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Operator Algebras — An Overview

RICHARD V. KADISON

§1. Introduction. The subject popularly known as “operator algebras” (a
shortened form of “algebras of Hilbert space operators”) made its first appear-
ance in a paper [31] published in the 1929-1930 Mathematische Annalen. In
that article, a construct which von Neumann calls a “ring of operators” is de-
fined, and a theorem, the Double Commutant Theorem, that is, arguably, the
most basic theorem of the subject is proved. Somewhat later (the late 1940s),
“rings of operators” was used interchangeably with “W*-algebras,” the ‘W*’
referring to “weak-operator closed” and ‘*’ to the central role of the adjoint
operation, denoted by ‘*” in the definition of this construct. In his classic
text [D], the first in the subject, Dixmier referred to these algebras as ‘von
Neumann algebras’ following a suggestion made to him by J. Dieudonné.

Let # be a Hilbert space over the complex numbers C and let < x,y >
denote the (positive-definite) inner product of two vectors x and y in Z.
The “length” or “norm” of a vector x is < x,x >? (denoted by ||x||). The
mapping x — ||x|| provides .# with a norm. By definition, /% is complete
relative to the metric that assigns ||x — y|| as the distance between the vectors
x and y.

If % is another such Hilbert space and T is a linear transformation of #
into %, then T is continuous relative to the metric topologies, just described,
if and only if

sup{||Tx||: x € Z,||x|| < 1} < o0.

This supremum, denoted by ||7|, is referred to as the “norm” or “bound”
of T. We say that T is bounded in this case. (The terms ‘bounded’ and
‘continuous’ are used interchangeably for linear transformations.)

The family % (#,.%') of all bounded linear transformations of # into .7
is itself a linear space, where (aT + S)(x) is defined as a(7Tx) + Sx. When
F = #, we write ‘% (#) in place of ‘B(#,# ). In this case, Z(#) is
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an algebra, where (7'S)x is defined as T(Sx). This algebra has the operator
I (the identity transform, Ix = x for all x in #) as a unit element. The
mapping 7T — ||T|| endows % (#,. %) with a norm relative to which it is a
Banach apace; % (#') is a Banach algebra (||TS|| < ||T||||S|| and ||I|| = 1).
The metric on % (#, %) that assigns ||T — S|| as the distance between 7 and
S gives rise to the norm or uniform topology on % (#,.%).

The linear transformations of /# into C (a one-dimensional Hilbert space)
are called (linear) functionals.

The bounded linear functionals on # (elements of % (#,C)) are de-
scribed by the celebrated Riesz Representation Theorem. If ¢ is in % (#, C),
there is a unique vector x in /# such that ¢(y) = (y,x) for each y in Z.
The mapping ¢ — x is a conjugate-linear (that is, ap corresponds to ax),
isometric (that is, ||¢|| = ||x||), isomorphism of Z(#,C) onto #. If T
is in Z(#,%) and z is in Z, then x — (Tx,z) is in Z(#Z,C). It fol-
lows that there is a unique vector T*z in /# such that, for all x in #,
(Tx,z) = (x,T*z). The mapping T* is in Z(F#,#). The linear trans-
formation T* of # into # is called the adjoint of T. The equalities,
(@ T+S8) =a T*+8 (T = T||T| = |T*|, |T*T|| = | T*|||T||, are
easily proved. When # = .7, we have that (T'S)* = $*T*. In this same case,
we say that T is selfadjoint when T = T*.

With . a subset of Z (#), we define the weak-operator closure = of .~
to be the set of those T in % (#°) such that, given a positive ¢ and vectors
X1, ,Xn; Y1, - ,¥Vn In the Hilbert space /#, there is an S in .% for which
(T —S)x,,y,)| <&, j=1,---,n. This closure operation defines a topology
on % (#) called the weak-operator topology. A subalgebra % of % (#) that
i1s weak-operator closed, contains /, and contains 7* when it contains 7, is
called a von Neumann algebra.

§2. Motivation. The reducibility and irreducibility results of I. Schur and
the Peter-Weyl theory that figured so prominently during the period of von
Neumann’s university training led him to consider the analogous questions
for families of operators (linear transformations) on a Hilbert space. This,
in turn, led him to his Double Commutant Theorem, the heart of his 1929~
1930 Mathematische Annalen paper, where “rings of operators” are first in-
troduced.

In a sense, then, von Neumann algebras grew out of the early period of
group representations. It is popular and natural, in view of von Neumann’s
involvement with the more rigorous mathematical formulation of the basics
of quantum mechanics, to ascribe an important place to the “new physics” in
motivating the introduction of “rings of operators,” but that interpretation
does not stand up to scrutiny. It seems equally clear that von Neumann’s
commitment to pursuing the study of his “rings of operators” was not, at
first, large; he did not return to it for five years.
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In 1935, F. J. Murray, a gifted young mathematician, who had just re-
ceived his Ph.D. at Columbia University with a thesis on linear operators
and spectral theory, arrived in Princeton as a National Research Fellow in-
tent on studying under von Neumann. In the spirit of a postdoctoral research
project, von Neumann proposed to Murray that he examine “rings of opera-
tors” from the point of view of the Wedderburn structure theory for matrix
algebras. In particular, Murray was to concentrate on those von Neumann
algebras whose centers consist of scalar multiples of I, the factors. Their
most primitive guess, at the outset, was that a factor is isomorphic to % (#)
for some Hilbert space /#; that would be a worthy result and the end of the
project. Before the first year of the investigation had passed, a rich and in-
triguing world of mathematical phenomena had opened before Murray and
von Neumann.

At an early stage, von Neumann joined Murray in the investigation on
a full-time basis in what became a seven-year project, one of this country’s
most successful mathematical collaborations. As their research proceeded,
other layers of motivation developed. From the examples of factors they
constructed, the very clear applicability of the subject to the study of transfor-
mations on measure spaces (ergodic theory) and to representations of groups
(through a generalized group algebra) was assured. Factors of type II,, a class
of factors they discovered, have associated algebras of unbounded operators
that permit all the formal algebraic manipulations being used by the founders
of quantum mechanics in their mathematical formulation. Von Neumann felt
that the factors of type II; might provide the natural framework for quan-
tum mechanics. That hope was not to be realized, but the factors of type II;
are basic to the analysis of the class, factors of type III, that are essential to
a mathematical presentation of quantum statistical mechanics and quantum
field theory.

§3. Functions and operators. At the same time as the Murray-von Neu-
mann collaboration began, M. H. Stone recognized the possibility of extract-
ing topological spaces from algebraic structures [42] and representing the
algebraic structures by functions on the spaces. The earlier extension of the
spectral theorem to include unbounded selfadjoint operators and the result-
ing function calculus of such operators developed by both Stone and von
Neumann provided a major impetus to Stone’s ideas and to his analysis of
C(X), the algebra, under pointwise operations, of continuous complex-valued
functions on a locally compact Hausdorff space X. Stone proved [43] that
an algebra with a partial ordering, satisfying some natural conditions, is iso-
morphic to the algebra of real-valued functions in C(X) and applied this to
yield such an isomorphism of a commutative algebra of bounded selfadjoint
operators.

Combining Stone’s ideas with his work on Banach algebras and his study
of the first three articles in the series of Murray and von Neumann, I. M.
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Gelfand undertook the characterization of those norm-closed subalgebras of
% (#) that contain T* when they contain 7. He and M. Neumark [15]
proved that the Banach algebras in question are those with an involution
(A — A*) having the properties of the adjoint operation on % (#°). The
Banach algebras of Gelfand and Neumark have a unit and the subalgebras
of & (#) contain I. The norm-closed subalgebras of % (#°) stable under
the adjoint operation have come to be known as C*-algebras. They occupy
a key position in the subject. Each von Neumann algebra is, in particular,
a C*-algebra. The Gelfand-Neumark article [15] recast Stone’s result [43] in
Banach algebra form and used it as a key lemma.

THEOREM. Let &/ be a commutative Banach algebra with a unit element
I and an involution A — A* satisfying (aA + B)* = ad* + B*,(AB)* =
B*A*, A** = A, || A*A| = ||A*|| || 4||. Then there is a compact Hausdorff space
X and an algebraic isomorphism ¢ of &/ onto C(X) such that

p(A") = 9(4), |4l = lp(4A)]I(= sup{|e(A)(x)| : x € X}) (de€).

If ‘commutative’ is omitted from the hypothesis of the theorem, there is
a C*-algebra 24 and an isometric isomorphism  of &/ onto 24 such that
w(A*) = y(A)*. We refer to y as ‘a * isomorphism.” It follows, in particular,
that each C(X) is * isomorphic to a commutative (abelian) C*-algebra (with
complex conjugation of functions as the involution on C(X)).

The identification of the family of commutative C*-algebras with the fam-
ily of function algebras C(X') underlies the interpretation of the general study
of C*-algebras as ‘noncommutative (real) analysis,’ the point of view that has
dominated the subject since the late 1940s. Analysis is very largely a study of
C(X), its associated structures, and operations (differentiation and integra-
tion) on these. If C(X) is replaced, in such considerations, by a “noncom-
mutative” C(X), that is, a noncommutative C*-algebra, then the definitions
of the related structures and operations are usually forthcoming. The results
of classical analysis can then be reformulated as questions and conjectures
involving a C*-algebra. The answers to these questions and the proofs of the
conjectures (or counterexamples) tend not to be so forthcoming.

The view of the study of C*-algebras as noncommutative (real) analy-
sis guides the research and provides a large template for the motivation of
the subject. When noncommutative analysis is the appropriate analysis, as
in quantum theory or classical (commutative) analysis situations with non-
abelian groups acting, operator algebras provide the mathematical frame-
work.

As noted, each von Neumann algebra is a C*-algebra. An abelian von
Neumann algebra is isomorphic to some C(X). In this case, the X has very
special properties; each open set in X has a closure that is open. The space
X is said to be extremely disconnected. The converse is not true; there are
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extremely disconnected spaces X for which C(X) is not isomorphic to a von
Neumann algebra. There are subtle “measure-theoretic” requirements that X
must fulfill for there to be such an isomorphism. The function representation
of an abelian von Neumann algebra can be formulated cogently in terms of
measure theory.

Let S be a set and u a (o-finite) measure on S. The linear space L, (S, u) of
functions (absolutely) square integrable with respect to u, provided with the
inner product, (f, g) = [ fgdu, is a Hilbert space /#. With f an essentially
bounded measurable function on S and g in #, we define M,(g) to be the
product f-g. Then fg € # and M is a bounded linear operator on #. The
family &7 of these multiplication operators is an abelian von Neumann algebra
on #, with the property that each 7 commuting with all the multiplication
operators is a multiplication operator. We say that &/ is maximal abelian.

If we specialize the construction, taking for S and u one of [0, 1] with
Lebesgue measure, a finite or countably infinite set of points each with posi-
tive measure, or the union of two such measure spaces, we arrive at what seem
to be some special abelian von Neumann algebras. Surprisingly, each abelian
von Neumann algebra on a separable Hilbert space is isomorphic to one of
the few just constructed. If the von Neumann algebra is maximal abelian,
then there is even an isomorphism (unitary transformation) of the separable
Hilbert space onto L;(S, ) that transforms the algebra onto the multiplica-
tion algebra. The family of essentially bounded measurable functions on §
is an algebra, the multiplication algebra of (S, u), under the pointwise opera-
tions of addition and multiplication of functions. The mapping that assigns
M/ to f is an isomorphism of this algebra onto the maximal abelian algebra
of multiplication operators.

From this discussion, we see that the theory of abelian von Neumann
algebras is a version of measure theory. As with general C*-algebras and
continuous function theory, we recognize that the theory of the general von
Neumann algebra is noncommutative measure theory. This point of view
leads us to identify the selfadjoint idempotent operators (£ = E* and £ =
E?), the projections, in a von Neumann algebra .# with the characteristic
functions of measurable sets in a measure space. In effect, the projections are
the “measurable sets” in our “noncommutative measure space.” It is a basic
technical fact that there are many projections in a von Neumann algebra. In
fact, the linear span of the set of projections in a von Neumann algebra is
norm dense in that algebra.

¢4. Factors. In studying the most noncommutative von Neumann alge-
bras, the factors, an examination of the “measurable sets,” the projections
provide us with a first glimpse of the underlying structure. By analogy with
the “atoms” of a measure space, sets of positive measure with no proper
subsets of smaller positive measure, we define a minimal projection in a von
Neumann algebra .# to be a nonzero projection E in % such that if F is a
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nonzero projection in % whose range is contained in the range of E (equiva-
lently, FE = F), we say that F is a subprojection of E in this case and write
(F < E), then F = E. We study our factors for minimal projections.

THEOREM. [f the factor # contains a minimal projection, then A is iso-
morphic to B(#) for some Hilbert space 7 .

Projections E and F such that EF = 0 are called (mutually) orthogonal.
The dimension of /7 in the preceding theorem is the cardinality of a maximal
orthogonal family of minimal projections in .Z. This theorem tells us most
of what we can expect to learn about factors with a minimal projection con-
cerning isomorphisms (about the factors themselves, not the von Neumann
subalgebras, of course). The problem that Murray and von Neumann faced
at this (early) point in their investigation was whether or not all factors had
minimal projections. Certainly, % (#') has minimal projections, the projec-
tions with one-dimensional range, but does the fact of being central (that is,
having center consisting of scalar’s multiples of I) force the factor to have
a minimal projection? They solved the problem in the negative during their
first year of work by constructing an important class of examples through the
use of ergodic theory techniques.

With hindsight, we can see that there should be factors without minimal
projections, just as there are measure spaces without atoms. But, of course,
had this not been the case, the concept of a noncommutative measure space
would have little validity.

Murray and von Neumann conceived the idea of comparing the “sizes”
of projections in a von Neumann algebra. Two projections £ and F in a
von Neumann algebra are said to be equivalent (modulo %) when some A
in % maps the range of E isometrically onto the range of F. In this case,
AE(=V € %) has the same properties and V*V = E, VI'* = F. Murray and
von Neumann indicate this equivalence by writing £ ~ F. When E ~ Fy and
Fy < F, they write £ < F(and E < F when E is, in addition, not equivalent
to F).

Each T in % (#') has a unique decomposition as V' H, the polar decom-
position of T, where H is a positive selfadjoint operator (that is, (Hx,x) >0
for each x in /) with square equal to 7*T and V maps the closure of the
range of H (we write ‘r(H )’ for this closure) isometrically onto r(7") and maps
the orthogonal complement of r(H) to 0. We say that V is a partial isometry
with initial space r(H) and final space r(T). If R(H) is the projection with
range r(H) (we call R(H) the range projection of H), then V*V = R(H) and
VV* = R(T). We note that the components V' and H of this polar decompo-
sition lie in % when T does, from which we conclude that R(H) ~ R(T), as
a consequence of the uniqueness of those components and the main theorem
of von Neumann'’s original paper [31].

THEOREM (DOUBLE COMMUTANT). If% is a von Neumann algebra act-
ing on a Hilbert space # and &' is the family of bounded operators T that
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commute with all the operators in %, then %' is a von Neumann algebra and
(%/)/ =R,

The notation .7’ for the set of bounded operators T commuting with all
the operators in the family .# of bounded operators will be used in the sequel;
F ' is called the commutant of . When .# is selfadjoint (that is, ¥ =.%*),
' 1s a von Neumann algebra.

With T in &% and V H the polar decomposition of 7, it is easy to see
that R(H) = R(T*). It follows that R(T) ~ R(T*), a very useful fact for
dealing with the relations ~ and <. Using this fact, the range projections of
EAF and F A*E are equivalent for each A4 in a factor .Z, where E and F are
projections in .#. Thus nonzero subprojections of £ and F are equivalent
unless EAF is O for each 4 in .Z. The fact that .Z has center the scalars
allows us to conclude that EAF is 0 for each 4 in.Z if and only if one of E
or F is 0. It follows that each pair of nonzero projections in a factor .Z have
equivalent nonzero subprojections. A measure-theoretic-like argument now
shows that either £ < F or F < E. An argument patterned on the Cantor-
Schroeder-Bernstein argument from the theory of cardinals shows that E ~ F
when E < F and F =< E for projections E and F in a general von Neumann
algebra. It follows that < is a partial ordering of the equivalence classes of
projections in a von Neumann algebra and a total ordering of these classes
in a factor.

Murray and von Neumann define infinite and finite projections in this
framework modeled on the set-theoretic approach. The projection E in %
is infinite (relative to %) when E ~ Ey < E (that is, Ey < E and Ey # E),
for some subprojection Ey of E in &, and finite otherwise. It is a difficult
theorem (proved by Murray and von Neumann) that the union of two finite
projections (this union is the projection with range spanned by the ranges of
both projections) is a finite projection.

At this stage, the possibility of several types of factors presented itself to
Murray and von Neumann. If the factor .# has a minimal projection (and is
isomorphic, therefore, to some % (#)), they refer to it as a factor of type I (of
type I, if # is n-dimensional, of type I, when /# is infinite dimensional).
If .# has no minimal projection but contains a (nonzero) finite projection,
they refer to ./Z as a factor of type II (of type 11, if I is finite relative to the
factor, of type Il otherwise). The remaining possibility is the case where all
nonzero projections in the factor are infinite. They refer to these as factors
of type III. Of course, no two factors of different types could be isomorphic.
But the paramount question was the existence of factors of the various types.

§5. Examples. Murray and von Neumann were able to construct factors
without minimal projections and identify them as factors of types II; and
I, by means of examples built from groups acting “freely” by measure (and
measurability) - preserving transformations on a measure space. These ex-
amples appear in the first paper [27] resulting from their collaboration.
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Let G be a (discrete) group with unit e, and % be a maximal abelian
(selfadjoint) subalgebra of % (#°). (We use .7 to replace an explicit measure
space, as we know we can from our earlier discussion.) Let % be the direct
sum of copies of /# indexed by elements of G. (In effect, %7 is the Hilbert
space of functions x on G with values in #, such that 3°,; [|x(g N? < oo,
provided with the obvious linear structure and the inner product (x,y) =
> ecc(x(8),¥(g)).) With S in (), there is a naturally associated operator
D (S) in Z (%) defined by (@ (S)x)(g) = S(x(g)). Let U: g — U(g) be a
unitary representation of G on # (that is, a homomorphism of G into the
group of unitary transformations of /# into itself) and let (V' (g)x)(g’') be
U(g)x(g~'g"). We assume that U(g)4U(g)* is in.«/ for each 4 in ./ and g
in G (that is, each U(g) implements an automorphism of &/ and U gives rise
to a representation of G by automorphisms of %) and that &/ N (U(g)%) =
{0} for each g(# e) in G (that is, G acts freely, by automorphisms, on
&). The mapping @ “copies” % (#) isomorphically into % (%). It is easily
checked that V(gg') = V(g)V(g') and V(g)P(S)V(g)* = P(U(g)SU(g)")
for each S in % (#°). Thus the representation V gives rise to the “same”
representation of G by automorphisms of the copy @ (%) of &7 as U does.
We say that G acts ergodically on & (through the representation U) when
the only elements 4 in ./ such that U(g)AU(g)* = A4, for all g in G, are the
scalars.

THEOREM. The von Neumann algebra % generated by @ () and the
group {V(g)}eec is a factor if and only if G acts ergodically on . In this
case, 1t is a factor of type I if and only if &/ has a minimal projection. In any
event, & is a maximal abelian subalgebra of % .

Specific examples of the structures described above are obtained from a
measure space (S,.7, m) that is countably separated (%, the family of mea-
surable sets, contains a countable family of E|, E,... of non-null sets of
finite measure such that if s and ¢ are distinct points of S, then ¢ € E, and
s ¢ E; for some j) and a group G of one-to-one mappings of S onto S that
preserves measurability and measure O subsets and acts freely on S (that is,

m({s € S: g(s) =s}) =0 when g is not the unit element e of G). In this case,
& is the mulupllcatlon algebra of the measure space (acting on L(S, m)).
The Radon-Nikodym theorem yields, for each g, a non negative real valued,
measurable function ¢, on S such that [ x(g(s) fx s)ydm(s)
for each x in L,(S, m). If U, is defined by (U, x)( ) [(pg( )]z x( ( )), for
each x in L,(S, m), then ¢ — U, is a unitary representation of G that gives
rise to automorphisms of .« satisfying &/ N (U, ) = {0} for each g(# e) in
G. We say that G acts ergodically on S when m(g(So)\So) > 0 for some
g in G unless m(Sp) = 0 or m(S\Sp) = 0. The representation g — U, acts
ergodically on ./ if and only if G acts ergodically on S.
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With U, in place of U(g), L, (S, m) for #, and the multiplication algebra
of (S, m) for &7, the conditions for the construction of % described earlier
are satisfied.

THEOREM. If G acts ergodically on S, then % is a factor and

(1) Z is of the type I if and only if some point in S has positive measure;
in this case, % is of type I, where n is the number of points in S.
(i) Z is of type II when S admits a G-invariant measure mg such that
mo(So) = 0 if m(Sp) = 0. In this case, % is of type II, when my(S) <
oo and of type I, when my(S) = oo.
(iii) Z is of type III when there is no mqy as described in (ii).

Explicit examples can be displayed by choosing explicit measure spaces
and group actions. We describe some.

(a) With S the group of integers, each integer assigned measure 1, let G
be the group of all translations of .S (under addition). This example
results in a factor of type I. If S is replaced by a finite cyclic group
of order n, the resulting von Neumann algebra is a factor of type I,.

(b) Let S be the circle (in C) with Haar-Lebesgue measure and let G be
the group of rotations of S through angles that are rational multiples
of n. The action of G is ergodic and the resulting factor is of type
II,. The same is true if we replace G by the group generated by a
single rotation through an angle that is an irrational multiple of 7.

(c) Let S be R, the set of real numbers, with Lebesgue measure and G
be the (countable) group of translations by rationals. Again, G acts
ergodically, and the resulting factor is of type Il.

In each of the examples (a), (b) and (c), the measure is invariant under
the group action. In the example that follows, we augment the group of (c)
by transformations that do not preserve the measure. Since the group of
rational translations acts ergodically, Lebesgue measure is the only invariant
measure (up to positive scalar multiples). Thus the augmented group admits
no invariant measure.

(d) Let S be R with Lebesgue measure and let G be the (countable) group
of all “rational” affine transformations s — as + b with a and b
rational. The resulting factor is of type IIIL.

It is not easy to show that the factor in Example (d) is of type III (or to
prove (iii) of the more general theorem on types). Some of the techniques and
constructs needed will appear when we discuss traces and weights. Several
years elapsed before the factors of type III were constructed. They appear in
the third paper of the Murray-von Neumann series [30], a paper authored by
von Neumann alone.

Another, more simply described, class of examples was found later by
Murray and von Neumann. These appear in [29]. They provide one of the
possible extensions of the notion of group algebra (over C) from finite to
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infinite (discrete) groups. Let G be an infinite (discrete) group and # be
the family of complex-valued functions ¢ on G such that 3, lp(g))* < 0.

With the inner product, (¢, ¥) = > ,.;0(8)w(g), # becomes a Hilbert
space (referred to as /;(G)). Let (Lg p)(g) be (p(go‘lg) for each g in G. Then
L, is a unitary operator on the Hilbert space # (for L,-: is its inverse and
< Lgp,Lgy > =< ¢,y > forall ¢ and v in #). Moreover, LgLg = Lg,;
the mapping g — L, is a (group) isomorphism of G into the group of unitary
operators on # . In the same way, we can define the unitary operators Ry,
by (Rg,0)(8) = ¢(g80). Let Z; and Z; be the weak-operator closures of the
algebras of finite, complex linear combinations of the operators {L; : g € G}
and {R; : g € G}, respectively. Then .#; and % are von Neumann algebras.
In addition, each of .%; and % is the commutant of the other. (Thus
(Z}) = £, an illustration of the Double Commutant Theorem.)

THEOREM. The von Neumann algebra £ is a factor if and only if each
conjugacy class (other than the class of the group identity) is infinite. In this
case, £ is a factor of type 11;.

The groups G satisfying the infinite conjugacy class condition are called
i.c.c. groups. Some examples of such groups are .%,, the free (nonabelian)
groups on n(> 2) generators, and /7, the group of those permutations of the
integers that move at most a finite number of integers. In [29], with the aid
of these examples, Murray and von Neumann answer the most important
question raised in their earlier work: Has the type classification of factors
settled the problem of algebraic isomorphism of factors? More specifically,
are all factors of type II; isomorphic? They answer this last question in the
negative.

THEOREM. 777 is not isomorphic to 2.

It was abundantly clear from this result of Murray and von Neumann that
there are an infinite number of mutually nonisomorphic factors of type II;
and that infinite groups, distinguished by subtle commutativity properties,
would provide such examples. It was equally clear that the implementation
of that program would not be easy. Twenty-five years after the Murray-von
Neumann result, that program was completed [25, 26, 39], following basic
advances in the program [S, 14, 38, 40, 51]. In another direction, a more
innovative addition to the II, factor archives comes from an automorphism-
group invariant invented by Connes [9] that produces an infinite number of
nonisomorphic II; factors.

As this is written, we do not know the answer to the question of whether
#% and .77, are isomorphic when n # m.

§6. States, weights, and traces. A factor .Z of type I,, with n finite, is
isomorphic to the algebra .#,(C) of n x n complex matrices over C. A key
element of structure for .#,(C) (and .#) is the linear functional 7 with the
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properties

1(AB) =1(BA) (A,Be )
(l)=1

We refer to 7 as the normalized trace on .#. With the properties noted, 7 is
unique. In addition, 7 takes non-negative real values at positive matrices. If
we denote by [a;c] a matrix in .#,(C), where a, is the entry in row j and
column k, then t([a,]) is n=' (X, a,)).

A discovery that intrigued Murray and von Neumann greatly was the ex-
istence of a functional on a factor .Z of type II; with the main properties
exhibited by the trace on .#,(C). They referred to this functional on .Z as
the (normalized) trace. It was relatively easy to prove that 7 is unique, and it
was not difficult to determine the value that T must assume at each element
of /#. Proving that 7, so determined, is additive (1(A4 + B) = 7(A4) + ©(B))
was quite another matter. The additivity of T had Murray and von Neu-
mann stopped throughout the development of their first paper [27]. They
surmounted their difficulties and proved the additivity of 7 in [28], their sec-
ond paper. It was a very hard argument. (In conversation with this author,
von Neumann remarked that “that was Murray.”)

To define their trace, Murray and von Neumann proceeded in a measure-
theoretic manner. With .Z a factor of type II;, it can be shown that for each
positive integer » and each projection E in .Z there are n equivalent mutu-
ally orthogonal projections in . with sum E. If we assign to / the measure
(or “normalized dimension”) 1 and use I in place of E, then each of the n
equivalent projections should be assigned measure n~!. Each projection in
A is a (possibly infinite) sum of such (rational) projections, which provides
it with a measure. There are, of course, obvious technical problems, but these
can be overcome without great trouble. Murray and von Neumann arrived at
a “dimension function” 4 that assigns to each projection E in .Z a number
in [0, 1]. They noted that the range of d is precisely [0, 1], and recognized
that they were dealing with “continuous dimensionality.” These matrix-like
algebras in which the associated subspaces (projections) could assume a con-
tinuous range of dimensions fascinated Murray and von Neumann, as well
they might.

From another point of view, the function 4 is a (noncommutative) mea-
sure on the “measurable” sets of (that is, projections in) .# — and the unique
such measure compatible with the equivalence relation on projections. It
enjoys a Haar-measure-like status relative to the noncommutative measure
space underlying .#Z. Examining M,(C), we see that t(E) is the dimension
of the subspace on which the projection E projects, normalized so that the
full space has dimension 1. Thus in .#Z, d(F) must be the value assigned
as 7(E). The spectral theorem, which tells us. in effect, that each selfadjoint
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operator is a (limit of) linear combinations of mutually orthogonal projec-
tions (4 = [AdE;), determines that value of 7 at each selfadjoint oper-
ator in ./#: (1(4A) = [Adt(E;)). Finally, each T in .Z is a sum 4 + iB
where A(= (T + T*)/2) and B(= (T — T*)/2i) are selfadjoint. If 7 is to
be linear, we must define 7(7T") as 7(4) + it(B). As remarked, proving that
(R +S) = 7(R) + 1(S) for each pair of operators R and S in .# was a
considerable challenge.

Murray and von Neumann defined a dimension function d on the projec-
tions of all factors by devices similar to those described for a factor of type
II;. They note that the type of the factor is completely determined by the
range of the dimension function. In the case of a factor .# of type I, with a
(necessarily finite) minimal projection E they normalize the dimension func-
tion d so that d(E) = 1. In this case, d has range {0,1,...,n} when .Z is
of type I,,, and range {0,1,2,3,...} when .Z is of type Io. If .Z is of type
II, there is no preferred finite projection on which to normalize the dimen-
sion function, whichever (equivalence class of a) finite projection is chosen
to have dimension 1, the range of the dimension function is [0, co]. With .Z
of type III, the range of the dimension function consists of just 0 and oo.

Inspired by the construction of the Gelfand-Neumark article [15], Segal
[41] singled out special linear functionals on a C*-algebra from which one
can construct Hilbert spaces and adjoint-preserving homomorphisms (rep-
resentations) of the C*-algebra into the algebras of all bounded operators
on the Hilbert spaces. (It was through such representations that Gelfand
and Neumark built the * isomorphism of their Banach algebra with a C*-
algebra.) The functionals on which Segal focused have the property that they
assume non-negative real values on positive operators on the C*-algebra and
assign the value 1 to I. He called such functionals states. (They correspond
to the expectation functionals associated with states of quantum mechanical
systems.) The states turn out to be norm continuous without further assump-
tions. As noted, the Murray-von Neumann trace 7 on a II; factor and the
normalized trace on .#Z,(C) are states.

If p is a state of the C*-algebra .%/ and we let (4, B), be p(B*4), then (,),
is a positive (semidefinite) inner product on .%7. As such, <, >, satisfies the
Cauchy-Schwarz inequality. It follows from this that

{Aess : p(d 4)=0}(= %)

is a (norm-closed) left ideal in &/ (the left kernel of p), for B*B < ||B||*I
whence 4*B*BA < ||B||>4* A. The quotient vector space .%/ /.%, inherits the
positive-definite inner product

(T +.%,5+2,) =(T.5), = p(S"T) (T.Se)

relative to which its completion #, is a Hilbert space. If ¢(A4)(T +.%,) is
defined to be AT +.%,, the resulting linear operator on .% /.%, has norm not
exceeding ||A|| (relative to the Hilbert space norm on %/ /.%,); this operator
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extends, uniquely, to a bounded linear operator ¢(A4) on /#,. It is not difficult
to verify that p(a4+B) = ap(A4)+¢(B), p(AB) = ¢(A)p(B), ¢p(A4*) = p(4)*,
and ¢(I) = I (¢ 1s a representation of & on #,). In addition, ||¢(A4)| < ||4]|
and the image ¢(%) of .« is norm-closed in % (#,) (so that ¢(%7) is a C*-
algebra).

Through this construction, the state p, itself, has been “represented” in a
special form: ,

p(A) = {p(A)I +2),1 +2).
In this way, p “has become” wy,|¢(%), the vector state wy, of & (#,) re-
stricted to the C*-algebra ¢(2/), where x, is the vector I + .2, in #, and
wx,(T) = (Tx,,x,) for each T in % (#,). Note, too, that ¢ (¥ )x, is ¥ /.Z),
a dense subspace of #,. We say that x, is a generating (or cyclic) vector
for ¢(&). The vector states have a key place in the study of von Neumann
algebras, a place whose importance became clear throughout the 1950s.

The construction associating a representation of a C*-algebra with a state
of that algebra, is basic to the study of C*-algebras. It is known as the GNS
construction (for Gelfand, Neumark, and Segal). It was not available, as such,
to Murray and von Neumann though they had found a vector representation
for the normalized trace 7 on a factor .#Z of type II;. (See [28; Theorem II].)
In the case of 7, the left kernel is (0). We speak of T as a faithful state of
M ; the corresponding representation is an isomorphism (is faithful) and 1 is
“represented” by a vector x;. From the basic property of the trace, we see
that (4Bx;, x;) = (BAX,, x;) for all 4 and B in .Z; we call such a vector x; a
trace vector for .# . In any case, with .#Z acting on a Hilbert space /#, Murray
and von Neumann show that 7 is a convex combination }_"_, a,w; of vector
states ;.

A von Neumann algebra % is more closely tied to a representation on
a Hilbert space than a C*-algebra need be. As a consequence, the states
most relevant for the analysis of the structure of &% have a certain continuity
property related to the weak-operator topology on %, which is associated
with the action of % on its underlying Hilbert space. These are the states of
Z#, termed normal, that are weak-operator continuous on the unit ball of %.
It is fairly difficult to prove the following characterization of normal states.

THEOREM. With % a von Neumann algebra acting on a Hilbert space #7,
each normal state o of # is a sum Y o, of linear functionals
W, (= wy |Z), where S ||x,|* = 1. (This sum may be (countably) infinite,
in which case, 3772, w;(A) converges to w(A) for each A in Z.) If Z has at
least one faithful vector state, then each normal state of % is a vector state.

If {E, : n = 1,2,...} is an orthogonal family of projections in the von
Neumann algebra &, then Y E,x converges to a vector Ex for each x in the
underlying Hilbert space /7. In this case, E is a projection in % ; we write E =
Yonoi Eu. If w is a normal state of %, then w(3_ E,) = 3. w(E,). Conversely,
if the state w satisfies the preceding equality for each orthogonal family of
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projections in %, then w is a normal state of % . Thinking, again, of % as a
noncommutative measure algebra, we see that the normal states of % must
be viewed as the noncommutative integration processes on %. A normal
state of # restricted to the projections in % serves as a noncommutative
(probability) measure on the (noncommutative) measurable sets of %.

The inverse situation (given a “measure” on the projections of a von Neu-
mann algebra, is there a corresponding integral—that is, normal state) was
discussed by Mackey, in the case where the von Neumann algebra is % (%),
at the end of the 1940s in connection with his rigorous development of the
foundations of quantum mechanics [24]. It was answered in the affirmative
(for #(#)) when # has dimension greater than 2 by Gleason [16]. Many
years elapsed before this fundamental question received a positive answer
(largely by Christensen [6] and Yeadon [50]) for general von Neumann al-
gebras (with no two-dimensional representations). When we note that this
answer includes, in particular, passing from the dimension function on the
projections of a factor of type II; to the normalized trace on the factor, some
of the difficulty involved can be appreciated.

Of course, the noncommutative measure-theoretic interpretation of the
theory of von Neumann algebras cannot rest with an analogue of finite mea-
sures; the infinite measure spaces must be understood as well. The replace-
ment for states has been developed in that context. A weight p of a C*-algebra
& 1s a function on the positive elements in ./ taking non-negative real values
and the value + oo and satisfying p(4+ B) = p(A4) + p(B) and p(tA4) = tp(A)
when A4 and B are positive operators in.%/ and ¢ > 0. By analogy with infinite
measures, the analogues of the sets of finite measure, the positive integrable
functions, and the absolutely square integrable functions have noncommu-
tative analogues of special importance. Various left ideals arise from these
and a construction akin to the GNS construction can be made giving rise to
a representation corresponding to the given weight.

As with states, we can speak of faithful weights (if p(A*A) = 0, then
A =0). If & is a von Neumann algebra .%# and the linear space consisting
of the positive operators in % on which p assumes finite values is weak-
operator dense in %, we say that p is semifinite. For a von Neumann algebra
%, we are interested, as with states, in weights related to the action of #
on the underlying Hilbert space. These weights p, called normal, have the
property that there is a family {p,} of normal states p, of # such that
p(A) =3, pa(A) for each positive 4 in Z#.

Again, a trace-like functional on % (#) provides us with our most promi-
nent example of a weight. Let {x,} be an orthonormal basis for # and define
7(A4) tobe Y, (Axq, X,) for a positive 4 in.% (#). In this case, 7 is a faithful,
normal, semifinite weight on % (#). In addition, 1(4A4*) = 1(4* A) for each
Ain % (#). We say that 1, with this property, is a tracial weight (on % (%)).

The existence of a semifinite, faithful, normal, tracial weight on a factor
A entails the existence of a nonzero, finite projection in .#Z. Thus .#Z admits



OPERATOR ALGEBRAS - AN OVERVIEW 75

no such tracial weight if it is of type III. If .Z is of type Il, there is an or-
thogonal family {E,} of (equivalent) finite projections in .Z with sum I. The
family E,# E, of operators of the form E,TE, (T € .#) is a von Neumann
algebra. It is not difficult to show that E,.# E, (acting on E,(#)) is a factor
M, of type II;. With 7, the normalized trace on .Z,, the function 7 on .# that
assigns ), 74(A4) to each positive 4 in .Z is a faithful, normal, semifinite,
tracial weight on .Z (the unique such yveight up to positive multiples).

The fact that a factor that admits no normal, semifinite tracial weight
must be of type III is the key to von Neumann’s argument that some of the
factors described in Section 5 are of type III. In the notation of the general
construction at the beginning of Section 5, we can view the elements of % as
matrices, indexed by elements of G, with entries from % (#). The entry at
the g,/ position is U(gh~')A(gh™"), where g’ — A(g’') is a mapping from
G into & ; the matrix should represent an element of % (%). Let y be the
mapping that assigns to this element (matrix) of % the element with matrix
all of whose entries are 0 except for the diagonal entries and these are all
equal to A(e). (In other words, # is the mapping that changes all off-diagonal
entries to 0.) Several properties of # are noteworthy: n(I) = I,n(H) > 0
if H> 0, and n(ATB) = An(T)B when A, B € &. The mapping 7 is the
noncommutative analogue of a conditional expectation (from % onto @ (%))
and is referred to as a conditional expectation. If py is a normal, semifinite
weight on ./ that satisfies

po(A4) = po(U(g)AU(g)") (A€ ),

then p(T) defined as po(®@~'(n(T))) yields the normal, semifinite, tracial
weight p on %. Moreover, each such tracial weight on % arises in this
way. The more difficult part of the proof of this assertion is the argument
establishing that py(A4), defined as p(@(A4)) for each A4 in &7, gives rise to a
semifinite weight py on &/ when the normal, semifinite, tracial weight p on
 1s given.

A normal, semifinite weight on %/ with the given group-invariance property
corresponds to a group-invariant measure on the underlying measure space,
absolutely continuous with respect to the underlying measure, in the situation
of the specific examples of Section 5 constructed from a measure space and
a group acting on it. In some of those examples, there is no such invariant
measure, from which we must conclude that the factors constructed in those
cases admit no normal, semifinite, tracial weight and are, accordingly, of
type IIL

§7. Von Neumann algebras and their commutants. In [27], Murray and von
Neumann established that a factor of type I, II, or III has commutant a factor
of the corresponding type, though a factor of type II, or II,, may have a factor
of type Il or II;, respectively, as commutant. From the type I case, where
it seems most natural to choose the representation of the factors as % (#),
with /& of the appropriate dimension, we might conclude that the “most
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natural” representation of a factor has as small a commutant as possible.
With .#Z of type II; or of type III, there is not much that can be sensibly
effected in that direction. Some further reflection leads to the conclusion
that the most “standard” representation to choose for a von Neumann algebra
is one in which it and its commutant have the “same size.” Just what that
means is most simply illustrated in the case of a factor .Z of type I,. In
this case, .# is isomorphic to % (#') with # of dimension n. Let %7 be the
n-fold direct sum of /# with itself. We can view % (%) as n X n matrices
with entries from &% (#). The algebra of matrices with the same element of
& (#) at each diagonal entry and O at all off-diagonal positions is a factor
isomorphic to B(#') and to .Z. Its commutant consists of those matrices all
of whose entries are scalar multiples of I (in & (#)); it, too, is a factor of
type I,,. For # of type I, # 1is infinite dimensional; we restrict ourselves
to the separable case with the dimension of /# the cardinality of the natural
numbers. Following the same procedure as in the type I, case, but paying
attention to convergence, we arrive at a representation of .4 with commutant
M of type .

For the “standardization” we are after, it no longer suffices, in the case of
a factor of type II;, to work toward a representation in which the commutant
is of type II;. We notice, however, that in the type I case, “standardization”
is reached (recall, we are in the separable case) precisely when there is a vec-
tor x in the representing Hilbert space /# such that .# x and .#'x are both
dense, linear subspaces of #. When .Z is of type III, it is automatically
represented in standard form (separable case): when .Z is of type II a stan-
dard representation can be arranged by a process of forming direct sums and
“copying” on the diagonal (as we did in the type I, case) and restricting .Z
to the range of a projection in .Z".

The importance of studying .Z in its standard representation for under-
standing its possible action on a space can be seen from the following result
(known as the Unitary Implementation Theorem).

THEOREM. If %, and F#, are von Neumann algebras acting on Hilbert
spaces 7, and #5, respectively, in standard form and ¢ is an isomorphism of
F\ onto %, then there 1s a unitary transformation U of 7| onto # such that
9(A) =UAU~! for each A in %,.

We say that U of this theorem implements the isomorphism ¢. the unique-
ness of the standard form of a von Neumann algebra (up to unitary equiva-
lence) is assured by the Unitary Implementation Theorem.

When we discussed the GNS construction applied to the normalized trace
7 on a factor .#Z of type II,, we arrived at a generating trace vector x,; for
A . Tt follows (easily) from the fact that 7 is a faithful state of .Z that x,
is generating for .#Z’ as well. Thus, as represented, .#Z is in standard form.
Murray and von Neumann noted that, if ./ is a factor and x; is a generating
trace vector for .Z, then x; is a generating trace vector for .Z’. Moreover,
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for each 4 in ./, there is a unique 4’ in ./Z" such that Ax, = A'x;. Observing
that

(AB)x, = AB'x; = B'Ax, = (B'A")x,

they show that 4 — A4’ is an (adjoint-preserving) anti-isomorphism of .#
onto .Z'. They were able to extend this result, using the techniques they
had developed, to all factors of types I or II; in standard form, each is *
anti-isomorphic to its commutant. Factors of type III were beyond their
reach. They raised this question for all factors (indeed, for all von Neumann
algebras in standard form).

This problem remained open until 1967 when M. Tomita, completing years
of arduous research announced his affirmative solution [47]. This occurred at
a general conference on the theory of operator algebras and its applications
held at Louisiana State University in Baton Rouge, Louisiana (in honor of
J. Dixmier who was visiting Tulane University in New Orleans that year).
This same conference was attended by several of the physicists who had
made great strides in applying operator algebras to the study of quantum
mechanical systems with infinitely many degrees of freedom (cf. [1, 4, 13,
19, 20, 49]). In particular, R. Haag, N. Hugenholtz, and M. Winnink, who
had just completed a penetrating analysis of the conditions for a state to
be an equilibrium state of a quantum statistical mechanical system in the
framework of the theory of operator algebras [18], were present.

A large contingent of the powerful Japanese Functional Analysis school was
also present, among them M. Takesaki, an important young contributor to the
subject of operator algebras, who was to become one of the great leaders of the
subject. Takesaki listened carefully to Haag, Hugenholtz, and Winnink, and,
later, during a yearlong visit to the University of Pennsylvania (1968-1969),
refined the Tomita work and fused it with the equilibrium-state analysis of
[18] to create the Tomita-Takesaki Modular Theory [44], the dominant theme
in research on von Neumann algebras throughout the 1970s.

The modular theory of Tomita-Takesaki has as its basic ingredients a von
Neumann algebra % and a normal. faithful, semifinite weight p. As dis-
cussed, the analogue for weights of the GNS construction produces a repre-
sentation of % on a Hilbert space /#,. Although no vector represents the
weight (by contrast with the case of a state), the assumption about the weight
yields a faithful representation of % as a von Neumann algebra in “standard
form,” in the sense of having a commutant of the “same size” as the alge-
bra, although there may be no generating vector for both the representing
algebra and its commutant. While each von Neumann algebra has a faithful,
normal, semifinite weight, the existence of a faithful, normal state imposes a
countability restriction on the von Neumann algebra (each orthogonal family
of projections in the algebra is countable) that is automatically fulfilled for
algebras acting on a separable Hilbert space. Even when the von Neumann
algebra satisfies this countability restriction, it is advantageous, for certain
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purposes, to have the theory available for weights as opposed to states. Nev-
ertheless, the main features of the theory can be described in terms of a
faithful, normal state, and this simplifies the description considerably.

Suppose w is a faithful, normal state of %. The GNS construction applied
to w gives rise to a faithful representation ¢ of &% on a Hilbert space /7 and
a (unit) vector u generating for ¢(%#) and ¢(%#)' such that w(A4) = (p(A)u, u)
for each 4 in %#. To simplify our notation, we write # for ¢(#) and w
for the restriction of the vector state w, to ¢(%#). Tomita’s key idea is to
analyze the adjoint operations on % and %', reducing them to the Hilbert
space level through the use of the vector u. Define SyA4Au to be A*u and
FyA'u to be A*u for each 4 in &# and A’ in %#’'. The mappings Sy and
Fy are conjugate-linear (Sp(ax + y) = aSox + Spy) and defined only on the
dense subspaces Zu and Z%'u, respectively. In general, they are not even
bounded—a very unpromising start! Some simple calculation reveals that Sy
and F; behave, to a great extent, as adjoints of one another. Combined with
this, the fact that they are densely defined implies that they have “closures”
S and F, respectively. While not necessarily bounded, “closed operators”
(those whose graphs are closed) that are densely defined are susceptible to
some Hilbert space analysis. In particular, S has a polar decomposition J 4%,
as described in Section 4 for T in & (%), where 4(= S*S) is a (generally,
unbounded) selfadjoint operator. Since S is conjugate-linear, densely defined,
and S2Au = Au for each 4 in %, J is a conjugate-linear, isometric mapping
of # onto # such that J? = I. The main result of Tomita, stated in the
notation we have developed, follows.

THEOREM. For each A in # and each real t, A" A4~ € F# and JRJ =
K748

The notation 4/ (= e¢"'°84) indicates spectral theory and the function cal-
culus applied to the (possibly unbounded) selfadjoint operator 4, so that 4%
is a unitary operator U,. The mapping ¢t — U, is a homomorphism of the ad-
ditive groups of R into the group of unitary operators on -#. Moreover, this
mapping is continuous from R in its standard topology to the unitary group
in the weak-operator topology. We refer to t — U, as a one-parameter unitary
group (on #). The condition, 4/44~"" € &, implies that 4 — U,AU_, is an
(adjoint-preserving) automorphism o/’ of .%#. The mapping ¢t — ¢/ is, again,
a homomorphism of R, this time into the group of automorphisms of % it
is a special one-parameter group of automorphisms of %#. We refer to it as
the modular group of % corresponding to the (faithful, normal) state w.

The mapping A — JA*J is an (adjoint-preserving) anti-isomorphism of
Z onto %' by virtue of the equality, J#J = .%’. This answers the question
of Murray and von Neumann in the affirmative: If % is a von Neumann
algebra in standard form, then % and %' are * anti-isomorphic. When %
is a factor of type II; and w is the normalized trace T on %, 4 = I and the
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mapping 4 — JA*J is the mapping, A — A’, where Ax;, = A'x, with 4 in
H#, A in #’', and x; a trace vector for # and %’ used to define S and F.

In the process of answering the Murray-von Neumann question, Tomita
discovered the modular automorphism group; it has come to be recognized
as an important tool in studying the structure of factors of type III. Take-
saki’s discussions with Haag, Hugenholtz, and Winnink (HHW) at the 1967
Baton Rouge conference led him to the crucial discovery that the modular
automorphism group ¢ and w are related by the condition HHW described
for a quantum statistical mechanical system whose (bounded) observables
correspond to the selfadjoint elements in # and whose dynamical evolution
has w as its equilibrium state. (This comment makes only a fleeting allusion
to the dynamical evolution-equilibrium state relation; temperature and other
parameters must also be discussed in a more careful formulation.)

DEFINITION. A one-parameter group of (adjoint-preserving) automor-
phisms, ¢t — a,, of a von Neumann algebra % satisfies the modular condition
relative to w when, for each 4 and B in Z#, there is a function F continuous
and bounded on the (closed) strip {z € C: 0 < Im z < 1} holomorphic on
the interior ({z € C: 0 < Imz < 1}), and satisfying

F(t) = w(«(A4)B), F(t+1) = w(Ba(4))
for all real ¢.

THEOREM. The modular automorphism group corresponding to w is the
unique one-parameter group of automorphisms of % that satisfies the modular
condition relative to w.

The modular condition is called “the KMS boundary condition” by HHW,
for Kubo, Martin, and Schwinger, who describe the corresponding condition
in another context (in the more physics-oriented literature); w is said to
satisfy the KMS boundary condition relative to ¢®. It should be remarked
that neither Tomita’s theorem nor the uniqueness theorem just stated are easy
to prove; the ingredients of the arguments are spectral theory, von Neumann
algebra theory, Fourier transforms, and complex variables.

In a major contribution to modular theory, A. Connes [7] analyzes the
constructs of the theory in greater detail providing many new and powerful
devices for classifying factors of type III. He notes that if w; and w, are

faithful, normal states of # and t — a,(l), t — 01(2) are the corresponding

modular automorphism groups, then for each ¢, a,“) and 01(2) differ by an
“inner automorphism” of %, that is, there is a unitary operator U, in #
such that a,“)(A) = U,a,(z)(A)U,* for each 4 in #. In this case, t — U, need
not be a homomorphism of R into the unitary group of %#. It does satisfy
the “cocycle” condition, Us,, = Usas(z)(U,) for each pair of real numbers s
and ¢. (The mapping ¢t — U, is known as the Connes cocycle.)

Connes denotes by ¢ the quotient homomorphism of the group of (adjoint-

preserving) automorphisms of % onto its quotient Out(%#) by the (normal)
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subgroup of inner automorphisms of %. From the preceding discussion,
8(0’,(1)) = e(a,(z)) for each real ¢. Thus, t — s(a,“)) defines a homomorphism,
that Connes denotes by é of R into Out(#). The mapping J is called the
modular homomorphism of Z; it is “invariantly” associated with Z%. The
kernel T(#) of J, a subgroup of R, is an algebraic invariant of .%#. When
Z is a factor of type I or II (that is, when % is semifinite), T(#) = R,
each modular automorphism is inner. In the separable case, if each modular
automorphism is inner the factor is semifinite.

Connes [7] defines another invariant for a factor .#Z. He denotes by S(.Z)
the intersection, over the faithful, normal weights p on .Z, of the spectra
of the operators 4,. The condition that .# is not of type III is equivalent
to the condition that 0 ¢ S(.#), in which case, S(.#Z) = {1}. In any event,
S(4)\{0} is a closed subgroup [11] of the multiplicative group R’ of positive
reals. Aside from {1}, the possibilities for this subgroup are R itself and
{A" : n € Z}, where Z is the group of integers and 4 € (0, 1). The factor .Z is
said to be of type III; when the subgroup is the cyclic group with generator
A in (0, 1); it is of type III; when the group is R%; it is of type Il when
S(A) consists of 0 and 1. In the final section, we shall see examples of these
factors.

We conclude this section with a relation, established by Connes [7], be-
tween S(#) and T (#) for a factor .Z not of type Ill. In this case, T(.#)
is the kernel of the homomorphism ¢ — x, of R into the dual of S(.Z)\{0},
where x,(4) = A", Thus T(A#) = (—2n/logA)Z, when .# is of type III;.

8. Crossed products. In Section 5, we described a construction of factors
arising from a homomorphism « of a discrete group G into the automorphism
group of an abelian von Neumann algebra .&/. That construction can be ex-
tended to the case where . is replaced by an arbitrary von Neumann algebra
', everything remains the same, with % in place of .%7. The resulting von
Neumann algebra % ® « is called the crossed product of % by G. In terms of
this extended construction, Connes [7] presents an explicit “decomposition”
of the factors of type I1I;, 4 # 1.

THEOREM. If /# is a factor of type III;, (. € (0,1)), there is a factor N
of type Il and an automorphism o of N for which tr o o = Atr, where tr is
the (infinite) trace on W', such that # is V' @, Z(= N ® a), where a(n) = a”.
Conversely, such a crossed product is a factor of type III;. Moreover, if (], ay)
and (N5, ay) are two such pairs corresponding to A in (0,1), then 4 ® a; is
1somorphic to A5 ® ay if and only if there 1s an isomorphism of N4, onto N5
carrying o, onto ay o § where B is some inner automorphism of 3.

The type III factors are also crossed products—but this time of a I, von
Neumann algebra (not a factor) by a. The factors of type 111, elude the (dis-
crete) crossed product analysis of Connes. Takesaki [45] encompassed these
factors in a crossed product description by extending the crossed product
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construction to apply to locally compact groups (especially R) and defining
a “dual action” of these groups in the abelian case. This culminated in the
celebrated Takesaki Duality Theorem. Suppose 7 is a “continuous action”
of the locally compact group G on a von Neumann algebra % acting on
a Hilbert space /#’; that is, 7 is a homomorphism of G into the group of
(adjoint-preserving) automorphisms of % such that g — 7,(A4)x is a contin-
uous mapping of G into /# for each 4 in &% and x in #. An inessential
change of representation for % allows us to assume that 7 ¢ 1s implemented
by a unitary operator U, on # . The crossed product % ®1 acts on # Q@ L,(G)
(the space of square-integrable mappings of G, with Haar measure, into /%)
and is generated by the operators 4 ® I and U, ® L,, where L, is the left-
translation unitary operator on Ly(G)((Lg&)(g") = &(g™'g")).

Turning to the case of the action of R on a von Neumann algebra % by
a modular automorphism group, we let p be a faithful normal weight on the
von Neumann algebra % with t — g, its corresponding modular group. Then
t — g, is a continuous action of R on #. If & is of type IlI, # ® o is of
type Iloo. Define (U,&)(s) to be e~&(s): (¢ € Ly(R)). Then I ® U, induces
an automorphism 6, of % ® ¢ and ¢t — d, is a continuous action (the action
dual to 0) of Ron #Z ® g.

THEOREM (TAKESAKI DuaLity). If % is of type Ill, (# ® 0) ® G is iso-
morphic to % .

Each type III; factor is a crossed product of a type Il factor with R.

§9. Tensor Products. Murray and von Neumann [27] introduce a construc-
tion involving several Hilbert spaces that produces another Hilbert space,
their tensor product. With the aid of this construction, it is possible to com-
bine von Neumann algebras to form a tensor product of von Neumann alge-
bras. The investigation of tensor products has had an important influence on
the understanding we have of von Neumann algebras.

From one point of view, there is no difficulty in defining the algebraic ten-
sor products (over C) of two von Neumann algebras %% and .%; the problem
arises in providing the algebra with an appropriate norm and completing. If
Z# and & act on the Hilbert spaces # and .7, respectively, and we form the
tensor product .# ® % in the style of Murray and von Neumann, there is a
natural candidate for #®.#, the von Neumann algebra tensor product of #
and . To form that tensor product, observe that % and . have (natural)
isomorphic images as von Neumann algebras %, and .%) acting on % ® .%.
The von Neumann algebra generated by %, and .¥ is the one we choose
for Z®5. Other possibilities that present themselves as a tensor product
of .# and . (though not von Neumann algebras) are .# ®, .7, the algebra
generated by #; and 4, and .# ® .7, the C*-algebra generated by %, and
.

The tensor product # ® % 1s best described, for accurate mathematical
purposes, in terms of functionals on the spaces /# and .%#". For our purposes,
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and most easily described, we can think of the basic elements of # ® % as
the “simple tensors” X ® y, with x in # and y in %, and the algebraic tensor
product # ®, % as being the linear span of these. Certain identifications
must be made in accordance with such rules as (ax+x’)®y = a(x®y)+x'®y.
Providing % ®,.%# with an inner product defined by

(x®y,z@w) = (x,z)(y,w)

and the associated norm, we can complete # ®,.% relative to the norm to
produce # ® %, the desired Hilbert-space tensor product.

A major purpose to constructing the tensor product Z ®.% is to develop a
tool for analyzing multilinear mappings from /# x %', the Cartesian product
of # and %, into some Hilbert space .. Suppose ¢ is such a mapping
(so that x — @(x,y) and y — @(xp,y) are linear mappings of # and %
into ., respectively, for each fixed yy in .# and x( in #°). If no topological
assumptions are made about ¢, the appropriate tensor product is 7 ®, % ;
there is a unique /inear mapping n of # ®, % into . with the property
that ¢(x,y) = n(x ® y) for all x in # and y in Z. Moreover, # Q, % is
the unique linear space with this “factorization” property. If ¢ is required to
satisfy certain continuity restrictions (a boundedness condition among them),
there is a unique bounded linear mapping n of # ®, % into % with the
property that ¢(x,y) = n(x ® y) for all x in # and y in .Z.

If A is a bounded linear operator on /7, there is a unique linear operator
A®I on # ®.% , with the same bound as 4, determined by (AR )(x®y) =
(Ax) ® y for each x in # and y in Z. Similarly, with B a bounded linear
operator on .%, we can define I ® B on # ® Z. The algebras %, and
#, alluded to before, are the von Neumann algebras {4 ® [ : A € #} and
{I®B : B € .%}. Each element of %, commutes with all elements of .3 (that
is, #Zy C .7y). Despite the apparent dependence of #®. on the underlying
Hilbert spaces # and .%, if &% is isomorphic to %, and . is isomorphic to
A, then Z®.7 is isomorphic to #,®.#. Of course, these constructions can
be iterated to yield tensor products of any finite number of Hilbert spaces or
von Neumann algebras; this iterated process is “associative.”

In [27], Murray and von Neumann observe that a factor .# acting on a
Hilbert space # and its commutant ./’ generate an algebra % isomorphic to
M Rq.4'. By virtue of the Double Commutant Theorem, the von Neumann
algebra generated by # and .Z"’ (the weak-operator closure of %) is & (7).
Murray and von Neumann note that ./ and .#’ generate a von Neumann
algebra isomorphic to .Z®.#"' just in the case where .# is of type 1.

In [D], Dixmier poses the problem of determining the commutant (#®.%)'
of the tensor product Z®.%. In the finite-dimensional case, it is easy to es-
tablish the formula

(ZRF) = R'RF.
It is a simple matter to establish the inclusion
RS C(ARF).
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The validity of the reverse inclusion was an open question for a number
of years. The difficult case occurs when .# and . are factors of type III
(the other cases were settled in several articles). The existence of a * anti-
isomorphism between a von Neumann algebra and its commutant in standard
form is basic to the problem. The tensor-product, commutant formula was
established by Tomita’s theorem [44, 47].

If # and &7 are factors, Z®.% is a factor. The type of #®.% is certainly
determined by the types of % and .%; if either is of infinite type, so is the
product, and if both are of type I, so is the product. When % and . are of
type 11, the same is true of #Z®.%. When both % and .7 are of type IlI, the
type of #®% remained unclarified until Sakai [37] proved that Z®5 is a
factor of type IIIL

It is also of interest to define a tensor product for C*- algebras. The right
choices are more involved in this case. Once again, we can consider the C*-
algebras .7 and % as acting on the Hilbert spaces /# and .%, respectively,
form the C*- algebras {A®/: A€} and {I®B:B e %} on# Q%
and the C*-algebra &/ ® % generated by these C*-algebras. If %/ and %,
are C*-algebras acting on Hilbert spaces /# and .%], respectively, and we
form ¥ ® %), then &/ ® % is * isomorphic to .% ® %, when &/ and % are
* isomorphic to ./ and %, respectively. The algebraic tensor product .7 ®,
% of the C*-algebras ./ and % is * isomorphic to the algebra generated
by .« and %, (as a consequence of the results in [27]). Thus the norm
on & ® % induces on ¥ ®,.% a norm with the properties that % ®, %
becomes a normed algebra and, for each 7 in & ®, Z, |T*T| = |IT|*> A
norm on . ®,.% with these properties is called a C*-norm. The completion
of &7 ®, % relative to a C*-norm is a reasonable choice as the C*-algebra
tensor product of &/ and %. The question arises, of course, as to whether
or not all these choices are the same; equivalently, is there just one C*-norm
on ¥ ®,%. In general, there are many C*-norms on %/ ®,.%, among them
the spatial norm o, described before, obtained from faithful representations
of &/ and % on Hilbert spaces. It is a nontrivial fact that ¢ is the smallest
of all the C*-norms on .%/ ®, . %. Each C*-norm « is a cross norm; that is,
a(A® B) = a(A)a(B) for all 4in &/ and B in %. These properties of tensor
products of C*-algebras and C*-norms require some clever techniques. They
were developed in an article by Takesaki [46]. The tensor product and its
basic properties were introduced by Turumaru in [48].

It is the case, though not trivial, that for ./ finite-dimensional or abelian,
& ®, % admits just on C*-norm no matter which C*-algebra % we choose.
In case & is finite-dimensional, &/ ®, % = &/ ® %, that is, &/ ®, . F is
complete relative to its (unique) C*-norm, the spatial norm. When &/ has
the property that ./ ®, % has a unique C*-norm for all C*-algebras %, we
say that ./ is a nuclear C*-algebra. It is easy to show that if &/ is the norm
closure of a family of nuclear C*-subalgebras directed by inclusion, then %/ is
nuclear. Thus, if %/ has as a norm-dense subalgebra the union of an ascending
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sequence of C*-algebras .27, each containing I and each isomorphic to some
Muky(C), then &7 is nuclear.

This class of C*-algebras, the matricial C*-algebras (also called uhf alge-
bras), developed and classified by Glimm [17], is a basic class for the study of
operator algebras. We shall return to it in the next section. In [46], Takesaki
shows that the C*-algebra generated by {L,; : g € %5}, in the notation of the
group-algebra examples described at the end of Examples, is not nuclear.

In [32], von Neumann introduces infinite tensor products of finite type I
factors. The infinite tensor product of a family of C*- algebras can be defined
as the (C*-algebra) inductive limit of the family of (spatial) tensor products
of finite subfamilies. With {7, : a € A} a family of C*-algebras, we denote
this tensor product as ®,.%,. If p, is a state of .2/, for each a in A, there is a
unique state ®,capq(= p) of the tensor product such that

p(Al @ An) = pa(l)(Al) T pa(n)(An)
whenever 4, € .%,,), {a(1),...,a(n)} C A. Such states p are called product
states of the tensor product. They occupy a central position in the analysis
of infinite tensor products.

§10. Matricial algebras. In [29], Murray and von Neumann introduce and
study a family of factors of type II; very closely related to matrix algebras.
In the terminology of Section 9, each of these factors is the weak-operator
closure of a matricial C*-algebra. Following an impressive sequence of tech-
nical lemmas, Murray and von Neumann prove that all matricial factors of
type II; are * isomorphic. They also show that none of the factors %7, is
matricial and that .#7; is matricial (cf. Section 5).

If &/ is a matricial C*-algebra and {.% } is a family of C*-subalgebras with
& isomorphic to .#,(C) such that &7 C %%, then n(k) divides n(k + 1)
(recall that I € %4). If .#, ., is the subalgebra of %%, consisting of those
elements that commute with all elements of .24, then .Z | is itself isomorphic
to the full matrix algebra of order n(k + 1)/n(k) and &7 is isomorphic to the
(infinite) tensor product of the family {.#Z}} (where .Z| = &4). If n(k’) can
be factored as m - n, then .#, has a subfactor .# of type 1,, and the set of
elements in .Z,, commuting with .Z is a subfactor .#" of type I,,. Replacing
My, by A and # in the family {#,} and forming the tensor product, we
arrive, again, at the (matricial) C*-algebra .7 . Thus the orders n(k+1)/n(k)
of the algebras .#Z, ., are not, themselves, invariants for the algebra, though
the “total” power to which a given prime may appear in these orders may be.
The remaining problem in analyzing matricial C*-algebras can be illustrated
by the question of whether the tensor product of a countable family of .Z,(C)
algebras is isomorphic to the tensor-product of that algebra with .Z;(C)—or
even whether that algebra contains a C*-subalgebra (containing /) isomorphic
to .#;(C). Using approximation techniques combined with the trace and
projections in the algebra, it can be shown that both questions have a negative
answer.
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With .7, .9, and n(k) as before, let m, be sup {r: (3k)(p"|n(k))}, where
p is a prime. Thus m, may be 0 or oo, as well as any positive integer. Let
n(/) be 2M23M35Ms ... Glimm [17] proves the following result.

THEOREM. Two matricial C*-algebras &/ and & are * isomorphic if and
only if n(&7) = n(%).

By forming the (infinite) tensor product of matrix algebras of suitable or-
ders, a matricial C*-algebra .2/ can be constructed with any given invariant
n(&); there are many nonisomorphic matricial C*-algebras. The result of
Murray and von Neumann that all matricial II; factors are * isomorphic
should be contrasted with this situation for matricial C*-algebras; a substan-
tial “coalescing” takes place under the “umbrella” of the trace.

If 7, is the normalized trace on .Z, then ®, 7 is the unique (normalized)
trace 7 on .. The GNS construction applied to 7 and .%/ yields a represen-
tation of &7 on a Hilbert space /. It is not immediate, though not difficult,
to show that each matricial C*-algebra is simple. Thus each representation
of &/ 1s faithful. For simpler notation, we may think of .2/ as acting on #
and 7 as w,|%/ for some unit generating vector u for .%7. It follows that the
weak-operator closure .#Z of ./ is the matricial factor of type 1I; with u as a
generating trace vector. Thus ./’ is of type II; with u as a trace vector.

Viewed in this way, it is natural to study the weak-operator closure of
the image of a matricial algebra .& under the representation obtained from
the GNS construction applied to a product state of .. As a byproduct of
his thesis work on the (infinite) canonical anticommutation relations (CAR),
Powers [34] did just this, at the same time, bringing into focus the pivotal
role of product states. (See also [35].) Powers works with the matricial
C*-algebra &/ for which n(&/) = 2°°. This algebra is the (infinite) tensor
product of algebras .Z, each of which is isomorphic to .Z5(C). It is referred
to as the CAR algebra; its representations are naturally associated with the
representations of the CAR. With an isomorphism between .#, and .Z;(C)
specified, Powers considers the state p, of ./Z that assigns to A the value
ta+ (1 —1t)b, where t € [0, %] and a and b are the upper and lower diagonal
entries of the matrix in .#, corresponding to 4. The product state he studies
i1s ®xpr(= p;). He shows that the (faithful) image of .« under the GNS
representation corresponding to p, has weak-operator closure a (matricial)
factor ./, of type I11. He proves the following result.

THEOREM. Ift,t' €(0,1) andt # U, then 4, and M, are not isomorphic.

In the notation of Section 7, .#; is a factor of type III;, where A =¢/1 —¢.
Although Pukanszky [36] had found two nonisomorphic factors of type III
(along the lines of the Murray-von Neumann factors of type II; that are not
isomorphic) at an early stage, the factors .#;, the Powers factors, exhibited a
continuum of nonisomorphic matricial factors of type III.
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Inspired by the results of Powers, Araki and Woods [2, 3] undertook a
detailed analysis of the factors arising from the product states of matricial
algebras. It is a fact, requiring an involved argument, that each product state
of a matricial algebra ./ gives rise to a representation of .2/ whose image has
weak-operator closure a factor. From Araki and Woods, these factors have
come to be known as ITPFI factors (for ‘infinite tensor product of finite type
I factors’). Araki and Woods develop the technique of Powers involving the
states p; on .Z. As in the situation of quantum statistical mechanics, each
state p on .#,(C) has a “density matrix” H (such that p(4) = 1(HA) for each
A in #,(C)). Powers considers the eigenvalues of H. Araki and Woods note
that the ratios of the eigenvalues of the density matrices for the ‘tail’ of the
tensor product is what really counts in the arguments of Powers, and they
define an “asymptotic ratio set” in terms of which they classify many of the
ITPFI factors.

A vexing problem that emerged from these investigations concerned the
relation between ITPFI factors of type III and matricial factors of type III.
Certainly each ITPFI factor of type III is matricial; but is each matricial
factor of type III an ITPFI factor? Krieger [23] constructed certain matricial
factors and established results indicating that they might not be ITPFI factors.
In [7], Connes completes the process showing that the Krieger factors are,
indeed, not ITPFIL.

In connection with the Powers article [34], another vexing problem arose
that was to puzzle most of the research workers in the area for the next eight
years. The von Neumann algebra tensor product of the matricial factor of
type II, and % ('), where /# is an infinite-dimensional, separable Hilbert
space, is a factor of type Il,. There is no difficulty in seeing that it is
matricial. Are all matricial factors of type Il isomorphic to that tensor
product? Connes, along with a host of other experts, set their sights on
that question. Connes had established that a number of other fascinating
questions about matricial factors are equivalent to this question. Among
them are the following problems: Is each subfactor of the matricial 11, factor
either matricial or of type I,, (such a subfactor must be of finite type)? Is the
von Neumann group algebra of an amenable i.c.c. group matricial? Is a factor
A, acting on (separable) /#, with the property that there is a conditional
expectation mapping % (#') onto .# (such factors are said to be injective)
matricial? In [8], Connes answers all these questions in the affirmative, and
does much more. His argument is a brilliant tour de force relying heavily on
his penetrating analysis of the automorphism group of certain factors. The
intervening years have seen simpler proofs of these results [21, 33] (none of
which is very simple!), but the work of Connes [8] is so deep and rich in ideas
and techniques that it remains a basic resource in the subject.

As noted, Connes had shown that some matricial factors of type III es-
cape the ITPFI net and, consequently, escape the results on classification by
Araki-Woods [3]. In [8], Connes shows that all matricial factors of type III;,
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A € (0,1), are isomorphic. He had noted, in [7], that there are many matri-
cial type Il factors depending on the action of an ergodic automorphism
of an abelian von Neumann algebra. In [8], he completes the reduction to
the (measure-theoretic) classification of such actions by showing that each
type 11lp matricial factor is the crossed product of an abelian algebra and (Z
through) an ergodic automorphism of the algebra.

The question of whether all matricial factors of type III; are isomorphic
remained the most tantalizing open question of the subject until Haagerup
[22] settled it in the affirmative.

§11. Conclusion. If we reckon the birth of the theory of operator algebras
as occurring in [31], the subject is sixty years old. That is surely old enough
to permit us to “look back” and assess the legacy of von Neumann in this
area of mathematical thought. A substantial part of that legacy must be a
collection of mathematical results of surpassing depth and beauty, many of
them contributed by von Neumann himself and jointly with F. J. Murray, but
a great many of them due to generations of mathematicians that followed von
Neumann. Another significant part of the legacy is the host of applications
and spin-offs of the theory of operator algebras; this theory touches virtually
all areas of mathematics and many areas of physics. Legions of scientists
were inspired by the ideas basic to the theory and fascinated by the power
and elegance of the subject. A great many highly talented mathematicians
and physicists have devoted much time and effort to bringing the subject to its
present state. Several of them I do not (nor, I imagine, would von Neumann)
hesitate to describe as brilliant. Perhaps that, the people and the enduring
inspiration, is the most important part of the legacy; through them the ideas
and work of von Neumann remain a living and vital force in present day
science.
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