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The study of the Pythagorean Theorem and variants of it as the basic result of noncommutative, metric, Euclidean Geometry is
continued. The emphasis in the present article is the case of infinite discrete dimensionality.

1. Introduction

We continue our study of the Pythagorean Theorem begun in ref. 1. The numbering of results and remarks in ref. 1 will
be used in this article in two ways: A reference to Proposition 3 is a reference to that proposition in ref. 1, and the results

in this article will be numbered from 13 on (following Proposition 12, the last result in ref. 1).
Our focus in this article is the case of infinite-dimensional Hilbert space and an infinite-dimensional subspace, although we

study first the case of a finite-dimensional subspace of infinite-dimensional space. The novelty in that case is that we are
projecting the vectors of an infinite orthonormal basis onto the finite-dimensional subspace. Propositions 1 and 2 apply, as they
stand, to prove those variants of the Pythagorean Theorem in that situation. The Carpenter’s Theorem for that case is quite
another matter. Several ‘‘proofs’’ of it were developed, the first of which was invalid: as argued, the ‘‘proof’’ yielded results that
did not respect necessary conditions (discovered later). There is a small warning here: the intricacies of the arguments in the
case of an infinite-dimensional subspace with infinite-dimensional orthogonal complement are needed to cause certain infinitely
repeated processes to produce convergent sums. That convergence is far less automatic than might sometimes seem natural. The
shortest of our arguments in the case of the finite-dimensional subspace was not short. Junhao Shen suggested a change in strategy
that produces a shortened version, which appears as the proof of Theorem 13. I am happy to express my gratitude for his
suggestion. The results involving finite-dimensional subspaces appear in the next section.

In the third section, we study the case of an infinite-dimensional subspace with infinite-dimensional complement. Although
the precise formula of Proposition 3 does not apply in that case, the ‘‘integrality condition’’ implicit in that assertion (and
mentioned) plays a crucial role in these results.

In the last section, we resume the examination of the relation between the Pythagorean Theorem and doubly stochastic (now,
infinite) matrices. We produce such matrices with a block and its complement of finite weight (as promised). Although the
formula of Proposition 12 is not applicable here, the integrality condition is and is proved in the concluding section.

2. Finite and Cofinite-Dimensional Subspaces
We prove versions of the Carpenter’s Theorem for subspaces of infinite-dimensional Hilbert space H that are finite or
cofinite-dimensional in H. From Proposition 2, if we specify numbers in [0, 1], they must have sum m if they are to be the squares
of the lengths of the projections of the elements in an orthonormal basis onto some m-dimensional subspace of H. Subject to
this condition, is there such a subspace? There is, as we shall show. The proof uses the finite case (Theorem 6) and some additional
constructions.

THEOREM 13. If {eb}b�� is an orthonormal basis for the Hilbert space H and numbers tb in [0, 1] are specified, there is an m-dimensional
subspace V of H such that �Feb�2 � tb for each b in �, where F is the projection with range V, if and only if �b��tb � m.

Proof: Let �0 be {b � � : tb � 0} and H0 the closed linear span of {eb}b��0
. Since �b����0

tb � m and tb � 0 when b � �0,
���0 is a countable set. Note that m � �b����0

tb � �b����0
1 � dim(HCH0). If we find V in HCH0 such that �Feb�2 � tb for

each b in ���0, we are done, because Feb � 0 when b � �0. Restricting to HCH0, we may assume that H is separable and that
each tb � 0. We have dealt with the case where H has finite dimension. Henceforth, we assume that H has dimension �0, that
our given orthonormal basis is e1, e2, . . . , and that the specified numbers are a1, a2, . . . .

Some further reductions are useful. By restricting our attention to the orthogonal complement of the subspace of H spanned
by the basis elements ej for which aj is 0 or 1 and constructing a projection with matrix having diagonal the remaining aj with
respect to the remaining ej, we may assume that each aj � (0, 1). Since �j�1

� aj � m, there are at most a finite number of aj
greater than a given number, and these can be written in decreasing order. Thus, for some permutation � of �, a�(1) � a�(2)
� � � � . Suppose E� is a projection with matrix relative to e1, e2, . . . having diagonal a�(1), a�(2), . . . . Then U*�E�U� has matrix
with diagonal a1, a2, . . . , where U� is the permutation unitary that maps ej to e��1(j) for each j in �. It suffices, in general, to
construct our matrix with the specified diagonal in any order.

We may assume that m � 2 (from Proposition 1) and that a1 � a2 � � � � with each aj in (0, 1). Now, �j�2
� aj � m � a1 � m �

1. Thus there is an s such that �j�2
s aj � m � 1 and �j�2

s�1aj � m � 1. If t � �j�2
s�1aj � (m � 1), then t � as�1. From Theorem

6, there is a projection E of rank m � 1 with matrix relative to the basis e2, e3, . . . , es�1 having a2, a3, . . . , as�1 � t as its diagonal.
Moreover, �j�s�2

� aj � a1 � t � 1. Thus, from Proposition 1, there is a projection G of rank 1 with matrix relative to the basis
e1, es�2, es�3, . . . whose diagonal is a1 � t, as�2, as�3, . . . . Noting that as�1 � t � as�1 � a1 � a1 � t, we can splice the two
projections E and G together and then ‘‘permute’’ the splice, to form a projection F whose matrix relative to the basis e1, e2, . . .
has diagonal a1, a2, . . . . ■
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Following this fifteenth variation, the situation in which the projections of the elements of our orthonormal basis {en} on the
subspace V of H have lengths whose squares sum to � remains to be studied. In this case, from Proposition 2, V must be infinite
dimensional. Once again, the question of whether the squares of the lengths can be assigned in [0, 1] arbitrarily, subject only
to the condition that their sum diverges is the more involved aspect of this case. Our experience, to this point, makes it tempting
to believe that the question has an affirmative answer. Some further consideration makes it clear that there is more to be said.

Again, the question can be formulated in terms of projections, their matrices relative to {en}, and diagonals of those matrices.
If V is the (infinite-dimensional) subspace for the specified lengths a1, a2, . . . and E is the projection with V as range, then I �
E has HCV, the orthogonal complement of V, as its range. The matrix for the projection I � E has 1 � a1, 1 � a2, . . . as its
diagonal. If �j1 � aj converges, it must converge to an integer, since I � E is a projection. If we choose the aj such that �j1 � aj
converges, but not to an integer (e.g., let aj be 1 � (1�j2)), then aj 3 1, whence �aj � �, and there is no projection with
diagonal a1, a2, . . . relative to {ej}. (If E were such a projection, I � E would have diagonal 1 � a1, 1 � a2, . . . , with finite
sum other than an integer, contradicting Proposition 2). However, if �j1 � aj � m, with m an integer, then there is a projection I �
E with diagonal 1 � a1, 1 � a2, . . . , and hence a projection E with diagonal a1, a2, . . . . This discussion provides our sixteenth
variation.

THEOREM 14. If {ea}a�� is an orthonormal basis for the Hilbert space H and {ta}a�� is a family of numbers in [0, 1], there is an
infinite-dimensional subspace V of H with m-dimensional orthogonal complement such that �Fea�2 � ta for each a in �, where F
is the projection with range V, if and only if �a��1 � ta � m.

3. Infinite-Dimensional Subspaces with Infinite-Dimensional Complement
In the context of orthonormal bases for Hilbert space, there remains the case where �a��ta and �a��1 � ta diverge. This case
leads to our seventeenth variation. As we shall see in the course of the proof, and as noted in the statement, there is more to
the story than the divergence of the two sums noted. To recognize this in advance, we need only consider the case where the
assigned diagonal entries consist of an infinite number of 0s and terms a1, a2, . . . in [1

2
, 1] such that �1 � aj converges to a number

a not an integer. If E is a projection whose matrix has that diagonal, then the restriction of E to the space generated by the basis
elements corresponding to all the aj is also a projection of the sub-Hilbert space onto some subspace of it. Relative to those
basis elements corresponding to the aj, that projection has a matrix whose diagonal has entries a1, a2, . . . . But �1 � aj is a
number other than an integer, by assumption. We have seen that such a diagonal is not a possibility for a projection. This
restriction appears in more complex form as well. If we replace a finite number of the 0s by numbers r1, . . . , rk in (0, 1

2
) such

that (r1 � � � � � rk) � �j�1
� (1 � aj) is not an integer, then the resulting assignment of numbers is not the diagonal of a projection.

This reduces to the case just considered by noting that, with the present assumption, �j�1
� (1 � aj) � (1 � r1) � � � � � (1 �

rk) is not an integer. Of course, the restriction on the diagonal in this case is foreshadowed by Proposition 3 (and the remarks
following it).

To simplify the discussion and focus on essentials, we deal with the case where H has dimension �0.

THEOREM 15. Let {e1, e2, . . .} be an orthonormal basis for the Hilbert space H and numbers a1, a2, . . . in [0, 1] be specified. Let a�1,
a�2, . . . be the aj in (1

2
, 1], a	1, a	2, . . . those in [0, 1

2
], a the sum of the a	j, and b the sum �j�1

� 1 � a�j. There is an infinite-dimensional
subspace V of H with infinite-dimensional complement such that �Fej�2 � aj for each j, where F is the projection with range V,
if and only if �j�1

� aj and �j�1
� 1 � aj diverge and either of a or b is infinite or both are finite and a � b is an integer.

Proof: As in the proof of Theorem 13, by restricting to the orthogonal complement of the subspace of H generated by the basis
elements ej for which aj is either 0 or 1, we may assume that each aj � (0, 1). Pursuing this same idea, we note that if {�j}j�1,2,. . .
is a set of mutually disjoint subsets of � with union � such that we can find a projection Ej with range contained in the closed
subspace generated by all en for which n � �j, with �Ejen�2 � an, for each such en, and Ejem � 0 for each other em, then �j�1

� Ej
(� F) is a projection such that �Fej�2 � aj for each j.

Let �� be the set of aj-indices of a�j and �	 those of a	j. We suppose, first, that �j�1
� a	j � �. Let n(1) be the least integer n

such that a�1 � a	1 � � � � � a	n � 3. Since a�1 � 1 and each a	j �
1
2
, n(1) � 5. Let b2, . . . , bn(1) be a	2, . . . , a	n(1) rearranged in

decreasing order (so, b2 � b3 � � � � � bn(1)). Let m(1) be the least integer m such that a�1 � b1 � b2 � � � � � bm � 3, where
b1 � a	1. Then 5 � m(1) � n(1) and a�1 � �j�1

m(1)�1bj � 3. Let ã be 3 � a�1 � �j�1
m(1)�1bj, b�m(1)�1 be bm(1)�1 � ã, and b�m(1) be

bm(1) � ã. Then a�1 � �j�1
m(1)�2bj � b�m(1)�1 � 3, and

0 � b�m
1� � bm
1� � bm
1� � 1 � b�m
1� � 1 � 1.(�)

[For the first inequality of (�), note that a�1 � �j�1
m(1)bj � 3, whence bm(1) � 3 � a�1 � �j�1

m(1)�1bj � ã; for the last inequality,
note that bm(1) is some a	j (�

1
2
) as is bm(1)�1. Thus b�m(1)�1 � bm(1)�1 � ã � bm(1)�1 � bm(1) � 1.]

Let �1 be the set of indices of the aj in {a�1, a	1, . . . , a	n(1)} corresponding to a�1, b1, . . . , bm(1)�1. [Recall that b1, . . . , bn(1)
is a rearrangement of a	1, . . . , a	n(1).] Let j(1), j(2), . . . be the numbers in �	��1 in ascending order, except that j(1) is the index
of the aj in {a	1, . . . , a	n(1)} that bm(1) represents, and j(2) is the index of the aj that a�2 represents. Let n(2) be the least integer
n such that a�2 � b�m(1) � �k�3

n aj(k) � 3. Let c1 be b�m(1), c2 be a�2, and c3, . . . , cn(2) be aj(3), . . . , aj(n(2)) rearranged in decreasing
order except that c3 is aj(3). [Note that the smallest number in �	��1 is one of j(1) or j(3).] Let m(2) be the least integer m such
that �j�1

m cj � 3. Then �j�1
m(2)�1cj � 3, m(2) � n(2), and m(2) � 6. Let b̃ be 3 � �j�1

m(2)�1cj, c�m(2)�1 be cm(2)�1 � b̃, and c�m(2)
be cm(2) � b̃. Note that 0 � b̃ � cm(2) �

1
2
, whence

0 � c�m
2� � cm
2� � cm
2� � 1 � c�m
2� � 1 � 1.

We repeat this process, letting �2 be j(1), j(2) and the set of indices of the aj in {aj(3), . . . , aj(n(2))} corresponding to c3, . . . ,
cm(2)�1. Let k(1), k(2), . . . be the numbers in �	�(�1 � �2) in ascending order, except that k(1) is the index of the aj in {aj(1),
. . . , aj(n(2))} that cm(2) represents, and k(2) is the index of the aj that a�3 represents. Let n(3) be the least integer n such that
a�3 � c�m(2) � �r�3

n ak(r) � 3. Let d1 be c�m(2), d2 be a�3, and d3, . . . , dn(3) be ak(3), . . . , ak(n(3)) rearranged in decreasing order
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except that d3 is ak(3). Again, the smallest number in �	�(�1 � �2) is one of k(1) or k(3). Let m(3) be the least integer m such
that �j�1

m dj � 3. Then �j�1
m(3)�1dj � 3, m(3) � n(3), and m(3) � 6. Let c̃ be 3 � �j�1

m(3)�1dj, d�m(3)�1 be dm(3)�1 � c̃, and d�m(3)
be dm(3) � c̃. Note that 0 � c̃ � dm(3) �

1
2

so that

0 � d�m
3� � dm
3� � dm
3� � 1 � d�m
3� � 1 � 1.

Continuing in this way, we construct disjoint subsets �1, �2, . . . of � with union �. In addition, if r(1), . . . , r(m(j) � 1) are
the elements of �j, with r(3), . . . , r(m(j) � 1) in ascending order, there are alterations ãr(1) and ãr(m(j)�1) of ar(1) and ar(m(j)�1),
as described, such that ãr(1) � a�j � �k�3

m(j)�2ar(k) � ãr(m(j)�1) � 3. At the same time, with s(1), . . . , s(m(j � 1) � 1), the elements
of �j�1 and ãs(1), as(2), as(3), . . . , as(m(j�1)�2), ãs(m(j�1)�1) summing to 3, with ãs(1) and ãs(m(j�1)�1) the elements as(1) and
as(m(j�1)�1) altered as described, we have ãr(m(j)�1) � ãs(1) � ar(m(j)�1) � as(1) and

0 � ãs
1� � as
1� � ar
m
j� � 1� � ãr
m
j� � 1� � 1.

We include the possibility that �� is finite (or null) in the foregoing argument. If �� is {a�1, . . . , a�j�1}, we eliminate the references
to ‘‘a�k’’ in the construction of �k when k � j.

From Theorem 6, there are three-dimensional projections Ej and Ej�1 whose matrices relative to the bases er(1), . . . , er(m(j)�1)
and es(1), . . . , es(m(j�1)�1) have diagonals ãr(1), ar(2), ar(3), . . . , ar(m(j)�2), ãr(m(j)�1) and ãs(1), as(2), as(3), . . . , as(m(j�1)�2),
ãs(m(j�1)�1), respectively. We extend each of the projections Ej to a projection (denoted, again, by ‘‘Ej’’) defined on all of H by
letting it annihilate all other basis elements. Then, because the sets �j are disjoint, EjEk � 0 when j � k. Let E be �j�1

� Ej. The
next part of this argument is devoted to describing the splicing used to transform E into the projection with the specified diagonal.

We transform E by means of a sequence of unitary operators Wn(�n) of the form appearing in the proof of Theorem 7. In
the present case, with h(1) the index of the aj represented by bm(1)�1 [recall that j(1) is the index of the aj represented by bm(1)],
W1(�1)eh(1) � sin�1eh(1) � cos�1ej(1), W1(�1)ej(1) � �cos�1eh(1) � sin�1ej(1), W1(�1)ej � ej for all other ej, whence


W1
�1�EW1
�1�*eh
1�, eh
1�� 	 b�m
1� � 1sin2�1 
 b�m
1�cos2�1 	 bm
1� � 1 	 ah
1�

and


W1
�1�EW1
�1�*ej
1�, ej
1�� 	 b�m
1� � 1cos2�1 
 b�m
1�sin2�1 	 bm
1� 	 aj
1�.

Here, �1 is chosen [as it may be, by virtue of (�)] so that the convex combination b�m(1)�1sin2�1 � b�m(1)cos2�1 is bm(1)�1, from
which b�m(1)�1cos2�1 � b�m(1)sin2�1 � bm(1), since b�m(1)�1 � b�m(1) � bm(1)�1 � bm(1).

In the same way, we define W2(�2). If g(1) is the index of the aj represented by cm(2)�1, then W2(�2)eg(1) � sin�2eg(1) �
cos�2ek(1), W2(�2)ek(1) � �cos�2eg(1) � sin�2ek(1). [Recall that k(1) is the index of the aj represented by cm(2).] Again,
W2(�2)EW2(�2)* ‘‘splices’’ c�m(2)�1 and c�m(2) to cm(2)�1 and cm(2), when �2 is suitably chosen, and leaves other ‘‘diagonal entries’’
of E unaltered. Note, too, that W1(�1)W2(�2)ej � W2(�2)W1(�1)ej for each j. Here, we use the fact that �1 and �2 each contain
four or more elements so that no two of j(1), h(1), g(1), and k(1) are equal. Thus W1(�1) and W2(�2) commute.

Note that Wk(�k)ej � ej unless j � �k � �k�1. Thus Wk(�k)En � En if n is neither k nor k � 1, since En has range in the
space generated by ej with j in �n. Suppose j � �n. Then

Fr
ej� 	 Wr
�r� · · · Wn
�n� · · · W1
�1�EW1
�1�* · · · Wn
�n�* · · · Wr
�r�*ej

	 Wr
�r� · · · W1
�1�EWn
�n�*Wn � 1
�n � 1�*ej

	 Wr
�r� · · · W1
�1�� �
h 	 n � 1

n 
 1

EhWn
�n�*Wn � 1
�n � 1�*ej�
	 Wn 
 1
�n 
 1�Wn
�n� · · · Wn � 2
�n � 2�� �

h 	 n � 1

n 
 1

EhWn
�n�*Wn � 1
�n � 1�*ej� .

In any event, Fr(ej) � Fs(ej) when r and s exceed n � 1. Thus {Fr(ej)} converges as r3 � for each fixed j. As {Fr} is a sequence
of projections, it is uniformly bounded by 1. The basis {ej} generates a dense linear manifold on each element of which {Fr}
acts to produce a convergent sequence of vectors in H. It follows that {Frx} is Cauchy convergent, hence convergent for each
x in H. If Fx is its limit, then F is linear and �F� � 1. Thus the sequence of projections {Fr} is strong-operator convergent to
F, and F is a projection whose matrix relative to {ej} has diagonal {aj} in some order.

The foregoing argument establishes our result when a � �. If b � �, the argument shows that there is a projection G with
b1, b2, . . . as its diagonal, where bj � 1 � aj. The diagonal of I � G is a1, a2, . . . (� 1 � b1, 1 � b2, . . .). It remains to treat
the case where a and b are finite and a � b is an integer. With this assumption, and the added hypothesis that both the sums
of the aj and of the bj are infinite, �� and �	 must be infinite sets. There are at most a finite number of a	j exceeding 1�n for
a given positive integer n. By arranging those a	j in decreasing order and letting n take on the values 1, 2, . . . , successively, we
may re-label the a	j so that a	1 � a	2 � � � � . Similarly, we may assume that b	1 � b	2 � � � � , where b	j � 1 � a�j, whence a�1 � a�2
� � � � . As �a	j and �b	j are finite, we have that a	j 3 0 and b	j 3 0 as j 3 �. It follows that a�j 3 1 as j 3 �. We may assume
that a � b (otherwise, we work with b1, b2, . . .).

We discuss a procedure for ‘‘distributing the a	j among a�1, a�2, . . . .’’ Let n be the smallest integer k such that a	1 � �j�1
k b	j.

Then �j�1
n�1b	j � a	1. Replace a�1, . . . , a�n�1 by 1, . . . , 1 and a�n by a�n � a	1 � �j�1

n�1b	j(� ã�n). Then 0 � a�n � ã�n and a	1 � �j�1
n�1b	j

� b	n, so ã�n � a�n � b	n � 1. In addition,
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�
j 	 1

n

a�j 
 a 	1 	 �
j 	 1

n

a�j 
 �
j 	 1

n � 1

b 	j 
 a 	1 � �
j 	 1

n � 1

b 	j 	 n � 1 
 a�n 
 a 	1 � �
j 	 1

n � 1

b 	j 	 n � 1 
 ã�n.

It follows from Lemma 5 that (a�n, . . . , a�1, a	1) is contained in the permutation polytope generated by (1, . . . , 1, ã�n, 0). As
at the end of the proof of Theorem 6, there is a unitary operator U1 on H such that U1ek � ek for each k not in �1, the set of
indices { j(1), . . . , j(n � 1)}, of the aj in {a�n, . . . , a�1, a	1}, which restricts to �1, the subspace of H generated by ej(1), . . . , ej(n�1),
as a unitary operator U�1 such that U�1AU�1* has matrix with diagonal a	1, a�1, . . . , a�n, when A, on �1, has matrix with diagonal
0, 1, . . . , 1, ã�n relative to the basis ej(1), . . . , ej(n�1).

We now distribute a	2 among a�n�1, a�n�2, . . . by the procedure just described, forming a finite subset �2 (� {k(1), . . . , k(m �
1)}) of �, disjoint from �1, a unitary operator U2 on H, such that U2ek � ek for each k not in �2, whose restriction U�2 to �2,
the space generated by ek(1), . . . , ek(m�1), transforms each operator A, on �2, whose matrix has diagonal 0, 1, . . . , 1, ã�n�m into
one whose matrix has diagonal a	2, a�n�1, . . . , a�n�m relative to the basis ek(1), . . . , ek(m�1).

Continuing in this way, we construct disjoint subsets �1, �2, . . . of � with union �, commuting unitaries U1, U2, . . . on H,
and (finite-dimensional) subspaces �1, �2, . . . with span dense in H, as described before. Distributing all the a	j among the a�j
yields an infinite sequence of 0s in place of the a	j and an infinite sequence ã1, ã2, . . . of numbers in (1

2
, 1] such that �j�1

� 1 � ãj
� b � a, an integer, by assumption. (There is ‘‘room’’ for the distribution of all the a	j among the a�j from the assumption
that a � b.) From Theorem 14, there is a projection E0 with diagonal ã1, ã2, . . . relative to the basis {ej}j���, and of course,
a projection E with diagonal 0, 0, . . . , ã1, ã2, . . . relative to the basis {ej}. We organize the basis {ej} according to the sets
�1, �2, . . . and the diagonal of the matrix for E such that the entries at the diagonal positions corresponding to numbers in �j
are the numbers obtained from the matching step of the distribution procedure. If we now form U1EU*1, U2U1EU*1U*2, . . . ,
successively, we construct a sequence of projections that converges, in the strong-operator topology, to a projection F (by the
same argument used for the first part of the proof, where we assumed that a is infinite). The diagonal of F relative to {ej} is
a	1, a	2, . . . , a�1, a�2, . . . , that is, a1, a2, . . . , by choice of U1, U2, . . . .

Having completed the proof of the ‘‘Carpenter’s Theorem’’ in this case, we are left with the task of verifying the curious
‘‘integrality’’ condition imposed on a � b. In more detail, we let our orthonormal basis for H be {ej}j��0

, where �0 is the set
of nonzero integers, and F be a projection on H with matrix (ajk) relative to {ej}. Let �� and �� be the negative and positive
integers in �0, respectively. Our assumption now is that �j��1

�� ajj (� a) and �j�1
� 1 � ajj (� b) are finite. We wish to prove that

a � b is an integer.
Let E be the projection whose range is spanned by {ej}j���

. In effect, we have assumed that the positive operators EFE and
(I � E)(I � F)(I � E) are of trace class (L1). It follows that FE, EF, (I � F)(I � E), and (I � E)(I � F) are operators of
Hilbert–Schmidt Class (L2). Thus the sum of all �ajk�2 with j or k in �� converges as does the sum of all �bjk�2 with j or k in ��,
where (bjk) is the matrix of I � F. If T is a Hilbert–Schmidt operator on H, we denote by �T�2 the Hilbert–Schmidt (L2�) norm
of T. That is, �T�2

2 is tr(T*T) (� tr(TT*)), where ‘‘tr(T*T)’’ denotes the sum of the diagonal entries of the matrix for T*T relative
to an arbitrary orthonormal basis for H, in particular, relative to {ej}j��0

. Thus �T�2
2 is the sum of the squares of the absolute

values of all the entries of the matrix for T (or of T*). Since

�T�2
2 	 tr
T*T� 	 �

j � �0


T*Tej, ej� 	 �
j � �0

�Tej�2,

with B a bounded operator on H,

�BT�2
2 	 �

j � �0

�BTej�2 � �B�2 �
j � �0

�Tej�2 	 �B�2�T�2
2,

and �BT�2 � �B��T�2. In this notation, we have �EF�2
2 � �FE�2

2 � tr(EFE) � a and �(I � F)(I � E)�2
2 � b.

Given a positive � (�(2 � 2a1/2 � 2b1/2)�1), choose n0 in �� such that �j or k��n0
�ajk�2 and �j or k�n0

�bjk�2 are each less than
��2, where �� � �[28(1 � a1/2 � b1/2)]�1. Let A be the matrix that has ajk as its j,k entry when �j� and �k� do not exceed n0, 1
at the j, j entry when j � n0, and 0 at all other entries. Then, by choice of n0 and A, �F � A�2 � 2��. Hence ��F�2 � �A�2� �
2��.

Let E0 be the projection with range spanned by {e�1, . . . , e�n0
}. Again, by choice of n0 and A, �EF � E0A�2 � 2��. Hence

��EF�2 � �E0A�2� � 2��. Let E�0 be the projection with range spanned by {e1, . . . , en0
} and I0 be the projection E0 � E�0. Then

�(I � E)A � (I � E)F�2 � 2��. At the same time, (I � E)(I � A) � E�0(I � A), whence

��E�0
I � A��2 � �
I � E�
I � F��2� � �E�0
I � A� � 
I � E�
I � F��2

	 �
I � E�
I � A� � 
I � E�
I � F��2

� �I � E��I � A � 
I � F��2 	 �F � A�2 � 2��.

Note, too, that

�A � A2�2 � �A � F�2 
 �F2 � FA�2 
 �FA � A2�2

� �A � F�2 
 �F��F � A�2 
 �A��F � A�2 � 6��.

Let A0 be I0FI0. Then A0 � A0
2 � A � A2, whence �A0 � A0

2�2 � 6��. Of course, we may treat A0 as the 2n0 � 2n0 matrix
(ajk)�j�,�k��n0

. Since A0 is I0FI0, �A0� � 1 and A0 is positive. Let ��n0
, . . . , �n0

be the 2n0 eigenvalues of A0 (with repetitions).
Then ��n0

� ��n0

2 , . . . , �n0
� �n0

2 are the eigenvalues of A0 � A0
2. Let �j be �j � �j

2 (� �j(1 � �j)). If �j �
1
2
, then (1 � �j)2 �
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4�j
2. If �j �

1
2
, then �j

2 � 4�j
2. We suppose that m0 of the eigenvalues �j are in [1

2
, 1]. Let G0 be the projection whose matrix relative

to the basis that diagonalizes A0 is diagonal with 1 in place of each of the �j in [1
2
, 1] and 0 in place of the other �j. Then

�A0 � G0�2
2 � 4 �

j 	 � n0

n0

�j
2 	 4�A0 � A0

2�2
2,

and �A0 � G0�2 � 2�A0 � A0
2�2 � 12��. Thus �E0A0 � E0G0�2 � 12��. Since E0A � E0A0,

�EF � E0G0�2 � �EF � E0A�2 
 �E0A0 � E0G0�2 � 14��.

At the same time, (I � E)(I � A) � E�0(I0 � A0), whence

�
I � E�
I � F� � E�0
I0 � G0��2 � �
I � E�
I � F� � 
I � E�
I � A��2


 �E�0
I0 � A0� � E�0
I0 � G0��2 � 14��.

It follows that ��EF�2 � �E0G0�2� � 14�� � 1, and

��
I � E�
I � F��2 � �E�0
I0 � G0��2� � 14�� � 1.

From the foregoing, we have that

�a � �E0G0�2
2� 	 ��EF�2

2 � �E0G0�2
2�

	 �
�EF�2 � �E0G0�2�
�E0G0�2 
 �EF�2��

�14��
1 
 2�EF�2� 	 14
1 
 2a
1
2���.

For the last inequality, we note that �E0G0�2 � 1 � �EF�2. In the same way,

�b � �E�0
I0 � G0��2
2� 	 ��
I � E�
I � F��2

2 � �E�0
I0 � G0�2
2�

	 �
�
I � E�
I � F��2 � �E�0
I0 � G0��2�
�
I � E�(I � F��2 
 �E�0
I0 � G0��2)�

� 14��
1 
 2�
I � E�
I � F��2� 	 14
1 
 2b
1
2���.

Thus, as I0, E0, and G0 have ranks 2n0, n0, and m0, respectively, from Proposition 3,

�a � b � 
m0 � n0�� 	 �a � b � 
m0 � 2n0 
 n0��

	 �a � b � �tr
E0G0E0� � tr

I0 � E0�
I0 � G0�
I0 � E0����

	 �a � b � 
�E0G0�2
2 � �E�0
I0 � G0��2

2�� � 28
1 
 a
1
2 
 b

1
2��� 	 �.

Now, m0 and n0 vary with the choice of �, but they are always integers. As a � b is arbitrarily close to an integer, a � b is an
integer.

We have established that a � b is an integer for an arbitrary subset S of diagonal elements of F with convergent sum a whose
complementary set of diagonal elements S�, subtracted from 1, also has a convergent sum b. To conclude our proof, we note
that the existence of any such S implies that the set S0 of ajj in [0, 1

2
] is such a set. As S has a convergent sum, it contains at most

a finite number of ajj exceeding 1
2
. Similarly, S� contains at most a finite number of ajj less than or equal to 1

2
. Shifting one finite

set from S to S� and the other from S� to S produces the sets S0 and S�0 with convergent sums a0 and b0, respectively. Moreover,
a0 � b0 and a � b differ by an integer, as described in the comment following the proof of Proposition 3. Thus a0 � b0 is an
integer if and only if a � b is. ■

4. Pythagorean Matrices
In Remark 11, we discussed doubly stochastic matrices. We used Proposition 12 to provide another proof of Proposition 3,
referring to Proposition 12 as a ‘‘Pythagorean Theorem’’ for finite doubly stochastic matrices. In this section, we consider infinite
doubly stochastic matrices. We prove a Pythagorean Theorem for a class of them, the Pythagorean matrices (Proposition 16).

We say that a doubly stochastic matrix A (� (ajk)) is Pythagorean when there is a Hilbert space H and two orthonormal bases
{ej} and {fk} for H such that ajk � �
ej, fk��2. We show that a Pythagorean Theorem holds for Pythagorean matrices: The
difference of the weights of complementary blocks is an integer when those weights are finite. As promised in Remark 11, we
establish the existence of doubly stochastic matrices with infinite complementary blocks, each of which has finite weight and
no zero diagonal entries. We use the ‘‘Carpenter’’ result in Theorem 15 and the notation of the proof of ‘‘integrality’’ for this.

When j � ��, let aj be 2j. When j � ��, let aj be 1 � 2�j. Since 1 � �j���
aj (� a) and 1 � �j���

1 � aj (� b) and a �
b � 0, an integer, we may apply Theorem 15 to conclude that there is an infinite-dimensional subspace H0 of H with
infinite-dimensional complement HCH0 (� H�0) such that �Fej�2 � aj, for each j in �0, where F is the projection of H on H0.
If j � ��, �(I � F)ej�2 � 1 � �Fej�2 � 1 � aj � 2�j. Let {fk}k���

and {fk}k���
be orthonormal bases for H0 and H�0, respectively.

Let ajk be �
ej, fk��2, so that (ajk) is an infinite doubly stochastic matrix, as noted before. Since
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�
k � � 


ajk 	 �
k � � 


�
ej, fk��2 	 �Fej�2 	 aj,

for each j in �0, and �k���
ajk � �(I � F)ej�2 � 1 � aj, for each such j, we have that �j���

�k���
ajk � �j���

2j � 1 and
�j���

�k���
ajk � �j���

2�j � 1. Thus the weight of each of the ��, �� and ��, �� complementary blocks is 1. Of course,
we can construct other examples of infinite complementary blocks, each having finite weight, by using Theorem 15 in the manner
just described.

We prove the analogue of Proposition 12 for Pythagorean matrices.

PROPOSITION 16. The difference of the weights of a block and its complementary block in an infinite Pythagorean matrix is an integer
when those weights are finite.

Proof: Since the complement of a finite block has infinite weight, we may assume that the block A0 and its complement A�0
in the matrix A are infinite with finite weights. Assume that A is Pythagorean. We may also assume that A � (ajk)j,k��0

and
that A0 � (ajk)j,k���

(so that A�0 � (ajk)j,k���
). By assumption, there are orthonormal bases {ej}j��0

and {fk}k��0
, for a Hilbert

space H, such that ajk � �
ej, fk��2. Let H0 be the closure of the space spanned by {fk}k���
and F the projection of H on H0.

As in the proof of Proposition 12, �Fej�2 is the sum of the entries of the jth row of A0, when j � ��, while �(I � F)ej�2 is the
sum of the entries in the jth row of A�0, when j � ��. At the same time, �Fej�2 is the j diagonal entry of the matrix for F and
�(I � F)ej�2 is the j diagonal entry for the matrix of I � F (matrices formed relative to the basis {ej}j��0

). Thus w(A0) is the
sum of the j diagonal entries in the matrix for F with j in ��, and w(A�0) is the sum of the j diagonal entries in the matrix for
I � F (that is, 1 minus the j diagonal entry for F), with j in ��. These sums are finite, by assumption [because w(A0) and w(A�0)
are finite]. But Theorem 15 assures us that the difference of these sums is an integer. Thus w(A0) � w(A�0) is an integer when
A is Pythagorean. ■

There is a great deal more to be said about doubly stochastic matrices in this context, and there are a number of questions
that have not been answered (for example: Are there non-Pythagorean doubly stochastic matrices?) That discussion must await
another occasion.
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