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1. Introduction 

Our goal in this article is the proof of  a basic result for tensor products of  
von Neumann algebras. We study the question of when a v o n  Neumann sub- 
algebra ~ '  of  the (von Neumann-algebra) tensor product G ~ 6  p of  
von Neumann algebras G and 6 ° "splits" as a tensor product G0 ~ 6a0 of 
von Neumann subalgebras G0 of G and 6a0 of 6 p. We give a general an- 
swer to this question in Theorem B. Our principal result (Theorem A), the 
culmination of a series of  arguments, asserts that this splitting always occurs 
when G is a factor (center consisting of scalar multiples of  the identity I )  and 
G contains G (rather, G (b CI,  where ¢E is the complex numbers). This was 
proved in [Ge] for the case where G is a factor of type II1 and ~ is a finite 
yon Neumann algebra (in the sense of Murray and von Neumann [M-vN]). It 
is the key, in [Ge], to answering a question raised by Popa [P1] concerning 
maximal injective subalgebras of  a von Neumann algebra, tn the last section, 
we apply our general splitting result to an extension of  this answer and then 
relate that extension to the powerful result of Connes [C] on the equivalence 
of hyperfiniteness and injectivity. 

Our splitting results are not hard to verify for finite dimensional matrix 
algebras. The problems posed on passage to infinite dimensional, analytic- 
topological structures are another matter altogether. Forming the tensor prod- 
uct of  finite dimensional algebraic structures is a basic and well-understood 
construction. For infinite dimensional, analytic-topological algebraic structures, 
this same construction, though still basic, acquires a bewildering complexity. 
Since Grothendieck's seminal work [Gr], it has been apparent that the infinite 
dimensional commutative case involves a host of  subtleties and analytic diffi- 
culties. In the non-commutative, infinite dimensional case, the difficulties and 
subtleties are magnified manyfold. Assertions that are easily proved in finite 
dimensions may become false or very difficult to prove when transferred to 
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that case. Some examples of these difficulties are instructive and useful for our 
later purposes. 

If J / i s  a central, simple algebra over C acting as linear transformations of 
a finite dimensional space de (over C) into itself and d / /  is the set of  linear 
transformations of -Off into itself each of  which commutes with all the transfor- 
mations in J// (we call wg t the commutant of ~ ' ) ,  then ~ ( o f ) ,  the algebra of 
all linear transformations of de into itself, is generated, as an algebra, by J¢' 
and Jgt and is isomorphic to . , / /® j///. The most direct infinite dimensional 
analogue of this fact results from allowing de to be an infinite dimensional 
Hilbert space, °3(of) to be the algebra of all bounded linear transformations 
of  de into itself (operators), and J/¢ to be one of the Murray-von Neumann 
factors [M-vN]. Under these circumstances, ~ '  and ~g/generate, algebraically, 
an algebra isomorphic to the algebraic tensor product .,t1 ® ~g' of J¢' and J/c". 
(This fact is non-trivial - see [M-vN] or [K1] for an extension of it.) The 
ultraweak closure (which is the "appropriate" closure) of  this generated alge- 
bra is, indeed, ~ ( o f ) .  But ~ ( o f )  is not, in general, the von Neumann-algebra, 
tensor product of ~1[ and ~/t '~. It is this tensor product precisely when J¢' has 
a minimal idempotent - that is, when ~/' is a "factor of type I." A large 
part of  the point to non-commutative analysis over the past sixty years in- 
volves the fact that there are factors with no minimal idempotents - those of 
"types II and III" (loosely, those that do and those that do not admit a trace-like 
functional). 

If  we study norm-closed algebras of  operators stable under the adjoint 
operation acting on a Hilbert space Off (the so-called C*-algebras), tensor- 
product subtleties abound. Takesaki [Tall was the first to note, by clever 
example, that two C*-subalgebras of ~ ( o f )  may generate, algebraically, their 
algebraic tensor product whose norm closure is just one of  the many C'algebras 
that are candidates for the role of C*-tensor product. Each of these has a norm 
that restricts to the original norm on the C*-algebras and is a "crossnorm" 
on the (dense) algebraic tensor product (that is, [[A ® B[[ = IIAII[[B[[ when 
A and B are in the respective algebras). Takesaki's example makes use of  
the C*-algebras generated by the left and right regular representations of the 
free (non-abelian) group IF2 on two generators (acting on 12(1F2)). Certain 
C*-algebras (the so-called nuclear algebras), when tensored with any other 
C*-algebra allow just one cross-norm and a single C*-tensor product. (Among 
these are the commutative C*-algebras and the Glimm algebras [G1]. See 
[K-R II; Sect. 11.3].) Very little of this is easy and all of it is crucial to 
the structural analysis of C*-algebras. (An excellent account of these matters 
appears in [E-L].) 

Our arguments will make use of  a range of operator (especially, von 
Neumann)-algebra techniques. (We refer to [K-R I-IV] as our primary refer- 
ence for terminology and results.) Chief among these are the meaning process 
introduced by Dixmier (the "Dixmier Process" - see [K-R II; Sect. 8.3]) and its 
refinements (thoroughly developed in [H], [H-Z], and [R]), and the conditional- 
expectation, slice-mapping results of Tomiyama [To1, To2]. (See also [K-R IV; 
Exercises 8.7.23-24, 12.4.36].) 
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The main slice-mapping results make critical use o f  another basic fact about 
tensor products o f  von Neumann algebras. I f  ~ acts on OF and 50 acts on ~f', 
then N 6 5 ° acts on OF ® o,f-. For finite dimensional algebras ~ and 50, it is 
easily verified that (N®50)~ = N~® 50~ - "the commutant o f  the tensor product 
is the tensor product o f  the communtants." The corresponding formula holds 
for von Neumann algebras (and the von Neumann-algebra tensor product), but 
remained an open problem for nearly twenty years - finally yielding to the 
powerful Tomita-Takesaki theory IT, Ta2]. Our Theorem A is a stronger result 
than the commutant formula (as demonstrated in [Ge]), but it relies on the 
slice-mapping results, which are tantamount to the commutant formula. 

For the reader's convenience, we review the slice-mapping and conditional- 
expectation techniques in the next section. Sect. 3 contains the statements and 
proofs of  our main results. 

The first-named author wishes to express his gratitude to Uffe Haagerup for 
his hospitality during a part o f  the research on this article. In particular, dis- 
cussions with him about his earlier work [H-Z] on the substance of  Lemmas D 
and E (in the C*-algebra case) were very valuable - although the arguments 
for these lemmas proceed by quite different methods. 

2. Preliminaries 

Our account o f  the (non-commutative) conditional-expectation and slice- 
mapping results is drawn directly from [K-R II, IV]. Tomiyama [Tol]  shows 
that an idempotent 4) o f  norm 1 from a C*-algebra 9.i onto a C*-subalgebra 
~3 is a conditional expectation: 

(i) 4) is linear and positive, 4)(A) > 0 when A > 0; 
(ii) 4) is a ~3-bimodule mapping on 2[, 4)(BLAB2) = BI~(A)B2 for all 

B1, B2 in ~ and all A in ~I. 

We say that a conditional expectation 7 j o f  a yon Neumann algebra 5_ 
onto a v o n  Neumann subalgebra 5 a is proper when ~ ( T )  is in the ultraweak 
closure o f  the convex hull of  {UTU* : U unitary in J - }  for each T in J - .  In 
the next section, we shall show (Theorem C) that each von Neumann algebra 
has a proper conditional expectation onto its center - and this result will be 
one of  the keys to our proof o f  Theorem A. 

The tensor product ~ @  5 :  o f  two von Neumann algebras ~ and 5:  
admits certain mappings, slice mappings [To2], that play a central role in 
our arguments. Suppose that p and a are normal (that is, ultraweakly con- 
tinuous) linear functionals on ~ and 50, respectively. There is a unique nor- 
mal functional p ® ~r (their product) on ~ @ 50 satisfying the condition that 
(p ® a)(A @B) = p(A)a(B) for each A in ~ and B in 50. For this, there are 
representations o f  ~ and 5:  on Hilbert spaces OF and oU, respectively, such 
that for each such p, there are vectors x and y in OF for which p(A) = (Ax, y} 
for all A in ~ .  Similarly, for each such o-, there are vectors u and v in • such 
that ~r(B) = (Bu, v) for all B in 50. Then p ® ~r corresponds to the two vectors 



456 L. Ge, R. Kadison 

x ® u and y ® v in .)ef ® j~,  the Hilbert space tensor product of W and JT", 
and ( p ® a ) ( T ) =  (T(x®u) ,y®v)  for each T in ~ 5  a. 

We denote by ~# the linear space of  all normal linear functionals on ~ .  
With p in ~# and 11P11 the bound of p, the function p ---, [Ipll is a norm on ~# 
with respect to which it is a Banach space. Of  course, each A in ~ gives 
rise to a linear functional A on ~# (A(p) = p(A)). Each linear functional F 
on ~# corresponds to an operator on our, for with x and y in . ~  corresponding 
to p (as before), the mapping (x, y) --* F(p) is a bounded (conjugate-)bilinear 
functional on oug. The Riesz representation of such bilinear functionals gives 
us an operator T in ~)(ovf) corresponding to F. With the aid of von Neumann 
Double Commutant Theorem [vN] (see, also, [K-R; Theorem 5.3.1]), we see 
that T E ~ .  Thus .~ is the norm dual of  ~#. (A basic result of  Sakai [S] 
characterizes the von Neumann algebras as those C*-algebras that are norm 
duals, and shows that the predual must be ~#.)  The w*-topology on ~ (as 
the dual of  ~# )  coincides with the ultraweak topology on ~'. 

With p in ~# and T in 3 ~  50, the mapping a ~ (p®a)(T)  is a bounded 
linear functional on 5a#, hence, an element 7~o(T) in 5 a. Symmetrically, we 
construct an operator O~(T) in ~ .  By definition 

(*) a(TJp(T)) = (p ® a)(T) = p(q~a(T)) (T E ~ 5 0 ) .  

From (p ® o-)(A ® B) = p(A)a(B), we conclude that tPp(A @ B) = p(A)B and 
• ~(A ®B) = ~r(B)A when A E ~ and B E 50. From its definition, and since we 
are dealing with ultraweakly continuous functionals p and a, the mappings Up 
and q~ are ultraweakly continuous. Again, the linearity of p and a (combined 
with ( . ) )  result in the linearity of  Up and ~ .  

With A and B in .~, define pt(C) to be p(ACB). Studying p~ in conjunction 
with ( , ) ,  we have that 

qb~((A®I)(R®S)(B®I))=Aq~a(R®S)B (R E ~ ,S  E 50) 

and, thence, that 

O~((A®I)T(B®I))-----A~a(T)B (T E ~ S # ) .  

Symmetrically, with C and D in 50, 

~tJp((I QC)T(I  ® D ) ) =  C%(T)D (T E ~QSP) .  

The mappings Up and ~ ,  just described, are referred to as slice mappings 
(of ~ ~ 5 ° onto 50 and ~ corresponding to p and a, respectively). It will be 
convenient to have notation for the mappings ~p and ~ defined by 

~p(T)=IQTJp(T),  ~ ( T ) = O ~ ( T ) ® I  ( T E ~ 5 0 ) .  

We refer to t~p and ~ as tensor-slice mappings. When p and a are states (of  

and 5~, respectively - positive and 1 at I )  in .~# and 5a#, then ~p and ~ fulfill 
conditions (i) and (ii) (of this section) and are conditional expectations. 
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With N0 and 50o von Neumann subalgebras of G and 50 and R0 and So 
elements of Go and 50o, respectively, we have that 

%(Ro ® So) = o(Ro)So ~ 500,  ~ ( R o  ® 500) = ~(so)Ro ~ G o .  

By linearity and ultraweak continuity, Up and ~ map ~0 6 500 into 500 and 
G0, respectively. 

From the Slice Mapping Theorem [To2], if ~ ( T )  E ~o and Up(T) E 500 
for each a in 50# and p in ~#, with T in G@50, then T E G0650o. This 
follows from a careful choice of vector functionals on ~ and 50 involving 
A ~ in G~ and the properties of the slice mappings corresponding to these 
functionals. The crucial step puts T in (G~ @50~)~, which is G0 @500 from 
the commutant formula for tensor products ([Ya2], [Ta3], [R-vD], [K-R II; 
Theorem 1 t.2.16]) and the Double Commutant Theorem [vN]. 

The splitting problem for tensor products of C*-algebras, in general, remains 
open. It would seem to require a development of slice-mapping theory for such 
tensor products. An interesting and clear account of such a development and the 
problems in it that remain open are to be found in [W]. An important extension 
of slice-mapping techniques to ultraweakly closed subspaces is studied in [Kr]. 

3. Main results 

In this section, we prove the following theorem. 

Theorem A. I f  Jg is a factor, 50 is a yon Neumann algebra, and ~ is a yon 
Neumann subalgebra o f  ~t! @ 50 that contains Jg ® ~L  then ~ = J# @ J-, 
where ~-- is a yon Neumann subalgebra o f  50. 

Toward this end, we gather the following results. 

Theorem B. The yon Neumann subalgebras o f  a tensor product o f  yon 
Neumann algebras that split are precisely those that are stable under all 
tensor-slice mappings. 

Proof  Let ~ be a von Neumann subalgebra of the tensor product .~ @ 50 of 
the von Neumann algebras ~ and 50. Let p and a be elements of G# and 50#, 
respectively, and kup and ~ their associated tensor-slice mappings. 

Suppose, first, that ~ = Go @ 500, where Go and 5°0 are von Neumann 
subalgebras of ~ and 50, respectively. With T in ~ ,  we have that ~p(T) E 
CI@50o and ~ ( T )  E Go@ ~ I  from the Slice Mapping Theorem (see [K- 
R IV; Exercise 12.4.36(iv)]). Thus ~ is stable under ~p and ~ .  

Suppose, now, that ~ is stable under ~p and ~ ,  for all p in G# and a 
in 50#. Let ~0 be { R o E ~ : R o ® I E ~ ) }  and 50o be {SoE5 ~ : I ® S 0  E ~ } .  
Then ~o @ 50o _C M. If T E ~ ,  then ~ ( T )  E ~ N (G @ CI), whence q~o(T) E 
~0. Similarly, Up(T) E 50o. From the Slice Mapping Theorem (see [K-R IV; 
Exercise 12.4.36(v)]), T E ~o @ 500. Thus ~ = Go @ 500, and ~ splits. [] 

From Theorem B, it will suffice to show that the tensor-slice mappings 
associated with elements of the predual of Jg map M into ~ in order to prove 
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Theorem A. Of course, the tensor-slice mappings associated with elements of  
the predual of  6: map ~ into ~ since they map ~ / ~  6: into Jg ~ 1121 which is 
contained in ~ by hypothesis. Our strategy is to show that, with p in J¢#, and 
T in M, we can approximate ~p(T) ultraweakly by convex combinations of 
operators of  the form (U ® I ) T ( U  ® 1)*, with U a unitary operator in ~/C. For 
notational convenience, we denote by ~ the mapping that carries T in .//C ~ 6: 
to this combination and by ~ the family of  all such mappings. If we achieve 
this approximation, the k~p(T) lies in ~ when T E ~ ,  for each ~(T) is in 
(recall that .//C~ ~21 C_ ~) ,  whence their ultraweak closure point ~bp(T) lies 
in ~ .  

Our plan for achieving such an approximation relies on the fact that ~p 
maps, in effect, by "applying p to the .//C component of the 'tensor represen- 
tation' of  an operator" and this same effect can be obtained by the Dixmier 
Process applied to this same component. (This is somewhat oversimplified.) 
The meaning of this is easily understood in the case of  operators in ~g ~ 5: 
that are finite sums of simple tensors. It is less clear when applied to opera- 
tors that are ultraweak limits of  such sums but not themselves such sums; a 
"forbidden" interchange of limits is involved. It is somehow magically ban- 
ished by Lemma F. The implementation of this line of argument motivates the 
results that follow. 

With ~ a v o n  Neumann algebra, we denote by ~ ( ~ )  the family of all 
bounded linear transformations of ~ into itself and by ~ I ( ~ )  the closed unit 
ball of this Banach space (we write ' ~ l '  when there is no danger of mistaking 
which space is involved). We shall consider this Banach space topologized with 
the "point-uttraweak topology" and refer to this topology as "the v-topology" 
(so we shall speak of "v-limits" and "v-convergence"). A subbase for the open 
sets of this topology consists of those subsets of ~ ( ~ )  that map a given 
element of ,~ into a given ultraweakly open subset of ~ .  A net {fl~}ae~ 
in ~ ( ~ )  v-converges to fl when {fla(A)} is ultraweakly convergent to fl(A) 
for each A in ~ .  From [K2; Sect. 2, Theorem] (with ~ for 5: and 5: '  there), 
we have that ~ l  is v-compact. For this, we need the fact that the closed unit 
ball of ~ is ultraweakly compact - which also follows from [K2; Sect. 2, 
Theorem]. 

Theorem C. Each yon Neumann algebra ~ admits a proper conditional 
expectation onto its center. I f  ~ is finite, this proper conditional expecta- 
tion is unique and coincides with the normalized center-valued trace on ~.  

Proof Let ~ be the subset of N1(~)  consisting of those mappings e of 
the form 

j = l  

n where ay > 0, ~ j = t  ay = 1, and Uj in ~ is unitary. From [K-R II; Lemma 8.3.3], 
if {A1 . . . . .  A,}, a finite subset of ~ ,  and a positive e are given, there is an 
in ~ and elements C1 . . . . .  C, in the center cg of  ~ such that ][~(Aj) - -  Cj][ < 8 
( j  = 1 . . . . .  n). Let II~(F)[I~ be max{ll~(A)+~e[I :A ~ ~} for each finite subset 
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IF o f  02 and each e in 9 ,  where l i e (A)+  cg][ is the norm of  e ( A ) +  c~ in 
the quotient Banach space 02/cg. To each (non-empty) IF in the family J o f  
finite subsets o f  02, we associate an ea~ in ~ such that I l e r ( I F ) l l ~  < IIF1-1, 
where [IFI is the cardinality o f  IF. With f f  partially ordered by inclusion, the 
net { e F } r ~  in 8 i  has a v-convergent, cofinal subnet {ea:}a:~0 since ~ t  is 
v-compact. 

Let /3 be the v-limit o f  {eF}~v~0. We show, frst ,  that/3(A) E cg for each 
A in 02. Given a unit vector x in J~/g, the Hilbert space on which 02 acts, an 
element B of  norm 1 in 02, and a positive integer n, there is a subset IF in ~ 0  
containing A with more than n elements such that 

1, 1 
I ( (er (A)  - /3(A))Bx,  x)l < - [((eF(A) --/3(A))x,B*x)[ < - 

n n 

since {eF) re~0  is cofinal in ( e ~ } F e ~  and { e F ( A ) ) ~ e ~  0 is ultraweakly con- 
vergent to /3(A). By choice o f  the mapping e~, there is a C in cg such that 
l i a r ( A )  - e l l  < ~- since A E IF and I leF(IF)l lce < ]IFI - !  < -~ Thus tl n "  

[((/3(A)B -B/3(A))x,x)[ <__ I ( ( /3(A)  - eF(A))Bx, x)[ + I ( ( e r ( A )  - C)Bx, x)l 
+ I<(C - eF(A))x,~*x>l + I < ( e F ( A )  - - / 3 ( A ) ) x , B * x > l  

4 

n 

It follows that/3(A)B = B/3(A) for all A and B in 02. Hence/3(A) E cg for each 
A in02. 

With C in c#, e r ( C )  = C for each IF in ~ .  Since {e~:(C)}iv~0 tends 
ultraweakly to /3(C), we have that /3(C) = C for each C in ~ .  In particular, 
/3(1) = I .  I f  p is a state of  ~ ,  then (p o / 3 ) ( I )  = 1 and lip o/31[ = 1 since 
/3 E ~1- Thus p o/3 is a state of  02, and /3 is a positive linear mapping of  02 
into cg. (The positivity of  /3 follows, also, from the fact that each e~ is a 
positive linear mapping of  02 into .~.) Hence /3 is a conditional expectation 
of  02 onto c# [Tol] .  (See also [K-R IV; Exercises 10.5.85-86].) Since /3(A) is 
the ultraweak limit o f  {eF(A)}r~¢,,  for each A in 02, fl is a proper conditional 
expectation o f  02 onto c~ . 

Suppose, now, that 02 is a finite von Neumann algebra and z is its (unique) 
normalized, center-valued trace. Since z(e(A))  = z(A) for each e in ~ and each 
A in 02, z is an ultraweakly continuous mapping of  02 into 02, and fl(A) is 
the ultraweak limit of  { e F ( A ) } ~ . ~  0, we have that/3(A) = z(/3(A)) = z(A) for 
each A in 02, and/3 = z. [] 

L e m m a  D. I f  Jg  is a countably decomposable fac tor  o f  type III and/3  is a 
state o f  #At, then {/3 o ~ : e E ~ }  is a convex, w*-dense subset o f  the state 
space o f  Jl[. 

Proo f  Since the family ~ is a convex subset o f  positive linear mappings 
in ~1(~//¢) that map I to 1, the set {/3 o e : e E 9 }  is a convex set o f  states 
of  M/. I f  T in J~  is not self-adjoint, then T = A + iB with A and B self-adjoint 
and B non-zero. From [K-R; Lemma 1], there is a sequence {e~} of  mappings 
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in ~ such that {an(A)} converges in norm to aI for some real a, and ~,(B) 
converges to bI for some real, non-zero b. Thus {(/~ o ~n)(T)} converges to 
a + lb. I f  (/~ o ~ ) ( T )  is real for all c~ in ~ ,  then T is self-adjoint. 

Suppose, now, that A is self-adjoint and A is not positive. Then there is 
some a in sp(A) such that a < 0. From [K-R IV; Exercise 8.7. t l ] ,  there is a 
sequence { ~ }  of  mappings ~', in ~ such that {~'n(A)} converges in norm to 
aI. It follows that {(/~ o c~)(A)} converges to a. Thus if  (fl o c0(A) > 0 for 
each ~ in @, then A > 0. In sum, then, i f  ( / ~ o ~ ) ( T ) >  0 for each ~ in ~ ,  then 
T is self-adjoint and positive. From [K3; Theorem (2.2)], the convex family 
of  states {/~ ~ ~ • ~ ~ ~ }  is a "full family" of  states and is w*-dense in the 
state space o f  ./g. [] 

Lemma E. I f  .~# is a countably decomposable factor o f  type III and p is a 
state o f  .Al, the mapping ~ o f  de  into its center, defined at A as p(A)I, is the 
v-limit o f  a net {aa}o~A o f  elements ~ o f  ~ .  

Proo f  From Theorem C (and its proof), there is a state fl of  ./g such that /~ 
is the v-limit o f  a net {~}v~-~0 of  mappings a~ in ~ such that []a~(iF)[[~ < 

IIF! -~, where c# is the center {zI  : z ~ ¢ }  o f  o# and /~(A) = f l(A)l  for each 
A in ~#. 

Suppose that a finite subset {A1 . . . . .  A,} ( =  IF') of  J/{, vectors x~ . . . .  ,xm, 
Y~ . . . . .  Ym in W,  the Hilbert spaze on which ~/// acts, and a positive e are 
given. We shall find a in @ such that 

]((c~(Aj) - ~(Aj))xk, yk)[ < ~ ( j  = 1 . . . . .  n; k = 1 . . . . .  m ) .  (1) 

From Lemma D, {/~o7 : a E @} is w*-dense in the state space of  ~ '  since j/c/ 
is a countably decomposable factor of  type III. Thus we may choose a~ in 
such that 

E 
[p(Aj) - /~(=I(Aj))I  < ~ ( j  = 1 . . . .  ,n )  

where c = l+max{[Ixkl[[[yk[[:k = 1 . . . . .  m}. It follows that 

I((/~(Aj) - fl(~l(Aj)))Xk, yk)l < ~ ( j  = 1 . . . . .  n; k = 1 . . . . .  m ) .  (2) 

Using the net {c~n:}r~o, we choose ~2 in ~ such that 

l((~2(~l(Aj)) -- fl(~l(Aj)))Xk,Yk)l < ~ ( j  = 1 . . . . .  n; k = 1 . . . . .  m) . (3) 

Letting a (in ~ )  be c~2 o ~1 and combining (2) and (3), we have (1). 
Let ~ be the set o f  ordered triples (IFl,iFz, IF3) where IFz is a finite subset 

o f  ~ ' ,  IF2 and IF3 are finite subsets o f  ~ f  with the same cardinality. Partially 
order ~. by the relation 

(F,,F2,F3) =< 

when IFj _C/F~. ( j  = 1, 2, 3). Then (~ ,  < )  is a directed set. For each a in Z~, 

choose ~a in ~ such that (1) holds with ]IFl[ -1 in place of  e, where IF1 is 
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{A1 . . . . .  An}, IF2 is {xl . . . . .  x,,}, and IF3 is {Yl . . . . .  Ym}. Then fi is the v-limit 
of {OLa}aE A . []  

Lemma F. Let ~ and ~ be yon Neumann algebras, p in ~#, ~ the family 
described in the proof  o f  Theorem C, D the set of  mappings a ® t ( =  c~) with 
a in ~ and z the identity transform o r s  a onto itself, and {¢2a}a~Z~ a net in 
v-convergent to T in . ~ l ( ~ S : )  such that T(A ®I )  = p(A)I ® I for each .4 
in ~.  Then T = Tp. 

Proof With T in ~ @ S: and a in 6:#, note that 

q~a(T(T))  = lima Ca(~a(T))  = l iam~a(~. (T))  

= ~ ( # . ( T ) )  = p(qO.(T))I ® I 

since { ~ ( T ) }  and {c~(¢ . (T ) )}  are ultraweakly convergent to T ( T )  and 
T ( ~ . ( T ) ) ,  respectively, and ~ is an ultraweakly continuous ~ ~ CI-b imodule  
mapping of  .~ ~ S: onto ~ @ (EI. By definition of  ~ . ,  

p ( # . ( T ) )  = (p ® a ) ( T )  = c r ( % ( T ) ) .  

Thus 
q$~(T(T)) = p ( ¢ . ( r ) ) I  ® I = I ® a ( % ( T ) ) I  

= $~(I ® % ( T ) )  = ~ ( T p ( T ) ) .  

It follows that ~ ( T ( T )  - Tp(T)) ----- 0 for each a in S##. But then, for each i? 
in ~# ,  

(t 1 ® a ) ( T ( T )  - Tp(T)) = t / ( O . ( T ( T )  - tffp(T))) = tl(O ) = O . 

Since {r/® o- : r /E ~#,  o" E 5a#} generates a norm-dense subspace of  ( ~  ~ 6°)#, 
we conclude that T ( T )  = ~p(T) for all T in ~ ~ 2T. Thus T = Tp. [] 

The lemma that follows is subsumed in Theorem A, but is useful in dealing 
with the case where ~// is a factor o f  type I. We recall that a subalgebra N of  
a yon Neumann algebra -~ is said to be normal in a v o n  Neumann algebra 
when ( ~ '  rq #~)' N ~ = ~ (that is, ~ is equal to its second relative commutant  
in ~ ) .  

Lemma  G. I f  ~// is a factor, 6: a yon Neumann algebra, and .~ a normal yon 
Neumann subalgebra of  i l l  ~ Sf that contains J/l/~ CL then ~ = J / ~  ~-- for 
some yon Neumann subalgebra ~- of  b:. 

Proof Since ~ ~ C I  C N, we have that 

~ 'n  (,:z~ ~) c_ (Jz~ ¢I) 'n (.a ~..~) = {EI ~ S : .  

Thus ~ N ( J l  ~ b : )  = ~ I  ~ 6:0 for some von Neumann subalgebra ~5:o of  S#. 
Let 3 -  be 6:d n ~ .  By assumption, 

= (2 '  n C,z ~ ~ ) ) '  n (,~" ~ s:) 

= ( ¢ I ~  ~0)'  n ( . z  ~ ~ )  = . / / ~  : - .  [] 
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Proof of  Theorem A. We show, first, that it suffices to consider the case 
where , g  is countably decomposable. Given p in J4#, we must show that 
is stable under ~ .  Let E be the support projection for p in J¢', Jg0 be the 
von Neumann algebra E.//IE (acting on the range of E), J~ be E ® 1, and ~0 
be ~ M (J4o ~ 5P). We note that E ( Jg  ~ 5P)E is J/g0 ~ 5 a since A ---* EAE is 
a strong-operator continuous linear mapping of ~ '  ~ 5 a into itself that maps 
each T ® S into d/g0 ~ 5 a and leaves T ® S fixed when T E ego. As ~ and 
A ---* ~ (EAE)  are linear and ultraweakly continuous on J4  ~ 5 a and 

~p(E(T ® S)E) = ~p((ETE) ® S) 

= R(ETE)I ® S = p(T)I  ® S = ~p(T ® S ) ,  

we have that ~p(A) = ~(L'AE) for each A in sat ~ 5 a. 

Let Po be the restriction of p to -/4o. Suppose ~o(To) E No for each To 
in No. With T in N, ETE E ~ M (J[o ~ 5 a) = No. Thus 

~ ( r )  = ~ ( ~ r ~ )  = ~ o ( ~ r ~ )  ~ ~o c_ ~ .  

Hence it suffices to consider ~o in place of ~ and J /o  and ~o in place 
of ~h' and M, respectively. As P0 is faithful, we have that ~go is countably 
decomposable. We may restrict our attention to the case where ./4 is countably 
decomposable. 

(i) If ~ '  is a factor of type I and dg is the Hilbert space on which 5 a acts, 
then dg ~ ~(~ff)  is a factor of type I, and 

The von Neumann Double Commutant Theorem assures us, therefore, that 
all von Neumann subalgebras are normal in ~ / /~  ~(3¢~). From Lemma G, 

= ,//4 ~ ~- for some von Neumann subalgebra f of ~ ( d f ) .  From 

we have that 

¢ i  ~ ~- c (x¢ ~ ¢i ) '  n (~¢ ~ ~') = ¢I  ~ : .  

Thus ~- C 5 a, and ~ = J / / ~  ~" with Y a v o n  Neumann subalgebra of  5 a. 

(ii) Suppose Jg  is a factor of type Ill and d/¢' acting on the Hilbert space 
dg is the GNS representation of .//¢' corresponding to its (unique, normalized) 
trace ~. There is a generating (unit) vector u for ~ '  in W such that z(A) = 
(Au, u) for each A in sg. Since u is separating for ./4 (~ is faithful on Jg),  
for each p of  norm 1 in J¢l#, there is a pair of  unit vectors (not unique) x, y 
in 9V such that p(A) = (Ax, y) for each A in J//l [K-R II; Corollary 7.3.3]. As 
u is generating for Jr', there are sequences {Tn} and {S,} of operators in ~//¢ 
such that {Tnu} tends to x and {S,u} tends to y. Let p,(A) be (AT~u,S,u). 
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Then p,(A) is z(ATnS*) and {p,} tends in norm to p. Thus elements of the 
form zR, where zs(A) = z(AB) for each A in J//, form a norm-dense linear 
subspace of Jg#. From the solution to [K-R IV; Exercise 12.4.36], it follows 
that {~ , (T)}  tends in norm to ~ ( T )  for each T in . g ~ 5 o .  Hence N is 
stable under ~ if it is stable under all ~ , .  Thus it suffices to prove that ~ is 
stable under kbr B for each B in Jg. 

The proof of Lemma E, with z in place of/3 and p, shows that there is a 
net {ea}a~A of mappings c~a in @ that v-converges to ?, where ?(A) = z(A)I 

n for each A in .////. If c~(A) is Y~j=1 ajUjAU7 for each A in J [ ,  let ~ ( T )  

be }--~]=l aj(Uj ® I)T(Uj ® I)* for each T in J¢/~ 5O. Then c~, is a positive 
linear mapping that leaves I ® I fixed. Thus t1 ~ I[= 1. By v-compactness of 
~ l ( J g ~ 5 o ) ,  {~}asA has a cofinal subnet {~a}aea0 that is v-convergent to 
some 7 ~ in N1(J[  ~ 5:). 

Since {~a(A)}aEa is ultraweakly convergent to f(A) for each A in Jg, 
the same is true for the cofinal subnet {c~a(A)}~sA0. Thus {ff~(A ® I)}aEao is 
ultraweakly convergent to f(A) ® I and to ~(A ® I) for each A in J///. From 
Lemma F, 7/ = kb~. With T in ~ ,  £ta(T) E ~ since J¢l ~ ll~I C_ ~ .  As ~ is 
ultraweakly closed, ~ ( T )  (=  ~(T))  E N'. At the same time, with N in .A', 
( B ® I ) T  E ~,  whence ~ ( ( B ® I ) T )  E ~.  We conclude the proof for the case 
where J¢/ is a factor of type IIl bY noting that ~ ( (B  ® I )T)  = ~B(T). This 
follows from the linearity and ultraweak continuity of the mappings kb~ B and 
T ~ q~((B ® I )T)  and the equality 

~( (B  ® I)(A ® I))  = z(BA)I ® I = Ts(A)I ® I = tPrs(A ®I)  (A E .l/l/). 

(iii) Suppose that J /  is a factor of type IIoo. From [K-R II; Theorem 
6.7.10], J /  is (isomorphic to) the tensor product of ~(ov:) for some Hilbert 
space ~ and a factor Jg" of type II1. From (i) of this proof, since ~ contains 
~(~g)  ~ IEI (where ~ I  is the tensor product of the scalars in ,4: and in 5O), 

splits as ~(o~)  ~ ~0, where ~0 is avon  Neumann subalgebra of ~V" ~ 5 °. 
We show that ~ ~ 1121 C ~0. Since 

~ ( ~ )  ~ . ¢  ~ ~r  = ~/¢ ~ ~: c_ ~ = ~ ( ~ )  ~ ~0, 

it suffices to note that if ~(3~g) ~ ~ C_ ~(ovg) ~ ~2 for yon Neumann algebras 
~ t  and ~2 in ~(~Y'), then ~ C_ ~2. (With R1 in ~ ,  I ® R t  E ~ ( H ) ~ ;  
hence I ® R~ E ~(gff) ~ ~2 and I ® ~ commutes with ~ ( ~ )  ~ ~I .  Thus 
I ® R, E ~ I ~ 2 . )  

From (ii), it follows, now, that ~0 splits as JV ~ 5" for some yon Neumann 
subalgebra 5" of 5:. Thus 

= ~(~) :~:o = -~ ~(Y ~ 5") = (~ ~ -4:) ~:" = ~ ~ 5". 

(iv) We conclude the proof by establishing our result when J¢/ is a factor 
of type III. As noted at the beginning of this proof, we may assume that ~/// 
is countably decomposable. From Lemma E, with p a normal state of J / ,  

is the v-limit of a net {c~a}~ea of  elements ea of ~ .  As in the proof of (ii) 
(the penultimate paragraph), there is a cofinal subnet {~}aea0 of {ff~}~Ea that 
is v-convergent to some 7/ in ~ ( . / / / / ~  5:). Since {~Xa(A)}aE A is ultraweakly 
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convergent to p(A)I for each A in ~[,  the same is true for the cofinal subnet 
{c~(A)}~Sao. Thus {~a(A ®I)}aeao is ultraweakly convergent to f i (A)®I and 
to kU(A ® I), for each A in ~¢/. From Lemma F, 7 ~ = @. 

With T in ~ ,  @(T) = ~U(T) is the ultraweak limit of {8a(T)}~Ao. Since 
~# ~ CI C N and T E N, 8(T) ~ N' for each e in ~.  Thus @(T) (= ~U(T)) 

~ ,  as ~ is ultraweakly closed. [] 

4. An application 

In [P1], Popa asks: If ~/ll and ~'~ are factors of type II1 and ~ l  and ~2 
are maximal injective subalgebras of ~/1 and J/2, respectively, is Bi ~ ~2 
maximal injective in ~/¢'1 ~ ~/{2? He also asks if this is true when we assume 
that J / l  = ~1 (that is, that J///~ is the hyperfinite II~ factor). In [Ge], this 
latter question is answered affirmatively using the splitting theorem for the 
case where ~/{ and 5 ° are finite. 

Of course, one can ask Popa's questions when the types of the factors J/{~ 
and J/{2 are not constrained to be finite. Following the pattern of the argument 
in [Ge], we show: 

Theorem H. I f  JCl and J/¢2 are factors, Jktl is injective, and ~2 is a maximal 
injeetive yon Neumann subalgebra of  J12, then J#l ~ ~2 is maximal injective 
in J///l @ ~//{ 2 . 

Proof Suppose ~ is a maximal injective von Neumann subalgebra of J/1 ~ ~#2 
containing o~ ~ ~2. Then ~ contains J#~ ~ ~I .  The hypotheses of Theorem A 
are satisfied, and .~ splits as ~#/~ ~ ~,, where ~'- is avon  Neumann subalgebra 
of ~//2. With p in the predual of .///~, a in the predual of ~#2, and T in 
(~#~ ~ - ' ) ~  (~ I  ~ Jk'2), we have that %(T) ~ ~- since T ~ J{l ~ ~-- and 
~ ( T )  is a scalar since T ~ tel ~ ~'2. From the Slice Mapping Theorem, 
T ~ ~ I  ~ ~-. Thus 

~ I @ ~  2 C (J/[l ~ ~2) rl (~I  ~ ~/¢z) c (~'1 ~ Y)  n (C~ ~ J#2) c_ CI ~ ~'--, 

and ~2 C_ J-.  
The tensor-slice mapping corresponding to a normal state of J¢1 is a con- 

ditional expectation of ~#1 ~ J"  (= ~ )  onto 1121 ~ .7. Since ~ is a assumed to 
be injective, there is a conditional expectation of ~(o~1 ® o~2) onto J/el ~ 3- 
(where ~¢1 acts on ~ l  and •#2 acts on ~2)-  Composing these conditional 
expectations, we have a conditional expectation of ~ ( ~ i  ® ~ 2 )  onto ~ I  ~ 3-. 
Thus CI ~ J,, and hence ~,, are injective. By assumption, ~'2 is maximal 
injective in J/2. Hence ~2 = ~,, and ~ = J/1 ~ ~2- It follows that J['/1 @ ~2 
is a maximal injective von Neumann subalgebra of M//1 ~ ~/~[2. [] 

The key question underlying the celebrated result of Connes [C] (see also 
[Haa] and [P2]) was that of uniqueness of the hyperfinite factor ~/~¢/ of type 
IIo~ on a separable Hilbert space. Is J¢ the tensor product of the hyperfinite II1 
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factor and a factor of type I~?  If we express ~ '  as g/gl ~ ~gz, where ~//gl is a 
factor of type II1 and ~#2 is a factor of type I~ ,  this question becomes that of 
whether or not ~,#1 is hyperfinite. In any event, there is a maximal hyperfinite 
factor JCo in J/1 (from [F-K]). Since e/C'z is of type I~,  it is hyperfinite. 
Once we know that .~¢10 ~.XZ2 is maximal injective in i l l  6~/2,  we have that 
s//1 ~ s/gz = .//go ~ Jg2, since J///l ~J/¢'2 is injective by assumption. Again, from 
the Slice Mapping Theorem, .~¢/1 = Jgo, whence s/4"l is injective. Thus ~#1 is 
hyperfinite. From Theorem H, Jgo ~o//g2 is maximal injective in J//1 6~#2. Of 
course, we are using [C], and of course, there is a brief proof of the uniqueness 
using [C]. Our point is that Theorem H, in very restricted circumstances (where 
~/g, itself, is hyperfinite), appears as a prominent component in a natural proof 
of uniqueness. In this sense, the full result (Theorem H), may be viewed as 
an "extension" of that aspect of the Cormes uniqueness result. 
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