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Dual Cones And Tomita—Takesaki Theory

Richard V. Kadison

In this article, we present the theory of dual cones as introduced by M. Takesaki
in [T] and developed by H. Araki [A1, A2], A. Connes [C], and U. Haagerup [H1, H2].
1

Takesaki, in [T], defines and studies the cones we denote by V? and V2 (following
Araki’s notation). He proves that they are dual to each other and establishes
more of their important special properties. In [C] and [H2], Connes and Haagerup

introduce the self-dual cone, which becomes V;} in the Araki notation (and later,
V, in our notation). In [Al] (see also [A2]), Araki extends the theory to a one-
parameter family V¢, a € [0, %], of cones. It is, largely, the Araki theory that we
present. Most, but not all, of the results in this article appear in exercise form in
[KR4; Exercises 9.6.51-65].

This theory is, in essence, a deep and detailed examination of the structure
of the space of normal states of a von Neumann algebra and, at a more primitive
level, a study of which operators, affiliated with a von Neumann algebra acting on
a Hilbert space in standard form, map a given vector onto or near other vectors. As
such, it is an important aspect of the theory of non-commutative integration, on the
one hand, and a fundamental part of the theory of non-commutative approximation,
on the other.

The results presented are spread throughout the mathematical literature. It
seems worthwhile to gather them into one article and to present them with complete
proofs in a unified and simplified style. All the major results that appear are known.
Many of the results on the way to these are new as are most of the arguments.
In formulating and proving Theorem 13, some unpublished computations of Uffe
Haagerup provided us with crucial help.

The Friedrichs Extension [F] is a vital element in Takesaki’s pioneering work
with the original dual cones. We have included a complete proof of it as an ap-
pendix, with the appropriate additions and statement for use with von Neumann
algebras. The proof is different from the earlier proofs and is substantially that
appearing in [KR4; Exercises 7.6.52-55]. Our notation and terminology is that of
[KR1-4]. The results and exercises of [KR1-4] are referred to with their numbering
in [KR1-4] and no further reference.
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Theorem 1. Let R be a von Neumann algebra with center C, acting on a
Hilbert space H, and let J be a conjugate-linear isometry of H onto H such that
J*=1,JRJ =R, and JCJ = C* for each C in C.

(1) A— JA*J is a * anti-isomorphism of R onto R'.

(it) If ¢ is a * anti-isomorphism of R onto R’, then there is a unitary operator
U on H such that (the conjugate-linear isometry) JU implements 1):

JUA'(JU)* =¢(4) (A€R).

Proof. (i) Note, first, that since J* is the mapping of H into H obtained from
J by using the adjoint of J when J is viewed as a linear mapping of H into H and
that J so viewed is a unitary transformation of H onto H, we have J = J* (as
mappings of H into H) for both J and J* are the mapping inverse to J on H.
Note, too, that with A in B(H), (JAJ)* = JA*J, for JAJ € B(H) and, with z, y
in H,
(JAJ)'z,y) = (z,JAJy) = (AJy, Jx)
= (Jy, A" Jz) = (JA* Jz,y) .
Thus
d(A") =JA™ T = JAJ = (JA )" = ¢(A)*,
where ¢(B) = JB*J for B in R. In addition, with A, B in R,
¢(aA+ B)=J(aA+ B)'J =JaA*"J+ JB*J
=aJA*J + JB*J
= ag(A) + ¢(B),
and
¢(AB) = J(AB)*J = JB*JJA*J = ¢(B)¢(A) .
With A’ in R’, there is, by assumption, an A* in R such that ¢(A) = JA*J = A’,
so that ¢ maps R onto R'. Finally, since J is an isometry of H onto H, given an
z in H there is a y in H such that Jy = z. If 0 = ¢(A) = JA*J for some A in R,

then 0 = JA*Jy = JA*z, and A*x = 0 for each z in H. Thus A* =0 and A = 0.
It follows that ¢ is a * anti-isomorphism of R onto R’.

(ii) With ¢ as in (i), let  be the * isomorphism ¢! o of R onto R. From
Exercise 9.6.25, there is a unitary operator U such that n(A) = UAU* for each A
in R. Hence

Y(A) = ¢(UAU*) = JWUAU™)*J = JUA*(JU)* (AeR).
Theorem 2. Let R be a von Neumann algebra acting on a Hilbert space H, u
be a generating and separating unit vector for R, and S, F'J, and A, be the modular
operators for {R,u}.
(i) With A in R, A is in the centralizer of wy|R if and only if

JAu = A*u.
() If C € R, then C is in the center of R if and only if
JCJ =C".
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Proof. (i) Suppose JAu = A*u. Then Au = JA*u, and

1
(ABu,u) = (ASB*u,u) = (AJA2 B"u,u)

1 1
= (JA2B*u, Au) = (JA™u, A% B*u)

{
{
1 1
= (Au, A2 B*u) = (BA2 Au,u)
1
= (BJJA? Au,u) = (BJA"u,u)
= (BAu,u)

for each B in R. Thus A is in the centralizer of w,|R. _ A
Suppose, now, that A is in the centralizer of w,|R. Then A*AA~* = A, for
each real ¢, from Proposition 9.2.14(iii). Let A be the (abelian) von Neumann

1
algebra generated by {A® : t € R}. Then AnA and A2 nA. It follows that
AA2 - A2A and that

1 1
JAu = JAAZy = JA2 Au = SAu = A*w.

(it) Suppose JCJ = C*. Since C* € R, JCJ € RNR'. Thus JCJ, C*, and
C, are in the center of R.
If C is in the center of R, then C is in the centralizer of w,|R. Hence, from (i),

JCJu = JCu=C"u.
As C € R/, JCJ € R. Since u is separating for R,
JCJ=C".

Theorem 3. Let R be a von Neumann algebra acting on a Hilbert space H
with generating and separating vector w. Let Sy, S, Fy, F, J, and A be the modular
operators for u Suppose J' is a conjugate-linear isometry of H into H such that

CJu=u, J?=1, JRI =R, (AJAJuu)>0 (AER)
Let HyAu be J'A*u (A€ R) and U be J'J. Then
(i) 0 < (AJAJu,u) (A€R);
(it) Hy = J'Sp, and Hy has closure J'S (= H);
(iii) (Hz,z) > 0 for each z in D(H) (= D(AY?)) and H is symmetric;
() H is self-adjoint;
(v) H is positive and H = UAY/?;
(vi) J =J', and J is the unique operator with the properties assumed for J'.

Proof. (i) With A4 in R, we have
(AJAJu,u) = (AJSA*u,u) = (A2 4"y, A™u) > 0,

since AY/2 > (.
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(ii) By definition D(Hy) = D(J'Sy) = D(Sy) = Ru, and
HoAu=J A*u=J'SoAu  (A€R).

Hence Hy = J'Sy. Now (z,y) is in the closure of the graph of J'S if and only if
there is a sequence {z,} in the domain of Sy, tending to z, such that {J'Spz,}
tends to y, which occurs if and only if {Spz,} tends to J'y. Thus, (z,y) is in the
closure of the graph of J'Sy if and only if (x, J'y) is in the closure of the graph of
So, that is, if and only if z € D(S) and Sz = J'y (equivalently, J'Sz = y). Thus
H=JS.

(iii) It follows from (ii) that D(H) = D(S) = D(A'/?). By hypothesis, with A
in R,

(HAu, Au) = (A*J' A*u,u) = (A*J A* J'u,u) > 0;

hence (Hz,z) > 0 for each z in D(H) since Ru is a core for H. From Exercise
7.6.52(1), with Ag in place of H, H C H*.

(iv) From (ii), Hy = J'Sp and Sy = J'Hp. Thus

StJ CH;=H*, HJ'CS., H*=H,CSJ.

Hence, H* = S{J' = FJ'. Now R'u is a core for F, so that J'R'u is a core for
FJ'. But H* = FJ' and J'R'v = J'R'J'u = Ru. Thus Ru (= D(Hp)) is a core
for H and for H*. From (iii), H C H*, so that H = H*.

(v) From (iii), (Hz,z) > 0 for each z in D(H). From (iv), H is self-adjoint.
Hence H is positive. From (ii),

H=JS=JJAY?=UAY?,

(vi) Since H > 0 and UA'/? is a polar decomposition for H, from Theorem
6.1.11, we have that I = U = J'J. Hence, J = J’, and J is the unique operator
with the properties assumed for J'.

Theorem 4. Let R be a von Neumann algebra acting on a Hilbert space H,
u be a separating and generating vector for R, and S, F, J and A be the modular
operators for u. With z a vector in ‘H, let ¢.(A) be (Au,z) for each A in R, and
L (A") be (A'u,z) for each A" in R'. Then

(i) x € D(S) (= D(F}) = D(AY?)) and Sz = x for a vector x in H if and only
if the (normal) linear functional ¢, on R’ is hermitian; symmetrically, y € D(F)
and Fy =y if and only if ¢, is hermitian;

(ii) ¢%, > 0 if and only if x = Hu for some positive H affiliated with R;

(iii) the set of vectors x in H such that ¢, > 0 is a (norm-)closed cone VO in
H and (by symmetry) the same is true of the set Vo2 of vectors x in ‘H such that
¢z > 0;

(iv) VO and V'* (of (iii)) are dual cones, that is, w € VO if and only if (w,v) >
0 for each v in Vo2 andv e V2 if and only if (w,v) >0 for each w in VO,

(v) V0 is the norm closure of R*u and Vi/? is the norm closure of R'*u;

vi) AV2R +u = R'Tu, A™Y2R*y = Rtu, and V}/Z, V0 are the norm
u
closures of AV2R*u, A~YV2R T u, respectively.
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Proof. (i) If z € D(S) and Sz = , then for each self-adjoint A’ in R,
(A'u,z) = (FA'u,x) = (S, A'v) = (z, A'u);

whence ¢/, (A’) is real and ¢}, is hermitian. (See Corollary 9.2.30.)
Suppose, now, that ¢, is hermitian and 7" € R’. Then

(FT'u,z) = (T"*u,z) = ¢,(T"*) = ¢,(T") = (T'u, x) = (x,T"u),
whence z € D(F3) and z = Fjz = Sz.

(ii) Suppose H is a positive operator affiliated with R such that v € D(H) and
z = Hu. Let {E\} be the resolution of the identity for H, and let Hy, be HE,.
Then H, € R and E,H C H,. Hence

H,u=E,Hu— Hu=z (n — 00)

since E,, tends to I in the strong-operator topology. Now (A'u, Hyu) = (Hp A'u, u)>
0, when A’ € R'*, since H, and A’ are commuting positive operators. Thus

0 < lim(A'u, Hou) = (A'u, Hu) = (A'u, z),

and ¢, > 0.

Suppose z in H is such that ¢/, > 0. Then, in particular, ¢/ is hermitian, and
z € D(S) (= D(F})) from (i). From Lemma 9.2.28, L, n R (and L,u = z). By
definition of L.,

L, T'"vw =T’z for each T" in R’, so that

(LeT'u, T'u) = (T'z, T'w) = (T"*T"u,z) > 0

since T"*T'" € R'* and ¢/, > 0. Thus (L,y,y) > 0 for each y in R'u, a core for L,
and (L,z,2) > 0 for each z in D(L,). From Theorems 2’ and 4’ of the appendix,
L, has a positive self-adjoint extension (the Friedrichs extension) H affiliated with
R. As L,u=z, Hu = z.

(iii) If A’ € R'*, then (A'u,az +y) > 0 when a > 0 and z,y € V0. Thus
ar +y € V0. If v and —v are in VO, then (A'u,v) = 0 for each A’ in R'*.
Since each operator T’ in R’ is a linear combination of (four) operators in R’
(T'u,v) = 0. As [R'u] = H, v = 0. Thus V? and, symmetrically, Vi/? are cones in
H.

If {z,,} is a sequence of vectors in V0 tending to z in norm and A’ € R'*, then
0 < (A'u,z,) — (A'u,z). Hence V2 and, symmetrically, Vi/? are (norm-)closed
cones in H.

(ivyIfv e Va/?, then (Au,v) > 0 for each A in R*. If w € VY, then w = Hu
for some positive H affiliated with R from (ii). With H,, as in the proof of (ii),

0 < (Hpu,v) —» (Hu,v) = (w,v).

If (w,v) > 0 for each v in V4%, then 0 < (w, A'u) = (A’u, w) for each A’ in R'*,
since A'u € Vi/? for such A’ (from (ii) applied with R’ in place of R). Hence
¢, > 0and w e VO Thus w € VO if and only if (w,v) > 0 for each v in V3/2.
Symmetrically, v € Vi/% if and only if (w,v) > 0 for each w in V0.

(v) From (ii), R*u C V9. If z € V9, there is a positive H affiliated with R
such that x = Hu. With the notation of the solution to (ii), H,u € R*tu and
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H,u — Hu = z. Thus V0 is contained in the norm closure of R*u and, hence,
coincides with this norm closure. Symmetrically, Va/? is the norm closure of R'*u.

(vi) Let ®(A) be JA*J for A in R. From the discussion at the beginning of
Section 9.2, ® is a * anti-isomorphism of R onto R’. Hence ®(R") = R'*. With
Ain R*, Au € D(S) = D(AY?) and

AYV2 Ay = JSAu = JA*u = JA* Ju = ®(A)u.

Thus AY2R+u = R'*u. Since R'*u is norm dense in Vi/* from (v), Vi/? is the
norm closure of A'/?R*u. Symmetrically, with A’ in R'*, A'u € D(F) = D(A~1/?)
and

A2 Ay = JFAu = JA u = JA" Ju =& (A )u.
Hence A~'/?R/*y = R*u, and V? is the norm closure of the cone A™'/2R/* .

Theorem 5. With the notation and assumptions of Theorem 4 and with w a
normal state of R:

(i) there is a vector v in VO such that w,|R = w;

(ii) |v — u|]| = inf{||z — u|| : w.|R = w}, where v is as in (3);

(i11) the vector v in (i) is unique.

Proof. (i) Since u is separating for R, there is a unit vector z in H such that
w = w; | R from Theorem 7.2.3. From Theorem 7.3.2, there is a partial isometry
V' in R’ such that ' is a positive normal linear functional on R’, where w’(4’) =
¢, (V'A") for each A’ in R’, and such that ¢/,(A") = w/'(V'*A").

Now W'(A’) = ¢/ (V'A’) = (V' A'u,z) = (A'u,V'*2), so that (v =) V'*z € V0.
In addition,

(Alu,z) = ¢ (A) = (V*A) = ¢, (VIV*A') = (Alu, VIV"2).
Since u is generating for R', z = V'V'*z, whence w, |R = w, |R = w.

(ii) If H is a positive operator, affiliated with R and v € D(H), then u €
D(HY?), H'?u € D(H'?), HY/?H'/?y = Hu (from 5.6.(18)), and A’H'Y/? C
H/2 4’ for each A’ in R’. Thus, if V' is a partial isometry in R’,

(V' Hu,w)| = (V' B u, H'?u)]
< V' H2ull|H ?u|

W < | HYPulf?
= (Hu, u),
and
(2) Re (V' Hu,u) < (Hu,u) .

Suppose z is a unit vector in H such that w, | R = wy, | R. From Exercise 7.6.23(ii),
there is a partial isometry W’ in R’, with initial space [R Hu], such that W/ Hu = 2.
From (2),

Re(z,u) = Re (W' Hu,u) < (Hu,u),
so that

(3) |Hu — u||* = 2 — 2Re (Hu,u) < 2 — 2Re(z,u) = ||z — u||*.
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From Theorem 4(ii), there is a positive operator H, affiliated with R such that
v = Hu. From (3),
lv —u|| =inf{|lz —u| : w.|R=w}.
(iii) If v’ is another vector in V¥ such that w, | R = w, then
lv—ull =inf{llz - u]l : w:|R=w}=[v"~ull,

and v = V'Hu for some partial isometry V' in R’ with Hu in its initial space
(where H is as in (ii)). Hence

Re (V'Hu,u) = Re (v, u) = Re (v,u) = (Hu, u),
and the inequality of (2) is equality in the present case. It follows that
(V'Hu,u) = |(V'Hu,u)| = Re (V'Hu,u) = (Hu, u),
so that
(V' H2u, H'u) = V' Hul||[HY 2l = | H ?ul)?.
Thus V'H'/?u = HY?y and v/ = V'Hu = Hu = v.
Theorem 6. Let R be a von Neumann algebra acting on a Hilbert space H,

u be a separating and generating vector for R, and S, F, J and A be the modular
operators for u. With a in [0, 3], let V& be the norm closure of {A®Au: A € R*}.

(The notation V) and VL2 of Theorem 4 is in agreement with the definition of V2
by virtue of Theorem 4(v) and (vi).) Let a’ be 5 —a. Then

(1) V2 is a (closed) cone and
JA®Au=A"Au (AeRY),  JV:=VY;

(1) W2, the real-linear span of V2, is contained in the domain of A'/? and
Ay =gy, APyl =yl (yeWy)

(i) |Hz| < ||Kz|| when x € D(H) N D(K) and H and K are self-adjoint
operators affiliated with an abelian von Neumann algebra such that H> < K?;

(w)
A%yl <22yl (y e Wy);
(v) AV0 is dense in V2,

(vi) V& and V' are dual cones; in particular, v/t s self-dual.

Proof. (i) Since A2 = A¥A® (from 5.6.(18)), Ru C D(AY2) C D(A%).
With A and B in R™ and b a positive number,

A®Au+bA®Bu = A*(A+bB)u € {A°Ku : K € R).
When H and K are in R", there is a K’ in R'* such that
/7 1
(A“Hu, A* Ku) = (Hu, A2 Ku) = (Hu, K'u) > 0,

from Theorem 4(vi). Thus, with z in V® and y in V', (z,y) > 0. If z and —z
are in V2, then (z,A* Ku) = 0 when K € R*. Since each operator in R is a
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linear combination of four operators in R*, z is orthogonal to A* Ru. We note
that A* Ru is dense in H, from which x = 0.
Suppose that y € D(A“'). Let E, be the spectral projection for A, correspond-

1 ,
ing to the interval [0,n]. Then E,y € D(A2) C D(A*). Since Ru is a core for
1
A2, there is a sequence {A,,} in R such that

1 1
Ay = By, A2 A u —,, A2 ELy.

A% is everywhere defined and does not increase norm on Ei(H). A® does not
decrease norm on D(A®) N (I — Ey)(H). Thus, with z,, for A,u — E,y, we have
that

1A% A — A% Byl = | BiA” w2 + (I = Ey)A 2]

<IAY Eiz|? + [|A(I = E)AY 2,
, 1

= |AY Evan | + [[(I - E1) A2z, |

—m 0.

Thus ) , ,
(x, E, A% y) = (z, A* E,y) = lim(z, A* A,,u) = 0.

Now lim, E,A%y = A%y, whence (:c,A“ly) =0 for all y in D(Aa/). Since A% is
self-adjoint and one-to-one, its range is dense in H, so z = 0. Thus {A*Ku : K €
R*} and its closure V2 are cones.

If A€ R™*, then from Exercise 9.6.10,

JA"Au = A" JAu = AT*JSAu
= ATUJJAY 2 Au = A% Au.
Hence J maps a d<{3nse subset of V® onto a dense subset of V. Since J is an
isometry, JV; =V .
(ii) From (i) (when a =0, a’ = 1), with 4 in R™,
A2 Au = JAu.

Suppose z € V2. Then z is the limit of a sequence {A,u} for some sequence {4,}
of operators in R*. Since J is an isometry

AV A u=JAwu — Jz.
As A2 is closed, z € D(AY?) and A%z = Jz. Thus WY C D(AY?), and
A2y = Jy for each y in WO. It follows that
Iyl = 17yl = 1Ay
for each y in WY.

(iii) From Theorem 5.6.15(i), there is a common bounding sequence {E,} for
H, K, H?, K?. By assumption,

(H?E,z,Epz) < (K°Eyz, Eax),
so |HE,z|| < |[KE,z| for each n. Since z € D(H) N D(K),
HE,xr=FE,Hx — Hz



DUAL CONES AND TOMITA-TAKESAKI THEORY 159

and
KE,xr=FE,Kx — Kzx.
Hence ||Hz|| < ||[Kz||.

(iv) Express A® as A%(I — E)+A°E, where E is the spectral projection for A
corresponding to [0, 1]. Then ||A%E|| < 1 and A%(I — E) < AY?(I — E). We have
that AE is everywhere defined, bounded, and ||AE|| < 1. Also, (I-F)A C A(I-E)
(and A(I—FE) is closed and self-adjoint). By passing to the function representation,
we see that A® = A%(I-E)+A°E, |A°E| < 1,and [A*(I-E)]? < [AV*(I-E))%.
If y € D(AY?) (C D(A%)), then

y € D(AVA(I - E)) C D(AY(I - E)),
and
AVX I - E)y=(I-E)AY?y, A*(I-E)y=(-E)A%.

From (iii), we have
(I = E)A%y|l = |A*(I — E)y|| < |[AY*(I - E)yl = (I - E)AY?y|.
Thus, from (ii), if y € WY,
lA%y|? = I(I - E)A%y|* + | A%y
< (I - B)AY?y|? + ||AEy|®
< AV2y|? + Jy))?
=2|lyl>.

(v) Suppose = € V0. Then z is the limit in M of {A,u} for some sequence {A,}
of operators in R*. From (ii), A,u — x € WO C D(AY?); from (iv)

IA%(Anu — 2)]| < 22| Apu — || — 0,

so that Az € V2. Hence A*V? C V. Since {A%Au : A € R} is dense in V2,
AV is dense in V.

(vi) From the proof of (i), (x,y) > 0 when z € V* and y € V*'. Thus V* and
V,‘j' are contained in the dual cones of one another.

Suppose, now, that y is in the dual cone to V? (that is, (y,z) > 0 for each z in
Va). Let hy(p) be (27)~2(1 — Lp|) when [p| < n, and let h,(p) be 0 when n < |p|,
where n is a positive integer. (See the beginning of the proof of Theorem 3.2.30.)
Then, by Theorem 3.2.30 calculations, h,(t) = (1 — cosnt)/mnt? when t # 0 and
by (0) = n/(2r). Since both h,, and h,, are continuous and in L1(R) N Lo (R), and
hn (D) = A (=D), hy, is the Fourier transform of h,, (either from Theorem 3.2.30 or
direct calculation). From the equation noted in the statement of Theorem 5.6.36,

(+) (ha(In Ay, z) = /}R o (8) (A y, ) dt

Since Aty = u, from Remark 5.6.32, and AYAA™" € RT when A € Rt, A% Au =
A" AA~ "y and A®A%Au = A*A%" Ay € V2. Hence A*V? = V2 for each real t, and
the unitary operator A" maps the dual cone of V2 onto itself. Thus 0 < (Aty, z),
and since h,(t) > 0 for each real ¢, h,(In A)y is in the dual cone of V2 from ().
Since {\/2_1F hn} is monotone increasing with pointwise limit the constant function
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1 onRand h — h(lnA) is a o-normal homomorphism of B into the abelian von
Neumann algebra generated by A (see Theorems 5.2.8 and 5.6.26), v/27 h,(In A)
is strong-operator convergent to I. Thus

(yn =) V21 hy(In Ay — y.

We show, now, that y, € V{j/. Since h, vanishes outside a finite interval,
yn € D(A!) for each real t. To see this, pass to the abelian von Neumann alge-
bra generated by A and I and to the representing function algebra C(X) for this
von Neumann algebra. Then h,(In A) is represented by A, o f in C(X), where f
represents In A in N (X). If ¢ is a point in X at which the function representing
A takes a value outside the interval [exp —n,expn|, then (h, o f)(q) = 0. It fol-
lows that A*“h,(InA) is bounded for each real t. Since h,(InA) is a bounded,
everywhere-defined operator, A'h,(InA) is closed, and densely defined. Thus
A'h,(InA) = A'"h,(InA). In particular, y, € D(A') for each real t. Thus,
with A" in R’t and A equal to JA'J,

0 < (A%Au,y,) = (A~ AV Au,y,)
= (JAu, A~y,) = (JAJu, A=%y,)
= <A/’U,,£S_alyn>,

from (ii). Hence A~ y, € V0. From (v), y, € A V0 C V%', 1t follows that y € V&'
and that V{f/ is the dual cone to V2. In particular, Vi/* is its own dual (we say that
s self-dual).

Theorem 7. We adopt the notation of Theorem 6, but write V, in place of

W4 Let Ao and By be the (strong-operator-dense) * subalgebras of R and R/,
respectively, consisting of elements in reflection sequences. (See Subsection 9.2,
Tomita’s theorem—a second approach.)

(i) AgJAgJu € V,, (Ag € Uy).

(1)) ATJAJu e V, (A € R).

(iii) {AYVAA%u . Ag € (Uo)n} is dense in V.

(iv) {AJAJu: A€ R} = {A'JA' Ju: A" € R'}, and this set is dense in V,.
(v) AJAJV, C V., (AER).

Proof. (i) Let B in R be the extension of A~/ A43Al/%. Then

AgJ AgJu = AgJ Agu = AgJSAju = ApAV 2 Aju
— A1/4(A_1/4A0A1/4)(A_1/4A0A1/4)*u
= AY*BB*ueV,.

(i) It will suffice to show that AJAJu € V, for each A in (R);. Since Uy is
a strong-operator-dense * subalgebra of R, A is in the strong-operator closure of
(Ap)1. Hence AJAJ is in the strong-operator closure of {AgJAoJ : Ag € (Uo)1}-
Thus AJAJu € V, from (i).

(iii) Suppose that z in V, and a positive € are given. Choose A in R™ such
that ||z — Al/% Au|| < e. From (the proof of) Corollary 5.3.6, there is a B in (o),
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such that ||Au — B%u| < 273/%¢. From Theorem 6(iv), since Au and B?u are in
wo,
|AYA Ay — AVAB2y|| < 21/2273/2¢
Hence ||z — AY4B?u|| < e. Tt follows that
{AV4A%u ;A € (Yp)n} is dense in V.
(iv) With A in R, (4’ =)JAJ € R', JA'J = A. Thus AJAJ = JA'JA =
A'JA'J, and
{AJAJ : AeR}y={AJAJ : A eR'}.
With Ap in (%p)n, AY4ApA~/* has a (unique) extension B in R. We have,
BJBJu = BJBu= BJSB"u
— BAI/Q(A—1/4AOA1/4)U
= BAY* Agu = AV A2
From (ii) and (iii), it follows now that {AJAJu : A € R} is a dense subset of V,.
(v) With 4, Bin R,
AJAJBJBJu = ABJAJJBJu = ABJABJu € V,,

from (ii). Since AJAJ is continuous, {BJBJu : B € R} is dense in V,, and V,, is
closed, AJAJV, CV,.

Theorem 8. We adopt the notation of Theorem 7. Suppose x € V. Then

(i) Jr = x;

(it) JE = E'J and JEE' = EE'J, where E and E' are the projections with
ranges [R'z] and [Rz], respectively;

(iii) x is separating for R if and only if x is generating for R;

(iv) if x is separating for R and J' is the modular conjugation corresponding
to x, then J' = J.

Proof. (i) Note that JAY4Au = A'/*Au, when A € R*, from Theorem 6(i).
Since J is continuous and V, is the norm closure of {AY*Au : A€ R*}, Jr=1z.

(ii) From (i),
JTx=JTJx € Rz, JT'z = JT' Jx € R,
when T € R and T' € R’. Thus J maps Rz isometrically onto R'z; whence J
maps {Rz}* isometrically onto {R'z}+. Hence
E'Jy=FE'JEy+ E'J(I - E)y=JEy
for each y in H, and E'J = JE. Thus
JEE'=FE'JE'=F'EJ=EFJ.

(iii) Note that x is separating for R if and only if [R'z] is H, which occurs if
and only if E is I. From (ii), F is I if and only if I = JEJ = E’. Thus, x is
separating for R if and only if [Rz] is H, that is, if and only if z is generating for
R.

(iv) Since z is separating for R, it is generating for R, from (iii), and there is
a modular structure associated with z. From (i), Jz = z; and of course J? = I
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and JRJ = R'. Moreover, AJAJz € V, for each A in R, from Theorem 7(v).
Thus (AJAJz,z) > 0, since V, is self-dual (Theorem 6(vi)). From Theorem 3(vi),
J=J.

Theorem 9. We adopt the notation of Theorem 7. Let x, y, and v, be vectors
in V,, and suppose that 0 = (z,y) = (u,v). Let E and E’ be the projections with
ranges [R'z] and [Rz|, respectively. Then

(i)v=0;

(it) JEE' (= J') is the conjugation for EREE' (=8§) acting on EE'(H) with
generating and separating vector x;

(1it) V., C V,, where V., is the self-dual cone for {§,z} (corresponding to V,, for
(Ryu});

() EE'y = 0.

Proof. (i) Choose A, in R* such that {A'/*A%u} tends to v and B’ in By.
Then

| Anull® = (A2u,u) = (AY*A2u,u) — (v,u) = 0.
Thus, with C’ the extension of AY4B’A=14 in R/,
(AY* A%y, B'u) — (v, B'u)
and
(AV4 A2y, B'u) = (A%u, AVAB' A1)

= (Anu, A,C'u)

= (A u,C'Apu)

— 0.

Hence, (v, B'u) = 0. Since Byu is dense in H, v = 0.

(i) Let K be FE'(H) and J' be JEE'. Then J' is a conjugate linear isometry
of K onto K, from Theorem 8(ii). Moreover,

(JY* = JEE'JEE' = J*(EE")* = EF/,
so that J' is involutory. From Theorem 8(i), J'z = z, and
J EE'AEE'] = EE'JAJEE' (AeR),
whence J'§J’ = §'. Finally, with A in R,

(EE'AEE'J'EE'AEE'J'z,z) = (AJ' Az, z)

=

= (E'EJAz, A*z)
= (JE' Az, E'A*z)
= (JAz, A*z) > 0,

from Theorem 7(v) and self-duality of V,, and since Az and A*z are in E'(H). It
follows from Theorem 3(vi) that J’ is the modular conjugation for {§,z}.
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(iii) From Theorem 7(iv), {EE'AEE'J'EE'AEE'J's : A € R} is dense in
V.. From Theorem 7(v), since z € V,

EE'AEFE'J'EE'AEE'J'zs = JJAJ'EE'AEF'x
= JEE'AJEE Az
= JEAE'JE Az
= JEAJEFEAx
=FEAJEAJz e V,.

As V, is closed, V,, C V,.
(iv) If w € V., then w € V,, from (iii), so that

<EE/y,’U)> = <yaEElw> = <yaw> >0,

since y, w € V,, and V, is self-dual from Theorem 6(vi). As V. is self-dual, EE'y €
V.. But

<EEIy,:L‘> = <y,EEle> = (y,:c> =0,

so that, choosing EE'y for v and the vector z for u in (i), we conclude that EE'y =
0.

Theorem 10. With the notation of Theorem 9, let F and F' be the projections
with ranges [R'y] and [Ry|, respectively. Let z be Ey, let 2’ be E'y, and let M, M',
N, and N’ be the projections with ranges [R'z], [Rz], [R'Z'], and [R2'], respectively.
Then

(l) JM = NIJ, JN = MIJ, CM = CM/ = CN =CN/, M S E, and N S E/,‘

(1) if z # 0, there is a non-zero partial isometry U in R such that U*U < M,
UU* <N, and U*Uz #0;

(tit) if z # 0 and G’ is the projection with range [RU*Uz], in the notation of
(ii), there is a non-zero partial isometry V' in R’ such that V*V' < G' < M/,
V'V* < N, and V'*V'U*Uz # 0;

(iv) if z £ 0, then UV'z is a non-zero vector in NN'(H), and there is an A in
NRN such that

0< <UV/Z,AZ/> = ‘%<BJBJyay>7
where B = A*U — JV'J € R, in the notation of (iii);
(v)Ey=E'y=0and EF = F'F’ =0.

Proof. (i) From Theorem 8(ii), JE = E’J. Thus
Jz=JEy=FJy=FEy=2.

Hence JA'z = JA'JZ', and J maps [R'z] isometrically onto [Rz’]. Hence JM =
N'J. Similarly, JA'? = JA'Jz, and JN = M’J. Since A — JA*J is a * anti-
isomorphism of R onto R’, this mapping preserves central carriers. Moreover,
JPJ = P for each central projection P in R. Hence C = Cpy and Cyy = Cnr.
From Proposition 5.5.13, Cn = Cpy+ and Cpy = C)pyr. Finally, M < EF and N’ < F’
since

R'z=R'Ey=ER'y, R =RE'y=ERy.
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(ii) If 2 # 0, then M and N are non-zero projections in R. Since Cp; = Cy;,
M and N have equivalent, non-zero subprojections from the comparison theorem
(Theorem 6.2.7). Thus, there is a partial isometry U in R such that 0 < U*U < M
and UU* < N. Moreover, U*Uz # 0 since

[RU*Uz) = [U*UR 2] = U'UM(H) # (0).

(iii) If z # 0, there is U as in (ii), and U*Uz # 0. Since [RU*Uz] C [Rz],
G' < M'. Thus 0 # C¢ < Cpp = Cnv, and there is a non-zero partial isometry V'
in R’ such that V*V’ < G’ and V'V’* < N’. Moreover, V*V'U*Uz # 0 since

[RV*V'U*Uz] = [V*V'RU*Uz] = V*V'G'(H) # (0).
(iv) If z # 0, then V"*U*UV'z # 0 from (iii), so UV’'z # 0. Since U has range
in N(H) and V' has range in N'(H),
NN'UV'z=NUN'V'z=UV'z.
Since N and N’ have ranges [R'z'] and [RZ’], respectively, 2’ is generating and
separating for NRN N’ acting on NN'(H). Hence there is an A in NRN such that

AN'Z' (= AZ') is near UV'z. Multiplying A by a suitable scalar, we may assume
that (UV'z, A2’) > 0. With B as defined,

BJBJ = A*UJA*UJ + JV'JV' — A*UV' — JV'A*U J,
and
—X(BJBJy,y) = -2 (UJA Uy, Ay) — 5(y,V'JV'y) + Re (UV"y, Ay) .
Now V' =N'V'=E'N'V' =E'V ' and U =UM =UME = UE from (i), (ii), and
(iii). Thus
(UV'y, Ay) = (UEE'V'y, Ay) = (UV'Ey, AE'y) = (UV'z, AZ'),
(y,V'IV'y) = (y, E'V'JE'V'y) = (E'y,V'EJV'y)
= (EE'y,V'JV'y) =0,

and
(UJA*Uy, Ay) = (UEJA*UEy, Ay) = (UJE'A*UEy, Ay)

= (UJA*UE'Ey, Ay) = 0,
from Theorem 9(iv). Thus

0< (UV'z,AZ') = (UV'y, Ay) = Re (UV"y, Ay) = —1(BJBJy,y) .

(v) Since y € V,,, BJBJV, C V, from Theorem 7(v), and V, is self-dual, we
have that 0 < (BJBJy,y). This inequality contradicts the conclusion of (iv), if
2#0. Thus Ey =z =0and E'y = 2/ = Jz = 0. It follows that [R'y] C (I - E)(H)
and [Ry] C (I — E')(H), whence EF = E'F' = 0.

Theorem 11. With the notation of Theorem 7, let H, be {x : Jx = x}. Then
(i) H, is a real Hilbert space relative to the structure imposed by H;

(ii) each element of H has a decomposition x, + ix; with x, and x; in H, and
this decomposition is unique,
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(iii) each element of H, has a unique decomposition x, — x_, where z, and
z_ are orthogonal vectors in V,

(iv) if z,y € Vy, then
Iz =yl < flwz|R — wy|R| < llz = yllllz +yll,
50 that wy|R = wy|R if and only if x = y;
(v) {wz|R : x € V,} is norm closed in R.

Proof. (i) With z and y in H, and a real, J(az +y) = aJz + Jy = ax + y;
thus H, is a linear space over R. Since J is continuous, H, is a closed (real-linear)
subspace of H; hence H, is complete. Finally,

(x,y) = <J.’E,Jy> = <y1 J*J:L‘> = (y,x),

and H; is a real Hilbert space.

(ii) Let z, be (z + Jz)/2 and let z; be (z — Jz)/(2i). Then z = z, + iz;,
Jz, = z,, and Jz; = z;. Thus z, and z; are in H,. Suppose z = z, + iz} with x|
and z{ in H,. Then

T+ Jz =1, +ix] + z; — iz] = 2z
and

r—Jr=1a +ir) — 2, + iz = 2z} .
Thus z, = z, and z| = ;.

(iii) Suppose z € H,. From Proposition 2.2.1, there is an element z; in V,
such that

(x4, —z4) =Re(zq, 7 —2y)
(%) >Re(y,z —z4)
:<y7m_$+> (yevu)'

Since V), is a cone, ay € V, for each positive a when y € V,,. Thus (y,z —z4+) <0
for each y in V,. Since V), is self-dual (Theorem 6(vi)), (z_ =)z —z € V,,. Hence
x=2x4 —z_, and with 0 in place of y in (%),

0> —(z4,2-) =(z4+,2-24) 2 (0,2~ z4) =0.

Thus z, and z_ are orthogonal vectors in V.

If =2/ — ', where 2/, and z”_ are orthogonal vectors in V,, then

(zo,z-) = (gl z) — (2, z-) < (el o) < lzl]lfl=—]-
Thus ||z_|| < ||z"_|| and, by symmetry, ||z’_|| < ||x—|. Hence
lz = |l = llz" || = lle—|| = llz — =+l

By uniqueness of z, (as the vector in V), nearest x), we have that z, = z/ . It
follows that x_ =z’ .
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(iv) From (iii), we can express x — y as v — w, where v and w are in V, and
(v,w) = 0. Let E and F' be the projections with ranges [R'v] and [R'w], respec-
tively. Since EF = 0, from Theorem 10(v), |[E — F|| < 1. Thus, since V, is
self-dual,

lwz R —wy | R|
> |(we — wy)(E - F)|
= [((E = F)z,z) — (E = Fly,y)|

E-F)(z-y),z+y)+(z+y, (E-F)z-y)
E-F)v-w),z+y) +(c+y,(E-F)(v-w))
v+w,z+Y) + (T +y,v+ w)

I

I
[T TS T
—_—~ =

With A in R,

Hwz — wy)(A)| = [(Az, z) — (Ay, )]
= 3{A(z +y),z —y) + (A(z - y),z + 1)
< 1Allllz + yllllz - yll,

so that [lwz | R —wy [ R| < ||z +yllllz - yl|-

(v) Suppose z(n) € V, and {wy,) | R} is Cauchy convergent. By virtue of the
first inequality of (iv), {z(n)} is now Cauchy convergent. Hence {z(n)} tends to
some y in V,. The second inequality of (iv) yields that {w,()|R} converges to
wy |R. Thus {w; |R : = € V,} is norm closed in RF.

Theorem 12. Let H be a positive invertible (possibly unbounded) operator on
a Hilbert space H.

(i) HY4(I + HY?)~ is a bounded, everywhere-defined

operator on 'H and is equal to (HY/*5H1/4)~1,

(1i) With  and y in H,

(HV*HH YY) ey) = / (€™ +e™™) T (H "z, y) dt.
R

(iii) AVA(I + AY2)=1V2 C Ve for each a in [0,1], with the notation of
Theorem 6.

Proof. (i) Passing to the function representation of the abelian von Neumann
algebra generated by H, we have that the operators (I + H'/2)~! and H'Y/**(I +
H'/?)=1 are bounded, everywhere-defined operators. But H/4(I + H'/?)~1 is
closed since H'/4 is closed and (I + H'/?)~! is bounded. Thus H/4(I + H'/?)~!
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is bounded and everywhere defined. Again, from the function representation,
(H1/4_'|‘_H—1/4)—l — H1/4(I + Hl/?)—l

(ii) The argument is divided into three stages. Consider, first, the case in

which H has the form Z;‘n:l a;F;, where a1,... ,an, are positive real numbers and
{Fi,...,Fn} is an orthogonal family of projections with sum I. In this case, from
Lemma 9.2.7,

m
(H1/44_H—1/4)—1 _Z(al/4 a]—1/4)_1Fj

j=1
m 1t/2 dt
S (o) s
Jj=1

so that
zt/ 2
<(H1/4_"‘_H—1/4)—1$’y> =/ (Z] =1 t] F; )$ '!/)
R et e—?rt
_ / (H®/ 2z y) dt
- R et + e—t )

We next consider the case in which H is bounded and has a bounded inverse,
and choose positive real numbers a, b such that al < H < bl. As in the proof
of Lemma 9.2.8, H is the limit in norm of a sequence {H,} of operators, each
of the type considered in the preceding paragraph and satisfying al < H, < bl;
moreover, H? and (H'/4 4+ H~'/4)~1 are the norm limits of the sequences {H?},
for each complex z, and {(Hn HY* 4+ gV )~ '}, respectively. From the preceding
paragraph,

it)2
1/4 —1/4\—1 _ (Hp'"z,y)dt
(Y + ey = [ VR

1 . . .
Since |(HZ"z,9)| < |z|llyll and Jr(e™ + e~™) "1 dt is absolutely integrable, it
follows from the dominated convergence theorem that

(H %z, y) dt
emt +e—1rt :

(HAEH ) ) = [
R

Finally, we consider the general case, in which H is unbounded. For each
positive integer n, let E,, be the spectral projection for H corresponding to the
interval [n~!,n|. Since H is a positive invertible operator, the increasing sequence
{E,} is strong-operator convergent to I. For a given choice of n, let Hy be the
restriction to E,(H) of H. Then Hy is in B(E,(H))" and has a bounded inverse.
When z,y € E,(H), from Corollary 5.6.31 and the preceding paragraph,

(HYAFHT) e, y) = (Hy'* + Hy ) 'a,y)
/ < lt/?x y dt
€7rt + e—‘rrt

/ (H*2x,y) dt
i .

errt + e i
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For general z and y in H, the preceding equality applies with E,z and E,y in place
of z and y. Now
(HYFH ) Bz, Eny) = (H*4H V) 2, Eoy)
— (HY*FH™Y"2,y)

and
(H“/QEna:,Eny) = (H“/Qac,Eny) — (Hit/Q:c,y>.
From the dominated convergence theorem,

. H*/ g, y) dt
H1/4 H—1/4 -1 =/ < ) '
(H"+ )"z, y) e r e

(iii) Suppose © € V* and y € V*. Then, as in the proof of Theorem 6(vi),
A%z € V2 for each real t and (Atz,y) > 0. From (i) and (ii),

(AT + A1) g, ) = (AVHAT) g )

= /(e” +e_’”)_l(A“/2x,y) dt
>0,
Since V¢ is the dual cone to V&', AV4(I + AY/2)~'z € V¢, Hence
AVA(I 4 AV2)tye C ye.
Theorem 13. With the notation of Theorem 7, let w be a normal linear func-

tional on R such that 0 < w < wy|R. From Proposition 7.3.5, there is an operator
H' in (R'*); such that w = wy gru|R.

(i) Suppose x € D(A~Y2)NV, and
() w = 3(Wu,z + wru)|R-
Then x = 2(I + AY?)"1H'u.
(i1) With z as in (i),
(%) r = 2041 + AV TIATYVAH .
(i41) With = defined by (¥x), A~V *H'uw eV, and z € V,.
() Define = by (xx). Then x € D(A™Y2) NV, and (*) holds.
(v) With z as in (iv),

uw—x =20AY4I + AYVHTIATYAYI — Hu e V,.

Proof. (i) By assumption and since = € D(A~Y/2) = D(F), for each A in R,
2w(A) = (Au, z) + (Az,u) = (Au, z) + (z, SAu)
= (Au,z) + (Au, Fz) = (Au, z) + (Au, AV Jz).
But z € V,, so that Jz = z from Theorem 8(i). Thus
2w(A) = (Au, (I + AY?)z) .
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By choice of H', w(A) = (Au, H'u). Since u is generating for R, 2H'u = (I+AY?)z
and
z=20I+AYH " 1Hy,

(i) Note that AYV4(I + AY2)"1A~1/4 C (I + AY?)~! and
R'u C D(F) = D(A™Y/2) = D(A~V4A1/4) C D(A~1/4).
From Theorem 12(i), AY*(I+A!/2)~! is bounded and everywhere defined, so that
R'u C D(A1/4(I+ A1/2)—1A—1/4).

Thus
z =21+ AV 1 H y = 2AV4(I + AV TIATVAH

(iii) From (ii), H'v € D(A~1/4). Now
A"V y = JJIA™YAJJH Ju = JAY 4 Hu,

where H = JH'J € R*. By definition, AY*Hu € V,,. From Theorem 8(i),we have
that JAY4*Hu = AY*Hu. Thus

ATVAH y = AV HueV,.
By definition of  and Theorem 12(iii),
= 20Y4T + AVHIAT VA H v e Y,
(iv) From (iii), z € V,,. Now z = 2(I + AY?)"1H'y, and
(I+ AV2)"IA=Y2 C A=V2( 4 AV2)Y

Since H'u € D(A™Y?), H'u € DAYV2(I + AY?)~Y). 1t follows that z €
D(A~Y/2). At the same time, (I + AY/?)z = 2H'u. Thus

2w(A) = (Au,2H'u) = (Au, (I + AV ?)z)
= (Au,z) + (Au, AY?Jz) = (Au, z) + (Au, Fz)
= (Au,z) + (z, A"u) = (Wy z +wz 4 )(A),
for each A in R.

(v) Since 0 < H' < I, I — H € R't, and the argument of (iii) applies with
I — H' in place of H’' to show that

2L+ AVHTHI - HYyuw =204 I + AVHTIA VY -~ HYu eV, .
As (I 4+ AV =2u, u=2(I + AY/?) 1y and
u—z =20+ AV Y- H)ueV,.

Theorem 14. With the notation of Theorem 18,
(i) there is a y in V, such that u —y € V,, and

Wy R = w = J(wuy + wyw)|R;

(i)
u—%y(: z) € Vy, W:AR —w = w(/2)yIR
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and
[wu|R = w|| = (u,y)
where y is as in (i);
(1ii) with y and z as in (ii)
lw: R - w]l < fllwu|R - wl;

(iv) with ' in V,, such that w < wy|R, E and E’ the projections whose ranges
are [R'z’] and [Rz'], respectively, and Rq the von Neumann algebra EREE’ acting
on EE'(H) (= Ho), we have that ' is generating and separating for Ro, Vo C Vy,
the equation

wo(EAEE") = w(A) (AeR)
defines a positive normal linear functional wy on R, and there is a vector 2’ in
Ve, such that w < w,/|R and

lwz R = w]| < llwe R —wl,
(v) there is a sequence {u{n)} in V, with u as u(0) such that, w < wymy|R,
||wu(n)|R - w” < %ku(n—l)er - w”a

and {u(n)} converges to some v in V, such that wy|R = w;

(vi) the set of (normal) linear functionals w' on R such that 0 < aw’ < wy|R
for some positive a is a norm-dense subset of the set of all vector functionals on
R, and each positive normal functional on R has a representation as wy |R for a
unique v’ in V.

Proof. (i) Since 0 < w < w, | R, we have
0<wy|R—-w<w,|R,

and we may apply Theorem 13(iv) and (v) to w, |R — w (in place of w). Hence
there is a y as described.

(i) Since 1y and u — y are in V, and V, is a cone,
(z=)u—-3y=u—y+iyeV,.
Note that
wZ|R—w=wu|R—|-w%y|R— %(wu,y twyu) |R—w

=wy|R+wi |R—wy|R+tw—-w=wi |R
2Y 2Y

by choice of y, and that
low | R =@l = (wu | R —w)(I) = 5((w,y) + (y,u)) = (u,)

since u,y € V, and (u,y) = (y,u) > 0.
(iii) Since y and u — y are in V,, and V), is self-dual,

0<(y,y) <{w,y).
But from (ii),
w: R —w| = w%y(I) =1y < 1wy = jlwn | R - wl.
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(iv) In the present case, z’ takes the place of z in Theorem 9; we conclude
from (ii) and (iii) of that theorem that z’ is generating and separating for R,
acting on Hy and V» C V,. (We use V. in place of V., of Theorem 9(iii).) Since
0 € w < wy | R, the support of w is contained in E, from Remark 7.2.6, so that
w(A) = w(EAEF) for each A in R. Now E'F has central carrier E (relative to R'E),
from Proposition 5.5.13, so that the mapping

EAE — EAEE' (A€R)

is a * isomorphism of ERE onto EREE’ from Proposition 5.5.5. Thus the equation
wo(EAEE') = w(A) (A € R) defines a positive normal linear functional on EREE’.
In addition, wy < w, | Ro. By applying the conclusion of (iii) to wg, Ro, &', and
V., we see that there is a vector z’ in V. such that

wo Swyr |Ro, lwzr | Ro — woll < §llwer | Ro — woll-
Thus, with H in R*, since FE'2' = 2/,
W(H) = wo(EHEE') < w, (EHEE') = w, (H),
and w < w,/ | R. In addition, since w < w, | R,

[wer [R = w| = (wer — w)(I) = wo (EE') — w(E)
' = wo)(EE") = ||lw.r | Ro — wol|

= (w2
< gllwa IR0 = woll = fllwzr | R ~ ]|

(v) Let (0) be u and u(1) be z (of (iii)). Suppose we have found u(0), ... ,u(n)
with the properties described in the statement of this theorem. Then u(n) € V,
and w < wy(n) | R. From (iv), with u(n) in place of 2’, there is a u(n +1) (replacing
') in V, such that w < wy(n41) | R and

lwu(ner) | R = wl| < §llwum) | R —wll.

The sequence {u(n)} is constructed by this inductive process. It follows that
{wu(ny | R} converges to w. From Theorem 11(iv), {u(n)} is Cauchy convergent
and therefore tends to a vector v in V,. Again, from Theorem 11(iv), {wym) | R}
tends to w, |R. Thus w = w, | R, and from Theorem 11(iv), v is the only such
vector in V,,.

(vi)If A/ € R’ and H € R*, then 0 < A”*A’H < ||A’|2H and

wary(H) = (HA'u, A'u) = (A" A'Hu, u)
< AP (Hu,u) = [|A'|Pwu(H).

Since {A'u : A" € R} is dense in H, the set § of positive (normal) linear functionals
w’ such that aw’ < w, |R for some positive scalar a is norm dense in the set of
all vector functionals on R. Since u is separating for R, all positive normal linear
functionals on R are vector functionals, from Theorem 7.2.3. Now each element of
§ has the form w, | R for some v’ in V,, from (v), and the set of positive (normal)
linear functionals on R that are representable in this form is a norm-closed subset
of R*, from Theorem 11(v). Thus each positive normal linear functional on R has
the form w, | R for some v’ in V,,, and v’ is unique from Theorem 11(iv).
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Theorem 15. Let R and § be von Neumann algebras acting on Hilbert spaces
H and K with separating and generating unit vectors u and v, respectively, and let
@ be a * isomorphism of R onto §. Let V, and V, be the respective self-dual cones
for R and § corresponding to u and v.

(i) With x in V, a separating or generating vector for R, we have that V, = V,.

(11) There is a unique unitary transformation U of H onto K such that UAU ! =
¢(A) and Uv' = v for some u’ inV,.

(tii) With U as in (i), UV, = V.

(v) With w and w' normal states of R and §, respectively, denote by u, and
v, the (unique) vectors in V, and V, whose corresponding vector states are w and

W', respectively. Then Uuyiop = v, for each normal state ' of §, with U as in

(v) Suppose R = § and H = K. There is a unique unitary operator U’ in R/
such that U'u,, = v,, for each normal state w of R.

(vi) With the assumption of (v), J the modular conjugation operator for (R, u)
and J' the modular conjugation operator for (R,v), there is a unitary operator V
in R such that VAV* = JJ'AJ'J for all A in R.

Proof. (i) From Theorem 8(iii), z is both generating and separating for R
when z € V, and it is either generating or separating for R. Thus, from Theorem
9(iii), V, C V., where V, is the self-dual cone corresponding to (R,z). Theorem
8(iv) assures us that the modular conjugations corresponding to z and u are the
same. Thus u is a “real” element relative to V, (that is, is in H, relative to the
modular conjugation for (R,z)) in the sense of Theorem 11. From (iii) of that
theorem, u = uy — u_, where uy and u_ are orthogonal elements of V, (and,
hence, of V,,). But u—0 is another decomposition of u as a difference of orthogonal
elements of V,. The uniqueness clause of Theorem 11(iii) allows us to conclude,
now, that u— = 0 and v = u; € V,. From Theorem 9(iii), again, V,, C V,. Hence
Ve = V.

(ii) Since v is separating for §, w, | § is faithful (on §)and (w, |§) o ¢ is faithful
on R. From Theorem 14(vi), there is a (unique) vector v’ in V, such that w, |R =
(wy|8§) 0 @. As wy | R is faithful, u’ is a separating vector for R. From Theorem
8(iil), u’ is generating for R. From Exercise 7.6.23, the mapping Au’ — ¢(A)v
(A € R) extends to a unitary transformation U of H onto K such that, for each A
in R, UAU~! = ¢(A). Choosing I for A, we have that Uu’ = v.

Suppose, now, that U’ is a unitary transformation of H onto K such that
U'AU'~! = ¢(A) (A € R) and U’z = v for some vector z in V,,. Then, with A in
R7

Ude =U'AU' " 'U'z = ¢(A)v, Az =U'""'¢(Aw, z=U"1v.

Now

(w0 ]8) 0 9)(A) = (d(A)v,v) = (AU~ v, U" 1)
= (Az,z) = w,(A).

But «’ is the only vector in V,, whose corresponding functional is (w, |§) o ¢. Thus
v =z and U'Au = ¢p(A)v =UAv (A€ R). Hence U = U".
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(iii) From (i), with u’ as in (ii), Vv = V. Since U is a unitary transformation
of H onto K taking u’ onto v such that URU ™! = §, we have that

UV, =UVy =V,.

(iv) Let U be as in (ii) and note that U~'v, € V, from (iii). Now, with A in
R,
(AU Yoy, U ) = (UAU g, v,)
= (¢(A)vur, Vo)
= (W' o ¢)(A).
But w04 is the only vector in V, whose corresponding functional is w’ o ¢. Thus
Uprop = UMy and Uttyrop = vy
(v) Under the present assumption, let U’ be the (unique) unitary operator of
(ii) corresponding to the identity automorphism of R. Then U'AU'~! = A (A € R);
whence U" € R’. Moreover, from (iv), U'u, = v, for each normal state w of R.
(vi) Since A — J'A*J" and A’ — JA'*J are * anti-isomorphisms of R onto R’
and R’ onto R, respectively, and (J'A*J')* = J'AJ’, the mapping
A—JTAT'T  (A€R)
is a * automorphism of R. Let U’ be the unitary operator in R’ described in (v)
and (from Theorem 14(vi)) let «’ be the (unique) vector in V,, whose corresponding
vector state on R is w,, | R. From (v), U'v/ = v. From Theorem 8(iv), the modular
conjugation for (R,u’) is J. (Of course u’ is separating and generating for R since

vis.) As URU™ = R and U'v' = v, we have that U'JU'* = J'. Let V be JU'J.
Then V is a unitary operator in R, and for each 4 in R,

VAV* = JU'JAJUJ = J(U' JU™\U' AU (U’ JU"™)J
=JJU AU J'J=JJAU'U*J'J
=JJAJJ.
Hence the mapping A — JJ'AJ'J (A € R) is an inner * automorphism of R
(implemented by V).

Theorem 16. Let R be a von Neumann algebra acting on a Hilbert space H
with a generating and separating vector w. Let ¢ be a * automorphism of R and
Uy be the (unique) unitary operator on H (described in Theorem 15(i1) and (1))
such that UV, =V, and

Y(A) =U,AU;  (A€R).

With 4" another * automorphism of R, we have that Uyy = UypUy and the map-
ping ¥ — Uy is a unitary representation of the group of * automorphisms of R.

Proof. Note that

Now UpUypVy, = UyV, = V,, from Theorem 15(iii). Thus, from the uniqueness
assertion of Theorem 15(ii), Uyy = UypUys, and the mapping ¢ — U, is a unitary
representation of the automorphism group of R on H.



174 RICHARD V. KADISON

Appendix. The Friedrichs Extension

Proposition 1. Let Ay be a closed, densely defined operator acting on a
Hilbert space H, and suppose (Apz,x) > 0 for each x in the domain D(Ag) of Ao.

(i) Then Ay and Ag + I are closed symmetric operators on H.

(i) Suppose A is a positive self-adjoint extension of Ag. Then A+1I is a positive
self-adjoint extension of Ao + I, A+ I is a one-to-one linear transformation with
range H, and the inverse B of A+ I is in (B(H))™.

(1i) With B as in (i), y in H, and z in D(Ao) (= D(Ao + 1)),
(%) (x,y) = (Ao + I)z, By)
and By € D(Af).

Proof. (i) From the second relation in Proposition 2.1.7, with z and y in
D(Ap), Aoz in place of u and Ayy in place of v, we deduce 2.4(3) (p.102) with Ay
in place of T'. Since each of the inner products on the right-hand side of 2.4(3) is real
(when T is replaced by Ay), the vector entries can be interchanged in each of these
inner products, yielding the right-hand side of the second relation of Proposition
2.1.7 with z,y, Aoz, Agy, replacing u, v, x, y, respectively. Thus (Aoz,y) = (z, Aoy),
when z,y € D(Ap). Hence 4y C Aj.

Since ((Ap + I)z,z) > 0 for each = in D(Ag) (= D(Ao + 1)), Ao + I is also
symmetric. If z,, € D(Ap), z,, — z, and (Ap+ 1)z, — ¥y, then A9z, — y—z. Since
Ay is closed, z € D(Ap) and Apx = y—x. Hence z € D(Ag+1I) and (Ao + )z = y.
It follows that Ay + I is closed.

(ii) Since A + I is closed (as just argued for Ao+ I), A+ I = AFI,and A+ 1
is self-adjoint. Moreover,

(A+ Dz, ) = (Az,z) + ||z|* > [l2|® > 0,

for each z in D(A)(= D(A + I)); A+ I is a positive self-adjoint operator with
null space (0). Hence A + I is a one-to-one linear transformation with range dense
in H (from Exercise 2.8.45, the closure of the range of A+ I (= (A + I)*) is the
orthogonal complement of the null space of A+ I). From Lemma 2.7.9, A + I has
closed range. Hence H is the range of A + I.

If y=(A+ I)z and B is the inverse mapping to A + I, then

0 < [Byl® = lll* < (=, (A+ D)z) = (By,y) < | Byllllyll

so that B € (B(H))T.
(iil) Since B € (B(H)){, B is self-adjoint. By definition of B, B(Ag + )z ==z
(for each z in D(Ag + I)). Thus
(z,y) = (B(Ao + )z, y) = ((Ao + )z, By),

with z and y as described in the statement of this exercise. Thus By € D((Ao+1)*)
and (A + I)*By = y. We show that (Ag + I)* = Aj + I — more generally, that
(T 4+ S)* = T* + S* when S is bounded. Suppose v € D((T + S)*) and u € D(T)
(=D(T'+ S)). Then

(Tu,v) = (T + S)u,v) — (Su,v) = (u, (T + S)*v — S*v),
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so that v € D(T*) and T*v = (T + S)*v — S*v. It follows that v € D(T* +.5*) and
(T* 4+ S*)v = (T + S)*v. Hence

(T+8)CT "+ 8"
Since the reverse inclusion

T+ 8 C(T+S)
is valid, in general,

(T+8) =T"+85"
when S is bounded. It follows that

By € D(4;) (=D(A; + 1) =D((Ao + I)7))-

Theorem 2. With Ay as in Proposition 1, define (u,v)’, for each pair of
vectors u,v in D(Ay), to be ((Ag + I)u,v) and let D' be the completion of D(Aop)
relative to the definite inner product (u,v) — (u,v)’ on D(Ay).

(1) The “identity” mapping on D(Ag) has a (unique) bounded extension . map-
ping D' into H, ¢ is one-to-one, and ||¢|| < 1.

(1) Withy in H, z — (z,y) (x € D(Ap)) extends to a bounded linear functional
on D’ of norm not exceeding ||y||.

(iii) There is a vector By in D(AY) satisfying (x) of Proposition 1’ (iii).

(iv) B € (B(H)){.

(v) B is a one-to-one mapping and its inverse A; is a self-adjoint extension of
Ao+ 1.

vi) Ay — I (which we denote by 18 a positive self-adjoint extension of Ao,

(vi) Ay — I (which we d by ‘A7) posi If-adjos jon of A
and D(A) C D(A}) C (D).

Proof. (i) Note that with x in D(Ay),

Iz = (z,2) < {z,2) + (Aoz, z) = |||

so that the identity mapping of D(Ag) onto itself has a (unique) bounded extension
¢ mapping D’ into H, and [[¢]] < 1. Choose z,, in D(Ay) tending to 2’ in D’. Assume
that ¢(2') = 0. Since

12 — (I = Nle(zn) = () < llzn = 2" = 0,
we have that ||x,| — 0. Thus, for each m,
(2, Tp) = lim{zn, zm) = im{(A¢ + ITpn, Tm)

= lim(Zy, (Ao + I)*Tm) = 0,

since z,, € D(Ag + I) C D((Ap + I)*) from Proposition 1'(i). But

(', 2} =lim(z', z,,)" =0,

so that 2/ = 0 and ¢ is one-to-one.

(i) Since [{(z, ¥} < fzlllyll < ll=ll’|ly]l from (i), when z € D(Ap) and y € H, we
see that the functional 2 — (z,y) on D(A4p) has bound not exceeding ||y|| relative
to the norm z — ||z||’. This functional extends (uniquely) to a functional of norm
not exceeding ||y|| on D’'.
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(ili) From (ii) and Riesz’s representation theorem (Theorem 2.3.1), there is a
(unique) vector z’ in D’ such that (z,y) = (z,2’)’ for each = in D(Ap). Let By be
(2"). Choose z,, in D(Ap) so that {z,,} tends to 2z’ (in D’). Then

lzn =« = lle(@n) = U2 < flzn = 2" = 0.
Thus
(z,y) = (x,2") = lim(z,z,) = lim{(4¢ + Iz, z,,)
= (Ao + Nz,1(2")) = (Ao + )z, By).

(iv) From (i), (ii), and (iii) (and with the notation of the solution to (iii)), we
have that || By|| = [[¢(2')|| < [|2’|]" < |ly|l. Hence |[B]l < 1. Choose z,, in D(Ag) so
that {lz,, — 2’|’ tends to 0. Then from (i),

lzn = Byl = fju(zn — )| < [lzn = 2l — 0,
and from (iii), by choice of 2/,
(By,y) = lim(z,,,y) = lim(z,, 2’)" = lim{z,,.” " (By))’
n n n
= (', (By)) = | (By)||* > 0,

or note that lim, (z,, 2’} = (¢/,2') > 0. Thus B € (B(H)){.
(v) If (0 #) y € H, then By € «(D’) and

0 # (z,y) = (z,.”'(By))’

for some z in (the dense manifold) D(Ay). So ¢~!(By) # 0. From (i), ¢ is a one-to-
one mapping, whence By # 0. From the discussion following Theorem 7.2.1, with
B in place of T' (and now, the null space is (0)), the inverse A, to B is a self-adjoint
operator with domain contained in +(D’).

If z,u € D(Ap), then from (iii) and Proposition 1’(i},

(u,z)" = ((Ag + DNu, x) = (u, (Ao + Iz) = (u,. " (B(Ag + Ix))’".

Since D(Ay) is dense in D', z = 1" (B(Ag+I)z). From (i), z = «(x) = B(Ag+ 1)z,
whence
Az = AlB(AO + I)a: = (A() + I)l‘
Thus A; is a self-adjoint extension of 4y + I.
(vi) As in the proof of Proposition 1/(ii), A; — I is self-adjoint. Since Ag+ 1 C
Ay, Ag C A —I(=A). Since 0 < B<1I, B(I-B)>0. Hence

(ABy, By) = (A1 By, By) — (By, By) = (y, By) — (By, By)
=((I - B)y, By) = (B(I — B)y,y) > 0.
But D(A) = D(A;), and D(A,) is the range of B. Thus 0 < A and D(A) C «(D’).

Theorem 3'. With the notation of Theorem 2', we have that A is the unique.
positive self-adjoint extension (the Friedrichs extension) of Ay whose domain is
contained in (D').

Proof. From Proposition 1'(ii) and (iii), if A’ is a positive self-adjoint exten-

sion of Ag, then there is an operator B’ with the properties of B in that proposition.
Thus {(Ag + I)z,(B — B')y) = 0 for each z in D(Ap). If, in addition, we assume
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that the domain of A’ is contained in +(D’), then there is a vector v’ in D’ such
that (u') = (B — B')y. Let {z,} be a sequence of vectors in D(Ay) tending to v’
(in D). Then

lzm = (B = Byl = [[£m ~ e(u)]| < [|lzm — v/l = 0

(Tn, ) = lm(T,, Trm) = Um{(Ao + I)Zn, Tm)

= ((Ap + Dz, (B — B'y) = 0.

Hence (v/,v') = lim, (z,,u) =0, and v’ = 0. It follows that t(uv') = (B—B')y =0
and B = B’. Since B and B’ are the inverse mappings to A and A’, respectively,
A=A

Theorem 4'. Let R be a von Neumann algebra acting on o Hilbert space H
and Ay be an operator affiliated with R. Suppose that (Agz,x) > 0 for each z in
D(Ay). Then the Friedrichs extension of Ay is affiliated with R.

Proof. From Proposition 1'(i), A¢ is symmetric. By definition of “affiliation,”
Ao is closed. Theorems 2’ and 3’ guarantee the existence and uniqueness, respec-
tively, of the Friedrichs extension A of Ay. Let U’ be a unitary operator in R’. Then
U’ AU’ is a positive self-adjoint extension of U’ AoU’* and D(U'AU"*) C U'((D")).
Since Ag n R, U’ AgU'* = Ay. Since A is unique (Theorem 3'), it remains to show
that U'((D")) C (D").

Suppose z € «(D') and 1(2’) = 2z (with 2" in D’). Then {x,} tends to 2’ for some
sequence {x,} in D(Ap). Since A9 n R, U'(D(Ap)) = D(Ap) and U'z,, € D(Ap).
Now

Uz, — Ulirm”/2 = (Ao + DU (zn — ), U' (€0 — Tm))

= (Ao + I)(xn — Tm), (Tn — Tim))
= [[&, -z l* = 0

as n,m — oo since {z, } converges in D’. Thus {U’z,} converges in D’ to some u’
and {U'z,} converges in H to «(u'). Since {z,} tends to z in H, {U'z,} tends to
U’z in H. Thus U’z = +(u') € «(D’) and U’ («(D’)) C (D).
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