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Dual Cones And Tomita-Takesaki Theory 

Richard V. Kadison 

In this article, we present the theory of dual cones as introduced by M. Takesaki 
in [T] and developed by H. Araki [A1, A2], A. Connes [C], and U. Haagerup [H1, H2]. 

1 

Takesaki, in [T], defines and studies the cones we denote by V~ and VJ (following 
Araki's notation). He proves that they are dual to each other and establishes 
more of their important special properties. In [C] and [H2], Connes and Haagerup 

1 

introduce the self-dual cone, which becomes VJ in the Araki notation (and later, 
Vu in our notation). In [A1] (see also [A2]), Araki extends the theory to a one-
parameter family V~, a E [0, ~], of cones. It is, largely, the Araki theory that we 
present. Most, but not all, of the results in this article appear in exercise form in 
[KR4; Exercises 9. 6.51-65]. 

This theory is, in essence, a deep and detailed examination of the structure 
of the space of normal states of a von Neumann algebra and, at a more primitive 
level, a study of which operators, affiliated with a von Neumann algebra acting on 
a Hilbert space in standard form, map a given vector onto or near other vectors. As 
such, it is an important aspect of the theory of non-commutative integration, on the 
one hand, and a fundamental part of the theory of non-commutative approximation, 
on the other. 

The results presented are spread throughout the mathematical literature. It 
seems worthwhile to gather them into one article and to present them with complete 
proofs in a unified and simplified style. All the major results that appear are known. 
Many of the results on the way to these are new as are most of the arguments. 
In formulating and proving Theorem 13, some unpublished computations of Uffe 
Haagerup provided us with crucial help. 

The Friedrichs Extension [F] is a vital element in Takesaki's pioneering work 
with the original dual cones. We have included a complete proof of it as an ap-
pendix, with the appropriate additions and statement for use with von Neumann 
algebras. The proof is different from the earlier proofs and is substantially that 
appearing in [KR4; Exercises 7.6.52-55]. Our notation and terminology is that of 
[KR1-4]. The results and exercises of [KR1-4] are referred to with their numbering 
in [KR1-4] and no further reference. 
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Theorem 1. Let R be a von Neumann algebra with center C, acting on a 
Hilbert space H, and let J be a conjugate-linear isometry of H onto H such that 
J2 =I, JRJ = R', and JCJ = C* for each C in C. 

{i) A ----+ J A* J is a * anti-isomorphism of R onto R'. 
{ii) If '1/J is a * anti-isomorphism of R onto R', then there is a unitary operator 

U on H such that {the conjugate-linear isometry) JU implements '1/J: 

JU A*(JU)* = 'lj;(A) (A E R). 

Proof. (i) Note, first, that since J* is the mapping of H into H obtained from 
J by using the adjoint of J when J is viewed as a linear mapping of H into H and 
that J so viewed is a unitary transformation of H onto H, we have J = J* (as 
mappings of H into H) for both J and J* are the mapping inverse to J on H. 
Note, too, that with A in B(H), (JAJ)* = JA* J, for JAJ E B(H) and, with x, y 
in H, 

((JAJ)*x,y) = (x,JAJy) = (AJy,Jx) 

= (Jy,A* Jx) = (JA* Jx,y). 
Thus 

¢(A*)= JA**J = JAJ = (JA* J)* =¢(A)*, 
where ¢(B) = J B* J for B in R. In addition, with A, B in R, 

and 

¢(aA +B)= J(aA +B)* J = JaA* J + JB* J 
= aJ A* J + J B* J 

= a¢(A) +¢(B), 

rp(AB) = J(AB)* J = JB* JJA* J = ¢(B)¢(A). 
With A' in R', there is, by assumption, an A* in R such that ¢(A) = J A* J = A', 
so that ¢ maps R onto R'. Finally, since J is an isometry of H onto H, given an 
x in H there is a yin H such that Jy = x. If 0 =¢(A)= JA* J for some A in R, 
then 0 = JA* Jy = JA*x, and A*x = 0 for each x in H. Thus A*= 0 and A= 0. 
It follows that ¢ is a * anti-isomorphism of R onto R'. 

(ii) With ¢ as in (i), let T/ be the * isomorphism ¢- 1 o 'ljJ of R onto R. From 
Exercise 9.6.25, there is a unitary operator U such that T/(A) = U AU* for each A 
in R. Hence 

'lj;(A) = rp(UAU*) = J(UAU*)* J = JUA*(JU)* (A E R). 

Theorem 2. Let R be a von Neumann algebra acting on a Hilbert space H, u 
be a generating and separating unit vector for R, and S, F J, and ~, be the modular 
operators for { n, u}. 

{i) With A in R, A is in the centralizer of wu !R if and only if 

JAu = A*u. 

{ii) If C E R, then C is in the center of R if and only if 

JCJ = C*. 
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Proof. (i) Suppose JAu = A*u. Then Au= JA*u, and 

1 
(ABu,u) = (ASB*u,u) = (AJt:..2B*u,u) 

1 1 = (Jt:..2B*u,A*u) = (JA*u,t:..2B*u) 
1 1 

= (Au,t:..2B*u) = (Bt:..2Au,u) 
1 

= (BJJt:..2Au,u) = (BJA*u,u) 

= (BAu,u) 

for each Bin R. Thus A is in the centralizer of wuiR. 
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Suppose, now, that A is in the centralizer of wuiR. Then t:,.it At:. -it = A, for 
each real t, from Proposition 9.2.14(iii). Let A be the (abelian) von Neumann 

1 
algebra generated by { t:.. it : t E R}. Then t:..17 A and t:.. 2 17 A. It follows that 

1 1 
At:..2 ~ t:..2 A and that 

1 1 
JAu = JAt:..2u = Jt:..2Au = SAu = A*u. 

(ii) Suppose JCJ = C*. Since C* E R, JCJ E RnR'. Thus JCJ, C*, and 
C, are in the center of R. 

If Cis in the center of R, then Cis in the centralizer of wuiR. Hence, from (i), 

JCJu = JCu = C*u. 

As C E R', JCJ E R. Since u is separating for R, 

JCJ = C*. 

Theorem 3. Let R be a von Neumann algebra acting on a Hilbert space H 
with generating and separating vector u. Let 50 , S, F0 , F, J, and t:.. be the modular 
operators for u Suppose J' is a conjugate-linear isometry of H into H such that 

J'u = u, J'2 =I, J'RJ' = R', (AJ'AJ'u,u) 2:0 

Let HaAu be J'A*u (A E R) and U be J'J. Then 
(i) 0:::; (AJAJu, u) (A E R); 
(ii) Ho = J'So, and Ho has closure J'S(= H); 

(A E R). 

(iii) (Hx,x) 2:0 for each x in D(H) (= D(t:..112)) and His symmetric; 
(iv) H is self-adjoint; 
(v) His positive and H = Ut:..1/2; 
(vi) J = J', and J is the unique operator with the properties assumed for J'. 

Proof. (i) With A in R, we have 

(AJAJu,u) = (AJSA*u,u) = (t:.. 112A*u,A*u) 2:0, 

since t:..112 2: 0. 
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(ii) By definition V(Ho) = V(J'So) = V(So) = Ru, and 

HoAu = J' A*u = J' SoAu (A E R). 

Hence Ho = J'So. Now (x,y) is in the closure of the graph of J'So if and only if 
there is a sequence {xn} in the domain of So, tending to x, such that {J'Soxn} 
tends toy, which occurs if and only if {Soxn} tends to J'y. Thus, (x, y) is in the 
closure of the graph of J' So if and only if ( x, J' y) is in the closure of the graph of 
S0 , that is, if and only if x E V(S) and Sx = J'y (equivalently, J'Sx = y). Thus 
H=J'S. 

(iii) It follows from (ii) that V(H) = V(S) = V(~ 1 1 2 ). By hypothesis, with A 
in R, 

(HAu,Au) =(A* J' A*u, u) =(A* J' A* J'u, u) ~ 0; 
hence (Hx,x) ~ 0 for each x in V(H) since Ru is a core for H. From Exercise 
7.6.52(i), with Ao in place of H, H ~ H*. 

(iv) From (ii), Ho = J'So and So= J'Ho. Thus 

SoJ' ~ Ho = H*, HoJ' ~So, H* = Ho ~ SoJ'. 

Hence, H* = S0J' = F J'. Now R'u is a core for F, so that J'R'u is a core for 
F J'. But H* = F J' and J'R'u = J'R' J'u = Ru. Thus Ru (= V(Ho)) is a core 
for H and for H*. From (iii), H ~ H*, so that H = H*. 

(v) From (iii), (Hx,x) ~ 0 for each x in V(H). From (iv), His self-adjoint. 
Hence H is positive. From (ii), 

H = J'S = J'J~l/2 = u~l/2. 

(vi) Since H ~ 0 and U ~ 1 1 2 is a polar decomposition for H, from Theorem 
6.1.11, we have that I= U = J' J. Hence, J = J', and J is the unique operator 
with the properties assumed for J'. 

Theorem 4. Let R be a von Neumann algebra acting on a Hilbert space 'H, 
u be a separating and generating vector for R, and S, F, J and~ be the modular 
operators for u. With x a vector in 'H, let if>x(A) be (Au, x) for each A in R, and 
¢~(A') be (A'u,x) for each A' in R'. Then 

(i) x E V(S) (= V(F0) = V(~ 1 1 2 )) and Sx = x for a vector x in 1t if and only 
if the (normal) linear functional ¢~ on R' is hermitian; symmetrically, y E V(F) 
and Fy = y if and only if 1/>y is hermitian; 

(ii) ¢~ ~ 0 if and only if x = Hu for some positive H affiliated with R; 
(iii) the set of vectors x in 1t such that¢~ ~ 0 is a (norm-)closed cone V~ in 

1t and (by symmetry) the same :is true of the set V~ 12 of vectors x in 1t such that 
if>x -~ 0; 

(iv) V~ and V~/ 2 (of (iii)) are dual cones, that is, wE V~ if and only if (w, v) ~ 
0 for each v in V~ 12 , and v E V~ 12 if and only if (w, v) ~ 0 for each w in V~; 

(v) V~ is the norm closure o.fR+u and V~ 12 is the norm closure ofR'+u; 

(vi) ~ 1 1 2 R + u = R'+u, ~- 1 1 2 R'+u = R+u, and V~ 12 , V~ are the norm 
closures of ~ 1 1 2 R+u, ~ -lf2R'+u, respectively. 
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Proof. (i) If x E V(S) and Sx = x, then for each self-adjoint A' in R', 

(A'u,x) = (FA'u,x) = (Sx,A'u) = (x,A'u); 

whence ¢~(A') is real and¢~ is hermitian. (See Corollary 9.2.30.) 
Suppose, now, that ¢~ is hermitian and T' E R'. Then 

(FT'u,x) = (T'*u,x) = ¢~(T'*) = ¢~(T') = (T'u,x) = (x,T'u), 

whence x E V(F0) and x = F0x = Sx. 
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(ii) Suppose His a positive operator affiliated with R such that u E V(H) and 
x = Hu. Let {E.x} be the resolution of the identity for H, and let Hn be HEn· 
Then Hn E Rand EnH ~ Hn. Hence 

(n--+ oo) 

since En tends to I in the strong-operator topology. Now (A'u, Hnu) = (HnA'u, u)2: 
0, when A' E R'+, since Hn and A' are commuting positive operators. Thus 

0:::; lim(A'u,Hnu) = (A'u,Hu) = (A'u,x), 

and¢~ 2: 0. 
Suppose x in H is such that ¢~ 2: 0. Then, in particular, ¢~ is hermitian, and 

x E V(S) (= V(F0)) from (i). From Lemma 9.2.28, Lx TJ R (and Lxu = x). By 
definition of Lx, 

LxT'u = T'x for each T' in R', so that 

(LxT'u, T'u) = (T'x, T'u) = (T'*T'u, x) 2: 0 

since T'*T' E R'+ and¢~ 2: 0. Thus (Lxy, y) 2: 0 for each yin R'u, a core for Lx, 
and (Lxz, z) 2: 0 for each z in V(Lx)· From Theorems 2' and 4' of the appendix, 
Lx has a positive self-adjoint extension (the Friedrichs extension) H affiliated with 
R. AsLxu=x,Hu=x. 

(iii) If A' E R'+, then (A'u,ax + y) 2: 0 when a 2: 0 and x,y E V~. Thus 
ax+ y E V~. If v and -v are in V~, then (A'u,v) = 0 for each A' in R'+. 
Since each operator T' in R' is a linear combination of (four) operators in R'+, 
(T'u, v) = 0. As [R'u] = H, v = 0. Thus V~ and, symmetrically, V~/2 are cones in 
H. 

If { Xn} is a sequence of vectors in V~ tending to x in norm and A' E R' +, then 
0 :::; (A'u,xn) --+ (A'u,x). Hence V~ and, symmetrically, V~ 12 are (norm-)closed 
cones in H. 

(iv) If v E V~ 12 , then (Au, v) 2: 0 for each A inn+. If wE V~, then w = Hu 
for some positive H affiliated with R from (ii). With Hn as in the proof of (ii), 

0:::; (Hnu, v) --+ (Hu, v) = (w, v). 

If (w, v) 2: 0 for each v in V~ 12 , then 0 :::; (w, A'u) = (A'u, w) for each A' in R'+, 
since A'u E V~ 12 for such A' (from (ii) applied with R' in place of R). Hence 
¢~ 2: 0 and wE V~. Thus wE V~ if and only if (w,v) 2: 0 for each v in V~/ 2 • 
Symmetrically, v E V~/ 2 if and only if (w, v) 2: 0 for each win V~. 

(v) From (ii), n+u ~ v~. If X E v~, there is a positive H affiliated with R 
such that x = Hu. With the notation of the solution to (ii), Hnu E n+u and 
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Hnu --t Hu = X. Thus v~ is contained in the norm closure of n+u and, hence, 
coincides with this norm closure. Symmetrically, V~ 12 is the norm closure of R'+u. 

(vi) Let <I> (A) be J A* J for A in R. From the discussion at the beginning of 
Section 9.2, <I> is a* anti-isomorphism of R onto R'. Hence <I>(R+) = R'+. With 
A inn+, Au E 'D(S) = 'D(D.112 ) and 

6, 112 Au= JSAu = JA*u = JA* Ju = <I>(A)u. 

Thus D. 112R+u = R'+u. Since 1?-'+u is norm dense in V~ 12 from (v), V~ 12 is the 
norm closure of D. 112 R+u. Symmetrically, with A' in R'+, A'u E 'D(F) = V(D. - 112 ) 

and 
D. - 1/ 2 A'u = JFA'u = JA'*u = JA'* Ju = <I>- 1(A')u. 

Hence D,- 112n'+u = n+u, and V~ is the norm closure of the cone D. - 112R'+u. 

Theorem 5. With the notation and assumptions of Theorem 4 and with w a 
normal state of R: 

(i) there is a vector v in V~ such that wviR = w; 
(ii) llv- ull = inf{llz- ull: l.<..lziR = w}, where vis as in (i); 
(iii) the vector v in (i) is unique. 

Proof. (i) Since u is separating for R, there is a. unit vector z in 1-{ such that 
w = Wz I R from Theorem 7.2.3. From Theorem 7.3.2, there is a partial isometry 
V' in R' such that w' is a positive normal linear functional on R', where w'(A') = 
¢~(V' A') for each A' in R', and such that ¢~(A')= w'(V'* A'). 

Now w'(A') = ¢~(V'A') = (V'A'u,z) = (A'u, V'*z), so that (v =) V'*z E V~. 
In addition, 

(A'u, z) =¢~(A')= w'(V'* A')= ¢~(V'V'* A')= (A'u, V'V'* z). 

Since u is generating for R', z = V'V'* z, whence Wv I R = Wz I R = w. 
(ii) If H is a positive operator, affiliated with R and u E 'D(H), then u E 

V(H 112 ), H 112u E 'D(H 112 ), J-PI 2 H 112u = Hu (from 5.6.(18)), and A' H 112 ~ 
H 112 A' for each A' in R'. Thus,. if V' is a partial isometry in R', 

(1) 

and 

(2) 

I (V' H u, u) I = I (V' H 112 u, H 112u) I 

:S: IIV' H 112 uliiiH 112 uii 

:S: IIH112 ull 2 

= (Hu, u), 

Re (V' Hu, u) :::; (Hu, u). 

Suppose z is a unit vector in 1-{ such that Wz I R = WHu I R. From Exercise 7.6.23(ii), 
there is a partial isometry W' in R', with initial space [RHu], such that W' Hu = z. 
From (2), 

Re (z, u) = Re (W' Hu, u) :::; (Hu, u), 
so that 

(3) IIHu- ujj 2 = 2- 2Re (Hu, u) :::; 2- 2Re (z, u) = liz- uil 2 . 
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From Theorem 4(ii), there is a positive operator H, affiliated with R such that 
v = Hu. From (3), 

llv-ull=inf{llz-ull: WziR=w}. 

(iii) If v' is another vector in V~ such that Wv' I R = w, then 

llv- ull = inf{llz- ull : Wz I R = w} = llv'- ull, 

and v' = V' H u for some partial isometry V' in R' with H u in its initial space 
(where His as in (ii)). Hence 

Re (V' Hu, u) = Re (v', u) = Re (v, u) = (Hu, u), 

and the inequality of (2) is equality in the present case. It follows that 

(V' Hu, u) = I(V' Hu, u)l = Re (V' Hu, u) = (Hu, u), 

so that 
(V' H1f2u, H1f2u) = IIV' H1/2uiiiiH1/2ull = IIH1/2ull2. 

Thus V' H 112u = H 112u and v' = V' Hu = Hu = v. 

Theorem 6. Let R be a von Neumann algebra acting on a Hilbert space 1-i, 
u be a separating and generating vector for R, and S, F, J and ~ be the modular 
operators for u. With a in [0, ~], let V~ be the norm closure of {~a Au: A E R+}. 
(The notation V~ and V~ 12 of Theorem 4 is in agreement with the definition of V~ 
by virtue of Theorem 4(v) and (vi).) Let a' be ~ -a. Then 

(i) V~ is a (closed) cone and 

(ii) W~, the real-linear span ofV~, is contained in the domain of ~ 1 1 2 and 

~1/2y = Jy, 

(iii) IIHxll :::; IIKxll when x E D(H) n D(K) and H and K are self-adjoint 
operators affiliated with an abelian von Neumann algebra such that H 2 :::; K 2 ; 

(iv) 
ll~aYII :::; 2112 IIYII (yEW~); 

(v) ~a V 0 is dense in va . 
U U! 

(vi) v~ and v~' are dual cones; in particular, v~ 14 is self-dual. 

Proof. (i) Since ~ 1 1 2 = ~a' ~a (from 5.6.(18)), Ru ~ D(~ 1 1 2 ) ~ D(~a). 
With A and Bin n+ and b a positive number, 

~aAu+b~aBu=~a(A+bB)uE{~aKu: KER+}. 

When H and K are inn+, there is a K' in R'+ such that 
I 1 

(~aHu,~a Ku) = (Hu,~2Ku) = (Hu,K'u) :2:0, 

from Theorem 4(vi). Thus, with X in v~ and y in v~'' (x, y) :::: 0. If X and -x 
are in V~, then (x,~a'Ku) = 0 when KEn+. Since each operator in R is a 
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linear combination of four operators in R+, x is orthogonal to ,!:::J,.a' Ru. We note 
that t::.a'Ru is dense in 'H., from which x = 0. 

Suppose that y E V(t::.a'). Let En be the spectral projection fort::., correspond-
.! I 

ing to the interval [0, n]. Then EnY E V(t::.z) <;;;; V(t::.a ). Since Ru is a core for 
1 

t::. 2, there is a sequence {Am} in R such that 
1 1 

fj.2Amu --+m fj.2EnY· 

t::. a' is everywhere defined and does not increase norm on E 1 ('H). t::. a does not 
decrease norm on V(t::.a) n (I- Et)('H.). Thus, with Xm for Amu- Eny, we have 
that 

lit::. a' AmU- jj.a' EnYII 2 = IIE1t::.a' Xmll 2 +II (I- E1)t::.a' Xmll 2 

~ lit::. a' E1xmll 2 +lit::. a (I- E1)t::.a' Xmll 2 

Thus 
(x, Ent::. a' y) = (x, fj. a' Eny) = lim(x, fj. a' Amu) = 0. 

m 

Now limn Ent::.a' y = t::.a' y, whence (x, t::.a' y) = 0 for ally in V(t::.a'). Since t::.a' is 
self-adjoint and one-to-one, its range is dense in 'H., so x = 0. Thus { t::. a K u : K E 
R+} and its closure V~ are cones. 

If A E R+, then from Exercise 9.6.10, 

Jt::.aAu = fj.-aJAu = fj.-aJSAu 

=' fj. -a JJjj.112 Au= t::.a' Au. 

Hence J maps a dense subset of V~ onto a dense subset of V~'. Since J is an 
isometry, JV~ = V~'. 

(ii) From (i) (when a= 0, a'=~), with A in R+, 

t::. 1/ 2 Au= JAu. 

Suppose x E V~. Then xis the limit of a sequence {Anu} for some sequence {An} 
of operators in R+. Since J is an isometry 

t::.1/2 Anu = J Anu--+ Jx. 

As t::. 112 is closed, X E V(t::.112) and t::.112x = Jx. Thus w~ c V(t::.112), and 
t::.112y = Jy for each yin w~. It follows that 

IIYII = IIJYII = llt::.112YII 

for each y in w~. 
(iii) From Theorem 5.6.15(i), there is a common bounding sequence {En} for 

H, K, H 2, K 2. By assumption, 

(H2 Enx, Enx) ~ (K2 Enx, Enx), 

so IIHEnxll ~ IIKEnxll for each n. Since X E V(H) nV(K), 

HEnx = EnHx--+ Hx 
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and 

Hence IIHxll ::; IIKxll· 
(iv) Express ~a as ~a (I- E)+~ a E, where E is the spectral projection for~ 

corresponding to [0, 1]. Then ll~a Ell ::; 1 and ~a (I- E)::; ~ 1 1 2 (!- E). We have 
that ~E is everywhere defined, bounded, and II~EII ::; 1. Also, (I- E)~ <;;; ~(I- E) 
(and ~(I- E) is closed and self-adjoint). By passing to the function representation, 
we see that ~a= ~a (I -E)+~ a E, ll~a Ell ::; 1, and [~a(I -E}F::; [~ 1 / 2 (I -E)j2. 
If y E 'D(~ 1 1 2 ) (<;;; 'D(~a)), then 

y E 'D(~1/2(I- E))<;;; 'D(~a(I- E)), 

and 
~1/2(! _ E)y =(I_ E)~1/2y, ~a(I _ E)y =(I_ E)~ay. 

From (iii), we have 

Thus, from (ii), if yEW~, 

ll~aYII 2 =II (I- E)~aYII 2 + IIE~aYII 2 

::=;II(!- E)~ 112 YII 2 + ll~aEyll 2 

::; II~ 112 YII 2 + IIYII 2 

= 2IIYII 2 . 

( v) Suppose X E v~ 0 Then X is the limit in H of {An u} for some sequence {An} 
of operators in R+. From (ii), Anu- X E w~ <;;; 'D(~ 1 1 2 ); from (iv) 

so that ~ax E V~. Hence ~aV~ <;;; V~. Since {~a Au : A E R+} is dense in V~, 
~av~ is dense in v~. 

(vi) From the proof of (i), (x, y) 2: 0 when x E V~ and y E V~'. Thus V~ and 
V~' are contained in the dual cones of one another. 

Suppose, now, that y is in the dual cone to V~ (that is, (y, x) 2: 0 for each x in 
V~). Let hn(P) be (27r)-~(1- ~lpl) when IPI::; n, and let hn(P) be 0 when n < IPI, 
where n is a positive integer. (See the beginning of the proof of Theorem 3.2.30.) 
Then, by Theorem 3.2.30 calculations, hn(t) = (1- cosnt)j1rnt2 when t =I- 0 and 
hn(O) = n/(27r). Since both hn and hn are continuous and in L1(1R) n L00 (!R), and 
hn(P) = hn( -p), hn is the Fourier transform of hn (either from Theorem 3.2.30 or 
direct calculation). From the equation noted in the statement of Theorem 5.6.36, 

Since ~itu = u, from Remark 5.6.32, and ~itA~-it E R+ when A E R+, ~it Au= 
~it A~ -itu and ~it~ a Au = ~a~ it Au E va Hence ~ itva = va for each real t and u· u u ' 
the unitary operator ~it maps the dual cone of V~ onto itself. Thus 0::; (~ity,x), 
and since hn(t) 2: 0 for each real t, hn(ln~)y is in the dual cone of V~ from(*). 
Since { v'21f hn} is monotone increasing with pointwise limit the constant function 
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1 on IR and h ----t h(ln ~) is a O"-normal homomorphism of B into the abelian von 
Neumann algebra generated by ~ (see Theorems 5.2.8 and 5.6.26), v'27f hn(ln ~) 
is strong-operator convergent to I. Thus 

(Yn ==) ~ hn(ln ~)y ----t y. 

We show, now, that Yn E V~'. Since hn vanishes outside a finite interval, 
Yn E 'D(~ 1 ) for each real t. To see this, pass to the abelian von Neumann alge-
bra generated by ~ and I and to the representing function algebra C(X) for this 
von Neumann algebra. Then hn(ln~) is represented by hn of in C(X), where f 
represents ln~ in N(X). If q is a point in X at which the function representing 
~ takes a value outside the interval [exp -n, exp n], then (hn o f)(q) = 0. It fol-
lows that ~t ~ hn(ln ~) is bounded for each real t. Since hn(ln ~) is a bounded, 
everywhere-defined operator, ~ 1 hn(ln~) is closed, and densely defined. Thus 
~ 1 hn(ln~) = ~ 1 ~hn(ln~). In particular, Yn E 'D(~ 1 ) for each real t. Thus, 
with A' in R'+ and A equal to J A' J, 

0 :S (~a An, Yn) = (~-a'~ 1/ 2 An, Yn) 

= (JAn,~-a'Yn) = (JAJn,~-a'Yn) 
= (A 1 1L,L~-a'Yn), 

from (ii). Hence~ -a' Yn E V~. From (v), Yn E ~a'v~ ~ V~'. It follows that y E V~' 
and that V~' is the dual cone to V,~. In particular, V~/ 4 is its own dual (we say that 
v~ 14 is self-dual). 

Theorem 7. We adopt the notation of Theorem 6, but write Vu in place of 
V~ 14 . Let 2t0 and 80 be the (strong-operator-dense) * snbalgebras of R and R', 
respectively, consisting of elements in reflection sequences. (See Subsection 9. 2, 
Tomita's theorem-a second approach.) 

(i} AoJ AoJn E Vu (Ao E 2lo). 
(ii} AJAJn E Vu (A E R). 
(iii} {~ 1 1 4 A6u: Ao E (2lo)h} is dense in Vu. 
(iv) {AJAJn: A E R} = {A'JA'Jn: A' E IR'}, and this set is dense in Vu. 
(v) AJAJVu ~ Vu (A E R). 

Proof. (i) Let Bin R be the extension of ~- 1 1 4 A 0 ~ 1 / 4 . Then 

AoJAoJn = AoJAon = AoJSA~n = Ao~ 1 / 2 A~n 
= ~ 1/4 ( ~ -1/4 Ao~ 1/4) ( ~ -1/4 Ao~ 1/4 )*u 

= ~ 1 1 4 BB*n E Vu. 

(ii) It will suffice to show that AJAJn E Vu for each A in (R)I. Since 2lo is 
a strong-operator-dense * subalgebra of R, A is in the strong-operator closure of 
(2toh. Hence AJ AJ is in the strong-operator closure of { AoJ AoJ : Ao E (2toh }. 
Thus AJAJn E Vu from (i). 

(iii) Suppose that x in Vu and a positive E are given. Choose A in R+ such 
that llx- ~ 114 Ani I < ~E. From (the proof of) Corollary 5.3.6, there is a B in (2lo)h 
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such that IIAu- B 2ull < 2~ 3 f 2 t. From Theorem 6(iv), since Au and B 2u are in 
w~, 

ll~l/4Au- ~1/4B2uii < 21/2T3/2E. 

Hence llx- ~ 1/4 B2ull < f. It follows that 
{~ 1 1 4 A6u : Ao E (Qt.o)h} is dense in Vu. 
(iv) With A in R, (A' =) JAJ E R', JA' J =A. Thus AJAJ = JA' JA' = 

A'JA'J, and 
{AJAJ : A E R} = {A'JA'J : A' E R'}. 

With A0 in (Qt.o)h, ~ 1 1 4 A 0 ~-l/ 4 has a (unique) extension Bin R. We have, 

BJBJu = BJBu = BJSB*u 
= B~l/2(~ ~lf4A 0 ~l/4)u 

= B~l/4Aou = ~1/4A6u. 

From (ii) and (iii), it follows now that {AJAJu : A E R} is a dense subset of Vu. 
(v) With A, Bin R, 

AJAJBJBJu = ABJAJJBJu = ABJABJu E Vu, 

from (ii). Since AJAJ is continuous, {BJBJu : BE R} is dense in Vu, and Vu is 
closed, AJ AJVu ~ Vu. 

Theorem 8. We adopt the notation of Theorem 7. Suppose x E Vu. Then 

(i) Jx = x; 
(ii) J E = E' J and J EE' = EE' J, where E and E' are the projections with 

ranges [R' x] and [Rx], respectively; 
(iii) x is separating for R if and only if x is generating for R; 
(iv) if x is separating for R and J' is the modular conjugation corresponding 

to x, then J' = J. 

Proof. (i) Note that J~ 1 1 4 Au = ~ 1 1 4 Au, when A E R+, from Theorem 6(i). 
Since J is continuous and Vu is the norm closure of {~ 1 1 4 Au : A E R+}, Jx = x. 

(ii) From (i), 

JTx = JT Jx E R'x, JT'x = JT' Jx E Rx, 

when T E R and T' E R'. Thus J maps Rx isometrically onto R' x; whence J 
maps { Rx} _i isometrically onto { R' x} _i. Hence 

E' Jy = E' J Ey + E' J(I- E)y = J Ey 

for each yin H, and E' J = J E. Thus 

J EE' = E' J E' = E' EJ = EE' J. 

(iii) Note that x is separating for R if and only if [R' x] is H, which occurs if 
and only if E is I. From (ii), E is I if and only if I = JEJ = E'. Thus, xis 
separating for R if and only if [Rx] is H, that is, if and only if x is generating for 
R. 

(iv) Since x is separating for R, it is generating for R, from (iii), and there is 
a modular structure associated with x. From (i), Jx = x; and of course J2 = I 
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and JRJ = R'. Moreover, AJAJx E Vu for each A in R, from Theorem 7(v). 
Thus (AJAJx,x) 2': 0, since Vu is self-dual (Theorem 6(vi)). From Theorem 3(vi), 
J= J'. 

Theorem 9. We adopt the notation of Theorem 7. Let x, y, and v, be vectors 
in Vu, and suppose that 0 = (x, y) = (u, v). Let E and E' be the projections with 
ranges [R' x] and [Rx], respectively. Then 

(i) v = 0; 
(ii) JEE' (= J') is the conjugation for EREE' (=§)acting on EE'(H) with 

generating and separating vector x; 

(iii) v~ <;;; Vu, where v~ is the self-dual cone for{§, X} (corresponding to Vu for 
{R,u}); 

(iv) EE'y = 0. 

Proof. ( i) Choose An in R + such that { ~ 114 A~ u} tends to v and B' in B0 . 

Then 
IIAnull 2 = (A;,u,u) = (~ 1 1 4 A;,u,u)---> (v,u) = 0. 

Thus, with C' the extension of L.~ 1 1 4 B'~- 1 1 4 in R', 

and 
( ~l/4A2u f3'u) = (A2u ~l/4B' ~ -l/4u) 

n 'j n ' 

= (Anu, AnC'u) 

= (Anu, C' Anu) 

--7 0. 

Hence, (v, B'u) = 0. Since B0u is dense in H, v = 0. 
(ii) Let K be EE'(H) and J' be JEE'. Then J' is a conjugate linear isometry 

of K onto K, from Theorem 8(ii). Moreover, 

(J')2 = JEE'JEE' = J2(EE')2 = EE', 

so that J' is involutory. From Theorem 8(i), J' x = x, and 

J' EE' AEE' J' = EE' J AJ EE' (A E R), 

whence J'§J' = §'. Finally, with A in R, 

(EE'AEE'J'EE'AEE'J'x,x) = (AJ'Ax,x) 

= (E'EJAx,A*x) 

= ( J E' Ax, E' A* x) 

= (JAx,A*x) 2': 0, 

from Theorem 7(v) and self-duality of Vu and since Ax and A*x are in E'(H). It 
follows from Theorem 3(vi) that J' is the modular conjugation for {§, x }. 
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(iii) From Theorem 7(iv), {EE'AEE'J'EE'AEE'J'x : A E R} is dense in 
v~. From Theorem 7(v), since X E Vu 

EE'AEE'J'EE'AEE'J'x = J'AJ'EE'AEE'x 

= JEE'AJEE'Ax 

= JEAE'JEAx 

= JEAJEEAx 

= EAJEAJx E Vu. 

As Vu is closed, V~ <:;;; Vu. 
(iv) If wE V~, then wE Vu from (iii), so that 

(EE'y, w) = (y, EE'w) = (y, w) 2 0, 

since y, wE Vu and Vu is self-dual from Theorem 6(vi). As V~ is self-dual, EE'y E 
V~. But 

(EE'y, x) = (y, EE'x) = (y, x) = 0, 

so that, choosing EE'y for v and the vector x for u in (i), we conclude that EE'y = 
0. 

Theorem 10. With the notation of Theorem 9, let F and F' be the projections 
with ranges [R'y] and [Ry], respectively. Let z be Ey, let z' be E'y, and let M, M', 
N, and N' be the projections with ranges [R'z], [Rz], [R'z'], and [Rz'], respectively. 
Then 

(i) JM = N'J, JN = M'J, eM= eM'= eN= eN', M:::; E, and N':::; E'; 
(ii) if z -/= 0, there is a non-zero partial isometry U in R such that U* U :::; M, 

UU*:::; N, and U*Uz-/= 0; 
(iii) if z -/= 0 and G' is the projection with range [RU* U z], in the notation of 

(ii), there is a non-zero partial isometry V' in R' such that V'*V' :::; G' :::; M', 
V'V'*:::; N', and V'*V'U*Uz =1- 0; 

(iv) if z -/= 0, then UV' z is a non-zero vector in N N' (H), and there is an A in 
NRN such that 

0 < (UV'z,Az') = -~(BJBJy,y), 
where B = A*U- JV' J E R, in the notation of (iii); 

(v) Ey = E'y = 0 and EF = E' F' = 0. 

Proof. (i) From Theorem 8(ii), JE = E'J. Thus 

J z = J Ey = E' J y = E' y = z' . 

Hence J A' z = J A' J z', and J maps [R' z] isometrically onto [Rz']. Hence J M = 
N'J. Similarly, JA'z' = JA'Jz, and JN = M'J. Since A-+ JA*J is a* anti-
isomorphism of R onto R', this mapping preserves central carriers. Moreover, 
JPJ = p for each central projection pin R. Hence eN= eM' and eM= eN'· 
From Proposition 5.5.13, eN= eN' and eM= eM'. Finally, M:::; E and N':::; E' 
since 

R'z = R'Ey = ER'y, Rz' = RE'y = E'Ry. 
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(ii) If z =I- 0, then M and N are non-zero projections in R. Since eM = eN' 
M and N have equivalent, non-zero subprojections from the comparison theorem 
(Theorem 6.2.7). Thus, there is a partial isometry U in R such that 0 < U*U:::; M 
and UU* :::; N. Moreover, U* U z =f. 0 since 

[R'U*Uz] = [U*UR'z] = U*UM(H) =/:. (0). 

(iii) If z =/:. 0, there is U as in (ii), and U*Uz =/:. 0. Since [RU*Uz] <:;; [Rz], 
G' :::; M'. Thus 0 =f. ec;, :::; e.w == eN', and there is a non-zero partial isometry V' 
in R' such that V'*V':::; G' and V'V'*:::; N'. Moreover, V'*V'U*Uz =f. 0 since 

[RV'*V'U*Uz] = [11'*V'RU*Uz] = V'*V'G'(H) =/:. (0). 

(iv) If z =f. 0, then V'*U*UV' z =/:. 0 from (iii), so UV' z =/:. 0. Since U has range 
in N(H) and V' has range in N'(H), 

NN'UV'z = NUN'V'z = UV'z. 

Since N and N' have ranges [R' z'] and [Rz'], respectively, z' is generating and 
separating for NRN N' acting on N N' (H). Hence there is an A in NRN such that 
AN'z' (= Az') is near UV'z. Multiplying A by a suitable scalar, we may assume 
that (UV' z, Az') > 0. With B as defined, 

BJBJ = A*UJA*UJ + JV'JV'- A*UV'- JV'A*UJ, 

and 

-~(BJBJy, y) = -~(U JA*Uy, Ay)- ~(y, V' JV'y) + Re (UV'y, Ay). 

Now V' = N'V' = E'N'V' = E'V' and U = UM = UME = UE from (i), (ii), and 
(iii). Thus 

and 

(UV'y,Ay) = (UEE'V'y,Ay) = (UV'Ey,AE'y) = (UV'z,Az'), 

(y,V'JV'y) = (y,E'V'JE'V'y) = (E'y,V'EJV'y) 
= (EE'y, V' JV'y) = 0, 

(UJA*Uy,Ay) = (UEJA*UEy,Ay) = (UJE'A*UEy,Ay) 
= (UJA*UE'Ey,Ay) = 0, 

from Theorem 9(iv). Thus 

0 < (UV'z,Az') = (UV'y,Ay) = Re(UV'y,Ay) = -~(BJBJy,y). 

(v) Since y E Vu., BJBJVu <:;; Vu from Theorem 7(v), and Vu is self-dual, we 
have that 0 :::; (BJ BJy, y). This inequality contradicts the conclusion of (iv), if 
z =f. 0. Thus Ey = z = 0 and E'y = z' = Jz = 0. It follows that [R'y] <:;;(I -E)(H) 
and [Ry] <:;;(I- E')(H), whence EF = E' F' = 0. 

Theorem 11. With the notation of Theorem 7, let Hr be { x : J x = x}. Then 

(i) Hr is a real Hilbert space relative to the structure imposed by H; 
(ii) each element of H has a decomposition Xr + ixi with Xr and Xi in Hr and 

this decomposition is unique; 
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(iii) each element of 'Hr has a unique decomposition x+ - x_, where x+ and 
x_ are orthogonal vectors in Vu 

(iv) if x, y E Vu, then 

so that wxiR = wyiR if and only if x = y; 
(v) {wxiR: x E Vu} is norm closed in R~. 

Proof. (i) With x andy in 'Hr and a real, J(ax + y) = aJx + Jy = ax+ y; 
thus 'Hr is a linear space over R Since J is continuous, 'Hr is a closed (real-linear) 
subspace of 1i; hence Hr is complete. Finally, 

(x, y) = (Jx, Jy) = (y, J* Jx) = (y, x), 

and 'Hr is a real Hilbert space. 
(ii) Let Xr be (x + Jx)/2 and let Xi be (x- Jx)/(2i). Then x = Xr + ixh 

Jxr = Xr, and Jxi =Xi. Thus Xr and Xi are in 'Hr. Suppose x = x~ + ix( with x~ 
and x( in 'Hr. Then 

X + J X = X~ + ix( + X~ - ix( = 2x~ 

and 
X - J X = X~ + ix( - X~ + ix( = 2ix( . 

Thus x~ = Xr and x( =Xi· 
(iii) Suppose x E Hr. From Proposition 2.2.1, there is an element x+ in Vu 

such that 

(x+, x- X+J = Re (x+, x- X+J 
2:: Re (y, x- X+J 

= (y,x- X+J (y E Vu). 

Since Vu is a cone, ayE Vu for each positive a when y E Vu. Thus (y, x- x+) :::; 0 
for each yin Vu. Since Vu is self-dual (Theorem 6(vi)), (x_ =)x+- x E Vu. Hence 
x = x+- x_, and with 0 in place of yin(*), 

Thus x+ and x_ are orthogonal vectors in Vu. 
If x = x~ - x'_, where x~ and x'_ are orthogonal vectors in Vu, then 

Thus llx-11 :::; llx'-11 and, by symmetry, llx'-11 :::; llx-11· Hence 

By uniqueness of x+ (as the vector in Vu nearest x), we have that x+ = x~. It 
follows that x_ = x'_. 
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(iv) From (iii), we can express x- y as v- w, where v and w are in Vu and 
(v, w) = 0. Let E and F be the projections with ranges [R'v] and [R'w], respec-
tively. Since EF = 0, from Theorem lO(v), liE- Fll :S: 1. Thus, since Vu is 
self-dual, 

llwx I R - Wy I Rll 

2: l(wx- Wy)(E- F) I 
= I((E- F)x,x)- ((E- F)y,y)l 

= ~I((E- F)(x- y), x + y) + (x + y, (E- F)(x- y))l 

= ~I((E- F)(v- w), x + y) + (x + y, (E- F)(v- w))l 

= ~l(v+w,x+y)+(x+y,v+w)l 
= (v + w,x + y) 
= (v, x) + (w, x) + (v, y) + (w, y) 
2: (v, x)- (w, x)- (v, y) + (w, y) 
= (v- w,x- y) 

= llx- Yll 2 · 

With A in R, 

l(wx- wy)(A)I = I(Ar, x)- (Ay, Y)l 

= ~I(A.(x + y), x- y) + (A.(x- y), x + y)l 

:S: IIA.IIIIx + Yllllx- Yll, 

so that llwx I R- Wy I Rll :S: llx + Yllllx- Yll· 
(v) Suppose x(n) E Vu and {u.1x(n) I R} is Cauchy convergent. By virtue of the 

first inequality of (iv), {x(n)} is now Cauchy convergent. Hence {x(n)} tends to 
some y in Vu. The second inequality of (iv) yields that {wx(n) I R} converges to 
Wy IR. Thus {wx IR: x E Vu} is norm closed in R~. 

Theorem 12. Let H be a positive invertible (possibly unbounded) operator on 
a Hilbert space 1t. 

(i) H 114 (I + H 112)- 1 is a bounded, everywhere-defined 
operator on 'H and is equal to (H114 ..f-H-114)-1. 
(ii) With x andy in 'H, 

((H1/4..f-H-1f4)-1x,y) = ~ (e1rt + e-7rt)-1(Hitf2x,y) dt. 

(iii) !:i114 (J + !:i 1 1 2 )- 1 V~ <:;; V~ for each a in [0, ~], with the notation of 
Theorem 6. 

Proof. (i) Passing to the function representation of the abelian von Neumann 
algebra generated by H, we have that the operators (I+ H 112 )- 1 and H 114 : (I+ 
H 112)- 1 are bounded, everywhere-defined operators. But H 114 (I + H 112 )- 1 is 
closed since H 114 is closed and (I+ H 112)- 1 is bounded. Thus H 114 (I + H 112 )- 1 
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is bounded and everywhere defined. Again, from the function representation, 

(ii) The argument is divided into three stages. Consider, first, the case in 
which H has the form 2:;'=1 aiFi, where a1 , ..• , am are positive real numbers and 
{F1 , ... , Fm} is an orthogonal family of projections with sum I. In this case, from 
Lemma 9.2.7, 

so that 

((H1/4.f.H-1f4)-1x,y) = fiR ((2:;'=1 a;t/2 Fj)x, y) dt 
Jlfl e?rt + e-?rt 

= f (Hitf 2 x, y) dt . 
JIR e?rt + e-?rt 

We next consider the case in which H is bounded and has a bounded inverse, 
and choose positive real numbers a, b such that ai ::=; H ::=; bi. As in the proof 
of Lemma 9.2.8, H is the limit in norm of a sequence {Hn} of operators, each 
of the type considered in the preceding paragraph and satisfying ai :::; Hn ::=; bi; 
moreover, Hz and (H 114 + H- 114)-1 are the norm limits of the sequences {H::_}, 
for each complex z, and {(H~/ 4 + H;; 114 )- 1 }, respectively. From the preceding 
paragraph, 

"t/2 
((H1/4 + H-1/4)-1x ) = { (H~ x, y) dt. 

n n 'Y JIR e1rt + e-1rt 

Since I(HJitx,y)l :::; llxiiiiYII and jiR(e1rt + e-1rt)- 1 dt is absolutely integrable, it 
follows from the dominated convergence theorem that 

Finally, we consider the general case, in which H is unbounded. For each 
positive integer n, let En be the spectral projection for H corresponding to the 
interval [n-1, n]. Since His a positive invertible operator, the increasing sequence 
{En} is strong-operator convergent to I. For a given choice of n, let H0 be the 
restriction to En('H.) of H. Then H0 is in B(En('H.))+ and has a bounded inverse. 
When x, y E En('H.), from Corollary 5.6.31 and the preceding paragraph, 
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For general x andy in 1t, the preceding equality applies with Enx and Eny in place 
of x and y. Now 

and 

((H1/4+n-1/4)-1 Enx, Eny) = ((H1/4+n-1/4)-1x, Eny) 

___, ((H1/4+n-1/4)-1x, y) 

(Hit/2 Enx, Eny) = (Hit/2x, Eny) ___, (Hitf2x, y). 
From the dominated convergence theorem, 

(iii) Suppose x E V~ and y E V~'. Then, as in the proof of Theorem 6(vi), 
D.itx E V~ for each real t and (D.itx, y) ~ 0. From (i) and (ii), 

(!11/4(1 + f11/2)-1x, y) = ((f11/4+D. -1/4)-1x, y) 

= l (e11"t + e-7rt)-1(D.it/2x, y) dt 

~ 0. 

Since va is the dual cone to va' !1114 (1 + D.112)-1x Eva Hence u u' u· 

D-114(1 + D.1f2)-1v~ ~ v~. 

Theorem 13. With the notation of Theorem 7, let w be a normal linear func-
tional on R such that 0:::; w:::; wuiR. From Proposition 7.3.5, there is an operator 
H' in (R'+)I such that w = Wu,H'uiR. 

(i) Suppose X E V(D. - 112) n Vu and 

(*) W = ~(wu,x + Wx,u)IR. 

Then x = 2(1 + !1112)-1 H'u. 
(ii} With x as in (i}, 

(iii} With x defined by (** }, D. - 1/ 4 H'u E Vu and x E Vu. 
(iv) Define X by(**). Then X E V(D.-112) n Vu and(*) holds. 
(v) With x as in (iv}, 

u- x = 2!11/4(1 + !).1/2)-1!1-1/4(1- H')u E Vu. 

Proof. (i) By assumption and since x E V(D.-112) = V(F), for each A in R, 

2w(A) = (Au, x) + (Ax, u) = (Au, x) + (x, SAu) 

= (Au, x) + (Au, Fx) = (Au, x) + (Au, !).112 Jx). 

But x E Vu, so that Jx = x from Theorem 8(i). Thus 

2w(A) =(Au, (I+ D.112 )x). 
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By choice of H', w(A) =(Au, H'u). Since u is generating for R, 2H'u =(I +~ 1 1 2 )x 
and 

x = 2(! +~ 1 / 2 )- 1 H'u. 

(ii) Note that ~1/4(! + ~1/2)-1~-1/4 ~(I+ ~1/2)-1 and 

R'u ~ V(F) = V(~ -1/2) = V(~ -1/4~ -1/4) ~ V(~ -1/4). 

From Theorem 12(i), ~ 1 1 4 (! +~ 1 1 2 )- 1 is bounded and everywhere defined, so that 

R'u ~ V(~1/4(I + ~112)-1~-114). 

Thus 
x = 2(I + ~1/2)-1 H'u = 2 ~1/4(! + ~1/2)-1 ~ -1/4 H'u. 

(iii) From (ii), H'u E V(~ - 114). Now 

~-1/4H'u = JJ~-1f4JJH'Ju = J~1/4Hu 
' 

where H = JH'J En+. By definition, ~ 1 1 4 Hu E Vu. From Theorem 8(i),we have 
that J~ 1 1 4 Hu = ~ 1 1 4 Hu. Thus 

~- 1 1 4 H'u = ~ 1 1 4 Hu E Vu. 

By definition of x and Theorem 12(iii), 

X= 2~1/4(! + ~ 1/2)-1 ~ -1/4 H'u E Vu. 

(iv) From (iii), x E Vu. Now x = 2(I + ~ 1 1 2 )- 1 H'u, and 

(I+~ 112)-1 ~ -112 ~ ~ -1/2(I + ~ 112)-1. 

Since H'u E V(~ - 112), H'u E V(~ - 112(! + ~ 1 1 2 )- 1 ). It follows that x E 
V(~ - 112). At the same time, (I+ ~ 1 1 2 )x = 2H'u. Thus 

2w(A) = (Au, 2H'u) = (Au, (I+~ 112)x) 

for each A in R. 

= (Au, x) +(Au,~ 1/ 2 Jx) = (Au, x) +(Au, Fx) 
= (Au,x) + (x,A*u) = (wu,x +wx,u)(A), 

(v) Since 0:::; H' :::; I, I- H' E R'+, and the argument of (iii) applies with 
I - H' in place of H' to show that 

2(/ + ~1/2)-1(/ _ H')u = 2 ~1/4(/ + ~112)-1~-114(I _ H')u E Vu. 

As (I+ ~ 1 1 2 )u = 2u, u = 2(! + ~ 1 1 2 )- 1 u and 

u- X= 2(/ + ~ 1 / 2 )- 1 (!- H')u E Vu. 

Theorem 14. With the notation of Theorem 13, 

(i) there is a y in Vu such that u- y E Vu and 

WuiR- W = ~(wu,y + Wy,u)IR; 

(ii) 
u-h(=z)EVu, 
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and 
llwui'R- wll = (u, y) 

where y is as in (i); 
(iii) with y and z as in (ii) 

llwzi'R ·- wll ~ ~llwui'R- wll; 
(iv) with x' in Vu such that w ~ Wx'IR, E and E' the projections whose ranges 

are [R'x'] and [Rx'], respectively, and Ro the von Neumann algebra EREE' acting 
on EE'(H) (= 1-io), we have that x' is generating and separating for Ro, Vx' ~ Vu, 
the equation 

wo(EAEE') = w(A) (A E 'R) 
defines a positive normal linear functional wo on Ro, and there is a vector z' zn 
Vx', such that w ~ Wz'IR and 

llwz'IR-wll ~ ~llwx'IR-wll, 

(v) there is a sequence {u(n)} in Vu with u as u(O) such that, w ~ Wu(n)IR, 

llwu(n)IR -- wll ~ ~llwu(n-l)I'R- wll, 
and { u( n)} converges to some v in Vu such that Wv IR = w; 

(vi) the set of (normal) linea·r functionals w' on R such that 0 ~ aw' ~ wui'R 
for some positive a is a norm-dense subset of the set of all vector functionals on 
n, and each positive normal functional on n has a representation as Wv' IR for a 
unique v' in Vu. 

Proof. (i) Since 0 ~ w ~ Wu In, we have 

0 ~ Wu I n - w ~ Wu I n, 
and we may apply Theorem 13(iv) and (v) to Wu In- w (in place of w). Hence 
there is a y as described. 

(ii) Since h and u - y are in Vu and Vu is a cone, 

(z =) u -- h = U- y +hE Vu. 

Note that 

Wz In- w = Wu In+ wh In- ~(wu,y + Wy,u) In- w 

= Wu I n + w 1 I n - Wu I n + w - w = w 1 I n 
2Y 2Y 

by choice of y, and that 

llwu In- wll = (wu I R- w)(I) = ~( (u, y) + (y, u)) = (u, y) 

since u, y E Vu and (u, y) = (y, u) ~ 0. 
(iii) Since y and u- y are in Vu and Vu is self-dual, 

0 ~ (y,y) ~ (u,y). 

But from (ii), 

llwz In- wll = wh(J) = ~(y,y) ~ ~(u,y) = ~llwu In- wll· 
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(iv) In the present case, x' takes the place of x in Theorem 9; we conclude 
from (ii) and (iii) of that theorem that x' is generating and separating for Ro 
acting on 1{0 and Vx' ~ Vu· (We use Vx' in place of V~ of Theorem 9(iii).) Since 
0 ::; w ::; Wx' I R, the support of w is contained in E, from Remark 7.2.6, so that 
w(A) = w(EAE) for each A in R. Now E' E has central carrierE (relative toR' E), 
from Proposition 5.5.13, so that the mapping 

EAE ____, EAEE' (A E R) 

is a* isomorphism of ERE onto EREE' from Proposition 5.5.5. Thus the equation 
w0 (EAEE') = w(A) (A E R) defines a positive normal linear functional on EREE'. 
In addition, wo ::; Wx' I Ro. By applying the conclusion of (iii) to wo, Ro, x', and 
V x', we see that there is a vector z' in V x' such that 

Wo::; Wz' I Ro, llwz' I Ro- woll ::; ~llwx' I Ro- woll· 

Thus, with H in R+, since EE'z' = z', 

w(H) = wo(EHEE')::; Wz'(EHEE') = Wz'(H), 

and w ::; Wz' I R. In addition, since w ::; Wx' I R, 

llwz' I R- wll = (wz'- w)(I) = Wz'(EE')- w(E) 
= (wz'- wo)(EE') = llwz' I Ro- woll 

::; ~llwx' I Ro- woll = ~llwx' I R- wll· 

(v) Let u(O) be u and u(1) be z (of (iii)). Suppose we have found u(O), ... , u(n) 
with the properties described in the statement of this theorem. Then u(n) E Vu 
and w ::; Wu( n) I R. From (iv), with u( n) in place of x', there is a u( n + 1) (replacing 
z') in Vu such that w ::; Wu(n+l) I R and 

llwu(n+l) I R- wll ::; ~llwu(n) I R- wll· 

The sequence { u( n)} is constructed by this inductive process. It follows that 
{wu(n) I R} converges tow. From Theorem ll(iv), {u(n)} is Cauchy convergent 
and therefore tends to a vector v in Vu. Again, from Theorem ll(iv), {wu(n) I R} 
tends to Wv I R. Thus w = Wv I R, and from Theorem ll(iv), v is the only such 
vector in Vu. 

(vi) If A' E R' and HER+, then 0::; A'* A' H::; IIA'II 2 Hand 

WA'u(H) = (HA'u,A'u) = (A'*A'Hu,u) 

'S IIA'II 2 (Hu, u) = IIA'II 2wu(H). 

Since {A'u : A' E R'} is dense in H, the set§ of positive (normal) linear functionals 
w' such that aw' ::; Wu I R for some positive scalar a is norm dense in the set of 
all vector functionals on R. Since u is separating for R, all positive normal linear 
functionals on R are vector functionals, from Theorem 7.2.3. Now each element of 
§has the form Wv' I R for some v' in Vu, from (v), and the set of positive (normal) 
linear functionals on R that are representable in this form is a norm-closed subset 
of R~, from Theorem 11 ( v). Thus each positive normal linear functional on R has 
the form Wv' I R for some v' in Vu, and v' is unique from Theorem ll(iv). 
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Theorem 15. Let R and§ be von Neumann algebras acting on Hilbert spaces 
H and K with separating and generating unit vectors u and v, respectively, and let 
¢ be a * isomorphism of R onto §. Let Vu and Vv be the respective self-dual cones 
for R and § corresponding to u and v. 

(i) With x in Vu a separating or generating vector for R, we have that Vx = Vu. 
(ii) There is a unique unitary transformation U of'H onto K such that U AU~ 1 = 

¢(A) and Uu' = v for some u' :in Vu. 
(iii) With U as in (ii), UV,. = Vv. 
(iv) With w and w' normal states of R and §, respectively, denote by Uw and 

Vw' the (unique) vectors in Vu and Vv whose corresponding vector states are w and 
w', respectively. Then Uuw'o¢ := Vw' for each normal state w' of§, with U as in 
(ii). 

(v) Suppose R = § and H == K. There is a unique unitary operator U' in R' 
such that U'uw = Vw for each normal state w ofR. 

(vi) With the assumption of (v), J the modular conjugation operator for (R, u) 
and J' the modular conjugation operator for (R, v), there is a unitary operator V 
in R such that VAV* = JJ'AJ'J for all A in R. 

Proof. (i) From Theorem 8(iii), x is both generating and separating for R 
when x E Vu and it is either generating or separating for R. Thus, from Theorem 
9(iii), Vx c;::; Vu, where Vx is the self-dual cone corresponding to (R, x). Theorem 
8(iv) assures us that the modular conjugations corresponding to x and u are the 
same. Thus u is a "real" element relative to Vx (that is, is in 'Hr relative to the 
modular conjugation for (R, x)) in the sense of Theorem 11. From (iii) of that 
theorem, u = u+ - u~, where u+ and U~ are orthogonal elements of Vx (and, 
hence, of Vu)· But u- 0 is another decomposition of u as a difference of orthogonal 
elements of Vu. The uniqueness clause of Theorem ll(iii) allows us to conclude, 
now, that u~ = 0 and u = u+ E Vx. From Theorem 9(iii), again, Vu c;::; Vx. Hence 
Vx = Vu. 

(ii) Since v is separating for §, Wv I§ is faithful (on §)and (wv I§) o ¢is faithful 
on R. From Theorem 14(vi), there is a (unique) vector u' in Vu such that Wu' I R = 
(wv I§) o ¢. As Wu' I R is faithful, u' is a separating vector for R. From Theorem 
8(iii), u' is generating for R. From Exercise 7.6.23, the mapping Au' ---> ¢(A)v 
(A E R) extends to a unitary transformation U of H onto K such that, for each A 
in R, U AU~ 1 =¢(A). Choosing I for A, we have that Uu' = v. 

Suppose, now, that U' is a unitary transformation of H onto K such that 
U' AU'~ 1 =¢(A) (A E R) and U'x = v for some vector x in V11 • Then, with A in 
R, 

Now 

U' Ax= U' AU'~ 1 U' X= cp(A)v, Ax= U'~ 1 ¢(A)v, X= U'~ 1 v. 

[(wv I§) 0 ¢](A)= \¢(A)v, v) = \AU'~ 1 v, u'~ 1 v) 

= \Ax, x) = Wx(A). 

But u' is the only vector in Vu whose corresponding functional is (wv I§) o ¢. Thus 
u' = x and U' Au'= ¢(A)v = U Au' (A E R). Hence U = U'. 
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(iii) From (i), with u' as in (ii), Vu' = Vu. Since U is a unitary transformation 
of H onto K taking u' onto v such that URU- 1 =§,we have that 

R, 

UVu = UVu' = Vv. 

(iv) Let U be as in (ii) and note that u- 1vw' E Vu from (iii). Now, with A in 

(AU- 1vw,,U- 1vw') = (UAU- 1vw',Vw') 

= (rj;(A)vw',Vw') 
= (w' o rj;)(A). 

But u,,, 0 q, is the only vector in Vu whose corresponding functional is w' o ¢. Thus 
Uw'o¢ = u- 1Vw 1 and Uuw'o¢ = Vw'· 

( v) Under the present assumption, let U' be the (unique) unitary operator of 
(ii) corresponding to the identity automorphism ofR. Then U' AU'- 1 =A (A E R); 
whence U' E R'. Moreover, from (iv), U'uw = Vw for each normal state w of R. 

(vi) Since A---+ J' A* J' and A'---+ J A'* J are *anti-isomorphisms of R onto R' 
and R' onto R, respectively, and (J' A* J')* = J' AJ', the mapping 

A ---+ J J' AJ' J (A E R) 

is a * automorphism of R. Let U' be the unitary operator in R' described in ( v) 
and (from Theorem 14(vi)) let u' be the (unique) vector in Vu whose corresponding 
vector state on R is Wv I R. From (v), U'u' = v. From Theorem S(iv), the modular 
conjugation for (R, u') is J. (Of course u' is separating and generating for R since 
vis.) As U'RU'* =Rand U'u' = v, we have that U' JU'* = J'. Let V be JU' J. 
Then V is a unitary operator in R, and for each A in R, 

V AV* = JU' JAJU'* J = J(U' JU'*)U' AU'*(U' JU'*)J 

= J J'U' AU'* J' J = J J' AU'U'* J' J 

= JJ'AJ'J. 

Hence the mapping A ---+ J J' AJ' J (A E R) is an inner * automorphism of R 
(implemented by V). 

Theorem 16. Let R be a von Neumann algebra acting on a Hilbert space H 
with a generating and separating vector u. Let 7/J be a * automorphism of R and 
U11, be the (unique) unitary operator on H (described in Theorem 15(ii) and (iii)) 
such that U1/Yu = Vu and 

(A E R). 

With 7/J' another * automorphism of R, we have that U,p,p' = U,pU,p' and the map-
ping 7/J ---+ U,p is a unitary representation of the group of * automorphisms of R. 

Proof. Note that 

U,p,p'Au;1/J' = (1/;7/J')(A) = U,pU,p,Au;,u;. 

Now U,pU,p' Vu = Uv.Vu = Vu, from Theorem 15(iii). Thus, from the uniqueness 
assertion of Theorem 15(ii), U,p1f;' = U,pU1f,, and the mapping 7/J---> U,p is a unitary 
representation of the automorphism group of R on H. 
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Appendix. The Friedrichs Extension 

Proposition 1'. Let Ao be a closed, densely defined operator acting on a 
Hilbert space 1-l, and suppose (Aox, x) ~ 0 for each x in the domain D(Ao) of A0 . 

(i) Then Ao and Ao +I are closed symmetric operators on 1-l. 
(ii) Suppose A is a positive self-adjoint extension of A0 . Then A+ I is a positive 

self-adjoint extension of Ao +I, A+ I is a one-to-one linear transformation with 
range 1-l, and the inverse B of A+ I is in (!3(1-l))+. 

(iii) With B as in (ii), y in 1-l, and x in D(Ao) (= D(Ao +I)), 

(*) (:r:, Yl = ((Ao + I)x, By) 

and ByE D(A0). 
Proof. (i) From the second relation in Proposition 2.1.7, with x and y in 

D(Ao), Aox in place of u and Aoy in place of v, we deduce 2.4(3) (p.102) with Ao 
in place ofT. Since each of the inner products on the right-hand side of 2.4(3) is real 
(when T is replaced by Ao), the vector entries can be interchanged in each of these 
inner products, yielding the right-hand side of the second relation of Proposition 
2.1.7 with x, y, Aox, Aoy, replacing u, v, x, y, respectively. Thus (A0x, y) = (x, A 0y), 
when x, y E D(A0 ). Hence A0 ~ A0. 

Since ((Ao + I)x, x) ~ 0 for each x in D(A0 ) (= D(Ao +I)), A0 +I is also 
symmetric. Ifxn E D(Ao), Xn--> x, and (Ao+I)xn--> y, then Aoxn--> y-x. Since 
Ao is closed, x E D(Ao) and Aox = y- x. Hence x E D(Ao +I) and (Ao + I)x = y. 
It follows that A0 + I is closed. 

(ii) Since A+ I is closed (as just argued for A0 +I), A+ I= Af.I, and A+ I 
is self-adjoint. Moreover, 

((A+ I)x, x) = (Ax, x) + llxll 2 ~ llxll 2 ~ 0, 

for each x in D( A) ( = D( A + I)); A + I is a positive self-adjoint operator with 
null space (0). Hence A+ I is a one-to-one linear transformation with range dense 
in 1-l (from Exercise 2.8.45, the closure of the range of A+ I (= (A+ I)*) is the 
orthogonal complement of the null space of A+ I). From Lemma 2.7.9, A+ I has 
closed range. Hence 1-l is the range of A+ I. 

If y = (A+ I)x and B is the inverse mapping to A+ I, then 

0 ~ IIBYII 2 = llxll 2 ~ (x, (A+ I)x) =(By, Yl ~ IIBYIIIIYII 
so that B E (B('H) )t. 

(iii) Since BE (!3(1-l))t, B is self-adjoint. By definition of B, B(Ao + I)x = x 
(for each x in D(Ao +I)). Thus 

(x, y) = (B(Ao + I)x, y) = ((Ao + I)x, By), 

with x andy as described in the statement of this exercise. Thus ByE D((Ao+I)*) 
and (Ao +I)* By= y. We show that (Ao +I)* = A0 +I-- more generally, that 
(T + S)* = T* + S* when Sis bounded. Suppose v E D((T + S)*) and u E D(T) 
(= D(T + S)). Then 

(Tu, v) = ((T + S)u,, v)- (Su, v) = (u, (T + S)*v- S*v), 
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so that v E 'D(T*) and T*v = (T + S)*v- S*v. It follows that v E 'D(T* + S*) and 
(T* + S*)v = (T + S)*v. Hence 

(T + S)* ~ T* + S*. 

Since the reverse inclusion 
T* + S* ~ (T + S)* 

is valid, in general, 
(T + S)* = T* + S* 

when S is bounded. It follows that 

ByE 'D(A~) (= 'D(A~ +I)= 'D((Ao + !)*)). 

Theorem 2'. With Ao as in Proposition 1', define ( u, v)', for each pair of 
vectors u, v in 'D(Ao), to be ((Ao + I)u, v) and let 'D' be the completion of 'D(Ao) 
relative to the definite inner product ( u, v) ---t (u, v)' on 'D(Ao). 

(i) The "identity" mapping on 'D(Ao) has a (unique) bounded extension L map-
ping 'D' into 11, Lis one-to-one, and lltll :<::; 1. 

(ii) Withy in 11, x ---t (x, y) (x E 'D(Ao)) extends to a bounded linear functional 
on 'D' of norm not exceeding IIYII· 

(iii) There is a vector By in 'D(A0) satisfying ( *) of Proposition 1' (iii). 
(iv) BE (8(11)){. 
(v) B is a one-to-one mapping and its inverse A1 is a self-adjoint extension of 

Ao +1. 
(vi) A1 -I (which we denote by 'A') is a positive self-adjoint extension of Ao, 

and 'D(A) ~ 'D(A0) ~ t('D'). 

Proof. (i) Note that with x in 'D(Ao), 

llxll 2 = (x, x) :<::; (x, x) + (Aox, x) = llxll'2 

so that the identity mapping of 'D(Ao) onto itself has a (unique) bounded extension 
L mapping V' into 11, and II til :S 1. Choose Xn in V(Ao) tending to z' in V'. Assume 
that t(z') = 0. Since 

llxn- t(z')ll = llt(xn)- t(z')ll :S llxn- z'll' ---t 0, 

we have that llxnll ---t 0. Thus, for each m, 

(z', Xm)' = lim(xn, Xm)' = lim((Ao + I)xn, Xm) 
n n 

= lim(xn, (Ao + I)*xm) = 0, 
n 

since Xm E V(Ao +I)~ 'D((Ao +I)*) from Proposition 1'(i). But 

(z',z')' = lim(z',xm)' = 0, 
m 

so that z' = 0 and L is one-to-one. 

(ii) Since l(x,y)l :<::; llxiiiiYII :<::; llxii'IIYII from (i), when x E 'D(Ao) andy E 11, we 
see that the functional x ---t (x, y) on 'D(Ao) has bound not exceeding IIYII relative 
to the norm x ---t llxll'. This functional extends (uniquely) to a functional of norm 
not exceeding IIYII on V'. 
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(iii) From (ii) and Riesz's representation theorem (Theorem 2.3.1), there is a 
(unique) vector z' in V' such that (x, y) = (x, z')' for each x in V(A0 ). Let By be 
L(z'). Choose Xn in V(A0 ) so that {xn} tends to z' (in V'). Then 

llxn- L(z')ll =: IIL(xn)- L(z')ll ::; llxn- z'll'---> 0. 

Thus 
(x, y) = (x, z')' = lim(x, Xn)' = lim((Ao + I)x, Xn) 

n n 

= ((Ao + I)x, L(z')) = ((Ao + I)x, By). 

(iv) From (i), (ii), and (iii) (and with the notation of the solution to (iii)), we 
have that IIBYII = IIL(z')ll ::; llz"ll' ::; IIYII· Hence IIBII ::; 1. Choose Xn in V(Ao) so 
that llxn- z'll' tends to 0. Then from (i), 

llxn- Byll == IIL(Xn- z')ll ~ llxn- z'll' ---> 0, 

and from (iii), by choice of z', 
(By, y) = lim(xn, y) = lim(xn, z')' = lim(xn, L- 1(By))' n n n 

or note that limn(Xn,z')' = \z',z')' 2': 0. Thus BE (B(H)){. 
(v) If (0 y!:) y E H, then ByE L(V') and 

0 ::f.· (x, y) = (x, L- 1(By))' 

for some x in (the dense manifoild) V(A0 ). So L- 1(By) y!: 0. From (i), Lis a one-to-
one mapping, whence By y!: 0. From the discussion following Theorem 7.2.1, with 
B in place of T (and now, the null space is ( 0)), the inverse A 1 to B is a self-adjoint 
operator with domain contained in L(V'). 

If x, u E V(A0 ), then from (iii) and Proposition l'(i), 

(u, x)' = \(Ao + I)u, x) = (u, (Ao + I)x) = (u, L- 1 (B(Ao + I)x))'. 

Since V(Ao) is dense in V', x = L- 1(B(A0 +I)x). From (i), x = L(x) = B(A0 +1)x, 
whence 

A1x = A1B(Ao + I)x = (Ao + I)x. 
Thus A1 is a self-adjoint extension of Ao +I. 

(vi) As in the proof of Proposition 1'(ii), A1 - I is self-adjoint. Since A0 +I~ 
A1, A0 ~ A1 - I(= A). Since 0::; B::; I, B(I- B) 2': 0. Hence 

(ABy, By) = \A1By, By) - (By, By) = (y, By) - (By, By) 
=\(I- B)y, By)= (B(I- B)y, y) 2': 0. 

But V(A) = V(Al), and V(Al) is the range of B. Thus 0::; A and V(A) ~ L(V'). 

Theorem 3'. With the notation of Theorem 2', we have that A is the unique 
positive self-adjoint extension (the Friedrichs extension) of A0 whose domain is 
contained in L(V'). 

Proof. From Proposition 1'(ii) and (iii), if A' is a positive self-adjoint exten-
sion of A0 , then there is an operator B' with the properties of Bin that proposition. 
Thus ((Ao + I)x, (B- B')y) = 0 for each x in V(A0 ). If, in addition, we assume 
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that the domain of A' is contained in ~CD'), then there is a vector u' in V' such 
that ~( u') = (B- B')y. Let { xn} be a sequence of vectors in V(Ao) tending to u' 
(in V'). Then 

llxm- (B- B')yJJ = Jlxm- ~(u')JJ ::::; Jlxm- u'JI'--> 0 

= ((Ao + I)xn, (B- B')y) = 0. 
Hence (u', u')' =limn (xn, u')' = 0, and u' = 0. It follows that~( u') = (B- B')y = 0 
and B = B'. Since B and B' are the inverse mappings to A and A', respectively, 
A=A'. 

Theorem 4'. Let R be a von Neumann algebra acting on a Hilbert space 'H 
and A 0 be an operator affiliated with R. Suppose that (Aox, x) 2': 0 for each x in 
V(A0 ). Then the Friedrichs extension of Ao is affiliated with R. 

Proof. From Proposition l'(i), A0 is symmetric. By definition of "affiliation," 
A0 is closed. Theorems 2' and 3' guarantee the existence and uniqueness, respec-
tively, of the Friedrichs extension A of A0 . Let U' be a unitary operator in R'. Then 
U' AU'* is a positive self-adjoint extension of U' A 0 U'* and V(U' AU'*) ~ U' ( ~(V')). 
Since A 0 TJ R, U' A 0 U'* = A 0 . Since A is unique (Theorem 3'), it remains to show 
that U'(~(V')) ~ t(V'). 

Suppose z E t(V') and t(z') = z (with z' in V'). Then {xn} tends to z' for some 
sequence {xn} in V(A0 ). Since Ao T) R, U'(V(Ao)) = V(Ao) and U'xn E V(Ao). 
Now 

IIU'xn- U'xmll' 2 = ((Ao + I)U'(xn- Xm), U'(xn- Xm)) 
= ((Ao + I)(xn- Xm), (xn- Xm)) 
= Jlxn- Xmll' 2 --> 0 

as n, m --> oo since { Xn} converges in V'. Thus { U' Xn} converges in V' to some u' 
and {U'xn} converges in 'H to ~(u'). Since {xn} tends to z in 'H, {U'xn} tends to 
U' z in H. Thus U' z = t( u') E t(V') and U' ( t(V')) <;;; t(V'). 
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