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Triangular Algebras-Another Chapter 
RICHARD V. KADISON 

ABSTRACT. Basic constructions involving triangular operator algebras are 
studied. 

Introduction. 

In [K-S), the subject of triangular operator algebras is introduced and the ba-
sic theory of these algebras is developed. Along with the basic theory, a detailed 
account of the special class of (maximal) triangular algebras called ordered bases 
(also, hyperreducible algebras) concludes that article. At the time that article 
was prepared, I. M. Singer and this author developed further results involving 
some constructions with triangular algebras. These results were formulated as a 
fourth chapter with the intention of including it in [K-S). Before [K-S) appeared, 
it was decided to remove chapter 4 from [K-S) and to include it in a later article 
with further results on constructions. That later article did not materialize. 

In the intervening years, a number of people have had access to that chap-
ter. This area of mathematics, non-self-adjoint operator algebras, has flourished; 
the chapter has been quoted. At the conference which was the occasion for the 
present Proceedings, several people inquired about that chapter. These proceed-
ings provide an especially appropriate means for making the chapter generally 
available. The chapter appears in the remainder of this article exactly as it was 
formulated in the latter part of 1958. 
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Chapter IV. Operations on Triangular Algebras 

We study operations on families of triangular algebras which yield triangular 
algebras again. For the most part, the difficulties we shall encounter stem from 
the problem of proving maximality in those circumstances where it is to be 
reasonably suspected that the triangular algebra constructed is maximal. 

4.1. Restrictions of triangular algebras. We begin by studying restric-
tions of triangular algebras to projections. For this purpose, we define "an 
interval" in a triangular algebra to be a projection which is the difference of two 
hulls. Thus, an interval is an element of the core. 

LEMMA 4.1.1. If T is a maximal triangular algebra with diagonal A, core 
C, and hulls {Ea}, then each cyclic projection in the core is the intersection of 
projections in C which are the unions of intervals, and each projection in C is a 
strong limit point of finite unions of intervals. 

PROOF. We shall not be concerned with T, but just with C and the fact that 
{ Ea} is totally ordered, closed under unions and intersections, generates C, and 
each minimal projection in C is an interval ( cf. Lemma 2.3.4). We note that 
all these properties are preserved under restriction to a projection in C (i.e., 
{EaP} is totally ordered, etc.). If Eisa projection inC, and M is the union 
of the minimal projections in C, then M is a union of intervals; so that E is the 
intersection of unions of intervals provided E(I- M) is such an intersection in 
C(I- M). We may assume that C has no minimal projections. Suppose that 
we have our result in the case where I is a cyclic projection for C. Then, for 
arbitrary C, if E is a cyclic projection, G is the intersection of the unions of 
intervals containing it, and G f:. E, let F be a cyclic projection in G- E; so that 
E + F is cyclic. By assumption, E in C(E +F) is the intersection of unions of 
intervals in C( E +F). Thus, if x is a generator for F, there is a union of intervals 
in C(E +F) containing E but not x. This union has the form F'(E +F), with 
F' a union of intervals in C. It follows that F' contains E and does not contain 
x. However, F' contains G (by definition of G) and G contains x. Thus G =E. 
We may assume that C has a generating vector. 

Each union of intervals is a strong limit point of finite unions of intervals, so 
that it suffices to approximate projections strongly with such unions. Moreover, 
since C is abelian, finite sums of orthogonal cyclic projections are cyclic, whence 
each projection in C is a strong limit point of cyclic projections in C. It remains 
to establish that each projection, E, in C is the intersection of the unions of 
intervals containing it, under the assumption that C has a generating vector. 

If xis a unit vector generating I (i.e., I= [C'x], where C' is the commutant 
of C), then x is a separating vector for C. Let Q be [Cx], so that Q lies in 
C'. Since x is separating for C, the mapping, C -+ CQ, of C onto CQ is a *-
isomorphism, and CQ is maximal abelian on (Cx]. Since the properties of C and 
{ Ea} are preserved under *-isomorphisms, we may assume that C is maximal 
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abelian (has no minimal projections, and x is a generating and separating unit 
vector for C). From Theorem 3.3.1, we may assume, in addition, that C is the 
multiplication algebra of L2 (0, 1) under Lebesgue measure, {E,} is indexed by 
points of [0, 1] so that E, is multiplication by the characteristic function of [0, a]. 
Then E is multiplication by the characteristic function of some measurable set, 
S. Regularity of the measure allows us to conclude that Sis the difference of an 
intersection of open sets and a set of measure 0; so that E is the intersection of 
the projections corresponding to these open sets. Now, each open set is a union 
of (disjoint) open intervals, and each open interval corresponds to a projection 
which is an interval (relative to {E,}). The proof is complete. 

Note that if two intervals have a non-zero intersection their union is an inter-
val (immediate, from the definitions of "hull" and "interval"). In the preceding 
lemma, therefore, we may speak of "sums of orthogonal intervals"in place of 
"unions of intervals." Moreover, the intersection of a finite family of orthogonal 
sums of intervals is again such a sum, so that the intersection of the preceding 
lemma may be taken over a totally-ordered family of unions of intervals. 

THEOREM 4.1.2. 1fT is a triangular algebra with diagonal A, core C, hulls 
{ Ea}, and P is a projection in A, then PT P is triangular with diagonal AP, 
core CP and hulls { E,P}. If, in addition, T is maximal triangular and P is a 
finite sum of intervals inC, then PT P is maximal triangular. 

PROOF. It is clear that PT P is an algebra. If A in PT P is self-adjoint, then 
A lies in A, since T is triangular with diagonal A and contains A. Thus A lies 
in AP. Now AP is maximal abelian on P(1i) and is contained in PTP; from 
which it follows that PT P is triangular with diagonal AP. 

That E,P is a hull in PT P follows from: 

for each T in T. Moreover, if F is a hull of PT P, then F = h( F)P, which lies 
in {E,P}. In fact, clearly F ~ h(F)P; and h(F) = [TF(1i)], so that Ph(F) = 
[PTPF(1i)] ~ F. The core of PTP is the von Neumann subalgebra of AP 
generated by {E,P}, which is CP. Thus, in particular, PT Pis hyperreducible 
or irreducible if the same is true forT. 

We suppose, now, that T is maximal and P lies in C. To demonstrate the 
maximality of PT P, we shall show that if T is an operator which generates 
with PT P a triangular algebra, To, and T = PT P, then T and T generate a 
triangular algebra, Ti. Hence, T lies in T, by maximality ofT, so that T lies in 
PT P. We begin by showing that T leaves each hull ofT invariant, so that the 
same is true for each operator in T1 . 

If E is a hull in T, then ET*(I- E) lies in T, by Lemma 2.3.2. Now, 
ET*(I- E)= EPT* P(I- E)= PET* (I- E)P lies in PT P, and (I- E)TE = 
P( I- E)PT PEP lies in To, a triangular algebra. Thus, the self-adjoint operator, 
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ET*(I- E)+ (I- E)TE lies in To and hence in A. In particular, it commutes 
with E, so that 

0 =(I- E)[ET*{I- E)+ {I- E)TE]E =(I- E)TE, 

and T E = ET E. Thus, T leaves E invariant. 
If S is a self-adjoint operator in T1 and F and G are orthogonal intervals in T, 

then one of h(F)G, h(G)F is 0; so that in either case, FSG = (GSF)* = 0, by 
in variance of the hulls ofT under S. With Q a finite sum of orthogonal intervals, 
the same is true for I- Q, whence 0 = QS(I- Q) = (I- Q)SQ. 

According to Lemma 4.1.1, Po in C is a strong limit point of a family, { Q/}, 
of finite sums of orthogonal intervals. Thus PoS(I- Po) and (I- Po)SPo are 
weak limit points of {Q-yS(I- Q-y) = 0} and {(I- Q-y)SQ-y = 0}, respectively. 
Both P0S(I- Po) and (I- P0 )SP0 are, therefore, 0. 

Observe, next, that, with S in To, 

where To, ... , Tn are operators in T and k1 , ... , kn-l are positive integers (the 
sum is finite). Now, 

PSP = PToP + L PT1PTk 1 P ... PTkn- 1 PTnP, 

which lies in T0 (recall that T = PTP), and PSP is self-adjoint; whence PSP 
lies in A. Thus 

S =(I- P)S(I- P) +(I- P)SP + PS(I- P) + PSP 
=(I- P)S(I- P)+ PSP 

lies in A if (I - P)S( I - P) does. 
If P is an interval, then I- P = P1 + P2, where P1(= h(P)- P) is a hull 

orthogonal to the interval, P 2 (= I- h(P)). In this case we have 

j,h=1,2 

where the second equality follows from the fact that P1 is a hull, since P is an 
interval, so that PTnP1 = 0; and P2T1P = 0. Since S commutes with C, 

0 = P1 (I - P)S(I - P)P2 

= P1 (I- P)To(I- P)To(I- P)P2 + L P1T1 PTk 1 ••• Tkn- 1 PTnP2. 

Thus 
2:: P1T1PTk 1 ••• Tkn- 1 PTnP2(= -P1(I- P)To(I- P)P2) 

lies in T; and (I- P)S(I- P) is a self-adjoint operator in T, hence in A. It 
follows that PT P is maximal when P is an interval. 
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Let { Q1, ... , Qn} be a finite set of orthogonal intervals in T so indexed that 
h(Q; )Qk = 0 if and only if j < k; and let P be L, Q;. If S is an element of 
a triangular algebra, S, on P(1i) containing PTP, then Q;SQk = 0 if k < j, 
for QkS*Q; is in T (from Lemma 2.3.2, since T is maximal), so that QkS*Q; 
is in PT P which is contained in S. Hence Q;SQk + QkS*Qi lies in A and 
Q;SQk = 0, as asserted. Moreover, QkSQ; lies in PTP, if k < j, from what 
we have just noted. Since Q;TQ; is maximal, Q;TQ; = Q;SQ; which contains 
Q;SQ;. Thus, S(= L,QkSQ;) lies in PTP, and PTP is maximal triangular. 

In the maximality proof of the preceding theorem, it would not be a difficult 
technical matter to pass from the finite sum of orthogonal intervals to arbitrary 
projections in the core, with the aid of Lemma 4.1.1 if we knew that T were 
strongly closed. Making use of the "triangular direct product", we describe in 
Section 4.3 ( cf. Question 10 and the remarks following) a class of maximal trian-
gular algebras which illustrate the fact that such algebras need not be strongly 
closed. This does not imply however that maximality can fail upon restriction 
to arbitrary projections in the core, for a very special strong limit is necessary in 
the general case. The transition from sums of intervals to arbitrary core projec-
tions by strong limit methods seems to hinge upon subtle questions involving the 
multiplicity decomposition of the core and its relation to the triangular algebra. 
We have placed such matters outside the scope of the present investigation. 

REMARK 4.1.3. Despite the difficulties which arise in the case of the general 
core, it is a simple matter to show that the restriction of a hyperreducible max-
imal triangular algebra, T, to a core (diagonal) projection, P, is maximal (and 
hyperreducible, in view of Theorem 4.1.2). In fact, if A is the diagonal and {Ea} 
the hulls ofT, then {EaP} are the hulls of the triangular algebra PTP with 
diagonal AP, by Theorem 4.1.2. If T = PT P and T leaves each EaP invariant, 
then 

TEa= TPEa = PEaTPEa = EaPTPEa = EaTEa. 
Thus T lies in T, and hence in PT P. Since AP is maximal abelian and generated 
by the totally-ordered family, { EaP}, the set, PT P, of all operators leaving each 
EaP invariant is maximal triangular ( cf. Theorem 3.3.1 ). 

If the maximal triangular algebra is irreducible instead of hyperreducible, then 
restriction to core projections (0 and J) preserves maximality by default. 

REMARK 4.1.4. For the most part, the maximality of a triangular algebra 
appears in a proof to assure us that the hulls form a totally-ordered family or 
to guarantee the conclusion of Lemma 2.3.2 (viz. if T = ET(I- E), with E a 
hull, then T lies in the algebra). It seems worth noting that if T is a triangular 
algebra which has either of these properties and P is a projection in the diagonal 
ofT, then PT P has the corresponding properties. Indeed, if {Ea}, the hulls of 
T, form a totally-ordered family, then so do { EaP}, the hulls of PT P. If T has 
the property of Lemma 2.3.2, and T = EPT(P- EP), withE a hull in T, then 
T = PTP = ET(I- E), so that T lies in T and hence in PTP. 
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4.2. Triangular direct sums. If T1 and T2 are triangular algebras with 
diagonals A1 and A2, respectively, acting on the Hilbert spaces 1£1 and 1£2 , 

respectively; the direct sum, Tr EEl T2 , of Tr and T2 is triangular, for 

(Tr El172)* n (1i EEl 72) = (71.* EEl Tn n (1i E1172) 
= (71.* n 1i) EEl (72* n 72) 
= A1 EEl A2, 

and A1 E11A2 is maximal abelian. However, 1i El172 cannot be maximal triangular 
even if 1i and 72 are, for the algebra generated by 1i El172 and an arbitrary oper-
ator mapping 1{2 into 1{1 and annihilating 1{1 is triangular. (Without checking 
this, we can conclude that T1 EEl 72 is not maximal triangular by noting that the 
projections of1i1 E111i2 onto 1{1 and 1{2 are non-zero, orthogonal hulls for T1 E11T2, 
in contrast with the conclusion of Lemma 2.3.3.) The fact that such operators 
may be added to 1i EEl 72 with the resulting algebra still triangular indicates 
the route we must take in forming a "triangular direct sum" of 7i and T2 which 
will be maximal when 1i and 72 are. Of course, we can adjoin the operators 
mapping 1{1 into 1{2 instead of those mapping 7{2 into 1{1; so that we must 
give preference to one of 1{1 or 1{2 • Interpreted in terms of "triangular direct 
sums" of arbitrary families of triangular algebras, this means that the indexing 
set should be totally ordered. 

DEFINITION 4. 2 .1. If f is a totally-ordered set and { T-y hEr is a family of 
triangular algebras, T-y, acting on Hilbert spaces, 1i-y; we denote by "I: EElt T..," the 
set of all bounded operators, T, on 1{, the direct sum of {'H-y hEr, such that 
P-yTP-r' = 0 if r' < r, and P-yTP-r' E T..,, if r = r' where P-r is the projection of 
1l on 1i-y. We refer to LEEltT.., as "the triangular direct sum of {T-rhEr·" 

With the notation of this definition, we prove: 

THEOREM 4.2.2. The set, L @17..,(= T), is a triangular algebra with diago-
nal, l:E11A-r(= A), and core, l::EElC-r(= C), if and only if each T-y is triangular 
with diagonal, A-r, and core, C-y; so that T is irreducible if and only if each T-y 
is, and T is hyperreducible if and only if each T.., is. The hulls ofT are either I 
or projections of the form L-r<-r' P-y + E-r'• where E-y' is a hull of T-y' and P-y is 
the identity ofT..,. Moreover, T is maximal triangular if and only if each T-y is. 

PROOF. If T is triangular with core, L @C-y, then P-y' is in this core, so 
that P-y'T P-y'( = T-y') is triangular with core, P-y'CP-y' ( = C-y' ), and diagonal, 
P-r'AP-r'(= A-r'), from Theorem 4.1.2. On the other hand, if each T-y is tri-
angular with diagonal A-y, and T is a self-adjoint operator in T, then 

when r' < r, and P-yTP-r is a self- adjoint operator in T-y, hence in A-r, for each 
r. Thus T = l:P-rTP-y E A; and since T contains l::EElA-r(= A), Tis triangular 
with diagonal A. 
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If we establish that the projections described in the statement of this theorem, 
are the hulls of T, it will follow at once that L: $C-y ( = C) is the core ofT. Now, 
if E = L-r<-r' P-y + E-r', then 

T E = (L: P-r" )T( 2: P-r + E-r') 
-y" -y<-y' 

= ( 2: P-r" )T( 2: P-y + E-y') 
-y"'5_-y' -y<-y' 

= ( 2: P-y" )T( 2: P-y) + ( 2: P-r" )T E-r' + P-r' T P-y' E-r' 
-y" <-y' -y<-y' -y" <-r' 

= ( 2: P-r" )T( 2: P-y + E-r') + E-y' P-y' T P-y' E-y' 
-y" <-r' -y<-y' 

-y" <-y' -y<-y' -y<-y' 

-y" <-y' -y<-y' 
forT in T. Thus Eisa hull in T. 

If F is a hull in T, then F lies in A, so that F = L: F-y, with F-y in A-r. Since 
T contains L: $T.y and F is invariant under T, each F-y is a hull in T.y. If some 
F-y' -=/: 0, r < r', x is a unit vector in the range of F-y', and y is an arbitrary 
vector in the range of P'Y; the transformation, z--+ (z, x)y, is bounded and lies 
in T. Since F is invariant under T, F-r = P-r, for r < r'. It follows that F = I 
or F = L-r<-r' P'Y + F-y', for some r'. 

If some T-y' is not maximal and S-y' is a maximal triangular algebra containing 
T-y', then (L-r;h' E&t T-y) E&t S-y' is a triangular algebra containing T properly. 
Suppose, now, that each T.y is maximal triangular. If B ft T, then P-y' B P'Y' ft T.y', 
for some r', or P-y'BP'Y -=/: 0, for some r',r, with r < r'. LetS be the algebra 
generated by T and B, so that S contains the algebra generated by T.y' and 
P-y' BP-y'. If P-y' BP-y' ft T.y', this last algebra contains a self-adjoint operator 
not in A-y', hence not in A, since T'Y' is maximal triangular. If P'Y' B P-y -=/: 0, 
with r < r', then P-yB* P-y' lies in T, so that P-y'BP-y + P-yB* P-r'• a self-adjoint 
operator, lies in S but not in A (e.g., does not commute with P-y)· Thus, in 
either case, S is not triangular, and T is maximal. 

REMARK 4.2.3. An intrinsic characterization of a triangular direct sum is 
easily had: If the diagonal, A, of a triangular algebra, T, contains an orthog-
onal family of projections, { P-y}, indexed by a totally-ordered set, such that T 
contains each bounded operator B for which P-yBP-r' = 0 when r' < r and 
P-y B P-y E T, then T is isomorphic to L-y E&t P-y T P'Y. 

4.3. Tensor products of triangular algebras. The theory which we de-
velop in this section bears very little resemblance to the standard tensor product 
theories for algebraic structures. Each step uncovers new pathological phenom-
ena which require special consideration. There is still much to be desired in the 
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way of generality-our more incisive results impose the restriction that one of 
the algebras of the product be an integer-ordered basis. The list of questions 
at the end of this section gives some indication of the points which still need 
clarification. 

The constructions we shall describe enable us to give an example of a maxi-
mal triangular algebra which is not strongly closed (see Question 10). For this 
purpose, we shall need some information concerning ideals in hyperreducible al-
gebras. In the following lemma, we make reference to "a diagonal process relative 
to a maximal abelian algebra."This subject is treated in detail in [5]. 

LEMMA 4.3.1. If T is a hyperreducible maximal triangular algebra with di-
agonal A then each two-sided ideal in T whose intersection with A is (0) is 
contained in one maximal with respect to this property. Moreover, if D is a di-
agonal process relative to A, each two-sided ideal ofT which is annihilated by D 
is contained in one which is maximal with respect to this property-there is just 
one such maximal ideal and it has intersection (0) with A. If E and I- F are 
hulls in T, then ETF is a two-sided ideal in T and when EF = 0, is contained 
in each one of the two types of maximal ideals just mentioned. 

PROOF. Since the union of an ascending chain of two-sided ideals in T having 
intersection (0) with A or annihilated by D has, itself, intersection (0) with A 
or is annihilated by D, respectively, an application of Zorn's lemma establishes 
the existence of the maximal ideals in question. A diagonal process is additive, 
so that the sum of two ideals annihilated by D is annihilated by D. Thus, there 
is a unique two-sided ideal maximal with respect to annihilation by D which 
contains all other such ideals. 

Clearly ET F is a linear subspace ofT. With B and T operators in T, 

BETF = EBETF E ETF, 

since E is a hull; while 

ETFB = ETFBF E ETF, 

for, with I-F a hull, B(I- F)= (I- F)B(I- F), whence F B = F BF. Thus 
ET F is a two-sided ideal ofT. Now D(ETF) = ED(T)F = EFD(T) = 0, when 
EF = 0; so that ET F is contained in the maximal 0- D diagonal ideal, in this 
case (cf. [5, Lemma 2]). 

Suppose, now, that I is a two-sided ideal ofT maximal with respect to the 
property of having intersection (0) with A, and that EF = 0. If B + ET F =A, 
with B in I and A in A, then 

EBE + ETFE = EBE = EAE = AE E I 
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(I- E)B(I- E)+ (I- E)ETF(I- E)= (I- E)B(I- E) 
= (I- E)A(I- E) 
= A(I- E) E I. 
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Thus A = AE + A(I- E) is in I, and since In A = (0), A = 0. Hence 
(I+ ETF) nA = (0) and I contains ETF. 

Finally, we note that if I is a two-sided ideal in T annihilated by V then 
0 = V(A) =A, for each A in In A, whence In A= (0). 

We shall refer to the ideals having intersection (0) with A as "A-disjoint 
ideals" and those annihilated by V as "diagonal 0 ideals." 

LEMMA 4.3.2. IfT is a hyperreducible maximal triangular algebra with diag-
onal A, then all maximal diagonal 0, and A-disjoint ideals in T coincide with the 
strongly (and weakly) closed ideal consisting of those operators in T annihilated 
by V, the unique diagonal process relative to A, in the case where A is totally 
atomic. If A is non-atomic, each such ideal has strong closure equal toT, in the 
separable case. 

PROOF. If A is totally atomic and { F-y} is its (generating) set of minimal 
projections, then the mapping V defined by 

V(T) = L F-y T F-y 
"Y 

is the unique diagonal process relative to A ( cf. [5, Theorem 1]). If T E T and 
D(T) = 0, then F-yTF-y = 0, for each -y; and with Sin T, 

F-ySTF-y = F-ySTh(F-r)F-r = F-ySh(F-y)TF-y 
= F-yS[h(F-y)- F-r + F-y]TF-y = F-yS[h(F-r)- F-y]TF-y 
= F-y[h(F-r)- F-y]S[h(F-r)- F-y]TF-y = 0. 

(Recall that, with F-y a minimal projection in A, h(F-y)- F-y is a hull as well as 
h(F-y).) Thus V(ST) = 0. Similarly, V(TS) = 0; and the set, I, of elements in 
T annihilated by Vis a two-sided ideal in T (disjoint from A). Suppose, now, 
that I' is a two-sided ideal in T disjoint from A. Then, for each T in I' and 
each -y, F-yTF-y E Ani'; so that F-yTF-y = 0. Thus, V(T) = 0, and I'~ I. 

If A is non-atomic and the underlying Hilbert space is separable, then T is uni-
tarily equivalent to the algebra of bounded operators on L2 (0, 1) with Lebesgue 
measure, leaving each of the projections E>., corresponding to multiplication by 
the characteristic function of [0, A], invariant. We may assume that T is this 
algebra. Define Va, "translation by a," for a~ 0, as follows: (Vaf)(-y) = f(-y+a) 
if 1 +a ~ 1, and (Vaf)('Y) = 0 if 1 +a > 1. A simple computation shows that 
Va has bound less than or equal to 1 and leaves each E>. invariant, so that Va 
lies in T. Choose n so that 1/n < a; let Fj be the projection corresponding 
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to multiplication by the characteristic function, Xi, of[~,*]; and note that 
Fj VaFj = 0. In fact, if a+ 1 ~ 1, then 

(Fi VaFi f)( 'Y) = Xi (!)Xi (J + a)f(a + !) = 0; 

since 1 and 1 +a cannot both lie in[~,*]; and if a+ 1 > 1, (Fj VaFjf)(!) is 
again 0. Thus, since 

n n n 

LFi =I, Va = (LFj)Va(LFk) = LFjVaFk. 
j=l j=l k=l k>j 

Now Fj VaFk = EFj VaFkF, where E = :2::{=1 Fh and F = L~=k Fh. Note that 
E and I-F are hulls and that EF = 0, when j < k; so that Fj VaFk and, hence 
Va, lie in each maximal A-disjoint and 0-diagonal ideal of 7, for a > 0. Since left 
and right multiplication by a fixed operator are strongly continuous, the strong 
closure of such an ideal is a two-sided ideal in 7. We conclude by noting that Va 
tends strongly to I. In fact, since !!Vall ~ 1, we need establish this limit relation 
only for the set of generators of some dense linear manifold, and it is obvious for 
the characteristic functions of intervals. 

We proceed to our tensor product considerations. With C1 and C2 algebras 
of operators on Hilbert spaces 1i1 and 1i2, respectively, we write C1 ®" C2 for 
the algebra of operators on the tensor product, 1i1 ®1i2, generated by operators 
of the form C1 0 I and I 0 C2, with C1 in C1 and C2 in C2 . For von Neumann 
algebras, nl and n2' we shall adhere to the customary notation, nl 0 n2' for 
the von Neumann algebra generated by R 1®"R2. By C1®B2, we shall mean the 
algebra of all infinite matrices with entries from cl which give bounded operators 
by action on 1i1 0 1i2 in its representation as a direct sum of copies of 1i1 (a 
number of times equal to the dimension of 1i2 ). If S is a set of operators on 
1i1 and A2 is a totally-atomic maximal abelian algebra on 1i2, we shall denote 
by S ®A, B2 the set of those matrices with a finite number of non-zero entries 
from S acting on 1i 1 ®1i2 relative to a diagonalizing basis for A 2. This notation 
adopted, we can state: 

DEFINITION 4.3.3. With 71 and 72 triangular algebras whose diagonals are 
A 1 and A2, respectively, we denote by 71 ®' 72 the algebra generated by 71 0" 72 
and A 1 0 A 2 . If Ti and 72 are hyperreducible maximal triangular algebras with 
hulls {Eo:} and { Ff3}, respectively, we write Ti 0 72 for the set of operators on 
1i1 0 1i2 leaving each projection in {I 0 Ff3} and { Ea 0 I} invariant. If, in 
addition, 72 is an integer-ordered basis and T1 is an A 1-disjoint two-sided ideal 
inTi, we denote by 7lll ®72 the linear space generated by Ti ®72 and T1®A 2 B2. 

With the notation of this definition: 

THEOREM 4.3.4. The algebra, 71 ®' 72, is triangular with diagonal A1 0 A2. 
The algebra, 71 0 72, is hyperreducible and contains 71 0' 72. The algebra, 
7 1r, 0 72, is triangular with diagonal A1 0 A2. If T1 is a maximal A1-disjoint 
ideal in 71 and 7 is a maximal triangular extension ofTi 1 , ®72, then relative to 
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the ordered basis, T2 , each operator ofT has a matrix representation with entries 
from It below the diagonal and from Ti elsewhere. If T2 is finite dimensional, 
Ttr, ® T2 is maximal. The hulls ofT are { Ecr ® I}, for those hulls, Ea, of Tt 
which are not the hull of a minimal projection in At, and {Ea®I -G®(I -F,13)}, 
for those projections, Ea, which are the hull of some minimal projection, G, in 
At, and each hull, F,13, in 72. The core ofT is (Ate® I) EB (Atd ®A2), where 
Atd =AtE and Ate =At(/- E), withE the sum of the minimal projections 
in At. 

PROOF. From [1; Sect. 6, Prop.14, p.102], (At ® A2)' = A~ ® A~ = 
At® A2; whence At® A2 is maximal abelian. An operator, T, in Tt ®1 T2 lies 
in Tt ® 8 2. If Tis self-adjoint, then each entry of a matrix representation forT 
has its adjoint some other entry, and since all such entries lie in Tt, a triangular 
algebra with diagonal At, each entry ofT lies in At. Thus T lies in At ® 82. 
Symmetrically, T lies in 8t ® A2. Now, 

(At ® 82) n (8t ® A2) = (A~ ®I)' n (I® A~)' 

~ R(At ®I, I® A2)' 

=(At ®A2)' =At ®A2. 

Thus T lies in At® A2, and Tt ®' 72 is triangular. 
With Tt in Tt and T2 in 72, it is clear that Tt ® T2 leaves Ea ®I and I® F,13 

invariant; whence Tt ®' 72 is a subset of Tt ® T2. As the set of operators which 
leave each of a fixed set of projections invariant, Tt ® T2 is an algebra. Now 
{ Ecr ® I} and {I ® F,13} generate At ® I and I ® A2, respectively, and these 
last generate At ® A 2, a maximal abelian algebra. Each self-adjoint operator in 
Tt ® T2 leaves each Ea ®I and I® F,13 invariant and so commutes with them and 
lies in At® A 2. Thus Tt ® T2 is triangular and hyperreducible. 

With T2 an integer-ordered basis, Ttr, ® T2 is triangular. For the remainder 
of the proof, each matrix representation to which we refer will be understood 
relative to a diagonalizing basis for A2 with its T2 order. In this representation 
the elements of Ti ® T2 are precisely those bounded operators whose matrices 
have all entries in Tt and 0 entries below the diagonal. Note that It ®.4 2 8 2 

is a linear space, so that Tir, ® 72 consists of operators which are sums of an 
operator in Tt ®T2 and one in It ®.4 2 82. To show that Ttr, ®T2 is an algebra it 
will suffice to show that the product, (T + S)(T' + S'), of two such sums is again 
such a sum. Clearly TT' lies in Ti ® T2 and SS' in It ®..t 2 82. We show that 
TS' lies in Ttr, ®T2 (a similar proof holds forST'). Since S' is in It ®.4 2 82 and 
T2 is integer ordered, there is an interval, F, in T2 which is the sum of a finite 
number of atoms, F-y 1 , ••• , F-rn, in 72, such that S' = (I® F)S'(I ®F). Let 
{F-y} be the set of atoms in T2. We write 1 < 1' when h(F-y) < h(F-y'). With 
It < 17 < · · · < In, note that if It ~ 1 ~ In then 1 E bt, ... , In}, since F is 
an interval. For each 1, 6, (I® Fh)TS'(I ® F-y) is 0 unless 1 E bt, ... , In}. We 
examine the entries of T S' below the diagonal. If In < fJ then fJ rf. bt, ... , In} 
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(I 0 F6)TS'(I 0 F-r;) =(I 0 F6)T(I 0 F)S'(I 0 F-r;) 
=(I 0 F6)T(I 0 Fh(F))S'(I 0 F-y;) 
=(I 0 F6h(F))T(I 0 F)S'(I 0 F-r;) = 0 

since h(F) = h(F-y,.), F6h(F-y..) = 0, and T (in 7t®72) leaves I®h(F) invariant. 
Thus (I 0 (I- h(F)))TS' = 0 and 

TS' =[(I 0 F)+ (I 0 (h(F)- F))+ (I 0 (I- h(F)))]TS'(I 0 F) 
=(I 0 F)TS'(I 0 F)+ (I 0 (h(F)- F))TS'(I 0 F). 

The first term lies in It ®..4, 82, since F is the sum of a finite number of atoms, 
the entries of T lie in 7t, and those of S' in It (an ideal in 71). The second term 
lies in 7t 0 72, since, with F an interval, all its entries below the diagonal are 0 
and all entries lie in 7i. Thus TS' lies in 7i.r1 0 ~. 

If His a self-adjoint operator in 7i.r1 ®72, then as we have seen (all entries lie 
in 7i), H lies in At 0 8 2 . Since all entries of H below the diagonal lie in It and 
It nAt = (0), all such entries are 0, and with H self-adjoint, all entries above 
the diagonal are 0. The diagonal entries lie in At, so that H lies in At 0 A2; 
and 7tr1 0 72 is triangular. 

We assume, now, that It is a maximal At-disjoint ideal in 7t and that 7 is 
a maximal triangular extension of 7tr1 0 ~. If BE 7, then 

lies in 7 and has 0 entries with the possible exception of the /, 8 position where 
the entry has the form (I- Eoc)CEoc, C a bounded operator on 1ft. Thus Bi 
has at most one non-zero entry, EocC*(I- Eoc), an element of It, if Eoc is a 
hull in 7i, by Lemma 4.3.1. Thus Bi E 7tr1 0 72 ~ 7. Since 7 is triangular, 
Bt EAt 0 A2; so that (I- Eoc)CEoc EAt, and (I- Eoc)CEoc = 0. Hence 

((I- Eoc) 0 F-r)B(Eoc 0 F6) = 0, 

holds for all /, 8; whence 

((I- Eoc) 0 I)B(Eoc 0 I) = 0, 

and B leaves Eoc 0 I invariant. Thus B lies in 7t 0 82. We write B-y6 for the 
/, 8 entry of B. The only non-zero entry of (T 0 F-y)B(T' 0 F6) is TB-y6T' in 
position 1,8; and with T,T' in 7i.,(T®F-y)B(T'®F6) lies in T. Since the 
operator whose matrix has only one non-zero entry from It in position /, 8 lies 
in It ®.A, 8 2, it follows that T contains all operators whose only non-zero entry 
is an element of the ideal generated by B-y6 and It at position/, 8, with 8 < 1; 
for (I®F-y)B(I®F6)T has B-y6 as its only non-zero entry in position/,/, where 
T, the operator with I as its only non-zero entry in position b, 1 lies in 7, so 
that the operator whose only non-zero entry is TtB-r6 · · ·Tn-tB-y6Tn, with 1j in 
Tt, at position/, 8 lies in 7. In particular, if B-y6 is not in It, there is such an 
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operator with entry a non-zero element of A 1 . The adjoint of this operator lies 
in T1 0 T2, and T would contain a self- adjoint operator not in A 1 0 A 2 . Thus 
B-y6 E 'I1 when 6 <I· 

If A in A1 0 A2 is a hull for T, then each non-zero entry lies on the diagonal 
(since A E A 1 0 A2), is a projection in A 1 (since A is a projection), and is a 
hull for T1 (since (T1 0 I)A = A(T1 0 I)A, for each T1 in 7i). Let the 1,1 and 
6, 6 entries be Ecr and Ecr'' respectively. The operator V and V' whose matrices 
have I and S at the 1, 6 and 6,1 entries, respectively, and zeros elsewhere lie 
in T1r, 0 T2 and hence in T, where 1 < 6 and S is an arbitrary element of 
'I1. Since VA= AVA,EcrEcr' = Ecr', and since V'A = AV'A,SEcr = Ecr'SEcr. 
Thus Ecr' :S Ecr and [I1Ecr] ~ Ecr'· If E is a hull in T1 such that E < Ecr, the 
operator mapping some non-zero vector of Ecr- E onto an arbitrary vector of E 
and annihilating the orthogonal complement of this vector lies in 'I1, by Lemma 
4.3.1; whence E :S Ecr'· Thus Ecr' is the hull immediately preceding Ecr or else 
Ecr' = Ecr. The first case obtains only if Ecr = h(G) with G a minimal projection 
in A 1 , from Lemma 2.3.4, and in this case, an element, S, of I 1 will not map a 
non-zero vector of G onto another such vector (i.e., a scalar multiple of itself), 
for then 0 f. GSG E I 1 n A 1, so that ['I1Ecr] = h( G) - G. Thus we distinguish 
two cases: if Ecr = h( G), with G minimal in A1, Ecr' = Ecr or Ecr - G; and if Ecr 
is not the hull of a minimal projection, then Ecr' = Ea. We conclude that the 
hulls ofT have the form Ecr 0 I for those hulls Ecr in T1 which are not the hull 
of some minimal projection in A 1 and 

for those projections Ecr = h( G), with G minimal in A1 . (It is easy to see that 
such projections are hulls for T.) 

Let E be the sum of the minimal projections in A1 . The core, C, ofT contains 
A1 0 I since it contains each Ecr 0 I and { Ecr} generates A1. Moreover, if G is 
a minimal projection in A 1 , then 

h(G) 0 h(F-r) + (h(G)- G) 0 (I- h(F-r)) 

and 

h(G) 0 (h(F-r)- F-r) + (h(G)- G) 0 (I+ F-r- h(F-r)) 
are hulls whose difference is G 0 F-y. Thus C contains A 1E 0 A 2 , so that C 
contains (Ale 0 I) EB (A1d 0 A2). On the other hand, 

and 
Ecr 0 I - G 0 (I- Ff3) 

lie in (Ale 0 I) EB (Ald 0 A2). Thus C = (Ale 0 I) EB (A1d 0 A2), and the proof 
is complete. 
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Several questions arise from the considerations of this section. We shall list 
them without comment as to their interrelations (although they are often man-
ifest) and without comment as to our own conjecture concerning them. 

Throughout, T is a maximal triangular, hyperreducible algebra with non-
atomic diagonal; A. 

1. Is there a unique diagonal process on T relative to A? 
2. Is there a unique maximal diagonal-0 ideal in T? 
3. Is each maximal diagonal-0 ideal in T a maximal A-disjoint ideal? 
4. Do the set of elements ofT with 0-diagonal form an ideal (an algebra)? 
5. Is there a unique maximal A-disjoint ideal? 
6. If S is an integer-ordered basis and I is a maximal A-disjoint ideal in 

T, is there a unique maximal triangular extension of Tx G9 S? 
7. If so, what is its description? 
8. How should a triangular tensor product for maximal triangular algebras 

which are not hyperreducible be defined? 
9. Is T G9 T contained in a triangular algebra with core A G9 I (something 

of the nature of Tx G9 S, where Sis an integer ordered basis)? 
10. Is each strongly-closed maximal triangular algebra hyperreducible? 

In connection with Question 10, if we specialize the construction of Tx G9 T2 to 
the case where 72 is a finite ordered basis, then Tx G9 T2 appears as the algebra 
of n x n matrices with entries from I below the diagonal and from T elsewhere. 
From Lemma 4.3.2, I has strong closure T, whence the strong closure of Tx G9 T2 
is T G9 E2. Note also that if :1 is a maximal A-disjoint ideal distinct form I in T, 
then Tx G9 72 and T.::r G9 72 have the same hulls and the same intersection with the 
commutant of the core. It is trivially the case that irreducible algebras having the 
same intersection with the commutant of their core coincide; and from Theorem 
3.1.1, we have that maximal hyperreducible algebras with the same hulls and 
the same intersection with the commutant of the core are identical. The non-
uniqueness which would follow from the existence of distinct maximal A-disjoint 
ideals in T would introduce many pathological features from the point of view 
of a reduction theory for triangular algebras relative to the core. 

With the notation just employed we may ask: 
11. Are all maximal triangular extensions ofT G9 72 with core A G9 I of the 

form Tx G9 T2? 
12. If S is an infinite integer-ordered basis, are all triangular extensions of 

T G9 S with core A G9 I extensions of Tx G9 S, for some I? 
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Added in proof (May 20, 1991 ): J. L. Orr announces that restriction to a core 
projection need not be maximal (see Triangular algebras and nest algebras, 
Bull.A.M.S.23(1990), 461-467). There are many interesting diagonal-disjoint-
ideal results stated as well. 


