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Abstract. The infinite-dimensional analogues of the classical general linear
group appear as groups of invertible elements of Banach algebras. Mappings
of these groups onto themselves that extend to affine mappings of the ambient
Banach algebra are shown to be linear exactly when the Banach algebra is
semi-simple. The form of such linear mappings is studied when the Banach
algebra is a C*-algebra.

1. Introduction

In this note, we study affine mappings between Banach algebras that carry dis-
tinguished sets of elements — notably, the set of invertible elements and the set
of singular elements — in one Banach algebra into and onto the corresponding set
in the other algebra. In Section 2, we consider the “onto” case and prove that
such mappings are always linear if and only if the Banach algebra is semi-simple
(Proposition 2.1). As a corollary (2.4), we show that A+T has spectrum contained
in the spectrum of B + T for all T in a C*-algebra, where A and B lie in that
algebra, if and only if A = B.

In Section 3, we examine the linear case of such mappings. We conjecture their
form for C*-algebras and prove some results supporting that conjecture. A notion
of “spectral additivity” is introduced that describes the resulting spectra when a
given element of a C*-algebra is added to each other element of the algebra. Central
elements are characterized in terms of this spectral effect in [4].

In Section 4, we establish the necessary and sufficient conditions for affine map-
pings on a C*-algebra of the form Z → A1ZA2 + B to carry the sets of invertible
or singular elements in a C*-algebra into themselves.

We establish some notation that is used throughout. Let X be a complex normed
linear space, and let A be a complex subspace of a complex Banach algebra with
identity e such that A contains e. Define

Ainv = {z ∈ A : z is invertible},
Aexp = {exp(z) : z ∈ A},
Aqnil = {z ∈ A : e+ λz is invertible for all λ in C},
Arad = {z ∈ A : e+ zx is invertible for all x in A}.
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The set Aqnil is the set of all quasi-nilpotent elements in A. When A is an algebra,
Arad is the Jacobson radical of A and A is said to be semi-simple when Arad is
{0}. The Banach algebra B(X) of all bounded linear transformations of X into
itself is semi-simple. (For an account of this, see [5, p. 702].) Each C*-algebra is
semi-simple. To see this, note that if z is in the radical of a C*-algebra, then so is
zz∗; whence λe+ zz∗ is invertible for all non-zero λ in C. Since zz∗ is self-adjoint
with spectrum {0}, it follows that zz∗ = 0 and hence z = 0.

Let Ae
inv denote the identity component of Ainv and Asing denote A \Ainv. Then

Ae
inv ⊆ Ainv, Arad ⊆ Aqnil ⊆ Asing.

Also, Aexp ⊆ Ae
inv when A is a Banach algebra.

2. Surjective affine mappings

A mapping φ of X into A is affine when there are a b in A and a linear mapping
L of X into A such that φ(x) = L(x) + b for each x in X . We begin with some
basic observations about affine mappings that take a set of invertible or singular
elements onto itself.

Proposition 2.1. Let A be a complex Banach algebra with identity, and let T be
any one of the sets Ae

inv, Ainv, Aqnil or Asing. Then every affine mapping of A into
A that maps T onto itself is linear if and only if A is semi-simple.

Proposition 2.2. Let A be a complex subspace of B(H) containing the identity
operator I on H, where H is a complex Hilbert space. If T is a subset of Ainv such
that −T ⊆ T , T ∗ ⊆ T and λI ∈ T for all non-zero complex λ, then every affine
mapping of A into B(H) that maps T or A \ T onto itself is linear.

If A contains the adjoints of each of its elements, then the hypotheses of Propo-
sition 2.2 hold when T is Ainv or Ae

inv and when A \ T is Asing or Aqnil. If A is
a C*-algebra with identity, the hypotheses also hold when T = Aexp. The follow-
ing simple lemma allows us to reduce to the case where our affine mapping is a
translation.

Lemma 2.3. Let T be a subset of a normed linear space X, and suppose that
φ is an affine mapping of X into itself such that φ(T ) = T . If −T ⊆ T , then
y − 2φ(0) ∈ T whenever y ∈ T .

Proofs. To prove Lemma 2.3, note that, given y in T , there is an x in T such that
φ(x) = y. Expressing φ as the sum of a linear mapping and a translation, we have
that y − 2φ(0) = −φ(−x) ∈ T .

To prove Proposition 2.1, let φ be an affine mapping of A into A such that
φ(T ) = T . We want to show that φ(0) = 0. The mapping y → y − 2φ(0) of A onto
A is affine, and by Lemma 2.3 this mapping carries T into T . Thus we need to
consider only mappings φ of the form φ(z) = z + b for which φ(T ) ⊆ T . Suppose
T = Ainv or T = Ae

inv. Given x in A, choose a positive t such that t‖x‖ < 1 and let

y = (te+ b)(tx− e)−1.

Then y ∈ T since e− tx ∈ T and te+ b ∈ T . Hence y+ b ∈ T and (y+ b)(tx− e) =
t(e+ bx), so that e+ bx is invertible. Therefore, b ∈ Arad.

Now suppose that T = Asing. Then z = φ(z − b) ∈ Asing if z − b ∈ Asing. It
follows that if z ∈ Ainv, then z − b ∈ Ainv. From what we have proved above,
−b ∈ Arad. Thus b = 0 for the stated choices of T when A is semi-simple. (By
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what we have just shown, the radical of a complex Banach algebra A with unit
e can be characterized as the set of b in A such that e + bz is invertible for all
invertible z in A; for when b satisfies that condition and z is in Ainv, the identity
z + b = (e+ bz−1)z implies that z + b is in Ainv.)

Conversely, if b ∈ Arad and z ∈ Ainv, then z + b ∈ Ainv by the previous identity.
If z ∈ Ae

inv, then z + tb ∈ Ainv for each t in [0, 1] since each tb ∈ Arad. Thus
z+ b ∈ Ae

inv. If z+ b ∈ Ainv, then z = (z+ b)− b ∈ Ainv since −b ∈ Arad. It follows
that if z ∈ Asing, then z + b ∈ Asing. Hence φ maps each of the sets Ainv, Ae

inv and
Asing into itself, where φ(z) = z + b. It follows that φ maps T onto itself when T
is any of Ainv, Ae

inv or Asing, since for each z in T , z − b ∈ T (as −b ∈ Arad) and
z = φ(z − b). Thus if all mappings such as φ are linear, b = 0 for all b in Arad, and
A is semi-simple.

If T = Aqnil, it is a theorem of J. Zemánek [12] that φ(T ) = T if and only if
b ∈ Arad. This completes the proof of Proposition 2.1.

To prove Proposition 2.2, we may suppose, as before, that φ(z) = z+b. Assume,
first, that φ(T ) ⊆ T . Given ε = ±1 and a non-zero complex number λ, let z be
ελ̄I + b. Then z ∈ T , so εz∗+ b ∈ T . Thus λI + b+ εb∗ is invertible for all non-zero
complex λ. It follows that the spectrum of b + εb∗ is {0}. Since both b + b∗ and
i(b− b∗) are self-adjoint, both are 0. Therefore, b = 0.

Suppose, next, that φ is an affine mapping of A into B(H) which maps A \ T
onto itself. With z in A \T , −z ∈ A \T (otherwise, −z ∈ T and z = −(−z) ∈ T by
assumption). Thus −(A \ T ) = A \ T and Lemma 2.3 applies with A \ T in place
of T . Again, we may assume that φ(z) = z + b (but that φ maps A \ T just into
itself). If z ∈ T , then z− b ∈ T (otherwise, z− b ∈ A\T and z = z− b+ b ∈ A\T ).
From the preceding, −b = 0. This completes the proof of Proposition 2.2.

In the proofs of Propositions 2.1 and 2.2 given above, the “onto” assumption
is made for the purpose of reduction (with the aid of Lemma 2.3) to affine map-
pings z → z + b that are simple translations. After this reduction, the translation
mappings are into; for such mappings, it is shown that b = 0.

Corollary 2.4. If a and b are elements of a complex, unital, semi-simple Banach
algebra (in particular, a C*-algebra) A such that sp(z + a) ⊆ sp(z + b) for each z
in A, then a = b.

Proof. By assumption, for all z in A,

sp(z − b+ a) ⊆ sp(z − b+ b) = sp(z).

Thus, if z is invertible (that is, if 0 /∈ sp(z)), then 0 /∈ sp(z − b + a) and z + c is
invertible, where c = a− b. The translation z → z+ c maps Ainv into Ainv, whence
c = 0 and a = b.

3. Linear mappings

The case where the mapping is linear is of basic importance. Even the situation
in which our Banach algebra is the (C*-)algebraMn(C) of all complex n×nmatrices
is instructive. A good account of results characterizing linear mappings of Mn(C)
that preserve certain properties of matrices can be found in [9]. The subject has
a venerable history. In 1897, Frobenius [2] showed that a mapping that preserves
the determinant is the composition of an automorphism or an anti-automorphism
of Mn(C) with a left multiplication by a matrix of determinant 1.
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We give an argument to show that if φ is a linear mapping of Mn(C) into Mn(C)
that maps the set of invertible matrices onto itself, then φ is the composition of an
automorphism or an anti-automorphism and a left multiplication by an invertible
matrix (namely, φ(I)). This result, in the stronger form that requires only that φ
map the invertible matrices into the invertible matrices, can be read from Theorem
2.1 of [10]. Each B in Mn(C) is the sum of two invertible matrices (for example,
(B − λI) + λI, where λ is some non-zero complex number not in sp(B)). Thus
φ maps Mn(C) onto Mn(C). Since Mn(C) is finite dimensional over C and φ is
linear, φ is a linear isomorphism. Replacing φ by φ(I)−1φ, we may assume that
φ(I) = I. In this case, φ(A) − λI is invertible exactly when A − λI is invertible,
whence sp(A) = sp(φ(A)). If A has n distinct eigenvalues, then φ(A) has these
same distinct eigenvalues. By transforming a basis of eigenvectors for A onto one
for φ(A), we construct a similarity of A with φ(A). It follows, in particular, that
A and φ(A) have the same determinant in this case. Now, the set of A with
distinct eigenvalues is dense in Mn(C). (Think of an arbitrary matrix in upper
triangular form and “perturb” its diagonal slightly.) Since φ and the determinant
are continuous mappings on Mn(C), B and φ(B) have the same determinant for all
B. From the Frobenius theorem, φ is an automorphism or an anti-automorphism.
(Recall that the given φ has been multiplied by φ(I)−1.)

Conjecture 3.1. Each linear isomorphism φ of a C*-algebra A onto a C*-algebra
B that maps Ainv onto Binv is the composition of a Jordan isomorphism of A onto
B and left multiplication by the invertible element φ(I).

In [6], Jafarian and Sourour establish 3.1 when the C*-algebra is B(H). More
generally, they prove the corresponding result for mappings between B(X) and
B(Y ), where X and Y are Banach spaces.

Of course, one works with φ(I)−1φ and assumes that φ(I) = I. For this modified
mapping, the task is to show that squares are preserved. It is probably important
(certainly, useful) to prove the automatic (norm) continuity of the mapping, though
this continuity might be assumed in a preliminary conjecture. An example of Russo
[11] shows that the “onto” hypothesis is essential for each C*-algebra A other than
C, where B is taken to be the algebra of 2× 2 matrices with entries from A.

The conjecture restricted to the case where A and B are von Neumann algebras
— or, even, factors — is a key case of much interest. In this connection, we can
make use of the (absolute value of the) determinant of [3] and conjecture an almost
direct extension of the Frobenius result.

Conjecture 3.2. If M and N are factors of type II1, a linear isomorphism φ of
M onto N that maps the unit of M to that of N preserves determinants if and
only if it is an (algebraic) isomorphism or an anti-isomorphism.

We prove some results that support these conjectures.

Proposition 3.3. If φ is a linear isomorphism of a C*-algebra A onto a C*-algebra
B that preserves adjoints, maps I onto I, and Ainv onto Binv, then φ is a Jordan
isomorphism of A onto B.

Proof. Since A − λI is invertible precisely when φ(A) − λI is, it follows that A
and φ(A) have identical spectra. Thus φ(A) ≥ 0 precisely when A ≥ 0, as φ(A) is
self-adjoint precisely when A is. (By assumption, φ(A) is self-adjoint when A is.
If A is not self-adjoint, A 6= A∗; whence φ(A) 6= φ(A∗) = φ(A)∗, and φ(A) is not
self-adjoint.)
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Since φ is an order isomorphism, under the present assumptions, [7] applies, and
φ is a Jordan * isomorphism of A onto B.

In [1], a similar result is proved that permits into mappings but adds the as-
sumption of positivity.

Proposition 3.4. If φ is a linear isomorphism of a C*-algebra A onto an abelian
C*-algebra B and φ maps Ainv onto Binv, then φ is an isomorphism of A onto B

composed with multiplication by φ(I), so that A is abelian.

Proof. Replacing φ by φ(I)−1φ, we may assume that φ(I) = I. As noted previously,
A and φ(A) have identical spectra. With A self-adjoint, sp(A) and, hence, sp(φ(A))
are real. Since B is abelian, φ(A) is self-adjoint. Thus φ is adjoint preserving and
Proposition 3.3 applies. It follows that φ is a Jordan * isomorphism of A onto B.
Thus A is abelian and φ is a * isomorphism of A onto B.

We introduce a notion of “spectral additivity” with the aid of which we show
that central elements map to central elements under unit and spectrum-preserving
mappings. In the definition that follows, the notation S1 +S2, where S1 and S2 are
subsets of C, denotes the set {z1 + z2 : z1 ∈ S1, z2 ∈ S2}.

Definition 3.5. An element A of a C*-algebra A is said to be spectrally additive
(in A) when sp(A+B) ⊆ sp(A) + sp(B) for each B in A.

This same definition may be made for elements of a (unital) Banach algebra A

(over C). This is done in [4], where the concept of spectral additivity is studied
in the context of Banach algebras with the aid of (purely algebraic) commutator
results for “Schurian algebras”. It is proved there that A is spectrally additive in
A if and only if AT −TA lies in the radical of A for each T in A. In particular, if A

is semi-simple, as is the case when A is a C*-algebra, then A is spectrally additive
if and only if it lies in the center of A.

If φ is a spectrum-preserving, linear isomorphism of one C*-algebra A onto an-
other B and A is spectrally additive in A, then

sp(φ(A) + φ(B)) = sp(A+B) ⊆ sp(A) + sp(B) = sp(φ(A)) + sp(φ(B)),

for each element φ(B) in B. Thus φ(A) is spectrally additive in B.

Theorem 3.6. If φ is a linear isomorphism of one C*-algebra A onto another B

that maps Ainv onto Binv and the unit I of A onto that of B, then φ maps the
center of A isomorphically onto the center of B.

Proof. As noted, T and φ(T ) have the same spectra. From [4], the spectrally
additive elements form the centers of A and B. It follows that φ maps the center
of A onto that of B and, from Proposition 3.4, that this mapping between centers
is an isomorphism.

4. The case of “into” mappings

We next consider the case of affine mappings that take Ainv into itself. These
mappings need not be constant or linear even when A is a commutative C*-algebra,
as the mapping

(
a 0
0 b

)
→
(
a 0
0 0

)
+
(

0 0
0 1

)
shows.

Theorem 4.1. Let A be a C*-algebra acting on H and containing the identity
operator I on H. Given A1, A2 and B in A, let φ(Z) = A1ZA2 +B. Then
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(1) φ(Ainv) ⊆ Ainv if and only if A1A2 +B has an inverse R in B(H) and A2RA1

(= E) is a central projection in A.
(2) φ(Asing) ⊆ Asing and φ(A) * Asing if and only if A1A2 +B has an inverse R

in B(H) and A2RA1 = I.

If φ(I) = I, then R is I in both cases (1) and (2) so that A2A1 is the central
projection E in case (1) and I in case (2). As B = I − A1A2, in case (1), we
have that A2B = (I − E)A2 and BA1 = A1(I − E). In case (2), we have that
BA1 = A2B = 0, and B2 = B. With these identities, a careful calculation shows
that, in case (1),

φ(Z)−1 = φ(Z−1E + (2I − Z)(I −E))

for all Z in Ainv and, in case (2),

φ(ZW ) = φ(Z)φ(W )

for all Z and W in A. From Theorem 4.1, if φ(Asing) ⊆ Asing and φ(A) * Asing,
then φ(Ainv) ⊆ Ainv. We have the following corollary of Theorem 4.1.

Corollary 4.2. Let A be a C*-algebra acting on H and containing the identity
operator I on H. With A and B in B(H), let φ(Z) = AZ +B. Then

(1) φ(Ainv) ⊆ Ainv if and only if there is a central projection E in A and an R−1

in Ainv such that A = R−1E and B = R−1(I −E).
(2) If A 6= CI, then φ(Asing) ⊆ Asing and φ(A) * Asing if and only if A ∈ Ainv

and B = 0.

Proof. In both cases (1) and (2) of the corollary, the “umbrella” hypothesis of
Theorem 4.1 — that A and B are in A (as opposed to just B(H)) — are satisfied.
In case (1), if E and R are as described, then A and B are in A. On the other
hand, if φ(Ainv) ⊆ Ainv, then AI + B (= φ(I)) and A(−I) + B (= φ(−I)) are in
Ainv. Thus A (= 1

2 [φ(I) − φ(−I)]) and B (= 1
2 [φ(I) + φ(−I)]) are in A.

In case (2), B = A(0) + B = φ(0) ∈ Asing, whence B ∈ A. At the same time,
if H = H∗ ∈ A and λ ∈ sp(H), then A(H − λI) + B = φ(H − λI) ∈ Asing. Thus
A(H−λI) ∈ A. Since A is not CI, there is some self-adjoint H in A with at least two
distinct spectral values λ1 and λ2. As (λ2−λ1)A = A(H−λ1I)−A(H−λ2I) ∈ A,
A ∈ A.

It follows that Theorem 4.1 is applicable in cases (1) and (2).
(1) From Theorem 4.1, φ(Ainv) ⊆ Ainv if and only if A + B has an inverse R

in B(H) and RA is a central projection E in A. If φ(Ainv) ⊆ Ainv, then R−1 =
A+B = φ(I) ∈ Ainv, A = R−1E, and B = R−1 −A = R−1(I −E). Conversely, if
R and E are as described, then RA is the central projection E and A+B (= R−1)
has an inverse R in B(H). Thus φ(Ainv) ⊆ Ainv.

(2) From Theorem 4.1, φ(Asing) ⊆ Asing and φ(A) * Asing if and only if A + B
has an inverse R in B(H) and RA = I. Again, R is necessarily in A. Of course,
R is as described in (2) of Theorem 4.1 if and only if A ∈ Ainv, R = A−1, and
B = R−1 −A = 0.

The conclusions of (2) in Corollary 4.2 do not hold when A is CI (choose A not
a scalar and 0 for B, in that case). The conclusions of (1) in Corollary 4.2 do not
necessarily hold when it is assumed only that φ(Ainv) ⊆ B(H)inv. For example, let
A be {

(
z 0
0 z

)
: z ∈ C}, A be

(
0 0
1 0

)
, and B be I −A. Then AZ + B is invertible for

all Z in A. If A = RE and B = R(I −E) for a projection E (necessarily, non-zero)
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and any R, then R = A + B = I and A = E. But then E = E2 = A2 = 0 6= E, a
contradiction.

Proof of Theorem 4.1. We first note that if φ(I) is invertible, then φ(Z) is invertible
if and only if ψ(Z) = EZ + F is invertible, where E = A2RA1, R = φ(I)−1 and
F = I −E. Indeed, since R(A1A2 +B) = I,

Rφ(Z) = RA1ZA2 +RB = I +RA1(Z − I)A2

while

ψ(Z) = EZ + I −E = I +A2RA1(Z − I).

Thus Rφ(Z) (and, hence, φ(Z)) is invertible if and only if ψ(Z) is invertible by
the result that e + xy is invertible if and only if e + yx is invertible, where x and
y are elements of a ring with identity e. (See [8, Proposition 3.2.8]. The formula
for φ(Z)−1 given after Theorem 4.1 can be derived from the identity (e+ yx)−1 =
e− y(e+ xy)−1x and the formula for ψ(Z)−1 given below.)

(1) Suppose φ(I) is invertible and E is a central projection in A. If Z ∈ Ainv,
then ψ(Z)−1 = ψ(Z−1). Thus ψ(Z) ∈ Ainv, so φ(Z) ∈ Ainv. It follows that
φ(Ainv) ⊆ Ainv.

Suppose φ(Ainv) ⊆ Ainv. Then ψ(Ainv) ⊆ Ainv. Given C in A, if λ /∈ sp(C) and
λ 6= 0, then Z = I−λ−1C is in Ainv and hence so is ψ(Z) = EZ+I−E = I−λ−1EC;
consequently, λ /∈ sp(EC). Thus,

sp(EC) ⊆ sp(C) ∪ {0}(∗)

for all C ∈ A. From (∗), with I for C, we have sp(E) ⊆ {0, 1}. Thus sp(E∗) ⊆
{0, 1}. With E∗ for C in (∗), we have sp(EE∗) ⊆ {0, 1}. Thus EE∗ is a projection,
so E is a partial isometry, and EE∗E = E. Choosing (I − E∗)2 for C in (∗) and
applying [8, Propositions 3.2.8, 3.2.10], we have that

sp((I −E∗)E(I −E∗)) ⊆ sp(E(I −E∗)2) ∪ {0} ⊆ {0, 1}.(∗∗)

Now, since E = EE∗E,

(E −EE∗)∗(E −EE∗) = (E∗ −EE∗)E(I −E∗) = −(I −E∗)E(I −E∗).

It follows that the spectrum of −(I − E∗)E(I − E∗) consists of non-negative real
numbers and hence this spectrum is {0} by (∗∗). Therefore, E − EE∗ = 0, and E
is a projection.

With H self-adjoint in Ainv, define ψ1(Z) = ψ(H)−1ψ(HZ). Then ψ1(Ainv) ⊆
Ainv and ψ1(I) = I. Now, ψ1(Z) = (EH + F )−1EHZ + (EH + F )−1F. Apply-
ing what we have proved to this point to ψ1, we have that (EH + F )−1EH is a
projection. In particular, (EH + F )−1EH is self-adjoint. Then

(EH + F )(EH + F )−1EH(EH + F )∗ = EH(EH)∗ +EHF

is self-adjoint and hence so is EHF . Thus EHF = FHE, and EHF = EEHF =
EFHE = 0. It follows that

EH = EHE = (EHE)∗ = (EH)∗ = HE.

For an arbitrary self-adjoint A in A, we have that (‖A‖ + 1)I − A is self-adjoint
and invertible in A. Thus it commutes with E as does A. Since E commutes with
each self-adjoint element of A, E lies in the center of A.
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(2) If A2RA1 = I, then ψ(Z) = Z. As noted in the discussion preceding the
proof of (1), φ(Z) ∈ Asing if and only if ψ(Z) ∈ Asing. Thus, under the present
assumption, φ(Asing) ⊆ Asing and φ(A) * Asing.

Suppose that φ(Asing) ⊆ Asing and φ(I) is invertible. Then ψ(Asing) ⊆ Asing.
Given C ∈ A, if λ ∈ sp(C) and λ 6= 0, then Z = I − λ−1C is in Asing and hence
so is ψ(Z) = EZ + I − E = I − λ−1EC; consequently, λ ∈ sp(EC). Hence,
sp(C) ⊆ sp(EC) ∪ {0} for all C in A. With E∗ in place of C, we see that sp(E∗),
and hence sp(E), consists of non-negative real numbers. Suppose that E is not
invertible. Then

1 ∈ sp(I −E) ⊆ sp(E(I −E)) ∪ {0}.
Hence there is a λ in sp(E) such that 1 = λ − λ2. There is no such real λ —
contradicting our information about sp(E). Thus E is invertible. Since Z + F =
ψ(E−1Z) ∈ Asing when Z ∈ Asing, it follows from the comments preceding Corollary
2.4 that F ∈ Arad (= {0}); whence F = 0 and E = I.

We show that the assumption that φ(I) is invertible is fulfilled. By hypothesis,
φ(Z0) is invertible for some Z0 in A. Then Z0 is invertible, since φ(Asing) ⊆ Asing.
Define φ1(Z) = φ(Z0Z). Then φ1(Asing) ⊆ Asing. As φ1(I) = φ(Z0) is invertible,
from what we have proved, A1Z0A2+B has an inverseR1 for which A2R1A1Z0 = I.
From (1) of this theorem, φ1(Ainv) ⊆ Ainv. In particular, φ(I) = φ1(Z−1

0 ) is
invertible.
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