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The central topic of the treatise under review is the theory of derivations of

operator algebras (of which, the author is the leading developer) and the in-

terpretation of that theory in the framework of quantum physics. This theory

is, in the reviewer's opinion, destined to become one of the most important

research areas in analysis serving, as it does, as the basis of the theory of non-

commutative differential equations. The principal mathematical construct dealt

with in this book is the C*-algebra ('operator algebra'). It is most easily viewed

as a family sé of bounded operators on a Hubert space ßf to which the ad-
joint operator A* belongs when A belongs to it. This family is assumed to

be an algebra under the usual addition and multiplication of transformations

of a vector space into itself and to contain all limits of sequences of elements

in it relative to the metric induced on all bounded operators by the operator

bound (norm). Such algebras have an "algebraic" existence (independent of

an underlying Hubert space) by virtue of the Gelfand-Neumark theorem [GN]

that characterizes the C*-algebras among the Banach algebras as those with an

involution {A —<■ A*) imitating the algebraic properties of the adjoint opera-

tion on Hubert space transformations and satisfying \\AA* || = ||/í||||yá*||. Sakai

proceeds from the abstract characterization. It is best to do this, with models

for physical systems in mind; it provides the possibility of focusing on those

families of 'states' appropriate to the intended model. In mathematical terms,

a state of a C*-algebra sé is a linear functional p on sé (to the complex

numbers C) that takes the value 1 at / (the unit of the algebra—if there is no

unit, we assume that p has bound 1 ) and assumes nonnegative real values on

positive (selfadjoint) operators in sé .

In the same vein, Sakai proceeds from his characterization of von Neumann

algebras (he uses the older terminology 'W*-algebras' but not the original termi-

nology of von Neumann [vN], 'rings of operators', when operator algebras were

first introduced) as those C*-algebras that are the (continuous) duals of Banach

spaces. In represented form, the von Neumann algebras are those C*-algebras

3Í acting on a Hubert space %f that contain the 'strong-operator' limits of

nets of operators in 32 (if {Aa}a€A, is a net of operators Aa in 32 and A is a

(bounded) operator such that Aax -» Ax for each x in %?, then A is in 32).

In the first chapter (pp. 1-15), Sakai defines the objects and states the ba-

sic results he needs (largely without proofs). Among these are a few of the

main facts about C*- and von Neumann algebras. He provides some of the

harmonic and complex-analytic function theory results to be used as well as

some perturbation theory. There is a brief discussion of the group Aut(sé ) of

(adjoint-preserving) automorphisms of sé and of representations a of a lo-

cally compact group G by such automorphisms of sé (q isa homomorphism,

satisfying appropriate continuity conditions, of G into \\i\{sé)). The triple

{A, G, a)  is a C*-dynamical system or W*-dynamical system when sé  is a
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W*-algebra (and a satisfies the continuity suitable for that case).

Among the preparatory topics in the first chapter is the theorem that makes

clear the underlying rationale for studying operator algebras and the basis for

their fundamental role as models for quantum physical systems. This theorem

states that each commutative C*-algebra (with unit) is isomorphic to the alge-

bra C(X) (under pointwise operations) of complex-valued, continuous func-

tions on a compact (locally compact when there is no unit in sé) Hausdorff

space. The isomorphism preserves all discernible structure. Each C(X) is (iso-

morphic to) a commutative C*-algebra. Thus the classes of abelian C*-algebras

and of function algebras are coextensive. The noncommutative C*-algebras are,

then, the right model for "noncommutative function algebras" and the natural

framework for "noncommutative analysis", precisely the analysis needed for

quantum mechanics. The possibility of (a "small amount" of) noncommuta-

tivity {QP - PQ = ihl) provides the soil for growing the "uncertainty" and

"indeterminacy" that are the basic characteristics of quantum mechanics.

From the inspired insight of Bohr's ad hoc quantum rules to the initial search

of Heisenberg ("matrix mechanics") and Schrödinger ("wave mechanics") for a

suitable mathematical model and then to Dirac's brilliant volume in which the

C*-algebra is all but defined (much in the way that the fiber bundle is all but

defined in, and is basic to, E. Cartan's work on global differential geometry), the

formal mathematical model for quantum physics that emerges is the operator

algebra. In classical mechanics, with X the phase space of the system, the real

functions in C(X) are the (bounded) observables of the system. The self adjoint

elements in the operator algebra sé play this role for quantum mechanical

systems. The dynamical (time) evolution of a system can be modeled as a

one-parameter group of automorphisms (the Heisenberg picture of "moving

observables") or as a one-parameter family of transformations of the space of

(pure) states (the Schrödinger picture of "moving states"). The space of pure

states corresponds to the phase space in the classical case.

In loose terms, the natural way to view the one-parameter group t —> at of

(time-evolution) automorphisms of the operator algebra is as t -* etS , where ô

is a linear mapping of sé into sé satisfying Leibniz's rule, ô(AB) — Ô(A)B +

Aô(B). Such mappings ô are, of course, the derivations of sé (into sé). A

special class of these derivations ôj arises from elements T in sé , where

¿t(A) = AT - TA. Such derivations are said to be inner. It can happen

that some operator H not in sé has the property that AH - HA lies in sé

whenever A is in sé , in which case, A —> AH - HA is a (not necessarily

inner) derivation of sé . The operator H that generates the group of time-

evolution automorphisms of sé in this manner corresponds to the Hamiltonian

of the physical system being modeled (and to the total energy "observable").

"Bracketing" with the "moving" observable ([a,(A),H] = a,(A)H - Hat{A))

amounts to time differentiation of at(A). If we interpret the group property

of í -» «i in terms of the differential information encoded in H, we arrive at

Schrödinger's equation dy/{t)/dt = iHy/(t).
These considerations underscore a key part for the theory of derivations in

the relation between operator algebras and quantum physics. Answering a ques-

tion of Kaplansky [K], Sakai [SI] showed that each (everywhere-defined) deriva-

tion of a C*-algebra sé into itself is necessarily bounded. This would result,

in applications to physical systems, in the Hamiltonian being bounded, which
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is too restrictive. The theory must encompass unbounded (not-everywhere-

defined) derivations. In the commutative case, a result of Singer states that

the only everywhere-defined derivation of C(X) into itself is 0. In the case

of a noncommutative C(X), a C*-algebra sé acting on a Hilbert space ^,

each everywhere-defined derivation S of sé into itself has an automatic special

continuity property that permits its extension to a derivation ô of the smallest

von Neumann algebra sé containing sé (sé is the strong-operator closure of

sé ). The main theorem in the theory of bounded derivations states that each

bounded derivation of a von Neumann algebra is inner. (This is the "derivation

theorem".) Sakai's own contribution to the proof of this theorem was crucial

(and consummately ingenious).

The theory of bounded derivations is deftly and elegantly presented in Chap-

ter 2 (pp. 16-54). This chapter includes a thumbnail description of the Haag-

Kastler-Araki formulation of quantum field theory, the Araki and Borchers the-

orems on "observability" of the energy, uniformly continuous dynamical sys-

tems and ground states, and a discussion of extending the "positive energy" or

"spectrum" condition from real «-space to more general Lie groups.

With the bounded derivation and norm-continuous, automorphism group

theory firmly in place, Sakai turns, in Chapter 3 (pp. 55-100), to a development

of the theory of unbounded derivations. Here the domain of the derivation

is assumed to be a dense subalgebra of the algebra. The emphasis is on *-

derivations (those that preserve adjoints). Sakai begins by noting six specific

examples, the last three directly from physics (the Ising models, the Heisenberg

models, and the algebra of the (infinite) anticommutation relations on Fock

space). He goes on to discuss, in detail, the closability of derivations, pointing

out that, while everywhere-defined derivations are automatically bounded, the

unbounded derivation need not even be closable (that is, have graph with closure

the graph of a linear transformation). He develops the results on "well-behaved"

elements in the domain and well-behaved derivations (related to vanishing of

the derivation at maxima) and the notion of "approximate innerness" (there

is a sequence H„ in sé such that 3(A) = lim i[Hn, A] for each A in the

domain of ô). The next topic in the chapter deals with the domain of a closed

*-derivation and is focused on the theorem (3.3.7) that if A is a selfadjoint

element in the domain, then f(A) is in the domain for each twice continuously

differentiable function /. In the commutative case, the same is true for aQ-

function /, but this is not valid in the general noncommutative C*-algebra.

The next section of the chapter deals with the generator problem: when the

closure of a closable *-derivation of sé generates a (strongly continuous) one-

parameter group of *-automorphisms of sé . Various conditions involving being

well behaved are proved for a *-derivation to have a generating closure. The sets

of analytic, entire, and geometric elements in the domain are studied. In the

section that follows that, results on unbounded derivations of commutative C*-

algebras are noted. The chapter ends with a section on transformation groups

and unbounded derivations.

The fourth and final chapter (pp. 101-206) deals with C*-dynamical sys-
tems. The concept of approximately inner C*-dynamics is defined (loosely,

a one-parameter group of *-automorphisms that is the limit, in an appropri-

ate sense, of a sequence of such groups generated by inner derivations). The
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(general) normal *-derivation of sé is defined as one with domain the union

of an ascending sequence of C*-subalgebras, each containing the unit of sé

and such that the restriction of the derivation to each subalgebra is inner. If

such a sequence (or nest for sé) can be found for which each subalgebra is

a full matrix algebra over C, then sé is a UHF algebra (these were studied

by Glimm [G]). They provide the algebras (especially one of them) for a large

class of physical systems (among them, quantum lattice and spin systems). The

normal ""-derivations apply to these algebras and such nests. They were intro-

duced by Sakai [S2] in a paper in which he proves his nice theorem (appearing

in this chapter as Corollary 4.5.3) to the effect that each closed *-derivation of

a UHF algebra has a (matrix) nest for the algebra in its domain (each normal *-

derivation has the union of such a nest as its precise domain). It was a question

by N. M. Hugenholtz on the possibility of realizing a dynamical evolution group

on a UHF algebra as an approximately inner evolution group that started Sakai

toward this line of investigation. Much of what is being done in this chapter

is inspired by the C*-algebra approach to quantum statistical mechanics. Some

of the important physical concepts—ground state, equilibrium state, surface

energy, phase transition—appear in strict mathematical form in this chapter;

numerous detailed and interesting results are proved about them. The devel-

opments centering around the Powers-Sakai conjecture (Is each C*-dynamical

system based on a UHF algebra approximately inner?) and the "core problem"

(Is a generator of such a dynamics the closure of a normal *-derivation?) are

another main focus of this chapter.

Sakai's book makes for pleasant browsing and really worthwhile reading (but

be prepared to concentrate, Sakai does not waste words!). It is evident that

the book has been carefully proofread. Inevitably, typos remain (e.g., some

occurrences of A at the bottom of p. 104 and the top of p. 105 should be sé)

but they are scarce. If we must have something to quibble over, there is no

index of notation (which causes no trouble even when browsing quickly). This

volume is a gem!

References

[GN]   I. M. Gelfand and M. A. Neumark, On the imbedding of normed rings into the ring of

operators in Hilbert space, Mat. Sb. 12 (1943), 197-213.

[G]      J. G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960),

318-340.

[K]      I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-853.

[vN]    J. von Neumann, Zur Algebra der Funkionaloperationen und Theorie der normalen Opera-

toren, Math. Ann. 102 (1930), 370-427.

[SI]     S. Sakai, On a conjecture of Kaplansky, Tôhoku Math. J. 12 (1960), 31-33.

[S2]     _, On commutative normal * -derivations, Comm. Math. Phys. 43 (1975), 39-40.

Richard V. Kadison

University of Pennsylvania


