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1. INTRODUCTION 

In this article, we initiate the study of a class of linear mappings of an 
(associative) algebra &? into an %bimodule .,#. We call these mappings 
local derivations. The defining property of a local derivation cc is that for 
each A in W, there is a derivation 6, of %Y into .&! such that a(A) =6,(A). 
One of our main results (Theorem A) states that each (norm-continuous) 
local derivation of a von Neumann algebra z% into a dual W-bimodule (see 
[2] or [4, Exercise 10.5.131 for definitions) is a derivation. In particular 
each local derivation of .G@ into itself is a derivation. Employing the Deriva- 
tion Theorem [S, 61, one concludes (Theorem B) that a norm-continuous, 
linear mapping of R into itself that maps each A in .G% into a commutator 
(A, TA] for some TA in ,%? has the form ad TO I&! for some TO in W. (This 
may be unexpected even when L@ is the algebra of all complex n x n 
matrices.) The module formulation is a worthwhile extension. For example, 
it permits us to draw a similar conclusion for mappings of W into B(Z), 
the algebra of all bounded linear transformations on the complex Hilbert 
space Z on which %? acts. 

The results just noted appear in Section 2; they rely on the analytic 
structure of von Neumann algebras. Sections 3 and 4 deal with purely 
algebraic situations involving local derivations. In Section 3, we present an 
example constructed by C. U. Jensen (in response to a question raised 
during a lecture in Copenhagen in 1986) of an algebra over the complex 
numbers @ with many local derivations that are not derivations. If the con- 
clusions of Theorem A or B were valid for all algebras, those results would 
have, at best, temporary status. In discussions with Irving Kaplansky (at 
MSRI, Berkeley, in January of 1985) Kaplansky produced first an inlinite- 
dimensional algebra, then an algebra of dimension 24 over a field of 
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characteristic 2 for which the conclusions fail. The computations in those 
examples are daunting. 

C. U. Jensen’s example uses the algebra of rational functions (over C). 
This adds further interest to determining the local derivations of the poly- 
nomial rings in several variables over C. In Section 4, we show, first, for 
@[xl and then for @[xi, . . . . x,] that each local derivation is a derivation 
(Theorems C and D and Corollaries 17 and 1X). 

This investigation grew out of the cohomology program for operator 
algebras introduced and studied in [l-3]. That program requires the 
analysis of (norm-continuous) linear mappings of one operator algebra 
into another. In particular, such a mapping must be decomposed into other 
such mappings one term of which is a derivation (a 1-cocycle). These 
decompositions are constructed by the use of meaning processes. From a 
purely algebraic point of view, it is not difficult to decide which meaning 
process to use to produce the derivation component appropriate to a 
particular problem. For example, this is the case with the question raised 
by J. R. Ringrose and this author twenty years ago of whether or not the 
(norm-continuous) cohomology groups of a von Neumann algebra with 
coefficients in itself are 0. Our conjecture is that they are 0, but the 
question remains open (though some brilliant and decisive work on this 
question has been and is currently being done by Erik Christensen and 
Allan Sinclair). The difficulties lie precisely in the subtle interplay among 
the various topological algebraic structures that can be imposed on the 
(norm-continuous) 1-cochains and the resulting convergence questions for 
the meaning processes. A criterion that allows us to construct or recognize 
derivations in an element-by-element manner could prove useful for this 
and related problems. Theorem A provides such a criterion. 

Numerous topics remain to be studied. Local higher cohomology (for 
example, local 2-cocycles) should be examined. Local derivations of other 
classes of algebras should be studied (a further publication will deal with 
some other algebras). Some finite-dimensional examples over @ should be 
constructed with local derivations that are not derivations. (Note that if 
such an algebra is semi-simple, it is isomorphic to a von Neumann algebra 
and is included under Theorem A.) There are questions of a (possibly, 
extended) homological algebraic framework for such mappings and its 
application to “appropriate” dense subalgebras of operator algebras. 
This entails the study of “unbounded” local derivations and the related 
questions of “automatic continuity” for everywhere defined mappings. 

We are indebted to J. R. Ringrose for the conversations during our 
collaboration on the cohomology of operator algebras that led us to the 
results appearing in the next section and to the NSF for partial support. 



496 RICHARD V. KADISON 

2. LOCAL DERIVATIONS OF VON NEUMANN ALGEBRAS 

Throughout this section, W is a von Neumann algebra acting on a 
Hilbert space # with identity operator I and & is a dual B?-bimodule. We 
shall see (Lemma 3) that the conclusion of Theorem A is valid for a general 
a-bimodule if it is valid for a unital dual 9-bimodule so that it s&ices to 
deal with the case where & is unital. 

We use the notation introduced in [2]. Thus C:(%?, 4) is the linear 
space of norm-continuous linear mappings of 9 into &!, the 1-cochains on 
9 with coefficients in J%!, and Z,‘(B, JX) is the linear subspace of 
C,‘(%?, J.@) consisting of those mappings 6 such that 

Ad(B)-6(AB)+c!qA)B=O (A, BE a). 

Such mappings 6 are the 1-cocycles on 9 with coefficients in &!, the deriva- 
tions of W into &. 

THEOREM A. If 6 E C,‘(%?, A) and for each A in B there is a 6, in 
Z,‘(B, J!) such that 6(A) = 6,(A), then 6 E Z,‘(B, 4). 

We refer to a mapping 6 that agrees at each A with some derivation 
(varying with A) as a local derivation. Theorem A states that each local 
derivation is a derivation under the given conditions. Its proof is organized 
as live lemmas with the concluding argument following Lemma 16 and 
Lemma 4 requiring eleven sublemmas. Lemmas 1 and 2 apply without the 
assumption that JV is unital. Lemma 3 uses Lemma 2 to reduce the general 
case to the case where &’ is unital. The notation 6 will be used throughout 
for our local derivation. 

LEMMA 1. With E and F commuting idempotent elements in W, we have 
that 6(EF) = 6(E)F+ E&F). 

Proof. If 6, E Z,‘(&?, .M), then 

6,(E) = &(E*) = IS!&(E) + 6,(E),% 

Letting E act on the left and right sides of this equality, we have that 
EG,(E)E= EG,(E)E+EG,(E)E, whence EG,(E)E=O. If 6, has been 
chosen such that 6,(E) =6(E), then 

EG(E)E= EG,(E)E=O= (Z-E) &,(E)(Z- E) 

= (I-E) 6(E)(I- E), (1) 

6(E)=&E)E+E&E). (2) 
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Note that, if EF=O, then 6(E)F+E6(F)=E6(E)F+EG(F)F from (2); 
while, from (1 ), E&F) E and E6(E) E are 0, whence 

O=E(E+F)6(E+F)(E+F)=EG(E)F+E&F)F. 

Thus 0 = 6(EF) = 6(E)F+ Ed(F) in this case. 
If EF= E, then from (2) and what we have just proved, we have 

6(E)F+ E&F) = 6(E)F+ Ed(E) + E6(F- E) 

= 6(E)F+ E&E) - 6(E)(F- E) 

= E6(E) + 6(E)E 

=6(E) 

= 6( EF). 

For an arbitrary commuting pair of idempotents E and Fin 93, we have 

6(E)F+E6(F)=6(E)F+(E-EF)6(F)+EFG(F) 

= 6(E)F- 6(E- EF)F+ 6(EF) - G(EF)F 

=6(EF). m 

LEMMA 2. Zf %? is an abelian von Neumann subalgebra of 6@, then 
6 1 %T E Z,‘(W, %A). 

ProojI If A = cJ’= i ajEj and B = CT=, bkFk, where Ej and Fk are 
projections in W, then from Lemma 1, 

6(A)B+A6(B)=Cajb,[G(Ej) Fk+ Eji(Fk)] 
i, k 

= 6 (g a)bkEjF,) 
= 6(AB). 

Since the set of elements in 9? that are finite linear combinations of projec- 
tions in %? is norm dense in W, and A +&A)B+A&B)-6(AB) is norm 
continuous and vanishes on this set when B lies in this set, it vanishes for 
all A in % when B lies in this set. Again, B + 6(A) B + Aa - 6(AB) is 
norm continuous for each A in W; so that 6(AB) = 6(A)B+ A&B) for all 
A and B in V. Thus 6 l%~Zf(%, A). 1 

LEMMA 3. Zf the statement of Theorem A is valid for each unital dual 
%?-bimodule, then it is valid for each (general) dual W-bimodule. 
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Proox Suppose 6 is a (norm-continuous) local derivation of 8 into a 
(general) dual .?J?-bimodule A!‘. Define two idempotents L and R on A’ by 
L(m) = Zm and R(m) = mZ. Denote by I the identity transformation on A. 
Since LR = RL, we have that LR is an idempotent. By definition of “dual 
$8-bimodule,” each of L and R is continuous mapping of A into itself 
provided with its w*-topology. Thus LR is a w*-continuous idempotent on 
M, and its range J&, the null space of z - LR, is a w*-closed subspace 
of A?. Let A* be the predual of A’ and A?: be the subspace of A.+ that 
jtzb annihilates. Of course, Ai is norm closed in A%‘,. From [4, 
Corollary 1.2.13, and Proposition 1.3.51, A%$ is the annihilator of J%‘: in A!. 
Thus A’,, is the (Banach) dual space of A’*/A?‘i (cf. [4, Exercise 1.9.10(i)]). 
Since 

AZmZB = ZAmBZe J&, (mEJO 

and ZZmZ= ZmZI = ZmZ, A0 is a unital dual a-bimodule. 
It follows from (1) of Lemma 1 that Z&Z)Z=O. From Lemma 2, we have 

that 6(Az) = 6(A)Z+ Ad(Z) (first for self-adjoint A, then, by linearity of 6, 
for all A in a). We show that LR6 is a local derivation of %! into the unital 
dual W-bimodule A$. Since 6 is a local derivation, for a given A in 9, there 
is a derivation 6, of !% into A such that 6(A) = d,(A). We have that 

LRG,(A, B) = IdA( + Al d,(B)Z 

= z6,(A,) ZB+ A,zd,(B)Z 

= LRG,(A,)B+ A, LRG,(B). 

Thus LRd, is a derivation of J% into A0 for which LRS,(A)=Zd,(A)Z= 
ZJ(A)Z= LRG(A). It follows that LRd is a local derivation of W into Jte,. 
From our hypothesis, LR6 is a derivation of %? into A%$. 

Let 9 be (z - L) R6, and note that 

q(A) = 6(A)z-Zd(A)Z 

= h(z~)z- Z~(A)Z 

= d(Z)AZ+ zh(A)Z-Zd(A)Z 

= a(Z 

Now Ad(z) B = A(zd(z)Z) B = 0, whence 

q(AB)=d(z)AB=d(Z) AB+ A&z)B=tj(A)B+ Aq(B). 
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Thus q is a derivation of 92 into A. Similarly, L(z - R) 6(A) = Ad(Z), from 
which we have that L(l - R)6 is a derivation of 92 into J%!. In addition, we 
have 

(I-L)(z-R)d(A) 

= 6(ZA) - d(ZA)Z- 16(A) + Zc?(A)Z 

= 6(Z)A +16(A) - [6(Z)A + Zd(A)]Z- 16(A) + Zd(A)Z 

= 0. 

Since 6 = LR6 + (z -L) R6 + L(l- R)6 + (z - L)(z - R)6, we have that 6 is 
a sum of derivations of W into 4. 1 

We assume, henceforth, that our dual W-bimodule & is unital. 

LEMMA 4. Zf E and F are projections such that EF= 0, and V is an 
operator in W such that V*V= E and VV* = F, then sl&!?O~Z~(%f,,, A), 
where .%,, is the algebra generated by E, F, V, and V*. 

We establish Lemma 4 with the aid of the following sublemmas. 

SUBLEMMA 5. Zf A, B, C, in 52, are such that 0= AB= BC, then 
AG(B)C=O. 

Proof With 6, a derivation of 2’ into ~2’ such that 6,(B) = 6(B), we 
have 

0 = G,(ABC) = 6,(A) BC+ AG,(B)C + AB&,(C) 

= AG,(B)C= AG(B)C. 1 

Applying sublemma 5, we have 

F@V*)(Z-F)=FG(V*)E=O, Fb(V*)=FG(V*)F 

(I-E)d(V*)E=O, &V*)E=EG(V*)E, 
(3) 

where E, F, and V are as in the statement of Lemma 4. 

SUBLEMMA 6. F6( V*)F= F&E) V*. 

ProoJ Note that (E+ I/*)* = E+ V*. From Lemma 1, 

6(E+ V*) = 6((E+ V*)*) 

=6(E+ V*)[E+ V*] + [E+ V*] 6(E+ V*). (4) 
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Thus 

F&E+ V/*)F= F[G(E) + 6( v*)] v* = z%?(E) v* + F6( v*) Elf* 

= F&E) v*, 

since P’& V* )E = 0 from (3). From Sublemma 5, FG(E)F= 0. Hence 
F6( v*p= m(E) v*. u 

SUBLEMMA 7. Eb(V*)E= -V*G(E)E. 

ProoJ: Multiplying (4) on the right by E, we have that 

[E+ V*] 6(E+ V*)E=O. 

From (I), EG(E)E=O. Thus 

Ed(V*)E=E[G(E)+6(V*)]E+(E+ V*)][G(E)+h(V*)]E 

=Eb(E)E+E6(V*)E+Ed(E)E+EG(V*)E 

+ V*G(E)E+ I’*& V*)E. 

Thus, from (3), 

Ed(V*)E= -?‘*G(E)E- V*FG(V*)E= -V*d(E)E. i 

SUBLEMMA 8. &EL’*) = 6( V*) = 6(E) V* + E6( V*). 

ProoJ: From (3) and Sublemma 6, we have that 

F6( I’*) = Z-3( V*)F= B(E) I’* = F[G(E) V* + E6( I’*)]. 

From ( 1 ), we have 

(5) 

E6( V*) = Ed(E) El’* + E6( V*) = E[G(E) V* + E6( V*)]. (6) 

From Sublemma 5, 

O=(Z-E-F)d(V*)E=(Z-E-F)6(V*) I/* 

= (Z-E-F) d(E)(Z- E). 

Thus (recall that A’ is a unital %bimodule), 

(Z-E-F)&E)=(Z-E-F)b(E)E. 

(7) 

(8) 

From (4), we have that 

(I-E-F)[G(E)+6(V*)]=(Z-E-F)[G(E)+6(V*)](E+ V*). 
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Combining this equality with (7) and (8), we have 

Hence 

(z-E-F)6(V*)=(z-E-F)[G(E)V*+E6(V*)]. (9) 

Our assertion follows by adding (5), (6) and (9). 1 

S~BLEMMA 9. d(V*F)=d(V*)= V*d(F)+h(V*)F. 

Proof From (1 ), we have that 

6( v*p= 6( V*)F+ V*FG(F)F= [S( V*)F+ v*s(F)]F. (10) 

From Sublemma 5, V*6(E)(Z- E) = 0, whence V*6(E) = V*G(E)E. Using 
this and Lemma 1, we have 

[S( V*)F+ V*d(F)]E= v*d(P)E= -V*m(E) = -V*qE) 

= -?‘*h(E)E. 

Thus, from (3) and Sublemma 7, 

6( V*)E= E6( V*)E= -V*G(E)E= [S( V*)F+ V*G(F)]E. (11) 

Since (F+ V*)2 = F+ V*, we have, as with (4), that 

6(F+ v*) = 6(F+ v-*)(8-+ v*) + (F+ If*) 6(1;+ v*). 

Using this with Sublemma 5, we have that 

[6(F)+6(V*)](Z-E-F)=(F+ V*)h(F+ V*)(Z-E-F) 

= d(F)(Z- E- F) + V*iS(F)(Z- E- F). 

Hence 

6( V*)(Z- E- F) = [S( V*)F+ V*S(F)](Z- E- F). (12) 

Our sublemma follows by adding (lo), (ll), and (12). 1 

SUBLEMMA 10. 0 = 6(FV*) = 6(F) I/* + F6( V*) and 0 = 6( V*E) = 
6( V*)E+ V*c?(E). 
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Proof: From Lemma 1, (3), and Sublemma 6, we have 

6(F) v* + F6( v*) =6(F) EV* + Fd( V*)F 
= -Fh(E) v* + F&E) v* 
= 0. 

From (3) and Sublemmas 5 and 7 , we have that 

6( V*)E+ V*a(E) = E6( V*)E+ V*G(E)E= 0. 1 

SUBLEMMA 11. 

6(FV) = 6( V) = ii(F) v+ F6( V), 

6( VE) =6(V) = 6( V)E+ V&E), 0 = 6(EV) = 6(E) v+ E6( V), 

and 

0=6(VF)=fqV)F+ m(F). 

Proof: Replace V* by V, E by F, and F by E, and apply Sublemmas 8, 
9, and 10, respectively. 1 

SUBLEMMA 12. F’s( V) E = - VS( V*) V. 

Proof: Let 6, be a derivation of W into A such that 6,( V+ V*)= 
6( V + V*). Since ( V* + V)2 = E + F, we have 

&,(E+F)=6,(V+ V*)[V+V*-J+[V+ V*]c!&,(V+ V*), 

whence 

O=[E+F]b,(E+F)[E+F] 

=[E+F]&,(V+V*)[V+V*]+[V+V*]&,(V+V*)[E+F]. 

Thus 

O=F[E+F]~(V+V*)[V+V*]V+F[V+V*]C~(V+V*)[E+F]V 

=F6(V+ V*)E+ V&V+ V*)V. 

From Sublemma 5, 0 = F6( V*) E = V6( V) V, whence 

FS( V)E= - VS( V*) V. 1 

SUBLEMMA 13. 6( V* V) = 6(E) = 6( V*) V + V*6( V). 
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Proof From Sublemmas 8, 11, and 12, we have 

6( v*) v+ 1/*6(v) = 6(EV*) v+ v*q VE) 

= [6(E) v* + E6( v*)] I/+ v*[s( V)E+ 1/6(E)] 
= 6(E)E+ E6( v*) v+ v*q V)E+EqE) 
=6(E) + E6( v*) v+ v*Fd( V)E 
=6(E)+EG(V*)V- v*m(v*)v 
=6(E). 1 

SUBLEMMA 14. 6( I/V*) = 6(F) = 6( V) V* + V6( V*). 

Proof: Replace E by F, V by V*, and V* by V, in the statement of 
Sublemma 13. 1 

SUBLEMMA 15. 6( V’) =0=6(V) V+ V6( V) and 6( V**) = 0 = 6( V*) V* 
+ v*q v*). 

Proof: Let 6, be a derivation of B? into &’ such that 6(V) = 6,(V). Then 
V2=0 and 

0 = 6( P-2) = 6,( v*) = d,(V) v+ V6,( V) = 6( V) v+ K?(V). 

Replacing V by V* in the foregoing, we have the second assertion of this 
sublemma. 1 

Proof of Lemma 4. From Lemma 2 and Sublemmas 8, 9, 10, 11, 13, 14, 
and 15, 6 has the multiplicative derivation property for the linear 
generators E, F, V, and V* of %&. Thus 6 I B,, E Z,‘(B?,,, 4). 1 

LEMMA 16. With .BTO as in Lemma 4 and w an abelian von Neumann 
subalgebra of W n B?b, we have that 6 1~92~ E Z,‘(%?,, ya;/), where 9, is the 
von Neumann algebra generated by .B?,, and %‘. 

Proof: Let E and F be projections, one in %? and the other in Se,. Since 
EF= FE, we have that 6(EF)= 6(E)F+ Ed(F) from Lemma 1. Now each 
element of .G&, and each element of a norm-dense subset of %? are finite 
linear combinations of projections in B0 and W, respectively, and 6 is norm 
continuous on %?. Thus 6(U) = d(C),4 + G?(A) = &AC) = 6(A)C+ 
A&C), where CE %’ and A E .%$. As W, consists of finite linear combina- 
tions of elements of the form CA, with C in V and A = Z or A in BO, it 
remains to show that 

6( CAC’A’) = &CA) C’A’ + CA6( C’A’). (13) 

481/130/2-I7 
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Now, 
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6( CAC’A’) = 6( CC’AA’) 

= 6(C) C’AA’ + ciq C’) AA’ 

+ CC’G(A)A’+ CC’AG(A’), 

while 

6( CA) C’A’ + CA& C’A’) 

= 6(C) AC’A’ + cb(~) C/A’ + CAM A’ + CAC~(A’). 

Since 

CG(C’)AA’+CC’G(A)A’=C[G(C’)A+C’d(A)]A’ 

= C[G(A) C’ + AS(C’)] A’, 

(13) follows. 1 

Proof of Theorem A. Since 6 is norm continuous and the set of finite 
linear combinations of projections in W is norm dense in W (cf. [4, 
Theorem 5.2.2(v)]), it will suffice to show that 6(EF)=6(E)F+ZG(F) for 
each pair of projections E and F in 9. The von Neumann algebra 9, 
generated by E and F is either abelian, of type Z,, or the direct sum of an 
abelian von Neumann algebra and one of type Z, (cf. [4, Exercise 12.4.111). 
If 9, is not abelian, it is generated by its center and a subalgebra 9,, 
isomorphic to a factor of type I,. Lemma 16 applies and 6 19, E 
Z,‘(%‘,, A). Thus 6(EF) = d(E)F+ E6(F). 1 

THEOREM B. Zf 6 is a norm-continuous linear mapping of a von Neumann 
algebra 9 into itself such that, for each A in 9, there is a TA in 9 for which 
6(A) = AT, - T,A, then there is a Tin W such that 6(A) = AT- TA for all 
A in 9%‘. 

Proof From the Derivation Theorem [S, 61, each derivation of 9 into 
itself has the form A + AT- TA for some T in 9. Now apply 
Theorem A. 1 

3. AN EXAMPLE 

We present (a slightly modified version of) C. U. Jensen’s example. He 
exhibits an infinite-dimensional, commutative algebra over C, the complex 
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numbers, admitting a mapping that is a local derivation but not a deriva- 
tion. The algebra is C(x), the rational functions in the variable x over C. 
Let C[x] be the subalgebra of polynomials. We note certain facts. 

a. The derivations of C(x) into itself are mappings of the formf -, gf’ 
for some g in C(x), where f’ is the usual derivative off: Such a mapping 
is a derivation of C(x). Let 6 be a derivation of C(x) into C(x) and let g 
be 6(x). If p E @[xl, then 6(p) = gp’ (applying the multiplicative property 
of the derivation). At the same time, if p # 0, then 

whence &p-l) = -6(p) p-* = -gp’p-2. Thus, with p and q in C[x], 

h(pq-‘) = 6(p) q-l + @(q-l) = gp’q--’ - g&w2 

=~cP’~-P~‘l~-2=~cP~-11’. 

b. The local derivations of C(x) are the linear mappings that annihilate 
the constants. If CI is a local derivation, then for each c in C, there is a 
derivation 6 of C(x) such that CL(C) = 6(c) = 0. Suppose, now, that c1 is a 
linear mapping of C(x) into C(x) that annihilates the constants. Of course 
a agrees with every derivation on all constants. If f, in C(x), is not a 
constant, then f’#O. Let 6(h) be (cr(f)/f’) h’. Then 6 is a derivation of 
C(x) into C(x), and s(f)=cr(f). Thus c1 is a local derivation of C(x). 

c. We display a local derivation of C(x) into itself that is not a deriva- 
tion. With C(x) considered as a vector space over @, the 2-dimensional 
subspace X generated by 1 and x has a complement Y. Let CI be the projec- 
tion of C(x) on Y along X. Then a annihilates the constants, whence tl is 
a local derivation from b. If c1 were a derivation, then from a, a(f) would 
be a(x)f’, which is a 0 since x(x) = 0. As tl # 0, a is not a derivation. 

4. POLYNOMIAL ALGEBRAS 

With C. U. Jensen’s example in mind, it is of interest to study the local 
derivations of @[xl. In the theorem that follows, we consider local deriva- 
tions of @[xl into C[x, y, . . . . w], the polynomial ring over C in an 
arbitrary set of variables (x, . . . . w}. 

THEOREM C. Each local derivation of @[xl into C[x, y, . . . . w] is a 
derivation. 
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Proof: Let u be a local derivation of C[x] into C[x, y, . . . . w]. For each 
positive integer j, there is a derivation di of C[x] into C[x, y, . . . . w] such 
that 

cr(xj) = dj(xj) = jxj- ' hi(x) = jx'- 'gj, 

where gj(= dj(x)) is some element of C[x, y, . . . . w]. Similarly, for a given 
p in C[x], there is a g, in C[x, y, . . . . w] such that a(p) = p’g,, where p’ is 
the usual derivative of p. Thus for some h in @[x, y, . . . . w] and each non- 
zero a in C, 

2(xj+axk)(jxj-‘+kaxk-1)h=ct([x’+uxk]2) 

= a(x’i + 2axi+ k + u*X*k) 

=2jx2i~‘g2j+2(j+k)uxj+k~‘gj+k 

+ 2ku2x2k - ‘g,, , (14) 

when j, k 2 1. Suppose b in C is such that bkpj = --a-‘. Then b is a root 
of the left side of (14). The right side of (14) can be rewritten as 

2x”- ‘( jg, + (j + k) uxk -jg ,+k + kU2X2(k-‘)g2k), 

which must vanish when x is replaced by b. Thus 

jgzj(by Y, -, w) + kdb, Y, . ..y W)- (j+k)gj+k(h Y, -., w)=o. (15) 

Since a does not appear in (15) and b satisfies only bk-j= --a-‘, if we 
choose a to be - bjpk for an arbitrary non-zero choice of b in C, (15) is 
satisfied. Thus 

.ky+k2k--(j+k) gj+k=O (16) 

holds identically, when j, k > 1. 
Considering a( [ 1 + uxk]*) and proceeding as in the computation of (14), 

we conclude that uxk- ‘gk + u’x~~- ’ g,, vanishes when x is replaced by b in 
@ such that bk= --a-‘. The same is true of x(uxk-‘g, + u~x~~-‘~,,). 
Arguing as at the end of the preceding paragraph, we have that g, = g,, for 
each positive integer k. Thus g, = g,. 

With k + 1 in place of j in (16), we have 

@+1)g,k+,+kg2k=(2k+1)g2k+l. (17) 

With 1 for k in (17), we have that 2g, + g, = 3g,. But g,= g,. Thus 
g2=g3. Suppose we have established that g, = g, = ... = g*k+, . Then 
g2k=gZk+l (if kal) and from (17), it follows that (k+ l)g2k+2= 
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(k+ 1) g2k+l. Thus g, = g,= ... = g,,+,. Now g2k+4= gk+2, from the 
preceding paragraph, and we have just shown that gk+ 2 = g,, + 2. Thus 
from (17), 

(2k+3) &?2k+3=@+ l) g2k+2+(k+2) g2k+4=(2k+3) g2k+2. 

Hence g, = g, = . . . = g2k+ 1 = g,, + 2 = g,, + 3. It fOllOWS by induction that 
gj = g, for all non-zero j and k. If p in @[xl is a,,~” + . . . + a, x + a,, then 

a(p)=na,x”-‘g,+ ... +a,g,=p’g,. 

Thus a is the derivation p + p’g, of @[xl into C[x, y, . . . . w]. 1 

COROLLARY 17. Each local derivation of C[x] into itself is a derivation. 

In the theorem that follows, we extend Theorem C to local derivations of 
@[Xl, .**, x,] into C[x,, . . . . x,] when n <m, where C[x,, . . . . x,] is viewed 
as a subalgebra of @[xl, . . . . x,]. Theorem C plays a key role in its proof. 

THEOREM D. Each local derivation of @[xl, . . . . x,] into C[x,, . . . . x,], 
where n <m, is a derivation. 

Proof: If n = 1, Theorem C applies to show that our local derivation o! 
restricted to C[x,] is a derivation of @[xi] into @[xi, . . . . x,]. Suppose we 
have proved that the restriction of CY to C [xj(r,, . . . . xi+ r,] is a derivation 
for each (r - 1)-element subset {xjcl,, . . . . xi+r,} of {x1, . . . . x,} for some r 
not greater than n. We show that the same is true for each r-element 
subset of {x,, . . . . x,}. It will suffice to prove that the restriction of CI to 
@Lx,, . . . . x,] is a derivation. 

Let a(xj) be gj(in @[x,, . . . . x,]) forj in { 1, . . . . n} and define &, by 

&(x’;“’ . . . xy) = i k(j) xl;(u . ..X~(j-~l)X’f(i)-~Xlj(i+l) ...Xk(n) 
J--1 J J+l n gj, 

j= 1 

where the k(j) are non-negative integers. (If some k(j) is 0, the corre- 
sponding term of the sum is interpreted as 0.) With this definition, 6, has 
a (unique) linear extension to a derivation 6 of C[x,, . . . . x,] into 
@L-x, 3 *.., x,] and 6(x;) = kxf-‘gj= x(x;) for all j in { 1, . . . . n} and all 
positive integers k. Since 6 is a derivation, a - 6 is a local derivation of 
@Lx,, a.‘, x,] into @[xi, . . . . x,] that maps x1, . . . . x, to 0. We shall show 
that a - 6 is 0, whence a = 6, and o! is a derivation. 

Changing notation, we may assume that c1 is a local derivation of 
ccx, 3 .*-, x,] into C[x,, . . . . x,] such that a(xj) = 0 for j in { 1, . . . . n}. Since 
c1 is, by assumption, a derivation of @[xIo,, . . . . xj+ 1,] into C[x,, . . . . x,] 
for each (r - 1)-element subset {x,,,,, . . . . xi+ ,,} of {x1, . . . . x,}, we have 
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that a(xi$; . . . x$‘r:/) = 0. We shall show that the restriction of a to 
@[Xl 2 ...> x,] is 0. Choose a non-zero a in C and note that, for some 
h i, . . . . h,, p in @[xi, . . . . x,], we have that 

qxy’ + axy). . . xyjp 

= a( [x:(l) + axl;c2) . . .x7’)]*) 

= a($(l) + 24(‘) . . .x:(~) + a*~?(~) . . . xfkcr)) 

= 2aa(xf(‘) . . .x-(~)) 

= 2a i k(j) x:(l). . . $G)-l . . xF(‘)h,. 
,=l 

(18) 

Choose non-zero complex numbers bi, . . . . b, such that 

b--k(l)@(*), . . b&) = pa-’ 
1 2 r 

With xi, . . . . x, replaced by b,, . . . . b,, respectively, the left side of (18) is 0. 
The right side is 

2~:~(‘)-1 k(l) ax;k(1)xi(2). . . xt(r)hl 

+ i k(j)ax;k’1’x~(2)...x~(‘)x,x,~‘hj , 
j=2 1 

which is 0 when xi, . . . . x, are replaced by b,, . . . . b,, respectively. Thus 

O=k(l)h,(b,,...,b,,x,+,,...,x,) 

+ i k(j) blb,T’hj(bl, -., b,, x,+1, . . . . x,) 
j=2 

and 

0 = i k(j) b,ylhj(bl, . . . . b,, x,, 1, . . . . x,). (19) 
j=l 

Since a does not appear in (19) and a is an arbitrary non-zero complex 
number, (19) is valid for all non-zero complex b,, . . . . b,. It follows that 

0 = i k(j) x,T1hi. 
j=l 

(20) 
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That is, CJ=,k(j)x,...xj_,xj+, . . . x, hi vanishes identically. But then 

4x1 k(l)... x9@‘) = i k(j) xl;(‘) . . .x;(j)- l . . . x;“‘hj 
j=l 

=XWl)-l ...XW+l 
1 r i k(j)x,x,...~~~~x~+~...x,h, 

j=l 

=o 

and a=O. a 

COROLLARY 18. Each local derivation of @[xl, . . . . x,] into itself is a 
derivation. 

Note added in proof: (January 29, 1990). I. Kaplansky has found (letter dated December 1, 
1990) local derivations of C[x]/[x3], a 3-dimensional algebra over C, that are not derivations. 
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