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ABSTRACT. The Gelfand-Neumark Theorem, the GNS construction and 
some of their consequences over the past fifty years are studied. 

1. Introduction 

In 1943, a paper [G-N], written by I. M. Gelfand and M. Neumark, "On the 
imbedding of normed rings into the ring of operators in Hilbert space," appeared 
(in English) in Mat. Sbornik (see previous paper). From the vantage point of a 
fifty year history, it is safe to say that that paper changed the face of modern 
analysis. Together with the monumental "Rings of operators" series [M-vN 
I, II, III, IV], authored by F. J. Murray and J. von Neumann, it introduced 
"non-commutative analysis," the vast area of mathematics that provides the 
mathematical model for quantum physics. 

The founders of the theory underlying quantum mechanics (Schrodinger and 
Heisenberg, primarily) were groping their way toward this mathematics ("wave" 
and "matrix" mechanics). With his magnificent volume [D], P. A. M. Dirac all 
but invents the operator algebra and uses Hilbert space techniques to produce 
powerful conclusions in physics. Of course, simultaneously with his introduc-
tion of "rings of operators," von Neumann's book [vN2] appeared, providing a 
model for "quantum measurement" and some of the fundamentals of quantum 
statistical mechanics. 

Extremely knowledgeable and vitally interested in quantum physics, I. E. 
Segal, who had been developing commutative and non-commutative harmonic 
analysis in the Hilbert space context, recognized the construction buried in the 
Gelfand-Neumark paper - a construction that is basic and crucial for the sub-
ject of operator algebras. Just after publication of his "Postulates for quantum 
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mechanics" [Sl), Segal published his groundbreaking "Irreducible operator al-
gebras" (52] in which that construction is sharpened and made explicit and 
then used in one of the earliest general studies of (infinite-dimensional) unitary 
representations of (non-commutative) locally compact groups. 

A statement of the Gelfand-Neumark theorem follows. 

THEOREM (GELFAND- NEUMARK 1943). If21 is an algebra over the complex 
numbers C with unit I, with a norm A--+ II A II relative to which it is a Banach 
space for which II AB II :::; II A II II B II, and II I II= 1 (21 is a Banach algebra), and 
with a mapping (involution) A --+ A* such that 

i) (aA+B*) = aA+B*, 
ii) (AB)* = B* A*, 

iii) (A*)* =A, 
iv) IIA*AII=IIA*IIIIAII, 
v) A* A+ I has an inverse (in 21) for each A in 21, 

vi) II A* II = II A II' 
then there is an isomorphism r.p of 21 with a norm-closed subalgebra 'l3 of the 
algebra 13(:Ji) of all bounded operators on a Hilbert space J{ such that r.p(A *) = 
r.p(A)*, where r.p(A)* is the adjoint (in 13(:Ji)) of r.p(A). Moreover, II r.p(A) II = 
II A II for all A in 21. 

Gelfand and Neumark conjecture, in their paper, that conditions (v) and (vi) 
are superfluous, that is, derivable from the others. They were proved right ten 
years later on (v) and seventeen years later on (vi). (Compare [F,K-V,Sc] and 
[G-K].) In the following, we present a complete proof of the Gelfand-Neumark 
theorem without assuming conditions ( v) and (vi). Before beginning, let us define 
an element A of our algebra 2t to be self-adjoint, normal, unitary, positive, or 
regular, when A= A*, AA* =A* A, AA* =A* A= I, A= A* and the spectrum 
sp(A) of A consists of non-negative real numbers, or A has a two- sided inverse 
in 21, respectively. We say that a linear functional on 21 that takes the value 1 
at I and is real and non-negative on positive elements is a state of 21. 

In our argument, we shall make use of a standard form of the Hahn-Banach 
theorem (see, for example, [K-R I; Theorem 1.6.1]). In addition, we use 
some basic facts from the theory of (complex) Banach algebras, notably those 
concerning r(A), the spectral radius of A. We recall that 

r(A) =sup{ Ia!: a E sp(A)} 
1 

and that r(A) = limn-+oo II An II;;- :::; II A II· Moreover, I +A is regular if II A II< 1, 
sp(p(A)) = p(sp(A)) (= {p(a): a E sp(A)}) for each polynomial p, and sp(B) is 
a closed, non-null subset of the disk of radius II B II with center 0 in the complex 
numbers C. (See [K-R I; Sections 3.1 and 3.2) for accounts of these results.) 

PROOF. (Assuming only conditions (i) - (iv).) If A = A*, then II A2 ll = 
II A 11 2 . Thus II A 2 n II = II A I(, and II A II = r(A). Since p(A) is self-adjoint for 
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each real polynomial p, 

II p(A) II= r(p(A)) = sup{lp(a)l: a E sp(A)}. 

If pis complex, then p = Pl + ip2, with P1 and P2 real, and 

r((PI + p~)(A))::; r((Pl- ip2)(A)) · r((Pl + ip2)(A)) 
::; II [(Pl + ip2)(A)]* II II (Pl + ip2)(A) II 
= II (PI+ PD(A) II 
= r((Pi + PD(A)). 
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(1) 

It follows that we must have equality at each stage of the preceding inequality. 
Since 

r((Pl- ip2)(A))::; II [(Pl + ip2)(A)]* II, 
r((Pl + ip2)(A)) ::; II (Pl + ip2)(A) II, 

we must have equality in each of these last inequalities. Hence (1) holds for all 
complex polynomials p as well. It follows that, with A a self-adjoint element in 
m, the mapping carrying p(A) onto the polynomial p on sp(A) is an isometric 
isomorphism of the subalgebra of complex polynomials of A into C(sp(A)), the 
algebra of continuous, complex-valued functions on sp(A), and has a (unique) 
isometric extension to the closure Ql(A) mapping it onto the closure P of the 
polynomials in C(sp(A)). (Note that we have not established, as yet, that sp(A) 
is a subset of the reals ~' so we cannot apply the Stone-Weierstrass theorem to 
conclude, at this point, that P = C(sp(A)).) 

With a in sp(A), the mapping that assigns g(a) tog in Pis a linear functional 
of norm 1 on P that assigns 1 to the image of I in P and a to the image of 
A. Composed with the isomorphism, this linear functional gives rise to a linear 
functional Po of norm 1 on m(A) such that po(I) = 1 and p0 (A) = a. Using the 
Hahn-Banach theorem, we extend p0 to a linear functional p of norm 1 on Qt. 
Suppose B is a self-adjoint element in 2l. We show that p(B) is real. Assume the 
contrary. By adding a suitable real multiple of I to B, we produce a self-adjoint 
element of m to which p assigns a non-zero, purely imaginary value. We may 
assume that p(B) = ib with b a non-zero real number. We may assume, further, 
that b > 0, otherwise, we replace B by -B. Note that c E sp(C) if and only if 
c E sp(C*), whence r(C) = r(C*) for each element C in m. Thus, for each real t 

b2 + 2bt + t2 = ip(B + itiW ::; II B +it! 11 2 

= [r(B + itiW = (r(B + iti))(r([B +it!]*)) 
= II B +it! II II B-it! II = II B 2 + t2 I II 
::; II B 2 ll + t 2 . 

From this inequality, we draw the contradiction 

II B2 ll b t<----- 2b 2' 
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for each real t. It follows that p assumes real values on each self-adjoint element 
in 2(. In particular, p(A) = a is real, and the spectrum of each self-adjoint 
element consists of real numbers. Thus sp(A) ~ JR, and P = C(sp(A)). With 
B self-adjoint in 2l(A), this argument also shows that B maps to a real-valued 
function in C(sp(A)). Representing an element T of 2t(A) as T1 + iT2, where 
T1 = HT + T*) and T2 = ~(T- T*), we see that if the function representing 
T in C(sp(A)) is real, then T is self-adjoint. Since the (real) algebra of real-
valued functions in C(sp(A)) is the norm closure of the algebra of polynomials 
with real coefficients on sp(A), the family of self-adjoint elements in 2l(A) is the 
norm closure of the polynomials in A with real coefficients; in particular, this 
family is a norm-closed, real algebra. We have, too, that A2 is positive when A 
is self-adjoint, for if a is real and positive, then A2 + a2 I= (A- ial)(A + ial), 
a product of regular elements. 

We mention, as a brief historical note, that the argument showing that p(B) 
is real is an adaptation, to the present circumstances, of the celebrated "Arens 
Trick." Published during the Second World War, the Gelfand-Neumark article 
[G-N) did not reach the USA until 1946. In proving that the spectrum of a self-
adjoint element consists of real numbers, it cited a lemma that was not known to 
the young mathematicians in the USA reading the article. This lemma turned 
out to be the (even more celebrated) lemma establishing the existence of the 
Silov boundary. Richard Arens managed to circumvent that lemma by finding 
the clever argument whose essence is presented above. 

We show, next, that the functional pis a state of 2l. Suppose, to the contrary, 
that B is a positive element of 2t and p(B) < 0. As sp(B- II B II I) = sp(B) -
II B II I and sp(B) consists of non-negative, real numbers, we have that 

II B-11 B II I II = r(B- II B II I) ~ II B II· 

But 

lp(B -II B II I) I= lp(B) -II BIll> II B 112:: II B-11 B II I II' 
contradicting the fact that II p II = 1. Thus pis a state of 2t, p(A) = a, and p has 
norm 1. It follows, now, that each positive Bin 2t(A) maps to a positive function 
in C(sp(A)). ·As noted before, an element of 2l(A) that maps to a real-valued 
function in C(sp(A)) is self-adjoint. If the image takes on only non-negative 
values, then the element must be positive since the spectrum of the element is a 
subset of the range of the representing function. (If an element of 2t(A) has no 
inverse in 2t, then its representing function has no inverse in C(sp(A)).) Thus the 
image of an element of 2t(A) is a non-negative, real-valued function in C(sp(A)) 
if and only if the element is positive. 

If A1, ... , An are positive elements in 2l and a E sp(A1 +···+An), then (as 
just established) there is a state p of 2t such that 
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It follows that At + · · · + An is positive. Since 

r(At + · · · + Ak) =II (At+···+ Ak) II 
and sp(At + · ·+ Ak) is closed (k =f. n) and consists of real, non-negative numbers, 
II (At+···+ Ak) II E sp(At + · · · + Ak)· From what we have just proved, there 
is a norm 1 state p of m such that 

Continuing our historical notes, we have just concluded the proof, in a rea-
sonably straightforward manner, of the fact that was missing for so long. It 
replaces the argument of Kelley-Vaught [K-V) or of Fukamiya [F) of this same 
fact that Kaplansky lacked in his derivation of condition (v) ("symmetry") from 
(i) - (iv). The remaining argument, that A* A is positive, is Kaplansky's (pub-
lished in Mathematical Reviews [Sc]) and will appear in the next paragraph. It 
is one of the (many) small historical ironies that Kaplansky's argument is (at 
least to this author) the far cleverer part of the proof. 

Using the isomorphism of Ql(A* A) with C(sp(A* A)), we pass to the function 
f representing A* A (which is, as a matter of fact, the polynomial x restricted 
to sp(A* A)). Decompose f as J+ - f-, where J+ and f- are functions in 
C(sp(A* A)) taking only non-negative, real values such that J+ r = 0. From 
the argument of the preceding paragraphs, there are positive elements Band C in 
Ql(A* A) such that A* A= B-C and BC = 0. It follows that (AC)*(AC) = -C3 , 

which is negative. Making use of the fact that, in a Banach algebra with unit, 
the spectra of TS and ST, each with 0 adjoined, coincide (see, for example, 
[K-R I; Proposition 3.2.8]) we have that (AC)(AC)* is negative. As before, 
we decompose AC as At +iA2 , with At and A2 self-adjoint elements in Ql(A* A). 
Since 

0 ~ (AC)(AC)* + (AC)*(AC) = 2(AI +A~) ~ 0, 
we have that 

o =liAr +A~ 11 ~II A; 11 2 u = 1,2). 
Thus AC is 0 as are C3 (= -(AC)*(AC)) and C. It follows that A* A is a 
positive element for each A in Ql (in particular, A* A+ I is regular). 

Again, with f representing A* A in C( sp(A* A)), f has a (unique) positive 
square root in C(sp(A* A)), which represents a positive element (A* A)~ in 
Ql(A* A) whose square is A* A. If A is regular, so are A* and (A* A)~. The 
element A(A* A)-~ (= U) is unitary since 

and 
U*U = (A*A)-~A*A(A*At~ =I. 

Thus each regular element A in Ql has the "polar decomposition" U H where H 
is the positive element (A* A)~ and U is the unitary element A(A* At~. 
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We prove, next, that each unitary element U in 2t has norm 1. Decompose U 
as A + iB with A and B self-adjoint elements of Qt. Since U and U* commute, 
U- U* (= 2iB) and U + U* (= 2A) commute; hence A and B commute. Thus 
I= UU* = A2 + B 2. Hence II A2 ll = II A 11 2 :::; 1 and II B II :::; 1. It follows that 
II U II and II U* II do not exceed 2. Now 

1 =II I II= II U*U II= II U* 1111 u II, 

whence II U* II = II u ll- 1. Suppose II u II < 1. Then II un II :::; II u lin < ~ when 
n is suitably large. But, then, II (Un)* II = II un Il-l > 2, contradicting the 
just-noted fact that each unitary element in 2t has norm not exceeding 2. Thus 
II U II~ 1 for each unitary element U in 2t. Since II U* II= II U 11- 1, we conclude 
that II u II = 1. 

With A a regular element in 2t and U H its polar decomposition, 

II All= IIUHII:::; IIUIIII(A*A)t II= (II A* IIIIAII)t. 

Thus II A II :::; II A* II, for each regular element A in 2t. Since A* is regular, 
II A* II :::; II A II, and II A II = II A* II for each regular element A in 2t. It follows 
that II H II = (II A* II II A ll)t = II A II for each regular A in 2t. If II A II :::; 1, 
then II H II :::; 1. Passing to the representation of 2t(H) as C(sp(H)), we see 
that I- H 2 is positive and has a positive square root (I- H 2)t in 2t(H). 
Again from this representation (or by direct computation), H + i(I- H 2)t is a 
unitary element V in 2t and H- i(I- H 2)t is V*. Thus H = HV + V*), and 
A= U H = HUV + UV*). It follows that each regular element in the unit ball 
of 2t is the mean of two unitary elements of Qt. 

At this point, we have developed enough information about the structure of 2t 
to recapture Theorem 1 of [K-P]. We state and prove this result in our context, 
before continuing the proof of the Gelfand-Neumark theorem. 

THEOREM. I/ II S II< 1-2n-1 for someS in 2t, with nan integer greater than 
2, then there are unitary elements U1, ... , Un in 2t such that S = ~(U1 + .. . +Un)· 

PROOF. Let T be an element of 2t of norm less than 1 and V be a. unitary 
element of 2t. Then II V*T II:::; II T II< 1, whence I+ V*T and V(I + V*T) 
( = V + T) are regular elements of Qt. Since ~(V + T) is a regular element in 
the unit ball of 2t, we have proved that ~(V + T) is the mean of two unitary 
elements in 2t. Thus there are unitary elements W1 and W2 in 2t such that 
V + T = W1 + W2. It follows that, for each positive integer n, there are unitary 
elements U1, ... , Un and V1, ... , Vn-1 (= Un) in 2t such that 

V + (n- 1)T = U1 + V1 + (n- 2)T 
= U1 + U2 + V2 + (n- 3)T (2) 
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Under the assumption that II S II < 1- 2n- 1 (and n ~ 3), we have that 

II (n- 1)-1(ns- I) II::; (n- 1t1(n II s II+ 1) < 1. 

Thus we may use (n- 1)- 1(nS- I) in place ofT and I in place of V in (2). 
With these choices, we have that S = ~(U1 + · · · + Un)· 0 

We note that the Russo-Dye theorem [R-D] is an immediate corollary of 
the preceding result, for each element A in the unit ball of Ql is the norm limit 
of (1- 3n- 1)A, and (1- 3n- 1)A is a mean of n unitary elements of Qt. The 
preceding result grew out of a short proof of the Russo-Dye theorem shown 
to this author by L. T. Gardner [G] following a lecture in Toronto. Shortly 
after that, while visiting the University of Copenhagen, the author lectured on 
Gardner's proof to a seminar. A day after the lecture, the author and G. K. 
Pedersen recognized that a key element in Gardner's argument (V +Tis a sum 
of two unitary elements) could be applied, as indicated, to give the strong form 
of the Russo-Dye result just proved. 

We resume the proof of the Gelfand-Neumark theorem. 

PROOF (continued). If A is an element of norm less than 1 in Ql such that 
II A II < II A* II, then there is a positive a such that II aA II < 1 and II aA*II > 1. 
At the same time, there are unitary elements U1 , ... , Un in Ql, for some positive 
integer n, such that aA = ~(U1 + · · · + Un)· Thus aA* = ~(Ui + · · · + U~), 
and II aA* II :S 1. From this contradiction, it follows that II A* II :S II A II < 1. 
But then II A II = II (A*)*II :S II A*ll :S II A II· Thus II A II = II A* II when A is an 
element of Ql of norm less than 1. Multiplying by a suitable positive scalar, we 
have the same result for an arbitrary element in Qt. This completes the derivation 
of condition (vi) from (i)- (iv). 

The remainder of the proof of the Gelfand-Neumark theorem proceeds along 
relatively standard lines with the aid of the apparatus of states that has been 
developed. We use the GNS (Gelfand-Neumark-Segal) construction, as for-
mulated by Segal in [S2]. With p a state of m, let (A, B)~ be p(B* A) for 
each A and B in m. Note that (, )~ is a positive, semi-definite inner product 
on Qt. Suppose (A, A)~ = 0 for some A in Ql (A is a "null vector"). Then 
(BA, BA)~ = (A, B* BA)~ = 0 for each B in Ql (by applying the Schwarz in-
equality to ( , )~). Thus BA is a null vector. With A and B null vectors, 

(A+ B, A+ B)~= (A, A)~+ (A, B)~+ (B, A)~+ (B, B)~ = 0, 

whence A+ B is a null vector. Thus the set Xp of null vectors is a left ideal in 
m (the "left kernel" of p). 

Let (A+ Xp, B + Xp)p be p(B* A) for each A and B in Qt. Then ( , )p is a 
positive, definite inner product on the quotient vector space QljXp. Let JCp be 
the completion of m;xp relative to the norm induced on it by the inner product 
(, )p· Define the operator 7r~(A) on QljXP by 7r~(A)(B+Xp) = AB+Xp. Then 
7r~(A) is well defined (since Xp is a left ideal) and is a linear transformation of 
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QJ.jXp into itself. Note that 

117r~(A)(B + Xp) II!= (7r~(A)(B + Xp), 7r~(A)(B + Xp)) = p(B* A* AB). 

As II A* A II I -A* A+ai is regular for each positive a, we see that II A* A II I -A* A 
is positive and, hence, the square of some (positive) self-adjoint element C in QJ.. 
Thus 

B*(IIA*AIII -A*A)B = B*C2B = (CB)*(CB) ~ 0, 
and 

117r~(A)(B + Xp) II!= p(B* A* AB)::; II A* A II p(B* B)= II A 11 2 11 B + Xp II!. 

It follows that 1r~(A) is bounded and II'~~"~(A) II ::; II A II· Thus 1r~(A) extends 
(uniquely) to a bounded linear transformation 'll"p(A) of JCp into itself with the 
same bound as 

1r~(A). Since 1r~(A +B)= 1r~(A) + 1r~(B), we have that 

'~~"p(A +B)= '~~"p(A) + '~~"p(B) 

for each A and B in QJ.. Similarly, 

for each A and B in QJ.. With B and C in QJ., we see that 

(1r~(A*)(B + Xp), C + Xp)p = p(C* A* B)= (B + Xp, 1r~(A)(C + Xp))p· 

Thus 
(1rp(A*)(x), y)p = (x, '~~"p(A)(y))p 

for each x andy in JCp. It follows that 'll"p(A*) = 'll"p(A)* for each A in QJ.. We say 
that 1r P is a * representation of 2l on JCp, the GNS representation constructed 
from 2l and the state p on 2l. 

To complete the proof, we construct the direct sum representation 1r of the 
GNS representations '~~"p· For each A in 2t, 1r(A) acts on JC, the direct sum 
l:EBJCp of the representation Hilbert spaces (1r(A)({xp}) = {7rp(A)xp}). With 
A in 2t, II A* A II = r(A* A) E sp(A* A), since A* A has spectrum that is closed 
and consists of non-negative real numbers. It follows that there is a state p of Ql 
such that p(A* A)= II A* A II· If we denote by 'xp' the unit vector I+ Xp in JCp, 
then 

Thus 

ll'~~"p(A)xp 11 2 = (1rp(A* A)xp, xp) = p(A* A)= II A* A II= II A 11 2 . 

Hence II A II::; ll'~~"p(A) II· But we have already established the reverse inequality 
(for all states of QJ.). For the particular p we have constructed, ll'~~"p(A) II= II A II· 
It follows that 

ll1r(A) II= sup{ll'~~"p'(A) II: p' a state of QJ.} =II A II· 
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Hence 1r is an isometric * isomorphism of Qt. D 

2. Completely positive mappings and Stinespring's theorem 

In the summer of 1951, while I was visiting the University of Chicago for a 
few months, Paul Halmos reported the following result to me, just proved by his 
student Errett Bishop. 

THEOREM. If {An} is a sequence of positive operators on a Hilbert space J{ 

such that L::=l (An x, y) = (x, y) for each x and y in J{ (that is, I: An is weak-
operator convergent to I), then there is a Hilbert space X, containing 11:, and a 
sequence {En} of mutually orthogonal projections En on X, with sum I, such 
that EEnE is AnE for each n, where E is the projection ofX onto 11:. 

We say that the compression of each En to J{ is An. As Halmos reported 
it to me, Bishop had done this "by hand." Thinking about what Bishop might 
have put into the argument helped me to finish something I needed and was 
struggling with at that time. 

THEOREM. If 'fJ is a linear mapping from one C*-algebra Ql to another that 
transforms each positive operator to a positive operator (we say that TJ is a posi-
tive linear mapping) and TJ(I) :::; I, then TJ(A) 2 :::; TJ(A2 ), for each self-adjoint A 
in Qt. 

A few days after hearing it from Halmos and completing the above, I men-
tioned Bishop's result to Segal. He recognized, almost instantly, that it was a 
consequence of a result of Neumark [N]. In effect, the Neumark result states 
that a positive-operator-valued measure on a Hilbert space is the compression 
of a standard, projection-valued measure (a spectral measure) on a larger space. 
In Bishop's case, the space is the set of natural numbers and An is the mea-
sure of { n}. Apparently, Segal had suggested to his student, Stinespring, that 
Stinespring generalize the Neumark result to the non-commutative case. 

To see what this means, we note that, using Riesz-Markov, a regular Borel 
measure on a compact space and the corresponding positive linear functional 
on C(X), the continuous, complex-valued functions on X, which represents in-
tegration relative to that measure, are equivalent - one can pass from one to 
the other. So Neumark's positive-operator-valued measure on, say, a compact 
Hausdorff space X amounts to a linear mapping 'fJ from C(X) to 13(11:), where 
J{ is the Hilbert space on which the operator values of the measure act. The 
assumption that the operator values are positive translates to the assumption 
that TJ is a positive linear mapping of C(X) into 13(11:). What happens to the 
conclusion of Neumark's theorem in this setting? A measurable set in X cor-
responds to its characteristic function which is idempotent, and the improved 
(spectral) projection-valued measure of the theorem assigns to this function (or 
set) a projection - so, a self-adjoint idempotent. Moreover, orthogonal pro-
jections are assigned to disjoint sets (that is, to characteristic functions with 
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product 0). It is just a short jump from this analysis to realizing that the out-
put of the Neumark theorem in the continuous function framework should be a 
homomorphism <p of C(X) into 'B(X) (for which tp(/) = <p(f)*), where J( ~X, 
such that <p(f) compressed to J( is 17(/) for each fin C(X). In other words, the 
positive linear mapping 1J is the composition of a representation (of C(X) on X) 
and a compression (to Jf). 

Now, it was nice enough to "modernize" the Neumark theorem by taking it 
from the measure theory framework to the C(X) framework, but Stinespring's 
goal was to make it non-commutative - to replace C(X) by a C*-algebra m. 
If we look at the Neumark proof and understand its essential elements, we can 
apply it to the C(X) case and, then, to the case where an arbitrary C*-algebra 
replaces C(X). Doing that, we see that the argument amounts to applying a GNS 
construction to the appropriate structure. For the remainder of this section, we 
detail that construction and the basics of the Stinespring concept of completely 
positive mappings. We begin with an example that underscores the need for such 
a concept. 

EXAMPLE 2.1. Let 1J be the mapping of Mn(C) into itself that assigns to 
each matrix [ajk] its transpose matrix (whose (j, k) entry is akj)· Then 1J is a 
* anti-automorphism of Mn(C); 1J is a positive linear mapping of Mn(C) into 
itself. When n 2: 2, the (unique) linear mapping 1J ® t of Mn(C) ® M2(C) into 
itself that assigns 17(A) ® B to A® B is not a positive linear mapping. 

To see this, note that, since matrices are multiplied by a scalar and added on 
an entry-by-entry basis, 1J is a linear mapping of Mn(C) onto itself. The (j, k) 
entry of rJ([aik][bjk]) is the (k,j) entry of [ajk][bjk], namely I:~=l akrbrj, which 
is the (j, k) entry of the matrix 1J([bjk])1J([ajk]). Hence 

and 1J is an anti-automorphism of Mn(C). 
The (j, k) entry of rJ([aj k]*) is the ( k, j) entry of[ai k]*, which is Cijk; while the 

(j, k) entry of rJ([ajk])* is the complex conjugate of the (k, j) entry of rJ([ajk]), 
namely ajk· Thus 1J is a* anti-automorphism of Mn(C). 

Each * anti-homomorphism <p of a C*-algebra m is a positive linear mapping; 
for with A a positive element of m, 

In particular, 1J is a positive linear mapping. 
Each element of the algebra Mn(C) ® M2(C) has a representation as a 2 x 2 

matrix with entries from Mn(C) -the matrix representing A® B is 
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where B = [ ~~~ ~~~],and that of (17 ® t)(A ®B) (= 17(A) ®B) is 

[bn1J(A) b121J(A)] 
b211J(A) bn1J(A) . 

31 

That is, the effect of 1J ® t on the 2 x 2 matrix over Mn ( q representing A ® B 
is to transpose each n x n entry. Since this same process applied to all elements 
of Mn (C) ® M2(C) is a linear mapping, it is the linear mapping 1J ® L 

Let T be the matrix with 0 at each entry except for the entries with the 
positions labeled as (1, 1), ... , (n + 1, n + 1), (n, n + 1), and (n + 1, n) at which 
entries the value 1 appears (Tis a 2n x 2n matrix). Then T 2: 0, but (17® t)(T) 
has 1 at the (1, 2n) entry and 0 at the (2n, 2n) entry; so that (17 ® t)(T) is not 
positive, and 1J ® t is not a positive linear mapping. D 

DEFINITION 2.2. A positive linear mapping 1J of a C*-algebra ~is said to be 
completely positive when, for each positive integer n, 1J ® tn, the (unique) linear 
mapping whose value at A®B is 1J(A)®B for each A in~ and each Bin Mn(C), 
is positive. 

We prove the following elementary facts about completely positive mappings. 

PROPOSITION 2.3. (i) 1J is completely positive when 1J is a *homomorphism. 
(ii) 1J is completely positive when 17(A) = TAT* for each A in ~' where ~ 

acts on the Hilbert space }{ and T is a given bounded linear transformation of 
}{ into another Hilbert space X. 

(iii) 1J is completely positive when 1J is a composition of completely positive 
mappzngs. 

(iv)1J is completely positive when 17(A) = T<p(A)T*, where <p is a * homomor-
phism of~ into '13(}{) and T is a bounded linear transformation of the Hilbert 
space }{ into the Hilbert space X. 

(v) Not each positive linear mapping of a C*-algebra is completely positive. 

PROOF. (i) We show that 1]®tn is a* homomorphism of2t®Mn(C) for each 
positive integer n when 1] is a * homomorphism. To see this, it suffices to show 
that 

(17 ® tn)(RS) = (17 ® tn)(R)(1J ® tn)(S) 

for all R and S in some set of linear generators for ~ ® Mn(C). Now, for all 
A1,A2 in~ and Bt,B2 in Mn(C), 

( 1J ® tn)((At ® Bt)(A2 ® B2)) = ( 1J ® tn)(AtA2 ® Bt B2) 

= 17(A1A2) ® B1B2 
= 1J(At)7J(A2) ® B1B2 
= (17(At) ® Bt)(7J(A2) ® B2) 

= (17 ® tn)(At ® Bt)(7J ® tn)(A2 ® B2). 
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Hence TJ 0 Ln is a * homomorphism and is, therefore, a positive linear mapping. 
Thus TJ is completely positive when rJ is a * homomorphism. 

(ii) Each element A of m 0 Mn(C) has a representation as an n x n matrix 
[Ajk] with entries Ajk from m, and (TJ 0 tn)(A) has [ry(Ajk] as its representing 
matrix. Thus, if [Ajk] is positive and rJ arises from the linear transformation T 
as described in the statement of this proposition, (TJ 0 tn)(A) has [TAjkT*] as 
its representing matrix. But 

where Tjj = T for j in {1, ... , n} and Tjk = 0 when j f:. k. Thus (TJ0tn)(A) 2 0 
when A 2 0; and rJ is a completely positive mapping in this case. 

(iii) If rJ = T]l ory2, then, employing the nxn matrix representation ofQt0Mn(C) 
as in (ii), we see that for each positive integer n, 

Since the composition of positive linear mappings is a positive linear mapping, 
TJ 0 Ln is positive when each of T]l and ry2 is completely positive. 

(iv) From (i) and (ii), rJ is the composition of completely positive mappings. 
Hence, from (iii), TJ is completely positive. 

(v) The mapping TJ described in the preceding example is a positive linear 
mapping rJ of a C* -algebra such that rJ is not completely positive. 0 

THEOREM 2.4. Let TJ be a completely positive mapping of a C*-algebra Qt into 
~(:K) for some Hilbert space J{ and let { ea}aeA be an orthonormal basis for :K. 
Denote by sit the linear space of functions from A to m that take the value 0 at all 
but a finite number of elements of A, where sit is provided with pointwise addition 
and scalar multiplication (so that m is the restricted direct sum of m with itself 
over the index set A). Then 

(i) (A, A') = La,a'EA (ry(A~*,Aa)ea, ea') defines an inner product on !it, where 
A= {Aa}aEA and At= {A~, }a'EA; 

(ii) o = (A, B) = (B, A for each B in m, when (A, A) = o, t is a linear 
space, where£ = {A E sit: (A, A) = 0}, and (A+£, B + £)o = (A, B) 
defines a definite inner product on X 0 , the quotient space Qtj £; 

(iii) 0 :::; (B, B) :::; II A II2(A, A), where A = {Aa}aeA and B = {AAa}ae&; 
!f'o(A) is a bounded linear mapping ofX0 into X 0 , where !f'o(A)(A+£) = 
B+£; 

(iv) If' is a representation of m on X, where If'( A) is the (unique) bounded 
extension of !f'o(A) from X 0 to X, and X is the completion ofXo relative 
to ( , )o; 

(v) {ia + £ }aEA is an orthonormal set in X, when ry(I) =I, where la is the 
element of sit with I at the a coordinate and 0 at all others; 

(vi) V*1p(A)V = ry(A) (A E 2l), when ry(I) = I, where V is the (unique) 
isometry of J{ into X such that V ea = la + £ for each a in A. 
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PROOF. (i) With A and A' in sit, there are at most a finite number of indices 
in A, say, 1, ... , n, at which A or A' have non-zero coordinates. Thus 

n 

(A, A')= L (7J(A~* Aj)ej,ek), 
j,k=l 

and the sum defining (A, A') converges. With iJ ( = { Ba}aeA) in 2l and b a 
scalar, 

a,a 1 EA 
=(A, A')+ b(B, A'). 

Since 1J is a positive linear mapping, it is hermitian. Hence 7J(A*) = 7J(A)* for 
each A in 2l, and 

(A,A') = L (7J(A~~Aa)ea,ea') 
a,a'EA 

= L (7J(A:A~,)*ea,ea') 
a,a'EA 

a,a1 EA 

=(A', A). 
Let T be the n x n matrix whose non-zero entries are in the first row, and this first 
row consists of the non-zero coordinates of A. (We assume that these non-zero 
coordinates have the indices {1, ... , n} ). Then T*T is the n x n matrix whose 
(j, k) entry is Aj Ak. Since 1J is assumed to be completely positive, the matrix 
S whose (j,k) entry is 7J(AjAk) is positive. Withe the vector {e1, ... ,en} in 
1( EEl ... EEl1f, 

n 

0 :S (Se, e) = L (7J(Aj Ak )ek, ej) = (A, A). 
j,k=l 

Hence (A, A') -+ (A, A') is an inner product on !it. 
(ii) By applying the Cauchy-Schwarz inequality to the inner product defined 

in (i), we see that 
o = (A,iJ) = (iJ,A), 

when (A, A) = 0 and iJ E !it. Hence L is a linear space. At the same time, the 
equation 

(A+L,iJ+L)o =(A, B) 
defines (unambiguously) an inner product on X 0 . If (B + L, iJ + L)o = 0, then 
(B, B)= 0 and iJ E .E, whence iJ + L = 0 +E. Hence ( , )0 is a definite inner 
product on Xo. 

(iii) Let T be the n x n matrix whose non-zero entries are in the first row, and 
this first row consists of the non-zero coordinates of A. Let R and S be the n x n 
matrices whose only non-zero entries are their (1,1) entries, and these are A* A 
and II A 11 2 I, respectively. Since A* A :S II A 11 2 I, R :S SandT* RT :S T* ST. With 
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A1, ... , An the non-zero coordinates of A, the (j, k) entries ofT* RT and T* ST 
are, respectively, Aj A* AAk and II A 11 2 Aj Ak. Since 1J is completely positive, the 
matrix whose (j, k) entry is 1J(Aj A* AAk) is less than or equal to the matrix 
whose (j, k) entry is II A II 27J(AjAk)· Applying the vector state corresponding to 
the vector { e1, ... , en} to these matrices, we have 

n 

0::; (B,B) = L (1J(AjA*AAk)ek,ej} 
j,k=l 

n 

:S L IIAII2 (7J(AjAk)ek,ej} 
j,k=l 

= IIAII2 (A,A). 
It follows that ~Po (A)( A + E) = 0 if A E E, so that ipo (A) is a well-defined linear 
mapping of Xo into itself. From the same inequality, we have that II ipo(A) II ::; 
II A II; hence ipo(A) has a (unique) bounded extension 1p(A) mapping the com-
pletion X of X 0 into itself. 

(iv) To see that 1p is linear, note that, with A and B in m, b a scalar, and 
{Aa}aeA (=A) in 'il, 

¥?(A+ bE)( A+ L) = iJ + E, 
where B ={(A+ bB)Aa}aeA = {AAa}aeA + b{BAa}aeA· Hence 

¥?(A+ bB)(A +E)= ~t?(A)(A +E)+ b~t?(B)(A + L), 

and the bounded operators ¥?(A+ bB) and 1p(A) + b1p(B) agree on the dense 
subset Xo of X. Hence 1p(A + bB) =¥?(A)+ b1p(B). Note, too, that 

<p(AB)(A +.C)= C + .C, 

where C = {ABAa}aeA· Thus 

ip(AB)(A + L) = ~t?(A)ip(B)(A + L), 

and the bounded operators 1p(AB) and <p(A)~t?(B) agree on the dense subset Xo 
of X. It follows that 1p(AB) = ¥?(A)¥?(B). Finally, when A = {Aa}aeA and 
B = {Ba}aeA, 

(~t?(A)(A + L), B + L)o = L (1J(B:,AAa)ea, ea') 
a,a'EA 

a,a'EA 

so that ¥?(A)* = <p(A*). Hence ¥?is a representation of m on X. 
(v) Under the assumption that 1J(I) = I, we have 

(fa +L,ia' +L)o = (fa,ia') = (ry(I)ea,ea') = (ea,ea 1 ), 
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so that {fa + .C} aEA is an orthonormal set in X. 
(vi) Since TJ(I) = I, {ia + .C}aEA is an orthonormal set in X from (v), and 

there is a unique isometry V mapping JC into X such that V ea = la + .C for all 
a in A. For all a and a' in A and A in Ql, we have 

(V*<p(A)Vea, ea') = (<p(A)(ia + .C),ia' + .C)o 
= (TJ(I* A)ea, ea')· 

Thus V*<p(A)V = TJ(A) for all A in Qt. 0 

PROPOSITION 2.5. Adopt the notation and assumptions of the preceding the-
orem (exclusive of the assumption that TJ(/) = I). Let JCo be the dense lin-
ear manifold in JC consisting of finite linear combinations of { ea}aEA, and let 
To(LaEAo raea) be LaEAo ra(ia +.C) for each finite subset Ao of A. Then 

(i) To is a bounded linear transformation; 
(ii) T*<p(A)T = TJ(A) (A E Ql), where Tis the (unique) bounded extension of 

To from JCo to JC; 
(iii) when TJ(/) = I, there is a Hilbert space JC' containing JC and a repre-

sentation <p1 of Ql on J{! such that E<p'(A)E = TJ(A)E for each A in m, 
where E is the projection of JC' on JC. 

PROOF. (i) As in the proof of (v) of the preceding theorem, 

whence 

liTo ( L raea) 11
2 = L rafa,(TJ(I)ea, ea') 

aEAo a,a'EAo 

1 

Thus liTo II :S IITJ(/)11 2 · 

(ii) For all a and a' in A and all A in m, 

(T*<p(A)Tea, ea') = (<p(A)(ia + i),ia' + i}o 
= (TJ(A)ea,ea')· 

Hence T*<p(A)T = TJ(A) for all A in Qt. 
(iii) From (vi) of the preceding theorem, V is a unitary transformation of J{ 

onto some subspace X1 of X and V*<p(A)V = TJ(A) for all A in Qt. Let X 2 be 
the orthogonal complement of xl in X, J{' be J{ Ef) x2, and U(x, y) be v X+ y 
for X in J{ and yin x2. Identify J{ with {(x, 0): X E J{} and TJ(A)(x, 0) with 
(TJ(A)x, 0). Define <p'(A) to be U*<p(A)U. Then U is a unitary transformation of 
J{' onto X, and <p1 is a representation of Ql on J{'. With A in m, x in J{, and y in 



36 RICHARD V. KADISON 

x2, let <p( A) v X be u + v, where u E X 1 and v E x2. We have, by an application 
of [K-R I; Proposition 2.5.13], that V*v = 0, and 

E<p'(A)E(x, y) = E<p'(A)(x, 0) = EU*<p(A)U(x, 0) 
= EU*<p(A)Vx = EU*(u + v) 
= E(V*u, v) = (V*(u + v), 0) 
= (V*<p(A)Vx,O) = (77(A)x,O) 
= 77(A)E(x, y). 

Hence E<p'(A)E = 77(A)E. 0 

THEOREM 2.6. Let 77 be a linear mapping of a C*-algebra Ql into 'B(JC) for 
some Hilbert space JC; let <p and <p1 be representations ofllt on Hilbert spaces X 
and X', respectively; and letT and T' be bounded linear transformations of J( 
into X and X', respectively, such that T*<p(A)T = 77(A) and T'*<p'(A)T' = 77(A) 
for each A in Qt. Let Xo and X~ be the closure of the ranges of T and T', 
respectively, and let E and E' be the projections of X and X' onto X 0 and X~, 

respectively. Then there is a unitary transformation U ofX0 onto X~ such that, 
for each A in llt, 

T' = UT, E<p(A)EIXo = U* E'<p'(A)E'U. 

PROOF. Define U0Tx to be T'x for each x in JC. Then T' = U0T. With A in 

(<p(A)Tx, Ty) = (T*<p(A)Tx, y) = (77(A)x, y) 
= (T'*<p'(A)T'x,y) = (<p'(A)T'x,T'y) 

for all x and y in JC. Letting A be I, we conclude that 

(Tx, Ty) = (T'x, T'y) = (UoTx, UoTy). 

Thus Uo is well defined, linear, and extends (uniquely) to a unitary transforma-
tion U mapping X 0 onto X~, and T' = UT. At the same time, 

(E<p(A)ETx, Ty) = (<p(A)Tx, Ty) 
= (<p'(A)T' X, T'y) 
= (U* E'<p'(A)E'UTx, Ty) 

for all x and y in JC. Since the range ofT is dense in X 0 and the operators 
E<p(A)EIXo and U* E'<p'(A)E'U are bounded operators on Xo, we have that 

E<p(A)EIXo = U* E'<p'(A)E'U. 0 

To complete the circle with Neumark's theorem, Stinespring shows [St] that 
when 2l is abelian 77 is automatically completely positive and, independently, 
St~rmer [Sr; Lemma 6.1] and Arveson [A; Proposition 1.2.2] showed that 
the same is true, no matter what 2l is, when 1J maps into an abelian subalgebra of 
'B(JC). These last results are not obvious. They can be proved by the technique 
of multi-states. We discuss and apply that technique. 
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LEMMA 2.7. Let Ql be a C*-algebra acting on a Hilbert space 9-C, Mn(Ql) be 
the C*-algebra of n x n matrices with entries from m, and Mn(m)+ be the cone 
of positive elements in Mn(Ql). Then 

(i) the matrix [(xk. Xj}] with (j, k) entry (xk, Xj} is positive, where x1, ... , Xn 
are vectors in 9-C; 

(ii) the matrix [AJ Ak] with (j, k) entry AJ Ak is in Mn (Qt)+ for each set of 
n elements { A1 , ... , An} in m, and the matrix all of whose entries are a 
given positive A in Ql is in Mn (Qt)+; 

(iii) each positive element of Mn(Ql) is a sum of matrices of the form [AJ Ak]; 
(iv) [Ajk]---+ [(AjkXk, Xj}]: Mn(Ql)---+ Mn(C) is a positive linear mapping for 

each set ofn vectors {x1, ... ,xn} in 9-C, and [{Ajkx,x}] ~ 0 for each x 
in 9-C when [Ajk] ~ 0; 

(v) if [Ajk] is in Mn(Qt)+ and [Bjk] is in Mn(Qt')+, then [AjkBjk] ~ 0. 

PROOF. (i) Let { e1 , ... , en} be an orthonormal basis for an n-dimensional 
subspace of 9-C containing x1, ... , Xn· Note that [(xk. Xj}] is the matrix of T*T 
relative to { e1 , ... , en}, where Tej = Xj. The (j, k) entry of the matrix for T*T 
relative to the basis {e1, ... ,er.} is (T*Tek,ej} = (Tek.Tej} = (xk.xj}· Thus 
[(xk, Xj}] ~ 0. 

(ii) If A is the element of Mn(Ql) whose first row is A1, ... , An and all of 
whose other entries are 0, then A* A= [AJAk] E Mn(Qt)+. If A E Qt+ and each 
Aj is A~, then each AJ Ak is A. Hence the n x n matrix all of whose entries are 
A is in Mn(m)+. 

(iii) Each element of Mn(Qt)+ has the form 
n n 

[Bjk]*[Bjk] = [L B;jBrk] = L[B;jBrk], 
r=l r=l 

where [Bjk] E Mn(Ql). If Aj = Brj, then [B;jBrk] = [AJAk]· 
(iv) The mapping described is clearly linear; hence, from (iii), it suffices to 

show that the value of this mapping at each matrix of the form [Aj Ak] is an 
element of Mn(C)+. But, from (i), 

[(AjAkXk,Xj)] = [(Akxk,AjXj}] ~ 0. 

If each of the vectors Xj is the same vector x in 9-C, then our mapping becomes 
[Ajk]---+ [{AjkX, x)]. Hence [{AjkX, x)] ~ 0 when [Ajk] ~ 0. 

(v) From (iii), [Ajk] is a sum I:;."=dAY)* Ar)J with each AY) in Qt. Thus 
A-k = "m A~r)* A(r) and 

J L.....r=l J k 

m 

[AjkBjk] = L[AY)* A~r) Bjk]· 
r=l 

Hence, it suffices to show that [AjAkBjk] ~ 0 for each subset {A1 , ... ,An} of 
Qt. By the same argument, it now suffices to show that [Aj AkBj Bk] ~ 0 for each 
subset {A1, ... ,An} ofQt and each subset {B1, ... ,Bn} ofQt'. As Aj and AJ 
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commute with Bk and BZ for all j and k, Aj AkBj Bk = (Aj Bj )*(AkBk)· Thus, 
from (ii), 

[AjAkBj Bk] = [(AiBi )*(AkBk)] ~ 0, 
and [AjkBjk] ~ 0. 0 

DEFINITION 2.8. Ann-positive functional on (n-state of) a C*-algebra 121 is 
a matrix [Pjk] of linear functionals on 121 such that [Pjk(Ajk)] ~ 0 when [Ajk] E 
Mn (121)+ (and Pii (I) = 1 for j in { 1, ... , n} ). We speak of a multi-state when 
there is no need to specify n. 

THEOREM 2.9. {i) If 121 is a C*-algebra acting on a Hilbert space 1{ and 
{ X1, ... , Xn} is a set of n {unit) vectors in 1{, then [wxk ,x1 1121] is an n-positive 
functional on {n-state of) 121. 

{ii) A linear mapping "1 of 121 into a C*-algebra ~, such that ry(I) = I, is 
completely positive, if and only if [Pi k o ry] is n-positive on 121 for each n-state 
[Pjk] of~. 

{iii) [Pi k] is n-positive on (an n-state of) 121 when each Pi k is the same positive 
functional {state) p on 121. 

(iv) a positive linear mapping ofl21 into an abelian C*-algebra ~ is completely 
positive. 

PROOF. (i) lf[Ajk] E Mn(121)+, then 

0 s; [(AjkXk, Xj)] = [wxk,x 1(Ajk)] 

from (iv) of the preceding lemma, so that [wxk,xi 1121] is n-positive on 121. (If Xj is 
a unit vector, Wx1,x1(I) = 1 and [wxk,x1 1121] is ann-state of121.) 

(ii) Suppose "1 is completely positive and [Ajk] E Mn(121)+. Then [ry(Ajk)] E 
Mn(23)+ and [(Pik o ry)(Ajk)] E Mn(q+ for each n-positive functional [Pjk] of 
~. Thus [pik o ry] is n-positive on 121 when [Pjk] is n-positive on 23. 

Suppose, now, that [Pi k o ry] is an n-state of 121 for each n-state [Pi k] of 23. For 
this part, n-states will suffice in place of the stronger assumption on n-positive 
functionals. Suppose ~ acts on a Hilbert space X and { x1, ... , xn} is a set of n 
vectors in X. Choose unit vectors y1 , ... , Yn in X and non-negative (real) scalars 
a1, ... , an such that aiYi = Xj for each j. From (i), [wyk,y1 123] is ann-state of23, 
so that [wyk,y1 ory] is ann-state ofl21 by hypothesis. Thus, with [Ajk] in Mn(121)+, 

[(ry(Ajk)Yk,Yi)] ~ 0. 

From (ii) and (v) of the preceding lemma, [ajak] E Mn(q+ and 

[(ry(Ajk)XkJXj)] = [(ry(Ajk)Yk.Yj}ajak] ~ 0. 

Note that ([Bjk]x, x) = ([(BjkXk, Xj)]a, a), where X = {xl, ... , Xn} and a = 
{1, 1, ... 1}. With ry(Ajk) in place of Bjk, we have that 

([ry(Ajk)]x,x) = ([ry(Ajk)xk,xj)]a,a) ~ o. 
Thus [ry(Ajk)] E Mn(23)+ and "1 is completely positive. 
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(iii) Let 1r be the GNS representation of Ql corresponding to the positive 
functional (state) p. From (i) of the first proposition of this section, 1r is com-
pletely positive so that [1r(Ajk)] ;::: 0 when [Ajk] E Mn(Qt)+. In this case, 
[(1r(Ajk)x, x)] ;::: 0 for each vector x in the representation space for 1r, from (i), 
and in particular, for a generating (unit) vector x0 for 7r(Ql) such that Wx 0 o 1r = p. 
Thus 

[Pjk(Ajk)] = [(7r(Ajk)xo, xo));::: 0, 
and [Pjk] is an n-positive functional on (n-state of) Ql, when Pik = p for all j 
and k in { 1, ... , n}. 

(iv) Suppose TJ is a positive linear mapping of Ql into an abelian C*-algebra 
~. Let [Ajk] be an element of Mn(Qt)+. Since ~ is abelian, ~ ~ C(X). Using 
the identification of Mn(~) with the C*-algebra of continuous mappings from 
X to Mn(C), and the fact that positive operators and matrices have positive 
square roots, we have that [TJ(Ajk] E Mn(~)+ if and only if [(p o TJ)(Ajk)] ;::: 0 
for each pure state p of~. Now po TJ is a positive linear functional on Ql, so that 
[(p o TJ)(Ajk)] ;::: 0 from (iii). Thus [TJ(Ajk)] is in Mn(~)+ and TJ is completely 
positive. D 

THEOREM 2.10. Let Ql be an abelian C*-algebra and [Pjk] be ann x n matrix 
of bounded linear functionals on Qt. 

{i) There is a representation 1r of Ql on a Hilbert space J( with a cyclic vector 
u and a matrix of operators Hjk in 1r(Qtt such that Pjk(A) = (1r(A)Hjku, u) for 
each A in Qt. 

{ii) Suppose [Pjk(A)] ;::: 0 for each A in Qt+. Then [Hjk(P)] ;::: 0 for each p 
in X, where 7r(Qt)- ~ C(X), and we denote by the same symbol an element of 
7r(Qlt and the function representing it. In addition, [Hjk];::: 0. 

{iii) [Pjk] is ann-positive functional {n-state of) Ql if and only if[pjk(A)] ;::: 0 
for each A in Qt+ {and Pjj(I) = 1}. 

(iv) Each positive linear mapping of Ql is completely positive. 

PROOF. (i) Express each Pikas 'T/jk+iTjk with 'T/jk and Tjk hermitian, and let p 
be :Z:::::j,k=l (TJtk + TJjk + r/i, + Tjk). Let 1r be theGNS representation corresponding 
to p. Let uo be a unit generating vector for 7r(Ql). Since 7r(Qt)- is abelian with 
a generating vector, 7r(Qtt is maximal abelian by [K-R II; Corollary 7.2.16). 
Choose uo and a multiple u of u0 so that p(A) = (1r(A)u, u) for each A in Qt. As 
TJtk, TJjk, r/j., Tjk are positive linear functionals on Ql dominated by p, they induce 
positive linear functionals on the image 1r(Qt) dominated by w,. l1r(Qt) from [K-R 
III; Exercise 4.6.23(ii)). Thus, from [K-R II; Proposition 7.3.5), there are 
operators Atk,Ajk,Btk,BJk in 1r(2l)- such that 

TJtk(A) = (1r(A)Atk u, u), 
r/i,(A) = (1r(A)Bjk u, u), 

TJjk(A) = (1r(A)Ajk u, u) 
ri"k(A) = (1r(A)Bjk u, u) 

for each A in 2l. It follows that, for each A in 2l, 
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where Hik = Ajk- Ajk + i(Btk- Bi-k)(E '11'(2l)-). 
(ii) From [K-R I; Theorem 5.2.1], '11'(2t)- !:'::: C(X) for some extremely 

disconnected compact Hausdorff space X. For each T in 2(, 

(Hjk'11'(T)u, '11'(T)u) = ('11'(T*T)Hjku, u) = Pik(T*T) 
= Pki(T*T) = ('11'(T)u, HkJ'11'(T)u). 

Since u is generating for 2l, Hjk = HZi and [Hjk] is self-adjoint. If [Hjk(Po)]'f_ 
0, there is some {a1, ... ,an}(= a) inC' such that ([Hjk(Po)]ii,ii) < 0. By 
continuity of all Hjk, there is a clopen subset Xo of X containing Po such that 
([Hjk(P)]a, ii) < 0 for each pin Xa. Let E be the characteristic function of Xo. 
With pin Xo, 

n 

0 > L E(p)Hjk(p)akai, 
j,k=l 

whence 
n 

0 > L EHjkCLjak. 
j,k=l 

Since u is separating for '11'(2t)-, 
n 

0 > L aiak(EHjkU, u) = ([(EHjkU, u)]ii, ii), 
j,k=l 

and [(EHjkU, u)]'/_ 0. But for each A in 2(+, 

by assumption. Hence, by strong-operator continuity and density, 

0 :S [(EHjkU, u)] 

-a contradiction. Thus [Hjk(P)] 2: 0 for each pin X and [Hjk] 2: 0. 
(iii) If [Pjk] is ann-positive functional on (ann-state of) 2(, then [pjk(A)] 2: 0 

for each A in 2(+ since then x n matrix with each entry equal to A is in Mn(2t)+ 
from (ii) of the preceding lemma. 

Suppose [PJk(A)] 2: 0 for each A in 2(+. Then with Hjk as in (ii), [Hjk] E 
Mn('11'(2t)-)+. If [Ajk] E Mn(2t)+, then ['11'(Ajk)] is in Mn('11'(2l)-)+ from (i) of 
the first proposition of this section. Thus, from (v) of the preceding lemma, 
['11'(Ajk)Hjk] 2: 0. Consequently, 

0 :S [('11'(Ajk)HjkU, u)] = [Pjk(Ajk)] 

from (iv) of the preceding lemma and by choice of Hjk· Hence [Pjk] is n-positive 
on (an n-state of) 2( in this case. 

(iv) From (ii) of the preceding theorem, the assumption that 2( is abelian, 
and (iii), it will suffice to show that [(Pik o ry)(A)] 2: 0 for each A in 2(+ and 
each n-state [Pjk] of 23, the C*-algebra into which 77 maps. But with A in 2(+, 
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77( A) E ~+ and the matrix all of whose entries are 77( A) is in M n ( ~) +. Thus 
[(Pjk o 7J)(A)] ~ 0 for each n-state [Pjk] of~. and 7] is completely positive. 0 

THEOREM 2.11. Let 7] be a positive linear mapping of a C*-algebra Ill into a 
C*-algebra ~ such that 17(!) = I. Then 

(i) ET* ETE ~ ET*TE when E, T E ~(X) for some Hilbert space X and E 
is a projection; 

(ii) 17(A)*17(A) ~ 17(A* A) for each normal operator A in Qt. 

PROOF. (i) For each x in X, 

(ET* ETEx, x) =II ETEx 11 2 ~II TEx 11 2 = (ET*TEx, x). 

Hence ET* ETE < ET*TE. 
(ii) Let 7Jo be 7Jilll0, where Ql0 is the C*-subalgebra of Ill generated by A, A*, 

and I. Then 7]o is a positive linear mapping, 7]o(I) = I, and lllo is abelian. 
From (iv) of the preceding theorem, 7]o is completely positive. Suppose ~ acts 
on a Hilbert space :X. From (iii) of Proposition 2.5, there is a Hilbert space X 
containing :J{ and a representation cp of Ql0 in ~(X) such that 

Ecp(B)E = 7Jo(B)E (= E7Jo(B)E) 

for each B in Ql0 , where E is the projection of X onto :X. Thus, from (i), we 
have that 

77(A)*77(A)E = 7Jo(A)* E770(A)E = Ecp(A)* Ecp(A)E 
~ Ecp(A)*cp(A)E = Ecp(A* A)E 
= 7Jo(A* A)E = 17(A* A)E. 

It follows that 
77(A)*77(A) ~ 7J(A* A). 0 

CoROLLARY 2.12. Let {An} be a sequence of positive operators on a Hilbert 
00 

space :J{ with I: An weak-operator convergent to I. n=l 
(i) There is a positive linear mapping 'fJ ofC(X) into ~(:X) such that 'TJ(l) =I 

and 'TJ(/n) =An, where X is the compact subset {0, ~: n = 1, 2, ... } ofrJ. and fn 
takes the value 1 at ~ and 0 at other points. 

(ii) There is a Hilbert space X containing :J{ and a sequence {En} of pro-
jections on X with sum I such that EEnE = AnE for each n, where E is the 
projection in ~(X) with range :X. 

PROOF. (i) Since I:;:o=l (Anx, x) converges for each x in :X, with fin C(X), 
00 00 00 

L l(f(~)Anx, x)l ~II f II L I(Anx, x)l =II f II L(Anx, x) < oo. 
n=l n=l n=l 

Hence, by polarization, I:;:o=l f( ~)An converges in the weak-operator topology 
to some 'TJ(/), and 'fJ is a positive linear mapping with the desired properties. 
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(ii) From (iv) of Theorem 2.10, the mapping TJ, constructed in (i), is completely 
positive and TJ(1) =I. Thus, from (iii) of Proposition 2.5, there is a Hilbert space 
X containing :J{ and a representation cp of C(X) on X such that Ecp(f)E = 
TJ(/)E, where E is the projection of X onto JC. Since {/n} (as in (i)) is an 
orthogonal family of idempotents in C(X), { cp(fn)} is an orthogonal family {Fn} 
of projections on X and EFnE = AnE for all n. IfF= L~=l Fn, then 

00 00 00 

EFE = LEFnE =LAnE= (LAn)E =E. 
n=l n=l n=l 

Thus E::; F and I-F::; I- E. Let E1 be F1 +I-F and En be Fn for n in 
{2, 3, ... }. Then L~=l En= I and EEnE = AnE for all n. D 

3. Multi-states and Kaplan's representation 

In [Kal), Kaplan studies multi-states and constructs a representation asso-
ciated with an n-positive functional akin to the GNS representation. In this 
section, we present some of Kaplan's results as well as some further information 
about multi-states. 

We begin by recognizing that the linear space JY( of n-linear functionals [Pjk] 
(matrices of bounded linear functionals Pik on a C*-algebra Ql with entrywise 
addition and multiplication by scalars) endowed with the structure of a partially-
ordered vector space whose positive cone is the family of n-positive functionals 
on Ql is order isomorphic to the dual of Mn(Ql) with its dual order. 

PROPOSITION 3.1. The mapping TJ that assigns p to [Pjk], where 

n 

p([Ajk]) = :2: Pik(Ajk), 
j,k=l 

is a linear order isomorphism of JY( onto Mn (Ql)#. 

PROOF. Of course, TJ is linear. Given a (j in Mn(Ql)#, let O'jk(A), for A in 
m, be &(Ajk), where Ajk is then x n matrix whose (j, k) entry is A and all of 
whose other entries are 0. Then (j = TJ([ujk]). Thus TJ is onto. If TJ([Pjk]) = 0, 
then 0 = p(Ajk) = Pik(A) for each A in Qt. Hence Pik = 0 for all j and k. It 
follows that TJ is a linear isomorphism of JY( onto Mn (Ql)#. 

It remains to prove that TJ is an order isomorphism. Suppose that [Pjk] is 
n-positive and [Ajk] ~ 0. Then 

n 

'P([Ajk]) = L Pik(Ajk) = ([Pjk(Ajk)]a, a)~ o, 
j,k=l 

where a is the vector (1, ... , 1) inC"'. Thus pis a positive element of Mn(2t)#. 
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Suppose pis positive and [Ajk] 2:: 0. Let a' be (a1 , ... , an) in en. Then 
n 

j,k=l 
n 

= 2:::: Pik(Aikaiak) = p([aiakAik]) 2:: 0, 
j,k=l 

since [ajakAjk] 2:: 0 from (i) and (v) of Lemma 2.7. It follows that [Pjk(Ajk)]2: 0 
and that [Pjk] is n-positive. Thus 1J is a linear order isomorphism of M onto 
Mn(2t)#. 0 

Kaplan's theorem (with an added uniqueness condition) follows. 

THEOREM 3.2. If [Pjk] is an n-positive functional on a C*-algebra 2l, there 
is a representation 7r of 2l on a Hilbert space :J{ and n vectors x, ... , Xn in :J{ 

such that {x1, ... , Xn} is generating for 1r(2l) and 

Pik=Wxk,xi07r (j,kE{1, ... ,n}). 

If 7r1 is another representation of 2l on a Hilbert space :J{' and x~, ... , x~ are n 
vectors in :J{' such that { x~, ... , x~} is generating for 1r1 (2l) and Pi k = Wx~ ,xj o 7r1 

for all j, k in { 1, ... , n}, then there is a unitary transformation U of :J{ onto 
:J{' such that U Xj = xj for all j in {1, ... , n} and 1r(A) = U*1r'(A)U for all A 
in 2l. 

PROOF. Let 2t be the n-fold direct sum of 2l with itself (as a linear space) 
and let (A, B}, for elements (A1, ... , An) (= A) and (B1, ... , Bn) (= B) be 
LJ,k=l Pik(Bj Ak)· The conjugate bilinearity of (, } is established by routine 
computation. We show that (, } is positive semi-definite on 2l. For this, note 
that [AjAk] 2:: 0 and that p (= 1J([Pjk])) is a positive functional on Mn(2l) from 
Proposition 3.1. Thus 

n 

(A, A}= I: Pjk(AjAk) = p([AjAk]) 2:: 0. 
j,k=l 

It follows, now, from polarization ( cf. [K-R I, Proposition 2.1. 7]) that 
(A, B} = (B, A). 

Let B be (AA1, ... ,AAn)· Then 
n 

(B, B)= 2:::: Pik(AjA* AAk) = p([AjA* AAk]) 
j,k=l (3) 

::; II A 11 2 p([Aj Ak]) = II A 11 2 (A, A). 
For the last inequality, note that A* A ::; II A 11 2 I and that [AJH Ak] 2:: 0 when 
H 2:: 0. (View AJ H Ak as (Ht Aj )* H 112 Ak-) The family 2l0 of null vectors in 
2t is a subspace (from the Cauchy-Schwarz inequality) and a submodule of 2t as 
a left 2l-module (from (3)). If we define (A+ 2l0 , B + 2l0) to be (A, B), then 
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( , ) is a positive definite inner product on the quotient vector space 2't/2io. Let 
J( be the completion of this quotient vector space and let 1r(A) be the (unique) 
bounded extension to J( of the linear operator on the quotient vector space 
induced by the left-module action of A in Ql on 21. From (3), ll1r(A) II ~ II A II· 
Routine computation shows that 1r is a homomorphism of Ql into 'B(Jf). As 
noted, ll1r II ~ 1. Since 1r(I) is the identity operator on Jf, Wx o 1r is a functional 
of norm 1 whose value at I in Ql is 1 for each unit vector x in Jf. Thus Wx o 1r is 
a state of 21, and (1r(A)x, x) is real when A is self-adjoint. It follows that 1r(A) 
is self-adjoint when A is, and 1r(T*) = 1r(T)* for each Tin 21. 

Denote by li the element of 2i whose only non-zero coordinate is I at the j th 
coordinate. Let Xj be li + 2io. Note that if [Pjk] is ann-state, each Pii is a state 
of Ql and (xi, Xj) = Pii (I) = 1. In this case, each Xj is a unit vector. In any 
event, 

(wxk,xi o 1r)(A) = (1r(A)xk, Xj} = Pik(A) 
for all j, k in { 1, ... , n}. Moreover, the linear span of the set of vectors { 1r(A )x j : 
A E 21, j E {1, ... , n}} is 2i/2io, which is dense in Jf. 

With 11"1 and x~, ... , x~ as in the statement, note that 

n 2 n 

II:~= 7r(Aj)Xjll = L (7r(AjAk)Xk,Xj} 
j=l j,k=l 

n n 2 

= L Pik(AjAk) = III>'(Aj)xjll , 
j,k=l j=l 

for all A1, ... , An in Ql. Thus, the mapping that assigns the vector "£j=1 1r1(Aj )xj 
in J{' to the vector L:7=l 1r(Aj )xi in J( is a well-defined linear isometry of a dense 
submanifold of J( onto a dense submanifold of Jf'. This mapping has a unique 
extension to a unitary transformation U of J( onto J('. For U, as defined, we 
have that 

n n n 
U*1r'(A)U (L 1r(Ai )xi) = U*1r'(A) (L 1r'(Ai )xj) = U* (L 1r1(AAi )xj) 

j=l j=l j=l 
n n 

= L 1r(AAj )xj = 1r(A) (L 1r(Aj )xj). 
j=l j=l 

Since U*1r'(A)U- 1r(A) is bounded and {x1, ... ,xn} is generating for 7r(Ql), 
1r(A) = U*1r'(A)U for all A in Ql. D 

Kaplan [Kal; Proposition 2.6] identifies the n-positive functionals on a 
C*-algebra with the completely positive mappings of that algebra into Mn(<C). 

THEOREM 3.3. If [pjk] (= p) is an n-positive functional on a C*-algebra 
Ql, the mapping W,o that assigns to A in Ql the matrix [Pjk(A)] is a completely 
positive mapping of Ql into Mn(<C). If W is a completely positive mapping of Ql 
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into Mn(C) and Pik(A) is the (j, k) entry of'I!(A), then [Pjk] (= p) is n-positive 
on 2{ and 'Ilp ='I!. 

PROOF. Let [pi k] ( = p) be an n-positive functional on 2!. We shall express 'I! P 

as a composition of completely positive mappings. From Kaplan's representation 
(Theorem 3.2), there is a Hilbert space ~' n vectors x1, ... , Xn in ~' and a* 
homomorphism 1r of 2{ into 13(~) such that { x1, ... , xn} is generating for 1r(2!) 
and Pik = Wxk,xi o 1r. Let {yl, ... ,yn} be an orthonormal basis for a space ~o 
containing {x1, ... , xn} and letT be the (unique) bounded operator that maps 
Yi to xi for each j in { 1, ... , n} and annihilates the orthogonal complement of 
[y1, ... , Yn]· Let cp be the* isomorphism of 13(~o) with Mn(C) that assigns to 
each S in 13(~o) its matrix relative to the basis {y1, ... , Yn}· The (j, k) entry 
of cp(T*1r(A)T) is 

(T*1r(A)Tyk,Yj} = (1r(A)xk.xj} = Pik(A). 

Thus 'I! p(A) = cp(T* 1r(A)T) for each A in 2!, and 'I! P is a composition of com-
pletely positive mappings (cf. Proposition 2.3 (i) and (ii)). 

Suppose, now, that 'I! is a completely positive mapping of2! into Mn(C), and 
Pik(A) is the (j, k) entry of 'I!(A). From Theorem 2.9 (ii), [<7jk o 'I!] is n-positive 
on 2{ for each n-positive functional [ujk] on Mn(C). Let ei be the vector in en 
with 1 at the jth coordinate and 0 at all others. Then [wek,ei] is an n-state of 
Mn(C) and Wek,ei assigns to each matrix its (j, k) entry. Thus [wek,ei o 'I!] is 
n-positive on 2!, and Wek,ei o 'I!= Pik· By definition, the (j, k) entry of'I!p(A) is 
Pik(A). Thus 'I!= 'Ilp. D 

4. Diagonalizing n-states 

If {p1, ... ,pn} is a set of states of (or positive linear functionals on) a C*-
algebra 2!, the n-functional [Pi k] all of whose off-diagonal entries are 0 and whose 
diagonal entry Pii is PiU = 1, ... , n) is ann-state (positive functional) on 2!. 
In this case, [Pjk] is said to be in diagonal form. 

In this section, we consider the possibility of diagonalizing n-states (positive 
functionals) p ( = [pi k]) on 2!. We mean by this that we try to locate a unitary 
element 0 in Mn(2!) such that the state PO of (positive functional on) Mn(2!) is 
in diagonal form, where 'Po([Ajk]) = p(O[Ajk]O*) and pis the state of (positive 
functional) on Mn(2!) that is the image of p under the order isomorphism TJ of 
Proposition 3.1. To say that a state if of (positive functional on) Mn(2!) is in 
diagonal form is to say that if(Ajk) = 0 when j =/= k, where Ajk is the matrix 
with A in 2{ at the (j, k) entry. 

If if is in diagonal form and Er is l,.r, then 

Thus Er is in the centralizer if. Of course, Er ~ Es for all r and s (since 
I;Jrs =Iss = Es and Irsi;. = Er)· Suppose, conversely, that the centralizer 
of if contains projections F1 , ... , Fn having sum I, each equivalent to E1 , and 
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Ej Vj*Vj, Fj Vj Vj* for some 0 in Mn(Qi). We shall see that 1ru is in 
diagonal form, where 0 is the unitary element vl + ... + Vn. For this, note that 
EjAjk = Ajk,AjkEj = 0, and UEjOj* = Fj, when j -:f k. Thus, when j -:f k, 

1ro(Aik) = o-(0 AikO*) = o-(0 EiAikO*) 
= o-(0 EiO* 0 AikO*) = o-(PiO AikO*) 
= o-(0 Ai kO* Pi) = o-(0 Ai kO* Pi 00*) 
= o-(0 AikEi 0*) = o-0 (0) 
= 0. 

Hence 1ro is in diagonal form. 
From the preceding discussion, we see that the problem of diagonalizing an n-

state (positive functional) depends, largely, on finding appropriate projections in 
its centralizer. In a more general context (infinite and not necessarily discrete), 
diagonalizing a state amounts to finding a maximal abelian self-adjoint subal-
gebra in its centralizer. At the very least, 1r must have n orthogonal equivalent 
projections with sum l in its centralizer if it can be diagonalized. 

In [H-T], Herman and Takesaki answer a question raised by Glimm (at the 
1967 Baton Rouge conference) by producing a factor :M of type III and a (faith-
ful normal) state of it whose centralizer contains only scalar multiples of the 
identity. Since Mn(M) is * isomorphic to J\1, there is a state of Mn(M) whose 
centralizer consists of scalar multiples. This state and its associated n-state are 
not diagonalizable (in our present sense). 

If~ is a semi-finite von Neumann algebra, the situation changes significantly. 
We prove that the centralizer of each normal state of ~ contains a maximal 
abelian self-adjoint subalgebra of~- This proof is effected with the aid of tracial-
weight, Radon-Nikod:Ym techniques. We begin with a sequence of preparatory 
results. 

LEMMA 4.1. The support of a normal state of a von Neumann algebra lies in 
the center of the centralizer of that state. 

PROOF. Let~ be a von Neumann algebra, w be a normal state of~. E be 
the support of w, and A be an element of the centralizer of w. Since w( I- E) = 0 
and 0:::; I-E, I-E and E are in the centralizer of w (for 0 = w((I- E)B) = 
w(B(I- E)) when BE~). Hence EA(I- E) is in the centralizer of w, and 

0 = w((I- E)A* EA(I- E))= w(EA(I- E)A* E). 

Since E is the support of w and 0 :S EA(I- E)A* E, we have that 

EA(I- E)A* E = 0. 

Hence EA(I- E) = 0. As A* is also in the centralizer of w, EA*(I- E) = 0 
and (I- E)AE = 0. It follows that 

A = EAE +(I- E)A(I- E), 
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whence 
EA=EAE=AE. 0 

LEMMA 4.2. If w is a normal state of a von Neumann algebra :R, E is the 
support of w, and :Rw is the centralizer of w, then :Rw is the direct sum of 
(I- E):R(I- E) and :RwE. 

PROOF. From Lemma 4.1., E is in the center of :Rw. Thus :Rw is (isomorphic 
to) the direct sum of :Rw(I- E) and :RwE. We complete the proof by showing 
that :Rw (I - E) = (I - E):R( I - E). Since I - E is in the center of :Rw, 

:Rw(I- E)= (I- E):Rw(I- E) ~ (I- E):R(I- E). 

Suppose S and T are in :R. Since w(I - E) = 0, I- E is in the left and right 
kernels of w. Thus 

0 = w(S(I- E)T(I- E))= w((I- E)T(I- E)S). 

In particular, (I- E)T(I- E) E :Rw, whence (I- E)T(I- E) E :Rw(I- E). It 
follows that 

(I- E):R(I- E) ~ :Rw(I- E). 
Combining this with the reverse inclusion, noted above, we conclude that 
:Rw(I- E)= (I- E):R(I- E). 0 

LEMMA 4.3. If :R is a von Neumann algebra, w is a normal state of :R, and 
E is the support of w, then the centralizer of wiE:RE is :RwE. 

PROOF. From Lemma 4.1, E is in the center of the centralizer of w so that 

E:RwE = :RwE ~ :Rw, :RwE ~ E:RE. 

Hence :RwE is contained in the centralizer of wiE:RE (= wo). 

Suppose T in :R is such that ET E is in the centralizer of w0 . With S in :R, 
we have that 

w(SETE) = w((I- E)SETE) + w(ESETE) = w(ESETE) 
= w(ETESE) = w(ETESE) +w(ETES(I- E)) 
= w(ETES). 

Thus ET E E :Rw and ET E E :Rw E. It follows that the centralizer of wo is 
contained in :RwE. From these inclusions, we have that the centralizer of w0 is 
:RwE. 0 

LEMMA 4.4. Let :J-C be a Hilbert space and /{ be an operator on :J-C such that 
0 < K <I. Suppose that K and I -K have null space (0). If H =(I -Kr K- 1 , 

then I< and {Hit: t E ~} generate the same von Neumann algebra. 

PROOF. Let A be the von Neumann algebra generated by K. Then H is 
a positive self-adjoint operator affiliated with A, and Hit ( = exp it log H) E A 
for each real t. It remains to show that the von Neumann algebra Ao (~ A) 
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generated by {Hit: t E JR} coincides with A. From [K-R I; Theorem 5.2.1], 
A is isomorphic to C(X) for some extremely disconnected compact Hausdorff 
space X. Suppose I< corresponds to k in C(X) via this isomorphism and H 
in S(A) corresponds to h in S(X) via the extension of this isomorphism. (See 
[K-R I; Theorem 5.6.19].) Then Hit corresponds to exp(it log h) in C(X). 
Let Xn be the closure of the set of points in X at which log h takes values 
in (-log n, log n) with n an integer greater than 1. Then Xn is the closure of 
the set of points where h takes values in (n- 1 , n) and where k takes values in 
((n + 1)- 1, n(n + 1)-1 ). Let en be the characteristic function of Xn and En be 
the projection in A corresponding to en. Suppose 0 < t < 7r(2log n )- 1 . The 
shorter open arc O:t of the unit circle in C with boundary points exp( -it log n) 
and exp( it log n) lies in the right half plane. The set of points x of X such that 
exp( it log h( x)) E O:t is the union of open sets Om,t consisting of those points x 
in X where 

log h( x) E (27rmC 1 - log n, 21rmC 1 + log n) 

and m is some integer. Under the assumption that t < 7r(2log n)- 1 , the intervals 
(27rmr 1 -log n, 21rmr 1 +log n) are disjoint for distinct m so that the Om,t are 
disjoint sets. Since X is extremely disconnected, the sets Om,t have disjoint 
closures, and the characteristic functions em,t of these closures correspond to 
orthogonal projections Em,t in A. Let Ft be 2:::::=-oo Em,t. Then Ft is a spectral 
projection for exp( it log H) (corresponding to O:t) so that Ft E Ao. Thus 

00 00 00 

1\ F2,..(rlogn)-1 = 1\ ( L Em,27r(rlogn)-1) =FE Ao. 
r=5 r=5 m=-oo 

Now Eo,t = En for each real t, whence En :S F. Suppose that F - En =J. 
0. We are going to derive a contradiction from this assumption. Let Y be 
the non-null clopen subset of X corresponding to F - En. Since F - En ~ 

L::::=-oo Em,27r(rlogn)-' for all integers r greater than 4, Y is a subset of the clo-
sure ofU:=-oo Om,2,..(riogn)-' for each such r. Now Yn(U:=-oo Om,2,..(rlogn)-') 
is an open subset Yr of Y, and Y\Yr- is a clopen subset of Y that does not meet 
the closure ofU:=-oo Om,2,..(riogn)-' and, at the same time, is contained in this 
closure. It follows that Y\Yr- = 0, whence Yr is an open dense subset of Y. Ap-
plying the Baire Category theorem to the (non-null) compact Hausdorff space 
Y, we have that n::5 Y,. =J. 0. Let y be a point of this intersection. Then for 
each integer r greater than 4, there is an integer m such that y E Om,21r(r log n )-', 

whence 

logh(y) E ((mr-l)logn,(mr+ 1)logn). 

If this m were 0 for some 7', then y would lie in Xn and Y n Xn would be non-
empty, from which we would have the contradiction, (F- En)En =J. 0. Thus, for 
each integer r greater than 4, 

log h(y) E ( ( mr - 1) log n, ( mr + 1) log n) 
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for some non-zero integer m. Suppose log h(y) 2:: log n. We can choose an integer 
r greater than 4 such that log h(y) < ( r - 1) log n. Then log h(y) lies in none 
of the intervals ( ( mr - 1) log n, ( mr + 1) log n) with m an integer. Similarly, if 
log h(y) ~ -log n, we chooser, an integer greater than 4, such than -log h(y) < 
( r- 1) log n, whence ( -r + 1) log n < log h(y). Again, log h(y) lies in no interval 
((rm- 1) logn, (rm + 1) logn) with man integer. From this contradiction, we 
conclude that En = F E Ao. 

Let g be the function on {0} U {ei11 : -~71' ~ (} ~ ~71'} that assigns 0 to 0 and 
(}to ei 11 • Then g is a continuous function on sp(HitEn), where t = 7r(2logn)- 1 , 

whence g(HitEn) E Aa. Now g(HitEn) = t(logH)En. Thus (logH)En E Aa. 
Again, En exp((log H)En) = HEn E Aa. Let f be the function defined on 
{0} U [n- 1, n] that assigns (1 + s)- 1 to s in [n- 1, n] and 0 to 0. Then f is 
a continuous function on sp(HEn), and Enf(HEn) = I<En E Aa. Since En 
corresponds to en, the characteristic function of the closure of the set of points 
at which k takes values in ( ( n + 1 )- 1 , n( n + 1 t 1), and k takes the values 0 
and 1 at nowhere-dense subsets of X, we have that V~= 1 En = I. It follows that 
I< E Ao. Thus A = Ao. D 

THEOREM 4.5. If p is a faithful normal semi-finite tracial weight on a von 
Neumann algebra ~' w is a normal state of~' and J{ is a positive operator in 
the unit ball of~ such that J{ and I - [{ are one-to-one, I - [{ E Fp (the set 
of positive A in~ such that p(A) < oo), and p((I- I<)A) = w(KA) = w(AK), 
then the centralizer of w consists of those operators in ~ that commute with [{. 
The centralizer of w contains a maximal abelian self-adjoint subalgebra of~. 

PROOF. We note that, under the given conditions, w is faithful. To see this, 
suppose A> 0 and w(A) = 0. Then A is in the left kernel of w, and 

0 = w(KA) = p((I- I<)A) = p(A~(I- K)A~), 
from [K-R II; Proposition 8.5.1]. Thus A~(I- K)A~ = 0 since pis faithful. 
It follows that (I- K)~A~ = 0 and (I- K)A = 0. As I- J{ is one-to-one, 
A = 0. Thus w is faithful. 

The hypotheses of [K-R II; Lemma 9.2.20] are satisfied and the modular 
group { O"t} corresponding to w is implemented by the unitary group, t --+ Hit 
with tin~. where H = K- 1(!- K) "1 ~. From [K-R II; Proposition 9.2.14], 
A is in the centralizer of w if and only if Hit AH-it = A for each real t. From 
Lemma 4.4, {Hit: t E ~} and J{ generate the same von Neumann algebra. Thus 
A commutes with each Hit if and only if A commutes with J{. It follows that 
the centralizer of w contains each maximal abelian subalgebra of ~ to which 
[{ belongs. In particular, using Zorn's lemma, there is a maximal abelian self-
adjoint subalgebra of~ contained in the centralizer of w. D 

As noted at the beginning of this section, the problem of diagonalizing an 
n-state (positive functional) amounts to finding n orthogonal projections in the 
centralizer of then-state (positive functional) each equivalent to the main matrix 
units. We can now use Theorem 4.5 and the results of [Kad2] to locate the 
required projections. We need some minor preparation before we can apply 
[Kad2]. 
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LEMMA 4.6. Suppose that E is a countably decomposable projection in a von 
Neumann algebraS. If A and B are inS, then R(AEB) is countably decompos-
able in S. 

PROOF. Since 

R(AEB) :S R(AE) "' R(EA*) :S E 

(from [K-R II; Proposition 6.1.6]), and a projection equivalent to a countably 
decomposable projection in S is countably decomposable in S, we have that 
R(AEB) is countably decomposable in S. 0 

From [K-R IV; Exercise 7.6.13], the support of a normal state of a von 
Neumann algebra is a countably decomposable projection in the algebra. Let 
:Ro be a von Neumann algebra, :R be Mn(:R0 ), and Ejk be the element of :R 
whose (j, k) entry is I and all of whose other entries are zero. Let Eo be the 
support of the normal state p of :Rand let [Ajk] be the matrix representation of 
Eo. From Lemma 4.6, R(EjjEoEkk) is countably decomposable, and EjjEoEkk 
has all its entries 0 with the possible exception of its (j, k) entry, which is Ajk· 
Moreover, Ejj EoEkkEoEjj has all its entries 0 with the possible exception of its 
(j,j) entry, which is AjkAJk· Now R(EjjEoEkkEoEjj) = R(EjjEoEkk) so that 
R(EjjEoEkkEoEjj) is countably decomposable. Thus R(AjkAjk) (= R(Ajk)) is 
countably decomposable in :R0 • It follows that V},k= 1R(Ajk) (=F) is a count-
ably decomposable projection in :Ro. Let Fa be the projection in :R with F at 
each diagonal entry and 0 at all others. Since F Aj k = Aj k for all j and k in 
{1, ... , n }, we have that F0 Eo =Eo and p(A) = p(F0 AFo) for each A in :R. Now 
Fo:RF0 is the algebra of n x n matrices with entries in F:R0 F ( = :Rt), a countably 
decomposable von Neumann algebra. Suppose that we can find a unitary oper-
ator V in Mn(:Rt) that diagonalizes the restriction of p to F0:RF0 (= Mn(:Rt)). 
Let W be the diagonal matrix in :R with I - F at each diagonal entry. Then 
V + W is a unitary operator in :R (= Mn(:R0 )) that diagonalizes p. 

The theorem that follows is proved in [Ka2; Proposition 3.18], for the case 
where :R0 is countably decomposable and pis faithful, by making use of the results 
[K-R II; Lemma 9.2.19) and [Kad2 Theorem 3.18). That proof proceeds by 
a limiting state argument and some detailed spectral theoretic considerations. 
The simplification and extension contained in the next theorem results from a 
systematic use of information about the centralizers of normal states. The basic 
ingredients of the argument, namely, the results [K-R II; Lemma 9.2.19) and 
[Kad2; Theorem 3.18], remain the same however. 

THEOREM 4.7. Each normal state p of the von Neumann algebra :R ofn x n 
matrices over a semi-finite von Neumann algebra :R0 is diagonalizable. 

PROOF. In the notation of the discussion preceding this theorem, :R1 is count-
ably decomposable and semi-finite [K-R IV; Exercise 6.9.16]. From that 
discussion, it will suffice to prove that the restriction of p to Mn (:Rt) is diago-
nalizable. By applying [K-R II; Proposition 11.2.21], we see that Mn(:Rt) 
is semi-finite since it is the tensor product of :R1 with the algebra of (bounded) 
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operators on ann-dimensional Hilbert space. At the same time, Mn(:Rl) is, with 
:R1, countably decomposable. Thus we may assume that :'Ro and :R are countably 
decomposable as well as semi-finite. 

From Theorem 4.5, the centralizer :Rp of p contains a maximal abelian self-
adjoint subalgebra A of :R. From [Kad2; Theorem 3.18], A contains n orthog-
onal equivalent projections {F1, ... , Fn} with sum I. Let {Ejk} be the matrix 
unit system for :R described earlier in this section. As established at the begin-
ning of the proof of [Kad2; Theorem 3.19], Fj and Ekk are equivalent in :R for 
each j and k in { 1, ... , n}. If Vj is a partial isometry in :R with initial projection 
Fj and final projection Ejj, then LJ=l Vj ( = U) is a unitary operator in :R such 
that U Fj U* = Ej j. Let u be the state of :R defined by 

u(A) = p(U* AU) (A E :R). 
Then, since Fj E :Rp, for each j in {1, ... , n}, 

u(EiiA) = p(U*U FjU* AU)= p(U* AU Fi) 
= p(U* AU FjU*U) = p(U* AEjjU) 

= u(AEii)· 
It follows that each Ejj is in the centralizer of u. From the discussion at the 
beginning of this section, u is in diagonal form, whence p is diagonalizable. 0 

To apply Theorem 4.7 to ann-positive functional iJ" (= [ujk]) on the von Neu-
mann algebra :R0 , we must have that its image (r is a normal positive functional 
on :R. The natural condition that yields this is the requirement that each Uj k be 
normal. In this case, we refer to iJ" as a normal n-state (positive functional). It 
follows from Theorem 4.7 that iJ" is diagonalizable when it is normal and :'Ro is 
semi-finite. 

5. Automatic continuity 

We defined ann-positive functional on a C*-algebra Qt as a matrix [Pjk] (= p) 
oflinear functionals satisfying the indicated positivity condition (Definition 2.8). 
When n is 1, an n-positive functional is a positive functional in the usual sense, 
and therefore, norm continuous (cf. [K-R I; Theorem 4.3.2]). Is it true, for 
arbitrary n, that each Pik is norm continuous? 

In Theorem 5.3, we answer this question affirmatively. Some preparation is 
needed. 

DEFINITION 5.1. With p (= [Pjk]) ann-functional on the C*-algebra Qt and A 
([Ajk]) in Mn('2t), we write p(A) for the matrix [Pjk(Ajk)] in Mn(C) and refer to 
the associated linear mapping of Mn('2t) into Mn(C) as the Hadamard mapping 
(corresponding to p). 

If p(A*) = p(A)*, we say that p is hermitian. When p is n-positive, it is 
hermitian since each element of Mn ('21) is a linear combination of (at most four) 
positive elements. With A the element of Mn('2t) whose (j, k) and (k, j) entries 
are the elements A and A*, respectively, in Qt and all of whose other entries are 0, 
if pis hermitian, then p(A) has Pik(A) and Pki(A*) as its (j, k) and (k,j) entries, 
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respectively. Since p(A) is hermitian, we have that Pik(A) = Pki(A*) = pi;i(A), 
here <>*, for a functional <r on 2t, is defined by <>* (A) = <>(A*). It follows that 
Pik = Pki for all j and k when [pjk] is a hermitian n-functional on 2( and, in 
particular, when [Pi k] is n-positive. 

To prove our automatic continuity result for n-positive functionals on 2(, we 
shall make use of the following elementary lemma (whose proof we include for 
the reader's convenience). 

LEMMA 5.2. If A is then x n matrix whose (j,j) and (k,k) entries are a! 
and bJ, respectively, whose (j, k) and ( k, j) entries are A and A*, respectively, 
where A is in 'B(JC) for some Hilbert space JC, and all of whose other entries 
are 0, then A is positive if and only if a and b are real and non-negative and 
II A 11 2 S ab. 

PROOF. Let z be a vector in the n-fold direct sum of JC with itself. Suppose 
that x and y are the j and k coordinates of z, respectively. Then 

(Az, z) =(ax+ Ay, x) + (A*x +by, y) 

=all x 11 2 + bll Y 11 2 + 2Re(Ay, x). 
(4) 

If II A 11 2 S ab with a and b real and non-negative, then, using the inequality 
(a~ II x II- b~ll y 11) 2 2: 0, we have that 

-2Re(Ay, x) S 2I(Ay, x)l S 211 Ay 1111 x II 

S 2(ab)~ II Yllll x II S all x 11 2 + bll Y 11 2 · 

If follows that (Az, z) 2: 0 and that A 2: 0. 
Suppose, conversely, that (Az, z) 2: 0 for all z. Choosing for z, first, a vector 

whose only non-zero entry is a unit vector in the j th coordinate and, then, a 
vector whose only non-zero entry is a unit vector in the k th coordinate, we see 
that a 2: 0 and b 2: 0. If a= 0, then -2Re(Ay, x) S bll y 11 2 for all vectors x and 
yin J{ (from (4)). Choosing x to be -tAy, with t a positive real number, we 
see that Ay = 0 for all y. Thus A= 0 in this case, and II A 11 2 S ab. If a > 0, 
choosing -a- 1 Ay for x in (4), we have that 

II Ay 11 2 S abll Y 11 2 

for ally in JC. Thus II A 11 2 S ab. 0 

LEMMA 5.3. If p (= [Pik]) is an n-positive functional on a C*-algebra 2t, 
then each Pii is positive, Pi k = Pki for all j and k, and each Pi k is bounded with 
bound not exceeding (II Pii II II Pkk ll)t · 

PROOF. If A is the n x n matrix whose only non-zero entry is the positive 
element A of2t at the (j,j) entry, then A 2:0. Thus p(A) 2: 0, whence Pii(A) 2: 
0. It follows that each Pjj 2: 0 and that II Pii II = pjj(I). We noted earlier that 
p is hermitian and that Pi k = Pkj for all j and k. 

Let A be the matrix whose (j, k) and ( k, j) entries are A in 2t and A*, respec-
tively, whose (j,j) and (k,k) entries are I and all of whose other entries are 0. 



NOTES ON THE GELFAND-NEUMARK THEOREM 53 

Suppose, further, that j =/= k and II A II ~ 1. Then A 2:: 0 from Lemma 5.2. Thus 
p(A) 2:: 0. Now Pik(A) = Pkj(A) = Pki(A*). Again, from Lemma 5.2, where 
J1: is one dimensional and ~(J1:) is <C, 1Pik(A)I2 ~ PiiU)Pkk(I). It follows that 
II Pik II~ (II Pii 1111 Pkk II)!. 0 
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