ocp)(A). 
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Thus, with x a unit vector in E(1i), ('P(EA)x,x) = ('P(A)x,x). This same equality 
holds for all x in E(1i), so that Eip(EA)E = E1p(A)E. 

With x a unit vector in (I- E)(1i), we have ('P(EA)x, x) = 0. This same 
equality holds for all x in (I- E)(1i). It follows that (I- E)ip(EA)(I- E)= 0. 

In the same way, E1p(AE)E = E1p(A)E and (I- E)'P(AE)(I- E) = 0 for all 
A in 'X-. Thus E1p(EAE)E = E1p(AE)E = E1p(A)E. 

Since 'Pis a positive linear mapping (by (ii)) and, with A self-adjoint, -IIAIIE:::; 
EAE :::; IIAIIE, we have that -IIAIIE = -IIAII'P(E) :::; 'P(EAE) :::; IIAII'P(E) = 
IIAIIE. Hence 'P(EAE) = Eip(EAE)E = Eip(A)E.· 

(v) From (iv), 

'P(EA(I- E)) E1p(EA(I- E))E +(I- E)'P(EA(I- E))E 
+ E'P(EA(I- E))(I- E)+ (I- E)'P(EA(I- E))(I- E) 

(I- E)'P(EA(I- E))E + E'P(EA(I- E))(I- E), 

for each A in 'X-. 0 

The theorem that follows is, in essence, the result first proved by Tomiyama in 
[To57]. 

THEOREM 11. With the notation and assumptions of Lemma 10, 'P is a con-
ditional expectation from 'X- onto s- and 'Po is a conditional expectation from 'X 
onto B. 

PROOF. With x a unit vector in 1i, 

IIET(I- E)x +(I- E)SExll 2 = IIET(I- E)xll 2 +II(!- E)SExll 2 

< IIET(I- E)II 2 II(I- E)xll 2 +II(!- E)SEII 2 11Exll 2 

:::; max {IIET(I- E)ll 2 , II(!- E)SEin. 

The last inequality follows from the fact that its left side is a convex combination 
of IIET(I- E)ll 2 and II(!- E)SEII 2 . On the other hand, 

IIET(I- E)ll sup{IIET(I- E)yll: IIYII:::; 1} 
sup{IIET(I- E)zll: z =(I- E)y, IIYII:::; 1} 
sup {IIET(I- E)zll : z E (I- E)(1i), liz II :::; 1} 
sup {II[ET(I- E)+ (I- E)SE]zll : z E (I- E)(1i), llzll :::; 1} 

< IIET(I- E)+ (I- E)SEII· 

Similarly, II(!- E)SEII:::; IIET(I- E)+ (I- E)SEII, so that 

IIET(I- E)+ (I- E)SEII = max{IIET(I- E) II, II(!- E)SEII}. 

Suppose (I- E)ip(EA(I- E))E -1- 0. Then for all large positive integers n, 

IIE'P(EA(I- E))(I- E) II :::; lln(I- E)ip(EA(I- E))EII, 
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so that from what we have proved and Lemma 10(v), and since r.p is an idempotent 
with range B- and norm not exceeding 1, 

nii(I- E)r.p(EA(I- E))EII 

= ma.x{lln(I- E)r.p(EA(I- E))EII, IIEr.p(EA(I- E))(I- E)ll} 
IIEr.p(EA(I- E))(I- E)+ n(I- E)r.p(EA(I- E))EII 
IIEr.p(EA(I- E))(I- E)+ (I- E)r.p(EA(I- E))E 

+ (n- 1)(1- E)r.p(EA(I- E))EII 
llr.p(EA(I- E)+ (n- 1)(1- E)r.p(EA(I- E))E)II 

< IlEA(!- E)+ (n- 1)(1- E)r.p(EA(I- E))EII 
= (n- 1)11(1- E)r.p(EA(I- E))EII, 

a contradiction. Thus (I- E)r.p(EA(I- E))E = 0. 
From this and Lemma 10(v), 

r.p(EA(I- E))= Er.p(EA(I- E))(I- E). 

Thus for each A in !l-, from(*) and Lemma 10(iv), 

r.p(A) = r.p(EAE) + r.p(EA(I- E)) 

so that 

+ r.p((I- E)AE) + r.p((I- E)A(I- E)) 

= Er.p(EAE)E + Er.p(EA(I- E))(I- E) 

+ (I- E)r.p((I- E)AE)E +(I- E)r.p((I- E)A(I- E))(I- E); 

Er.p(A) Er.p(EAE)E + Er.p(EA(I- E))(I- E) 

r.p(EAE) + r.p(EA(I- E)) 

r.p(EA). 

Similarly, r.p(AE) = r.p(A)E for each A in !l-. 
Let B be a self-adjoint element in B- and A be in !l-. From Theorem 5.2.2(v), 

given a positive c, there is a (finite) orthogonal family {E1, ... , En} of projections 
in B- and (real) scalars a1, ... , an such that liB- I:j=1 aiEill < c/(2IIAII). From 
the preceding, we have 

llr.p(BA)- Br.p(A)II 

< ~(BA)- ~ ( (t,a;E;) A) + ~ ( (t, a;E;) A) - B~(A) 
< BA - (t, a;E;) A + (t, a;E;) ~(A) - B~(A) < e. 

Thus r.p(BA) = Br.p(A) and similarly, r.p(AB) = r.p(A)B for each B in B- and each 
A in !l-. 

From Lemma lO(ii), r.p is a positive linear mapping of!l- onto B-and r.p(J) =I. 
From the preceding, r.p(BAC) = Br.p(A)C for each A in !l- and B, C in B-. Thus 
r.p is a conditional expectation from !l- onto B-. 
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Since <po maps !l onto B and is the restriction of <p to !l, from the preceding, it 
is immediate that <po is a conditional expectation from Qt onto B. D 

Sakai's characterization [Sa56] of those G*-algebras that are *-isomorphic to 
von Neumann algebras can be proved elegantly with the aid ofTomiyama's theorem. 

THEOREM 12. Suppose the G*-algebra !lis {linearly isomorphic and isometric 
to) the norm dual of a Banach space Qt~. Then !lis *isomorphic to a von Neumann 
algebra (Qt is a W*-algebra). 

PROOF. Let 'fJ be the natural injection ofQt~ into !l~. Suppose~ E (!l~h· Then, 
with van element of !l~~, since 'fJ is an isometry, ll(v o ry)(~)ll :::; llviiiiTJ(~)II :::; II vii, 
and v o rJ is a bounded linear functional on !l~. By assumption, !l is the norm dual 
of !l~. Thus there is an A in !l such that v o rJ = A, and A is unique. Let !l acting 
on 1t be the universal representation of !l, and let A--+ A be the (isometric linear) 
isomorphism (of Proposition 10.1.21) between Qt- and QtU. Let cp(B) be the unique 
element of !l, just obtained, such that B o 'fJ = cp(B), where BE Qt-. 

Let A be an element of !l (in Qt-). We show that cp(A) =A. Since <pis a linear 
mapping of Qt- onto !l, this will show that <pis an idempotent mapping of Qt- onto 
Qt. With ~ in !l~, 

cp(A)(~) = (A o ry)(~) = ry(~)(A) =A(~). 

Thus cp(A) =A. At the same time, if BE (!l-)1, then BE (!l~~h and llcp(B)(~)II = 
II(B o ry)(~)ll:::; IITJ(~)II = 11~11· Thus llcp(B)II :::; 1. It follows that llcpll :::; 1, and from 
Theorem 11, <p is a conditional expectation from Qt- onto Qt. 

Let K be <p- 1(0). We show that K is a weak-operator closed two-sided ideal in 
Qt-. Note first that K is weak-operator closed. We have that A E Kif and only if 
(A o ry)(~) = 0 for all~ in !l~. Now ry(~) E !l~. Then there are vectors x(~) andy(~) 
in 1t such that ry(~) = Wx(e),y(e) l!l. Thus A E K if and only if Wx(e),y(e) (A) = 0 for 
all~ in !l~. It follows that K is weak-operator closed. 

Since <p is a conditional expectation from Qt- onto !l, cp(BAG) = Bcp(A)G for 
each A in Qt- and B, G in Qt. Thus, if A E K, 0 = Bcp(A)G = cp(BAG), and 
BAG E K. By weak-operator continuity of left (and then right) multiplication, 
BAG E K when A E K and B, G E Qt-. Hence K is a weak-operator-closed two-
sided ideal in Qt-. 

Let P be the central projection in Qt- such that K = Qt-P. (See Theorem 6.8.8.) 
Since <pis idempotent, A- cp(A) E K for each A in Qt-. Thus A- <p(A) E Qt-P 
and A- <p(A) = [A- cp(A)]P. It follows that 

A(I- P) = cp(A)(I- P) E !l(J- P). 

Hence Qt-(J- P) = !l(J- P). 
If A E Qt and 0 =fA (= cp(A)), then Art K so that Art Qt-P. Thus A =f AP 

and A(I - P) =f 0. Since P commutes with !l, the mapping A --+ A(I - P) of 
!l onto Qt(J- P) is a *-homomorphism and from the foregoing, this mapping is 
a *-isomorphism. As we have just proved, !l(J - P) = Qt- (I - P), so that !l is 
*-isomorphic to the von Neumann algebra Qt-(J -P) (acting on (I -P)(H)). Hence 
!l is a W* -algebra. D 

The theorem that follows is a formulation of Tomiyama's "slice-mapping" tech-
niques [To70]. 
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THEOREM 13. Let R and S be von Neumann algebras and p and f7 be non-zero 
elements of Ru and Su, respectively. 

(i) There is a unique element p ® f7 of (R@S)u such that (p ® e7)(R ® S) = 
p(R)e7(S) (R E R, s E S), liP® (711 = IIPIIII(JII· 

(ii) There are unique operc:tors <I>a(T) and IJ!p(T) in R and S, respectively, 

corresponding to each T in R®S, satisfying 

for each p' in Ru and each f7 1 in Su. 
(iii) <I> a and IJ! P are ultraweakly continuous linear mappings of R@S onto R 

and S, respectively, for which 

<I>a((A ® I)T(B ®I))= A<I>a(T)B 

IJ! p((I ® C)T(I ®D)) = CIJ! p(T)D 

for each Tin R@S, A, B in R, and C, D inS, and 

<I>a(R ® S) = e7(S)R, IJ! p(R ® S) = p(R)S (R E R, S E S). 

(iv) <I>a(T) E Ro and IJ!p(T) E So ifT E Ro®So, with Ro and So von Neu-
mann subalgebras of R and S, respectively. 

( v) T E Ro®So if <f> a' (T) E Ro and IJ! p' (T) E So for each f7 1 in Su and each 
p' in Ru. 

PROOF. (i) Theorem 11.2.10 assures us that we may consider RandS in their 
universal normal representations on Hilbert spaces 1t and K, respectively, without 
loss of generality. In this case, there are vectors x andy in 1t of length IIPII 112 and 
u and v inK of length llf711 112 such that p = Wx,yiR and f7 = Wu,viS from Corollary 
7.3.3. The equation 

(p ® e7)(T) = (T(x ® u), y ® v) (T E R®S) 

defines an ultraweakly continuous linear functional p ® f7 on R®S. With R in R 
and SinS, we have 

(p ® e7)(R ® S) = ((R ® S)(x ® u), y ® v) = (Rx, y)(Su, v) = p(R)e7(S). 

If R E (R)I and S E (S)I, then R® S E (R®S)I and 

lp(R)IIe7(S)I = l(p®e7)(R®S)I:::; IIP®C711· 

Hence 11PIIIIf711 :SliP® f711· On the other hand, with Tin (R ® S)I, we have 

I(P®e7)(T)I = I(T(x®u),y®v)l:::; llxlllluiiiiYIIIIvll = IIPIIII(JII· 

Thus IIP®C711 :S 11PIIIIf711, and IIP®e711 = 11PIIIIf711· Since operators of the form R®S, 
with R in RandS inS, generate an ultraweakly dense linear submanifold of R®S, 
there is at most one linear functional on R®S with the properties prescribed for 
p ® (7. 

(ii) From the uniqueness clause of (i), 

( ap + p') ® f7 = a(p ® f7) + p' ® f7. 

Thus the mapping 

(p' E Ru) 
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is a linear functional on R~. Since 

I(<I>.,-(T))(p')l = l(p' 0 a)(T)I:::; lip' 0 aiiiiTII = llp'llllaiiiiTII, 

<I>.,-(T), as defined, is an element of (R~)~. Thus <I>.,-(T) E R from Theorem 7.4.2. 
Symmetrically, \]! p(T) E S. 

(iii) Since 

p'(<I>.,-(aT + i'')) (p' 0 a)(aT + T') = a(p' 0 a)(T) + (p' 0 a)(T') 
ap'(<I>.,-(T)) + p'(<I>.,-(T')) 
p' (a <I>" (T) + <I>" (T')) 

for each p' in Ru, <I>.,- is a linear mapping. Moreover, 

i'---+ p'(<I>.,-(T)) = (p' 0 a)(T) (T E R®S) 

is continuous from R®S with its ultra weak topology to C for each p' in R~. Hence 
<I>.,- is an ultraweakly continuous linear mapping from R®S into R. 

With A, B, and R in R, SinS, p' in R~, and p" the element of Ru whose value 
at R0 in R is p'(ARaB), we have 

Thus 

p' (<I>.,-( (A 0 I)(R 0 S)(B 0 I))) (p' 0 a)((ARB) 0 S) 
p'(ARB)a(S) 
p"(R)a(S) 
(p" 0 a)(R 0 S) 
p"(<I>.,-(R 0 S)) 
p'(A<I>.,-(R 0 S)B). 

<I>.,-((A 0 I)(R 0 S)(B 0 I))= A<I>.,-(R 0 S)B. 

Now the mappings 

T---+ <I>.,-((A 0 I)T(B 0 I)), T---+ A<I>.,-(T)B 

are ultraweakly continuous linear mappings of R®S into R that agree on generators 
of an ultraweakly dense linear submanifold of R®S. Hence they agree on R®S. 
The symmetric argument applies to \]! P' and the first relations set out in (iii) are 
established. With R in R, S in S, and p' in R~, we have 

p' ( <I>.,-(R 0 S)) = (p' 0 a)(R 0 S) = p' (a(S)R). 

Thus <I>.,-(R 0 S) = a(S)R and \]! p(R 0 S) = p(R)S. It follows that <I>.,- maps onto 
Rand \]! P maps onto S. 

(iv) From the last relations established in the proof of (iii), <I>.,-(T) E R 0 when 
T = R0 0 S with R0 in R 0 and S in S. Since operators of the form R0 0 So 
(Ro E R 0 , So E So) generate an ultraweakly dense linear submanifold of R 0 0S0 

and <I>.,- is an ultraweakly continuous linear mapping, <I>.,- maps R 0 0S0 into R 0 . 

Symmetrically, \]! P maps Ra®So into S0 • 

( v) Suppose T in R®S is such that <I>.,-' (T) E R 0 and \]! p' (T) E S0 for each a' 
in Su and p' in Ru. 
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With A' inn~, X and u in 1{, andy and v inK, let a' be Wy,viS, p1 be Wx,A'*ui'R, 
and p11 be WA'x,ui'R. Then 

((A'® I)T(x ® y), u ® v) (p' ® a')(T) = p'(<I>a'(T)) 
(A'<I>a'(T)x, u) = (<I>a'(T)A'x, u) 
p"(<I>a'(T)) = (p11 ®a1)(T) 
(T(A'x®y),u®v) 
(T(A' ® I)(x ® y), u ® v). 

Thus T commutes with 'R~ ® CI. Symmetrically, T commutes with CJ ® Sb. 
Thus T E (R~®Sb)'. From Theorem 11.2.16 and the double commutant theorem, 
(R~®Sb)' = Ro®So. Hence T E Ro®So. D 

THEOREM 14. Let n and s be von Neumann algebras acting on Hilbert spaces 
1{ and K, respectively. Suppose R 0 and So are von Neumann subalgebras of'R and 
S, respectively. 

(i) (R~ n R)0(Sb n S) = (Ro®So)' n (R0S). 
(ii) A®B is a maximal abelian subalgebra of R@S if and only if A and B are 

maximal abelian subalgebras of R and S, respectively. 
(iii) C@V is the center of R@S when C is the center of R and V is the center 

ofS. 
(iv) R~ n R = CI and Sb n S = CI if and only if we have that the intersection 

(Ro®So)' n (R0S) is CI. 

PROOF. (i) If R E 'R~ n Rand S E Sb n S, then R ® S commutes with Ro®So. 
Thus 

(R~ n R)0(Sb n S) <:;;; (Ro®So)' n (R0S). 
Suppose T E (Ro0So)'n(R0S), A E 'Ro, pERu, and a E Su. Then, from Theorem 
13(iii), 

A<I>a(T) = <I>a((A ® I)T) = <I>a(T(A ®I))= <I>a(T)A. 
Hence A<I>a(T) = <I>a(T)A and <I>a(T) E R~ n R for each a in Su. Symmetrically, 
\fl p(T) E Sb n S for each pin Ru. From Theorem 13(v), 

i' E (R~ n R)0(Sb n S). 

Hence 
(Ro®So)' n (R0S) <:;;; ('R~ n R)0(Sb n S). 

Combining this with the reverse inclusion, noted earlier, we have the formula of (i). 
(ii) If A and Bare maximal abelian in RandS, respectively, then A' n n =A 

and B' n S = B. Thus 

(A0B)' n (R0S) = (A' n R)0(B' n S) = A@B, 

from (i), and A®B is maximal abelian in R@S. If A@B is maximal abelian in R@S 
and T in R commutes with A, then 

T ®IE (A' n R)0(B' n S) = (A0B)' n (R0S) = A®B. 

From Theorem 13(iii) and (iv), T = <I>a(T ®I) EA. Thus A is maximal abelian in 
R. Symmetrically, B is maximal abelian in S. 

(iii) From (i), 

(R0S)' n (R0S) = (R' n R)0(S' n S) = C@V. 
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But (R®S)' n (R®S) is the center of R®S. 
(iv) If the tensor product of two von Neumann algebras is the algebra of scalar 

multiples of I, then each of the von Neumann algebras is the algebra of scalar 
multiples of I. From (i), then, each of R~ n Rand Sb n Sis CI if and only if 

(Ro®So)' n (R®S) = CI. 

0 

4. Applications to Jones index 

Although it is not our intention to carry the discussion of the Jones index to an 
advanced level, we shall describe the basic role that conditional expectations play 
in the development of the theory around the Jones index and give a careful presen-
tation of the initial portions of that subject in terms of conditional expectations. 
The conditional expection described in Theorem 7 is an absolutely crucial element 
of the Jones index theory. We denote the conditional expectation 'P constructed in 
Theorem 7 by <I>:k. When the context makes clear the von Neumann algebra from 
which we are mapping (S in the present case), we write <I>n in place of <I>~. We 
begin by gathering some more information about that conditional expectation. 

PROPOSITION 15. If M is a von Neumann algebra with a faithful tracial state T 
and N is a von Neumann subalgebra then <I> N is the unique conditional expectation 
of M onto N that lifts the tracial state TN ( = T MIN) to the trace T M on M; that 
is 

(A EM). 
If P is a von Neumann subalgebra of N, then 

<I>~ = <I>~ 0 <I>~ . 

PROOF. From the defining property (t) of <l>N 

TN(<l>N(A)) = TN(<l>N(A)I) = TM(AI) = TM(A) 

whence <I> N lifts TN to T M. 

(A EM), 

If <I> is a conditional expectation of M onto N that lifts TN to T M, then 

(A EM). 

Thus TN((<I>N- <I>)(A)) = 0 for each A in M. Since <l>N and <I> are conditional 
expectations onto N, 

0 = TN((<l>N- <I>)(A(<l>N- <I>)(A)*)) = TN((<l>N- <I>)(A)(<l>N- <I>)(A)*). 

As TN is faithful, (<I>N- <I>)(A) = 0 (A EM), and <l>N =<I>. 
Of course, <I>~ o <I>~ is a linear mapping of M into P. If A E P, then since 

P s;;; N, (<I>~ o<I>tt)(A) = <I>~(A) =A. In addition, <I>~ o<I>tt is positive since each 
of <I>"if and <I>tt is positive. At the same time, 

TM(T) = TN(<I>tt(T)) = Tp(<l>~ (<I>~(T)) (T EM). 

Thus <I>~ o <I>tt lifts Tp to T M, and <I>~ = <I>~ o <I>tt. 0 

PROPOSITION 16. If M is a factor acting on a Hilbert space 1t with a unit, 
trace vector u, N is a von Neumann subalgebra, and EN is the orthogonal projection 
on 1t with range [Nu] (inN'), then ENTu = <l>N(T)u for each Tin M. 
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PROOF. With Tin M, note that 

(Tu- iPN(T)u, Su) = TM(S*T)- TN(S*iPN(T)) = 0 (SEN), 

from the defining condition for iPN(T). Thus Tu- iPN(T)u is orthogonal to [Nu] 
and, since iPN(T)u E [Nu], 

(T EM). 

0 

In the discussion of Jones index, that follows, we refer to Jones [Jo83], Pimsner-
Popa [Pi-Po86], and to the masterful account of this and many related matters in 
[E-K98]. Let M be a factor of type 111 acting on a Hilbert space 1t with a cyclic, 
unit, trace vector u. If N is a subfactor of M such that N' is of finite type, then 
N' is a finite factor with a tracial state T 1• We call T'(E;!)-1 the index of N in M 
and denote it by '[M: N].' In this case, we say that N has finite index in M. Note 
that, since 1t = [M'u] ~ [N'u], T(E;!') = 1, and T(E;!')jT'(E;!), the coupling 
constant dN(H) of Nand N', is T'(E;!)-1, the index [M: N] of the subfactor N 
inM. 

As defined, [M : N] is an (isomorphism) invariant ofthe (ordered) pair (M,N). 
To see this, let P be a factor of type 111 with a cyclic, unit, trace vector v, acting 
on a Hilbert space K, Q a subfactor, and 'ljJ a * isomorphism of M onto P that 
carries N onto Q. From Theorem 7.2.9, there is a unitary transformation of 1t 
onto K that implements 'lj;. Thus dN(H) = dQ(K), and [M : N] = [P: Q]. Since 
dM (H) = 1 and dN(H) = [M : N], we have that 

(:j:) [M: N] = dN(H)/ dM(H). 

This formula is valid no matter what the coupling constant is for M and M'. (See 
Proposition A5 of the appendix to this section.) 

PROPOSITION 17. If M is a finite factor and S and N are subfactors such that 
S ~ N and S' is finite, then 

(i) [M : M] = 1; 
(ii) [M : S] ?: 1; 

(iii) [M: S] = [S': M']; 
(iv) [M: S] = [M: N][N: S]; 
(v) if[M: N] = [M: S], then N = S. 

PROOF. We may assume that M acts on the Hilbert space H with a unit, 
cyclic, trace vector u. 

(i) Since T'(E/:) = 1, [M : M] = 1. 
(ii) Since T'(E~):::; 1, [M: S] ?: 1. 

(iii) Since ds(H) = T(Et)/T'(E~) (for each unit vector x in H), ds,(H) = 
ds(H)- 1 and 

[M: SJ = ds(H)/ dM(H) = dM'(H)/ ds,(H) = [S': M']. 

(iv) Note that 

[M. S] = ds(H) = ( ds(H)) ( dN(H)) = [M. N][N. S] 
. dM(H) dN(H) dM(H) . . . 
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(v) If [M : N] = [M : S], then T 11 (E~) = T 11 (E;;'), where T 11 is the tracial 
state on S'. As E~ :::; E;j and T 11 is faithful, E~ = E;j. Thus if H is 
a self-adjoint operator inN, there is a sequence {T1,T2 , ... } inS such 
that Tnu ----> Hu in 1-i. As u is a trace vector for M, T~u ----> Hu. Thus 
Hnu----> Hu, where Hn = ~(Tn +T~). Let h be the continuous, real-valued 
function on JR. that takes the value t for each tin [-IIHII, IIHII], vanishes 
on [-oo, -IIHII - 1] u [IIHII + 1, oo], and is linear on [-IIHII- 1, -II Hill 
and [IIHII, IIHII + 1]. Then h(H) = H, and llh(Hn)ll :::; IIHII for each n. 
Moreover, from Exercise 12.4.32(ii), h(Hn)u----> h(H)u = Hu. Of course, 
each h(Hn) E S. Since u is cyclic for N' and {h(Hn)} is a bounded set, 
h(Hn) is strong-operator convergent to H. Thus HE SandS= N. 

0 

PROPOSITION 18. If M is a finite factor acting on a Hilbert space 1-i, u is a 
cyclic trace vector forM and N is a von Neumann subalgebra, then 

(i) ENAEN = <J?N(A)EN (A EM); 
(ii) A in M, is inN if and only if AEN = ENAEN, if and only if ENA = 

AEN, and EN is separating forM; 
(iii) N' is the von Neumann algebra generated by M' and EN; 
(iv) the von Neumann algebra M1 generated by M and EN is the strong-

operator closure F of {Ao + 'E]=1 AjENBj : Aj, Bj EM} 
(v) NEN = ENM1EN; 

(vi) the central carrier of EN relative toN' and to M 1 is I; 
(vii) M 1 is a factor if and only if N is a factor; 

(viii) M1 is finite if and only if N' is. 

PROOF. (i) With Bin Nand A in M, from Proposition 16 

EN ABu= <J?N(AB)u = <J?N(A)Bu. 

Thus ENAEN = <J?N(A)EN since {Bu: BEN} is dense in EN(1i). 
(ii) Suppose A EM and AEN = ENAEN. Then, from (i), 

AEN = ENAEN = <J?N(A)EN. 

Hence Au = <J?N(A)u. As u is separating for M, EN is separating for M, and 
A= <J?N(A) EN. From Proposition 16, EN EN', whence AEN = ENA in this 
case. Of course, AEN = EN AEN when AEN = EN A . 

(iii) From (ii), 

N = M n {EN}'= (M' U {EN})'. 

Thus N' = (M' U {EN})", the von Neumann algebra generated by M' and EN. 
(iv) Since F contains M and EN, and F is a self-adjoint family, it remains to 

note that F is an algebra. For this, note that, with A, B, C, and Din M, 

(AENB)(CEND) = AENBCEND = A<J?N(BC)END, 

from (i). As <I?N(BC) EN, A<J?N(BC) EM and (AENB)(CEND) E F. 
(v) Since EN E N', AEN = ENAEN E ENFEN s;;; ENM1EN (A E N), 

and NEN s;;; ENM 1EN. To establish the reverse inclusion, note that if A = 
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Ao + E7=l AjENBj, with Aj and Bj in M, then 

EN AEN ~ [ '~>N(Ao) + t, 'I> N(A; )'l>N(B;) l EN EN EN, 

from (i). Thus EN:FBN ~ NEN. Since T ___. ENTEN is weak-operator continuous 
on B(H) and M 1 is the strong, hence, weak, -operator closure ofF, from (iv), we 
have that ENM1EN is the weak-operator closure of ENFEN. It follows that 
ENM1EN ~ NEN. Thus NEN = ENM1EN. 

(vi) From Proposition 5.5.2, the central carrier of EN relative toN' has range 
[N' EN(H)], which contains [N'u] (2 [M'u] = H). Thus EN has central car-
rier I relative to N'. The range of the central carrier of EN relative to M 1 is 
[M1EN(H)] which contains [MEN(H)]. But [MEN(H)] contains [Mu], which is 
H, by assumption. This proves (vi). 

(vii) From Proposition 5.5.6, ENM1EN has center CEN, where Cis the cen-
ter of M 1. From (v), ENM 1EN = NEN, whence CEN is the center of NEN. 
From (vi), EN has central carrier I relative to M 1. As C ~ M~, C and CEN are 
isomorphic. At the same time, EN has central carrier I relative to N' from (vi), 
whence Nand NEN are isomorphic. Hence M 1 is a factor if and only if CEN is 
one dimensional, which is the case if and only if N is a factor. 

(viii) With A in M, let J0 Au be A*u. then J0 is a conjugate-linear, involutive, 
isometric mapping of the dense linear manifold {Mu} of H onto itself. Let J be its 
extension to such a mapping of H onto itself. Note that, from (i) and Proposition 
16, 

JENJAu = JENA*u = JENA*ENu = J<PN(A*)ENu 

= J<PN(A)*u = <PN(A)u =EN Au 

for each A in M. Thus JENJ =EN. 
Note, next, that JMJ = M', whence M = JM' J. To see this, choose A, B, 

and C, in M. Then Ju = Jiu = I*u = u, and 

JAJBu = JAB*u = BA*u = BJAu = BJAJu. 

Thus 
JAJBCu = BCJAJu = BJAJCu, 

whence JAJB = BJAJ (since [Mu] = H), and JAJ E M'. It follows that 
JMJ~M'. 

From Theorem 7.2.15, for each A in M, there is a unique A' in M' such that 
Au= A'u and A*u = A'*u. Thus J' defined, forM' and u, as J was forM and 
u, coincides with J. From what we have proved, then, 

JM'J = J'M'J' ~ M" = M, 

and M' ~ JMJ. Hence JMJ = M'. 
It follows, from (iii), that 

JN' J = J{M' U {EN}}" J = {M U {EN}}"= M1, 
whence M 1 is finite if and only if N' is. D 

We refer to the process by which we arrived at M 1 and the projection EN, with 
the properties described as the basic construction for the factor M, the subfactor 
N, and the trace vector u. 
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PROPOSITION 19. Let M be a factor of type Ih acting on a Hilbert space 1-l 
with unit, cyclic, trace vector u and N be a subfactor such that N' is finite. 

(i) The von Neumann algebra M 1 generated by M and the projection EN is 
a factor of type Ih, TM 1 (EN) = [M : Af]-1, [M1 : M] = [M : Af], and 
ip M (EN) = [M : Af] -l I, where ip M is the conditional expectation of M 1 

onto M that lifts TM to TM 1 • 

(ii) There is a subfactor P of N and a projection E in M n P' such that 
TM(E) = [M : Af]-1, ipN(E) = [M : Af]-1 I, ETE = ipp(T)E for each 
T in N, where ipp is the conditional expectation of N onto P that lifts 
Tp to TN, and M is generated by Nand E. 

PROOF. (i) From Proposition 18 (vii), (viii), M 1 is a finite factor since N' is a 
finite factor. Since N' is a finite factor and contains the factor M' of type II1, N' 
must be a factor of type II1. From the proof of Proposition 18 (viii), M 1 = JN' J. 
Hence M1 is a factor of type II1. 

The mapping A ---+ JA* J (= 'P(A)) is bijective on B('H), since J2 = I and 
'P2 (A) =A (A E B('H)). In addition, since J is conjugate linear and u is a trace 
vector for M, 

(J* Au, Bu) = (JBu, Au)= (B*u, Au)= (A* B*u, u) 
= (B*A*u,u) = (JAu,Bu) (A,BEM). 

Thus J = J*, and 'f?(A*) = JAJ = (JA*J)* = 'P(A)* for each A in B('H). More-
over, we have that 

'P(AB) = JB* A* J = JB* JJA* J = 'P(B)'P(A) (A, BE B('H)). 

Hence 'PIM and 'PIM1 are* anti-isomorphisms of M onto M' and M 1 onto N', 
respectively. Thus 

(tt) TM 1 (EN)= TN'(EN) = TN'(E';j) = [M: Af]- 1, 

by definition of the index [M : Af]. At the same time, 

[Ml: M] = dM('H)/ dM, ('H)= dM, ('H)-1 = dN,('H)-1 

= [TN'(E';j)/TN(E';j')]-1 = TN'(E';j)- 1 = [M: A!]. 
To see that ipM(EN) = [M: Af]-1 I, we note, first, that TN= 7', where 

(TEN). 
Since N is a factor, it suffices to show that 7' is a tracial state on N. Of course, 7' 
is linear. In addition, 7' is positive since TM 1 is and EN is a positive operator (a 
projection) inN'. Also, f(I) = [M: AfJTM1 (EN)= 1, from (tt). Finally, 

i'(TS) = [M: Af]TM 1 (TSEN) = [M: Af]TM, (TENS) 

= [M :AfJTM 1 (STEN) =i'(ST) (S,TEN). 

It follows that, with A in M, 

TM, (ENA) = TM, (ENAEN) = TM, (ipN(A)EN) 

= [M: Af]-1TN(ipN(A)) = [M: Af]- 1TM(A) 

= TM([M: Af]- 1IA), 

whence ip M (EN) = [M : Af] -l I, by definition of ip M. 
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(ii) We note, first, that there is a faithful, normal representation of M on a 
Hilbert space such that N has coupling 1. To see this, we start with M in its 
trace representation on a Hilbert space 1i with u a unit, cyclic, trace vector for 
M. Choose a projection F' in M' such that (TN'(F') =) TM'(F') = [M: N]- 1 = 
TN'(E;j). Since F' and E;j are equivalent inN', F' is a cyclic projection inN' 
(from Proposition 6.2.9). Let x be a unit vector in 1i such that F' (H) = [N x]. 
From Theorem 7.2.12, E(/' and E;j' (=I) are equivalent inN. Since N is finite, 
E{j' =I. Thus NF' and its commutant F'N' F' acting on F'(H) (= K) have x as 
a joint generating vector. As M and N are factors and F' is a non-zero projection 
in M' (~ N'), the mapping A---+ AF' of M onto MF' is a* isomorphism of M 
onto MF' and N onto NF', with commutants F'M'F' and F'N'F', respectively, 
from Proposition 5.5.5. 

Henceforth, we assume that M and N act on K. Since N has coupling 1, from 
Lemma 7.2.8, there is a unit, cyclic, trace vector v for N. We now form the basic 
construction for the factor N' of type II1 , the type II1 subfactor M', and the trace 
vector v. This gives us a projection E in M ( = M") such that EA' E = <PM' (A')E 
for each A' inN', Nand E generate M, TM(E) = [N': M']-1 = [M: N]-I, and 
<PN'(E) = [M : NJ-1 I, where <PN' is the conditional expectation of N{, the von 
Neumann algebra generated by N' and E, onto N' that lifts TN' to TN'· 

1 
The mapping Av---+ A*v (A EN) extends, as in the proof of (i), to a conjugate-

linear, isometric, involutive, self-adjoint mapping J' of K onto itself such that J' v = 
v and J' E J' = E. If <p1 (T) = J'T* J', then <p1 is an involutory, * anti-automorphism 
of B(K) that maps M onto N{, N onto N', and M' onto a subfactor P of N. Then 
[N: P] = [N': M'] = [M: N]. Moreover, <p1 o<PN' ot.p' = <PN, <p1 o<PM' ot.p1 = <Pp, 
and <p'(E) =E. Thus E EM n P', TM(E) = [M: N]- 1 , <PN(E) = [M: N]-1I, 
ETE = <Pp(T)E (TEN). 0 

PROPOSITION 20. Let M be a factor of type Ih acting on a Hilbert space 1i 
with u a unit, cyclic trace vector and let N be a subfactor. Then with M 1 as in 
Proposition 18 (viii}, for each A in M 1 , there is a unique element B in M for 
which AEN =BEN, B = [M: N]<PM(AEN), and II Bit :::; [M: NJIIAII· 

PROOF. We argue as in the proof of Proposition 18(v). If 
n 

A=Ao+ L_AjENBj 
j=l 

with A1 and B1 in M, then A E F. In this case, AEN = [Ao+ L7=l Aj<PN(Bj)]EN, 
and Ao + L7=l Aj<PN(Bj) (=B) is in M. From Proposition 19(i), 

[M: N]<PM(AEN) = [Ao + ~Aj<PN(Bj)] [M: N]<PM(EN) 

n 

Ao + L_Aj<PN(Bj) =B. 
j=l 

Thus A---+ (A- [M: N]<PM(AEN))EN is an ultraweakly continuous mapping that 
vanishes on F and, hence, on M 1 , the ultraweak closure of F. It follows that, with 
A in M1, 

0 
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In the theorem that follows, we construct a system of elements, known as a 
Pimsner-Popa basis in a factor of type II1 with special properties relative to a 
subfactor of finite index. 

THEOREM 21. If N is a subfactor of finite index n+a, with n a positive integer 
and a in [0, 1), of a factor M of type Ih, then there are elements B 1 , ... , Bn+l in 
M such that 

(i) if>N(Bj Bk) = 0 when j =1- k; 
(ii) if>N(BjBJ) =I if j E {1, ... ,n}, and if>N(B~+ 1 Bn+d = F, where F is a 

projection inN such that TN( F) = a; 

(iii) L-7:t{ BJENBj =I; 

(iv) L-7:t{ BJBJ = [M: N]I; 

(v) T = L-7:t{ Bjif>N(BjT), for each Tin M. 

PROOF. Let M 1 be the von Neumann algebra generated by M and EN. From 
Proposition 19, M 1 is a factor of type II1 and if> M(EN) = [M : N]- 1 I= (n+a)- 1 I. 
There is a projection E1 in M such that TM 1 (E1 ) = TM 1 (EN) = [M : N]- 1 . There 
is a subprojection E2 of I- E1 in M, such that TM 1 (E2 ) = TM 1 (EN). Continuing 
in this way, we produce a set E 1 , ... , En+l of mutually orthogonal projections in 
M such that TM 1 (Ej) = [M : N]- 1 when j E {1, ... , n}, En+l = I- L-7=1 Ej, 

and TM 1 (En+d = a[M: N]-1 . Since each Ej is equivalent to EN in M 1 , for j 
in { 1, ... , n}, there are partial isometries V1 , ... , Vn in M 1 such that Vj* Vj = EN 
and Vj Vj* = Ej. As 0 :::; a < 1, there is a partial isometry Vn+ 1 in M 1 such that 
V,-;'+1 Vn+l =Eo < EN and Vn+l V,-;'+1 = En+l· Thus VjEN = Vj for all j. From 
Proposition 20, there is a unique Bj in M such that Vj = VjEN = BjEN. Hence, 
when j and k are distinct, 

0 = Vj* Ek Vk = Vj*Vk =EN Bj BkEN = if>N(Bj Bk)EN 

and with j in {1 ... , n}, 

EN= Vj*Vj = ENBjBJEN = if>N(BjBj)EN. 

Since EN has central carrier I inN', from (vi) of Proposition 18, we conclude 
that if>N(Bj Bk) = 0 when j =1- k, and if>N(Bj Bj) = I when j E {1, ... , n }. In 
addition, 

Eo= V,_;'+lVn+l = ENB~HBn+lEN = if>N(B~+lBn+l)EN. 
Now, T --+ TEN is a * isomorphism of N onto NEN. As if>N(B~HBn+l)EN 
is a projection, if>N(B~+ 1 Bn+l) is a projection inN. From the proof of (i) of 
Proposition 19, 

This proves ( i) and ( ii) . 
At the same time, 

TN( if>N(B~+l Bn+l)) 
[M: NjTM 1 (if>N(B~HBn+dEN) 

[M: N]TM 1 (Eo)= [M: N]TM 1 (En+l) 

[M: N]a[M: N]-1 =a. 

n+l n+l n+l 
I= L,:Ej = LVfVj* = L,:BjENBj, 

j=l j=l j=l 
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which proves (iii). From this, (iv) follows since 

n+1 

I = <l>M(I) = L <l>M(BjENBj) 
j=1 

n+1 n+1 

L Bj<l>M(EN)Bj = [M: N]- 1 L BjBj. 
n=1 j=1 

To prove (v), we note, from (iii), that 
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from which (v) follows, since EN is separating forM ((ii) of Proposition 18). 0 

COROLLARY 22. In the notation of Proposition 18, if [M : N] = n +a, where 
n is a positive integer and a E [0, 1), then 

PROOF. The preceding theorem implies that there is a Pimsner-Popa basis 
{B1 , ... , Bn+l} in M. With Sin M 1 , for each j in {1, ... , n }, there is a (unique) 
Aj in M such that SBjEN = AjEN from Proposition 20. It follows from (iii) of 
Theorem 21 that 

n+1 n+1 

S = L SBjENBj = L AjENBj E Fo. 
j=1 j=1 

Thus M1 = Fo. 0 

PROPOSITION 23. If M is a factor of type Ih acting on a Hilbert space 1t and 
N is a subfactor such that N' is finite, then <l>N(A) ~ [M: NJ- 1 A (A EM+). 

PROOF. From Proposition 19, there is a subfactor P of Nand a projection E 
in M commuting with P such that <l>N(E) = [M : NJ-1 I, ETE = <l>p(T)E for 
each Tin N, and M is generated by E and N. If A is a positive element in M, 
then A = BB* for some B in M. From Theorem 21, there is a Pimsner-Popa 
basis B1, ... , Bn for N relative toP. From (the proof of) Corollary 22, there are 
operators A1, ... , An inN such that B = 2:::7=1 Aj EBj. Thus 

n n 

L Aj<l>p(BjBk)EA'k = 2:Aj<l>p(BjBj)EAj 
j,k=1 j=1 
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n 

L Aj<I>p(Bj Bj )<I>N(E)Aj 
j=1 

n 

[M: N]-1 L Aj<I>p(BjBj)Aj 
j=1 

n 

> [M: N]-1 LA1<I>p(BjB1)EAj 
j=1 

D 

Jones index- Appendix. In this appendix, we prove the assertion (:j:) (Propo-
sition A5) as well as other basic identities involving d.Af('H) and dM (7-l). 

LEMMA Al. If M is a finite factor acting on a Hilbert space 7-l and E' is a 
non-zero projection in M', then 

dME'(E'('H)) = TM'(E')dM('H). 

PROOF. Note that the mapping A -+ AE' is a * isomorphism of M onto 
ME' (acting on E'('H) with commutant E' M' E') from Proposition 5.5.5. Thus 
TME'(AE') = TM(A) when A E M. At the same time, TE'M'E'(E'A'E') = 
TM'(E')- 1TM'(E' A' E') for each A' in M'. 

Let x be a unit vector in E'('H). Note that E~' M' E' = E' E.;t' and E.;tE' = 
E.;t. Thus 

E'M'E' ME' TME'(Ex )/TE'M'E'(Ex ) 
TME' (E' E.;t')jTM' (E')- 1TM' (E;t) 

I M' M TM'(E )TM(Ex )/TM'(Ex ) 
TM'(E') dM('H). 

D 

COROLLARY A2. If M is a finite factor acting on a Hilbert space 7-l and N is 
a subfactor, with N' finite, then 

dN('H)/dM ('H) = d.AfE' (E'('H))/ dME' (E'('H)) 
where E' is a non-zero projection in M'. 

LEMMA A3. If M is a finite factor acting on a Hilbert space 7-l and K is an 
n-dimensional Hilbert space, with n finite, and M = M ® Ch;, then d M (7-l ® K) = 
ndM('H). 

PROOF. Choosing an orthonormal basis forK, we represent 7-l®K as 7-lfB· · ·fB'H, 
the n-fold direct sum of 7-l with itself. In this representation, M appears as the 
algebra of diagonal matrices with the same element of M at each diagonal entry. 
(We write A for this matrix, corresponding to the element A in M and note that the 
mapping A-+ A is a* isomorphism of M onto M.) The commutant M' appears 
as the algebra of n x n matrices with arbitrary entries from M'. The matrices act 
on column vectors (x1, ... , Xn) (x1 E 7-l). 
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Let x be a unit vector in 1{ and x be (x, 0, ... , 0) in 1{ 0 K. Then Ef is the 
matrix whose only non-zero entry is E:;t at the 1,1 entry and Ef' is the diagonal 
matrix with E:;t' at each diagonal entry. Thus TJVt.,(Ef) = n-1TM'(E:;t) and 
TJVt.(Ef') = TM(E:;t'). It follows that 

dJVt.('H 0 K) TJVt.(Ef')ITJVt.,(Ef) 
M' 1 M TM(Ex )In- TM'(Ex ) = ndM('H). 

0 

COROLLARY A4. If M is a finite factor acting on a Hilbert space 1{ and N is 
a subfactor, with N' finite, then 

dJVt.('H 0 K)l dN('H 0 K) = dM('H)I dN('H), 

where K and M are as in the preceding lemma. 

In the cases described in Lemmas A1 and A3, there are representations of 
M involved. In Lemma A1, there is the isomorphism of M onto ME', and the 
coupling changes to TM'(E') dM('H) (from dM('H)). In Lemma A3, there is the 
isomorphism A-+ A of M onto M, and the coupling changes to ndM('H). If we 
apply these isomorphisms successively, in the appropriate order (to M and then 
the image), we produce a representation of M with coupling nr M' ( E') dM ('H). 
Suitable choice of E' and n yields any positive real number we please as coupling, 
when M is a factor of type II1 with M' finite. If M acting on 'H' is any of these 
representations, we have noted that dN('H') I dM ('H') = dN('H) I dM ('H). Since 
coupling is a unitary invariant for representations of M with finite commutant (see 
Exercise 9.6.30), these representations constitute all representations of M (up to 
unitary equivalence). On the other hand, when 1{ is chosen such that dM('H) = 1, 
we have defined the index [M :A!] of N in M to be dN('H) (= dN('H)I dM('H)). 
From this discussion, we conclude the following result. 

PROPOSITION A5. If M is a factor of type Ift acting on a Hilbert space 'H and 
N is a subfactor such that N' is finite, then [M: A!]= dN('H)I dM('H). 

In the discussion that follows we give an alternate proof of the fact that N = M 
when M is a factor of type II1 and N is subfactor such that [M :A!] = 1. According 
to our definition, we consider M in its trace representation with cyclic trace vector 
u and [M :A!] = TN'(E{f). Thus when [M :A!] = 1, we have that TN'(E{f) = 1 
and E{f =I. We have also proved that, with Tin M, E{f(Tu) = if>N(T)u. Under 
the present assumption, then, Tu = if>N(T)u (see Proposition 2). As u is separating 
forM, T = if>N(T) EN, and M = N. 

5. The Schur inequalities 

In this section, we prove some tradal, matrix-operator inequalities that include 
the "Schur Inequalities" [Sch23] and extend these inequalities to more general 
(infinite-dimensional) situations. When we carry these results to the case of factors 
of type II1 , the conditional expectation of Theorem 7 will play a decisive role. The 
material presented here is joint work with W. B. Arveson. It is part of a project-in-
progress and represents a second approach to certain results presented in another 
way in that project. 

We begin with a numerical inequality that underlies our later results. 
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LEMMA 24. If ab a2, ... , are in [0, 1], 2::;:1 ai :::; m for some integer m, and 
A, AI, A2, ... , are real numbers such that Aj ~ A ~ 0 when 1 :::; j :::; m and A ~ Ak 
when m + 1:::; k, then when n ~ m, 

n m 

L Ajai:::; L Aj· 
j=l j=l 

If equality holds and Aj > A when 1 :::; j :::; m, then a 1 = · · · = am = 1 and 
ai = 0 when j > m. 

m n 

L Aj(1- aj)- L Ajaj 
j=l j=l j=l j=m+l 

m n 

> L Aj(1- ai)- L Aaj 
j=l j=m+l 
m m 

j=l j=l 
m 

L(Aj- A)(1- ai) ~ 0. 
j=l 

If equality holds in ( * ), then 2::;:1 (Aj - A)(1 - ai) = 0. By assumption, 
Aj - A > 0 when 1 :::; j :::; m. Thus a1 = · · · = am = 1. Since 2::;:1 ai :::; m and 
ai ~ 0, it follows that ai = 0 when j > m. D 

Note that if the condition 'Ai > A' is not in force, in the case of equality, and 
we let AI, ... , A2o be 1 and m be 10, then we may choose ~ for ab ... , a20 and 
equality will hold, or we may choose 1 for a1 , ... , aw. Thus uniqueness fails when 
that condition is not in force (and nothing replaces it). 

The theorem that follows is a version of the Schur inequalities extended to trace 
class operators. 

THEOREM 25. If A is a trace-class operator acting on the Hilbert space 1t and 
{ ei hEN is an orthonormal basis for 1t such that Aei = Ajej, where Aj ~ A ~ 0 
when 1:::; j:::; m and A~ Ak when k 2m+ 1, then 

m 

(**) sup{tr(HAH): H = H*, H 2 :::; I, tr(H2):::; m} = L Aj = tr(AE), 
j=l 

where E is the projection with range spanned by { e1 , ... , em}. 
If the supremum in ( **) is attained at Ho and Aj > A when 1 :::; j :::; m, then 

H'5 =E. In particular, if Aj > Aj+l > 0 for all j, then(**) holds for each positive 
integer m and the projection E is the unique positive H at which the supremum is 
attained. 

PROOF. Note that, with Has in(**), 
00 00 00 

tr(HAH) = tr(AH2) = L(AH2ei,ei) = LAi(H2ej,ej) = LAi11Heill 2 

j=l j=l j=l 
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and that L:;~ 1 11Hejll 2 = tr(H2 ) ::; m. By applying the preceding lemma with 
IIH ej 11 2 in place of aj, we conclude that 

m 

tr(HAH)::; L Aj = tr(AE) = tr(EAE) 
j=l 

from which ( **) follows. 
For the last assertions, note that, by assumption, 

00 m 

j=l j=l 

and Aj > A > 0. From the equality condition of the preceding lemma, IIH0 e111 2 = 
· · · = 11Hoemll 2 = 1 and Hoej = 0 when j > m. From the equality condition 
of the Cauchy-Schwarz inequality, H6ej = ej for j = 1, ... , m. It follows that 
H6 =E. D 

Without the condition Aj >>..,we can choose for A a projection of, say, dimen-
sion 20 and take m to be 10. Then the supremum is attained at each 10 dimensional 
subprojection of A. Thus uniqueness requires some condition such as Aj > A. 

COROLLARY 26. If A is a positive, trace-class operator acting on the Hilbert 
space 1t with eigenvalues A1, >..2 , · · · listed in decreasing order, then sup{ tr( F AF) : 
F = F* = F 2 , dim F('Jt) :=:; m} is attained when F is the projection E with range 
spanned by an orthonormal set {h, ... , fm} such that AIJ = AjfJ when 1 ::; j::; m. 
If { ej hEN is an orthonormal basis for 1t, then L:;'=l (Aej, ej) ::; L:;'=1 Aj. If Am > 
Am+l 2 0, then E is the unique projection at which the supremum is attained. 

PROOF. With Fa projection, dim(F('Jt)) = tr(F) = tr(F2 ). Hence the supre-
mum in the statement of this corollary is taken over a smaller subset than the 
supremum in(**). Nevertheless, for the projection E of the statement, tr(EAE) = 
L:;:1 Aj, the maximum in(**). 

The last assertion of this corollary follows from the last assertion in the state-
ment of Theorem 25. D 

The Schur inequalities are described in the next corollary. 

COROLLARY 27. If A is an hermitian n x n matrix over C with eigenvalues 
A1 , · · · , An and diagonal p1 , ... , Pn, both listed in decreasing order, then 

P1 + · · · + Pk :S A1 + · · · + Ak 

and Pl + · · · + Pn = Al + · · · + An. 

kE{1, ... ,n} 

PROOF. Both Pl + · · · + Pn and A1 +···+An are tr(A). IfF is the projection 
with 1 at each of the first k diagonal entries and 0 at all other entries, then 

P1 + · · · + Pk = tr(F AF) ::; tr(EAE) = A1 + · · · + Ak, 

where E is the projection matrix whose range is spanned by the orthonormal set 
e1, ... , ek such that Ae1 = A1e1, ... , Aek = Akek. D 

LEMMA 28. Let (X, JL) be a measure space, X 0 a measurable subset of X with 
indicator function xo, f and g integrable functions such that 0 ::; g ::; 1 a. e. and 
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J gdJ.L ::=; J.L(X0 ), and>. a non-negative real number such that both fxo :2: >.xo and 
f(1 - Xo) :::; >.(1 - Xo) a.e. Then 

J fgdJ.L:::; J fxodJ.L. 

If equality holds and fxo > >.xo a.e.on Xo, then g = Xo a. e. This same inequality 
holds for all real >. if J.L(Xo) = J g dJ.L. 

PROOF. By assumption, J xo dJ.L :2: J xog dJ.L + J (1 - xo)g dJ.L. Consequently 
J xo(1- g) dJ.L;::: J(1- xo)gdJ.L. It follows that 

J fxo dJ.L- J fgdJ.L J fxo dJ.L- J fxogdJ.L- J f(1- xo)gdJ.L 

J fxo(1- g) dJ.L- J f(1- xo)gdJ.L 

> J >.xo(1 -g) dJ.L- J >.(1- xo)g dJ.L :2: o. 
If equality holds and fxo > >.xo a.e. on Xo, then 

o = J fxo dJ.L- J fgdJ.L J fxo(1- g) dJ.L- J f(1- xo)gdJ.L 

> J fxo(1- g) dJ.L- J >.(1- xo)gdJ.L 

> J fxo(1- g) dJ.L- J >.xo(1- g) dJ.L 

j (!- >.)xo(1- g) dJ.L;::: 0. 

(For the last inequality, recall that J(1- x 0 )gdJ.L:::; J xo(1- g) dJ.L and that>. :2: 0 
by assumption.) Thus f(f- >.)xo(1- g) dJ.L = 0. Since (!- >.)xo > 0 a.e. on Xo 
and 0 ::=; g ::=; 1 a.e., we conclude that g = 1 a.e. on Xo. Thus J gxo dJ.L = J.L(Xo). 
Since J.L(Xo) :2: J gxo dJ.L + J g(1 - xo) dJ.L by assumption, J g(1- xo) dJ.L = 0. Now, 
g :2: 0 a.e., whence g = 0 a.e. on X\ Xo. Hence g = xo a.e. 

If J.L(X0 ) = J g dJ.L, then J >.x0 (1- g) dJ.L = J >.(1- x 0 )g dJ.L = 0 for all >.. Again, 
f fxodJ.L :2: f fgdJ.L. D 

We note that Lemma 28 is an extension of Lemma 24. For this, choose X to be 
N, the natural numbers, J.L the measure on N that counts the number of elements in 
the intersection of a set with {1, ... , n }, g the function that assigns to j (inN) the 
real number a3 (in [0,1]), X 0 the set {1, ... ,m}, and f the function that assigns Aj 
to j. With these choices, J fg dJ.L is L:j=1 >.3a3 and f fxo dJ.L is L:.7'=1 >.3. 

Lemma 28 allows us to prove the appropriate version of the Schur Inequalities 
for factors of type II1 . 

THEOREM 29. Let M be a factor of type II1, T the (unique) normalized tracial 
state on M, A a maximal abelian self-adjoint subalgebra (masa) in M, A a self-
adjoint operator in A, and a a number in [0, 1]. There is a projection E in A and a 
real number>. such that r(E) =a, AE;::: >.E, and A(I- E) :::; >.(I- E). If B EM, 
0 :::; B ::=; I, and r(B) = a, then r(AB) :::; r(AE). If r(B) :::; a and>. :2: 0, then 
again, r(AB) ::=; r(AE). If r(AB) = r(AE) and AE :2: >.' E, where >.' > >. :2: 0, 
then B =E. 
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PROOF. We note that T(AB) is real since A and Bare self-adjoint. To see this, 
we may assume that B ~ 0 (otherwise, replace B by B + JJBIII, and observe that 
JJBjjT(A) is real). Since Tis a tracial state, T(AB) = T(B!AB!), which is real as 
B! AB! is self-adjoint. 

Assume that we have found E and ). as described. We give two proofs of the 
stated inequality. Our first proof is a modification of the proof of Lemma 28 in 
the von Neumann algebra setting that uses the properties of the trace to bypass 
the commutativity missing in M and present in the measure-theoretic setting of 
Lemma 28. The second proof uses the conditional expectation of M onto .A to 
reduce the problem to the commutative case and then, uses von Neumann's results 
to identify .A with the algebra of bounded measurable functions on the appropriate 
measure space. Lemma 28 then applies as it is stated. 

For our first proof, we have that a= T(E) = T(B) = T(EB) + T((I- E)B) by 
assumption. Thus T(E(I- B))= T((I- E)B). It follows that 

T(AE) - T(AB) T(AE) - T(AEB) - T(A(I- E)B) 

T((I- B)!AE(I- B)!)- T(B!A(I- E)B!) 

> T(>.(I- B)! E(I- B)!) - T(>.B! (I- E)B!) 
AT(E(I- B))- AT((I- E)B) = 0. 

If we assume only that T(B) ~ a, we must require that ). ~ 0 in order to 
conclude that >.(T(E(I- B))- T((I- E)B)) ~ 0. 

Since T(E) =a~ T(B) = T(BE) + T(B(I- E)), we have that T(E(I- B))~ 
T(B(I- E)). Suppose T(AB) = T(AE) and AE ~ >.' E where >.' > ). ~ 0. Then 
T(AE) = T(AB) = T(AEB)+T(A(I -E)B), whence T(AE(I -B))= T(A(I -E)B). 
Thus 

0 T(AE(I- B))- T(A(I- E)B) 

T((I- B)!AE(I- B)!)- T(B!A(I- E)B!) 

> T((I- B)!AE(I- B)!)- T(>.B!(I- E)B!) 
1 1 1 1 > T((I- B)'iAE(I- B)'i)- T(>.(I- B)'iE(I- B)'i) 

T((I- B)!(AE- >.E)(I- B)!)~ 0. 

Hence T((I- B)!(A- >.I)E(I- B)!)= 0, and (I- B)!(A- >.I)E(I- B)!= 0. 
It follows that 

[(A- >.I)E]!(I- B)!= [(A- >.I)E]!E(I- B)!= 0. 

Now, (A- >.I)E ~ (>.' - >.)E and >.' -). > 0. Thus 

0 =(I- B)!(A- >.I)E(I- B)!~ (I- B)!(>.'- >.I)E(I- B)!~ 0, 

and E(I -B)!= 0. Hence E(I -B)= 0, and a= T(E) = T(B!EB!) ~ T(B) ~a. 
Therefore, T(B) = T(E) = T(EB), and 0 = T((I -E)B) = T((I -E)B(I -E)). As 
B ~ 0, (I- E)B(I- E) ~ 0, whence (I- E)B! = 0. Of course, (I- E)B = 0, 
from which B = EB =E. 

For our second proof, we use the (unique) trace-lifting conditional expectation 
<I> of M onto .A. (The mapping <I> is an idempotent, positive, linear, .A-bimodule 
mapping of M onto .A, and T(<I>(T)) = T(T) for each Tin M. See Exercises 8.7.23-
8.7.30, 10.5.85-10.5.87.) To show that T(AB) ~ T(AE) under the given conditions 
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on A, B, and E, we note that 

r(A<I>(B)) = r(<I>(AB)) = r(AB). 

Thus it suffices to show that r(A<I>(B))::::; r(AE). Now, A, E, and <I>(B), are in A. 
Moreover, 0 ::::; <I>(B) ::::; I since 0 ::::; B ::::; I and <I> is a positive, linear, idempotent 
mapping with I in its range (so that <I>(I) = <I>(<I>(T)) = <I>(T) = I). In addition, 
r(<I>(B)) = r(B) ::::; r(E). Thus A, E, and <I>(B), satisfy the various conditions we 
assumed for A, E, and B. To complete this second proof, we shall see that A with 
the restriction ofT to it is (equivalent to) the measure-theoretic situation of Lemma 
28. After seeing that, we conclude that Lemma 28 applies to yield our inequality. 

By applying the GNS construction to T, we may assume that M acts on the 
Hilbert space 1i and u is a separating and generating unit vector for M such 
that r(T) = (Tu, u) for each T in M. (We call u a trace vector for M. See the 
discussion preceding and the proof of Proposition 12.1.4.) Let G be the projection 
with range [Au] (the closure of {Tu : T E A}). Since u is a separating vector 
forM (and hence, for A), the mapping T ~ TG of A into B(G(1i)), is a normal 
*isomorphism of A onto its range A 0 . Let 1i0 be the Hilbert space G(1t). As IE A, 
u E G(1i). By construction u is generating for the abelian von Neumann algebra 
A 0 • From Corollary 7.2.16, Ao is a masa in B(1io). Since Ao is a masa in the 
II1 factor M, it follows from Exercise 6.9.17 that Ao has no minimal projections. 
From Theorem 9.4.1, there is a unitary transformation U of 1i0 onto £ 2 ([0, 1], J.L), 
where J.L is Lebesgue measure, such that Uu is the constant function 1 on [0, 1], and 
UA0U- 1 is the algebra of all bounded measurable functions on [0, 1]. Note that, 
with Tin M, 

r(T) = (Tu, u) = (UTu, Uu) = (UTU- 1Uu, Uu) = J UTU- 1 dJ.L. 

Lemma 28 now applies to yield the desired inequality and the uniqueness resulting 
when equality holds. 

It remains to establish the existence of the projection E and the real number A 
with the properties posited in the statement of this theorem. Since A and E are to 
be in A and T is a normal, faithful state of A, we may carry out the construction of 
E and A in the von Neumann algebra- Hilbert space framework or in the measure 
algebra- measure space framework. Let {E.x} be the spectral resolution of A. (We 
follow the construction of { E.x} described in Theorem 5.2.2 and make use of the 
properties proved there for {E.x}. Let a' be 1- a, F be V{E.x : r(E.x) ::::; a'}, .A0 
be sup{.A: r(E.x) ::::; a'}, G be 1\{E.x : r(E.x) ~a'}, and .A 1 be inf{.A: r(E.x) ~a'}. 
Since E.x ::::; EN when A ::::; A' and Tis normal, E.x ~ F, and r(E.x) ~ r(F) as A l .Ao. 
Similarly, E.x ~ G and r(E.x) ~ r(G) as A l Al· Hence r(F) ::::; a'::::; r(G) and .Ao ::::; 
.A 1 . If .A0 < .A1 and we choose A' in (.A0 ,.Al), then either r(E.x') ~a', contradicting 
the choice of .A1, or r(E.x') ::::; a', contradicting the choice of .Ao. Thus .Ao = A1 

(=.A). From Theorem 5.2.2(iii), E.x1 = E.x = G, and F::::; E.x0 = E.x1 = E.x =G. It 
is possible that F < E.x0 =G. However, ifF= G (=I- E), then r(I- E)= a', 
I-E= E.x, A(I-E) = AE.x::::; .AE.x = .A(I-E), AE = A(I-E.x) ~ .A(I-E.x) = .AE 
from Theorem 5.22(iv), and r(E) =a. 

Suppose, now, that F < G and that N is a projection in A such that F::::; N::::; 
G. Since AG = AE.x ::::; .AE.x = .AG and N is a positive operator commuting with 
A and G, AN= AGN::::; .AGN =.AN. We note, next, that A(G- F)= .A(G- F), 
whence A(G- N) = .A(G- N) and A(N- F) = .A(N- F). Since AG ::::; .AG, 
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we see that A(G- F) = AG(G- F) ::::; >..G(G- F) = >..(G- F). We show 
that A(G- F) ;::: >..(G- F). By construction, there are spectral projections EN, 
with )..' < ).. and ).. - )..' as small as we wish, that are subprojections of F. Now, 
G- F::::; I- EA' for all such X, whence for each such)..', 

A(G- F)= A(I- EN)(G- F);::: >..'(I- E>.')(G- F)= >..'(G- F). 

As )..' j ).., we conclude that A(G- F) ;::: >..(G- F) and A(G- F) = >..(G- F). 
Hence 

A (I - N) = A (I - G) +A( G- N) = A (I - E>.) + >..( G - N) 
;::: >..(I- G)+ >..(G- N) =>..(I-N). 

From the proposition that follows, we have that there is a choice of N as above for 
which T(N) =a'. (Recall that T(F) ::::; a' :S: T(G) and M is a factor of type III-) 
Letting E be I-N, we have found a projection E and a real ).. with the desired 
properties. 0 

PROPOSITION 30. Let M be a factor of type I h, A a mas a in M, G a projection 
in A such that T( G) = s, where T is the unique tracial state on M, then for t in 
[0, s] there is a subprojection F of G such that FE A and T(F) = t. 

PROOF. Represent t in dyadic form as (.a1a 2 ... )s, where each aj is either 0 
or 1. From Exercise 6.9.15, GMG is a factor of type lh. Since G E A, GAG is 
an abelian von Neumann subalgebra or QMG. If T E GM G and T commutes 
with GAG, then T commutes with each A (= AG + A(I- G) in A, from which, 
TEA. As T = GTG, we have that T E GAG, whence GAG is maximal abelian in 
GMG. From Exercise 6.9.29, we have that G is the sum of n orthogonal equivalent 
projections in GAG (~ A). Using this observation, we can find an orthogonal 
family { G1 , G2 , ... } of subprojections of G in A such that T( Gj) = s2-j, for j in 
{1, 2, ... }, by "bisecting" G, then bisecting one of the resulting subprojections, and 
so forth. Now, follow the "instructions" coded in the sequence a 1 , a 2 , ... ; let F 1 be 
Gj(l)' where j(1) is the first aj that is 1, F2 be Gj(2), where j(2) is the next aj 

after aj(l) that is 1, and so forth. Let F be 2:::%"=1 Fk. Since T is normal, 

T(F) = T (~ Fk) = ~ T(Fk) = (.a1a2 .. . )s = t. 

0 

Without the condition )..' > ).., one cannot assert that B = E (that is, "unique-
ness of the maximum") even in the commutative case, because the projection 
E with the given properties is not, itself, unique. For example, the 4 x 4 di-
agonal matrix A with diagonal 3,2,1,1 has the two projections E 1 and E 2 of 
trace 3 that are diagonal matrices with diagonals 1,1,1,0 and 1,1,0,1 as maxima 
of {tr(AB) : 0 ::::; B :S: I, tr B = 3}. This same example is easily transferred to a 
factor of type II1 by working in a type 14 subfactor. The fact that "higher mul-
tiplicity" is the basis of this example suggests that, with the condition of simple 
multiplicity imposed, the unique maximum of tr(AB), when 0 ::::; B ::::; I, tr B ::::; 0, 
and ).. ;::: 0, is a projection E in A such that AE;::: )..E and A(I- E) :S: >..(I- E). 
Here, "simple multiplicity" is relative to the factor M of type II1 , that is, A gener-
ates amasa A in M (as a von Neumann subalgebra). The argument of Theorem 
29, when we assume that T(AB) = T(AE) and ).. ;::: 0, allows us to conclude that 
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[(A- M)E] k E(I- B) k = 0 without the introduction of a>.' such that AE 2 >.' E 
and>.' > >.. If [(A- >.I)E] k has (I- E)(1i) as its null space (that is, has null space 
(0) in E(1i)), then E(I -B)k = 0 and the rest ofthat argument applies to yield that 
B = E. With the "simple spectrum" hypothesis in force, we shall show that the 
null space of [(A- >.I)E]k is, indeed, (I- E)(1i). If G is the projection on this null 
space, thenG E A and (F =) G-(I-E) EA. Now, F :S E and [(A->.I)E]kF = 0. 
Hence (A- M)F =[(A- M)E]k[(A- >.I)E]kF = 0. Thus AF = >.F =FA. If 
T EM and FTF = T, then TA = FTFA = FT>.F = >.FTF =AT. Since A is 
assumed to generate the masa A, we see that T E A. It follows that F MF ~ A. If 
F f. 0, then F MF is a factor of type II1 on F(1i). But A is abelian. Thus F = 0. 
We have proved the following theorem. 

THEOREM 31. If M is a factor of type Ih, A is a self-adjoint operator in M 
that generates a mas a A in M, E is a projection in A such that AE 2 >.E and 
A(I- E) ::; >.(I- E) for some non-negative, real>., then r(AB) ::; r(AE), when 
0 :S B :S I and r(B) :S r(E), and r(AB) = r(AE) if and only if B =E. 
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