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1 INTRODUCTION

In [9 ; Satz V I ] , Weyl proves that each bounded, se l f -ad jo in t

operator can be "perturbed" by the addition of a se l f -ad jo in t compact

operator to y ie ld a se l f -ad jo in t operator that is diagonalized by some

orthonormal basis. Von Neumann C8] gives a simpler proof and sharpens

this resul t . In answer to a question of Halmos [ 2 ] , Berg [1 ] (see also

[3]) proves the same resul t for normal operators.

In a sweeping extension of these resu l ts , Zsido [10 ] , using

techniques developed by Halmos C4], when introducing the important concept

of quasi t r iangular i ty , and methods of von Neumann algebra theory, proves

the corresponding resul t for countably generated commutative C*-subalgebras

of a countably decomposable, i n f i n i t e , semi-f in i te factor . Among other

resul ts , Zsido shows that each se l f -ad jo in t operator in a countably de-

composable factor of type 1^ or 11^ is the sum of a diagonal operator
En-1 an^n anc* a s e l f " ad jo int operator C in the (unique) proper, norm-

closed ideal generated by the f in i te projections, where each E is one-

dimensional in the I case and of trace 1 relative to a given normal,
00

semi-finite tracial weight in the I I case. Kaftal [7] has extended
00

some of these results to include normal operators.

In the next section, we present an extension of the Weyl

theorem that is stronger than the Zsido extension, in one way, and weaker

in another. The proof is simpler than most arguments that y ie ld the Weyl

theorem. I t deals with the poss ib i l i t y of special block decompositions of

the se l f -ad jo in t operators in these factors and makes use of the "block

diagonalization" theorem of [ 5 ] . Both this resul t (Theorem A) and the

Zsido result y ie ld the Weyl theorem at once in the classical (1^) case.

We acknowledge, with grat i tude, the part ia l support of the NSF

(USA) and the SERC (GB) during the research for this a r t i c l e .



110 Kadison: The Weyl theorem and block decompositions

2 BLOCK DECOMPOSITION AND WEYL'S THEOREM IN SEMI-FINITE FACTORS
By using C5], we show d i rec t ly that each se l f -ad jo in t operator

has a block decomposition with blocks of a r b i t r a r i l y prescribed small

dimension, the "off-diagonal" matrix ly ing in the (unique) proper norm-

closed idea l .

Theorem A.

Suppose M is an i n f i n i t e countably decomposable, semi-f in i te

factor and F is the (unique, proper) norm-closed, two-sided idea l , the

norm closure of the ideal I of operators with f i n i t e range project ion.

Let F be a non-zero f i n i t e projection and H a se l f -ad jo in t operator in

M . Then there is an orthogonal family of projections (G ,G 2 , . . . } in M

such that EG, = I , G, < F ( j = 1,2, . . . ) , and E.^k G,HGk is an

operator in f .

Proof.

We use the spectral projections for H and i terated bisection

of C - | |H | | , | | H | | ] to construct projections {E. , } , where .
i ** ?3

j € {0 ,1 ,2 , . . . } and k e { 1 , . . . , 2 J } , such that z£=1 E-k = I .

Let {E , , E2, . . . } be an orthogonal family of f i n i t e projections in M

with sum I . Let FQ be 0 and F. be

u{R(EjkEh) : k e { ! , . . . , 2 J ' } , h e { l , . . . , j } } .

Since E-k is the sum of E.+-|k, for certain k1 , we have that

Let a ^ be the midpoint of the . interval for which E-k is
j

the spectral projection and l e t A. be I. , a^E-^ . Then

MH-Ajll < 2 ~ j | | H | | . Let F j k be

u{R(EjkEh) : h e { l , . . . , j } } .

Then F.. < E.. for each k , {F.. : k e { 1 , 2 , . . . ,2J}} is an orthogonal
JK JK JK .

family since { E j k : k e { 1 , 2 , . . .,2J'}} i s , and F. = z k = ] F j k .

2J i

As Eh = (Ek = 1 E-k)Eh , we have that z^=-j Eh <> F. . Thus

u°?=1 F. = I , and {F.} is strong-operator convergent to I . Since

R(EjkEh) * R((EjkEh)*) = R(EhEjk) < Eh [6 ; Proposition 6 .1 .6 ] , and Eh

is f i n i t e , each R(E-kEh) is f i n i t e . From C6; Theorem 6 .3 .8 ] , each
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F. i s f i n i t e . Let M. be F. -F . -, ( j = 1 , 2 , . . . ) . We show tha t M.+ ]

commutes w i th A. . To see t h i s , note t ha t i f j < j 1 , then
E i ' k ~ E i k ' f o r s o m e k ' ' whence F . , k < E . , k < E. k , . I t fo l lows tha t

F.,. commutes w i th A. as does F., . Hence M. , , ( = F . , , -F . ) commutes
J K j j j+i j+i j
ih ld

(H-AJ_1 )Mj | | + | IM^A^-H) | | < 2"(J'-2)

J j
with A. . We conclude that

J

.| | = | | Z (M|<HMj+MjHMk) |

Thus

| |F"jC(HMJ-M jH)MJ-MJ(HMJ-M jH>3F.| | = | |

< 2|

Since Sj^l] (MkHM. + M.HMk) (=C.) has a f i n i t e range projection (from

[6 ; Theorem 6.3.8]) and | | C . | | < 2 " ( j " 3 ) | | H | | , we have that z°.=9 C.

converges in norm to an operator z. /. M.HM. in F .

We can f ind a f i n i t e orthogonal family of equivalent pro-

jections with sum M-, and with each projection in the family equivalent

toa subprojection of F . ( I f M-. < F , we may use {NL} as th is family.)

Let {G-i[ : J'k = 1»- • - »n-. > be a se l f -ad jo in t system of matrix units

with {G(V} the orthogonal family (c f . [ 6 ; Lemma 6.6 .4 ] ) . From C5],
j J

there i s a un i ta ry operator U, i n M,MNL (ac t ing on M-j(H)) such t ha t

n )has a diagonal matrix re lat ive to {G\, '} ; that is

n l

.1, Gfl) w ¥ i G53) •
Equivalently,

n l
M1HM] = z U*G(1) ^ M ^ M ^ * G ^ ^ .

We now repeat this construction for each of NL,NL,. . . , producing unitary

elements U 2 ,U 3 , . . . , in M̂MM̂  , MJWL,. . . , and matrix unit systems

{ G j k ) } ' ^ G j k ) } " - " s u c h t h a t
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With H the Hilbert space on which M acts and x a vector in M. (K)

le t Ux be U. x . Then U defines a unitary operator in M

Moreover, for h in {1 ,2 , . . . } ,
V-

h each

M.HM. =

Then

M n •
nh

: Z
j = l

We enumerate

Thus

M l = G 1 + . . .

M. (

and U

U*GI1^U, £ 2
n-i n-i

as

G . H G K

are a l l 0 since G. and
J

I t follows that EJ° , M.HM. = E1? , G.HG. and that the compact operator

E.,. M.HM. coincides with E.,. G.HG. , for the apparently missing terms

where j / k and G.,G. are subprojections of the same M. ,

G. are dist inct principal units of the same

matrix unit systems that diagonalize the operators M. HM. in these

cases. D

Corollary B.

With H a separable Hilbert space and H a self-adjoint

element in B(tf) , there is an orthonormal basis for H relative to

which the matrix for H with the diagonal entries replaced by 0 is

compact.

Proof.

Let F be a one-dimensional projection in Theorem A. Then

each G. is either 0 or one dimensional. For our orthonormal basis,
J

we choose an orthonormal basis for each G.(tf) and use their union. D
J

Once we are reconciled to the loss of diagonalizability of

self-adjoint "matrices" when we pass from f in i te to i n f i n i t e , we note that,

at any rate, the spectral theorem allows us to f ind an orthonormal basis

relative to which a l l off-diagonal terms are small. Indeed, with e

positive and {E-.,...,E } a f i n i te orthogonal family of spectral pro-

jections for H with sum I such that ||H-zx.E.|| < e , where
J J

X-j, . . . ,xn are points of the spectrum of H , the union of orthonormal
bases for E-,(H),...,E (H) provides us with an orthonormal basis relative
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to which the matrix of H-zx.E. has each entry of absolute value less
j J

than e and zx.E. has a diagonal matrix. Thus each off-diagonal entry
of H has absolute value less than e . (In fac t , the operator whose

matrix has 0 at diagonal entries and the off-diagonal entries of H has

norm less than 2e , for a l l diagonal entries of H-zx.E. have absolute

value less than e , whence the diagonal matrix with these diagonal entries

has norm less than e as does H-zx.E. .) Arranging for smallness of the

off-diagonal matrix in the sense of compactness, as in Corollary B, is

s t r i k i ng . By star t ing with M , r su f f i c ien t l y large, in place of M,

in the proof of Theorem A (so that our series estimates begin with 2 r ) ,

we can arrange that the off-diagonal matrix has small norm as well as

being compact.

Some simple considerations allow us to draw the matrix repre-

sentation resul t of Corollary B d i rect ly from the Weyl theorem. I f we

know that H = D + C , where D is a diagonal re lat ive to the ortho-

normal basis {e } and C is compact, then (||Ce | | } tends to 0

since {e } converges weakly to 0 , and compact operators convert

weakly convergent sequences to norm convergent sequences [6 ; Exercise

2.8.20]. Thus {<Ce ,e >} converges to 0 . The diagonal entries for

the matrix of C re lat ive to {e } are ^ C e ^ e >} • * t follows that

the diagonal operator with diagonal entries the diagonal of C is compact

[6; Exercise 2.8.26], Hence the difference of C and this diagonal

operator is compact. That difference is the off-diagonal matrix obtained

from the matrix of H relat ive to {en> .

With some sharpening of these techniques, we can see that the

"block diagonal" matrix formed from C is compact for a l l "sizes" of

blocks. We make this precise in the following proposit ion.

Proposition C.

I f C is a compact operator on the separable Hi lbert space H

and {E } is an orthogonal family of project ions, then £n
E

nCE 1S

compact.

Proof.

Let a be the l inear mapping of B(H) in to i t s e l f that

assigns s E
n

T E
n "to T . Since

"EJI = sup{||EnTEn||} £ sup{||En||
n n

we have that | | a | | < 1 . Suppose that F is a one-dimensional projection
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and x is a unit vector in i ts range. Then E FE is self-adjoint with
range spanned by Ex . I f E FE f 0 , then E FE is a positive
multiple of the one-dimensional projection with range spanned by Ex .
I f y is a unit vector in the range of E , then

EnFEny = <y,x>Enx = | |Enx| |2<y,1 |ERx| f ^ x H |Enx| f ^ x ,

whence that multiple (and the norm of EFE.J is ||E x|| . Since
P n n n

E l l E
n

x l l < °° » we have that a(F) is the norm l imit of the operators

z _•. E FE (m = 1,2,...) , each of which has finite-dimensional range.

Thus a(F) is compact.
I f T has finite-dimensional range, i t is a linear combination

of one-dimensional projections (not necessarily mutually orthogonal) and
a(T) is compact. Since a is bounded, we have that a(C) (= zEnCEn) is
compact when C is compact. D

The argument of Proposition C relies on the fact that
{||E FE | | } tends to 0 . This need not hold in a factor of Type 11^
when F is replaced by a projection of (relative) dimension 1, even when
each E has relative dimension 1. To see this, let F = z°°=, F , where

F is a subprojection of E of dimension 2~n . Then ||E FE || =1

for al l n . Of course z E
n

FE
n

 = z F
n

 = F > in this case, so that

z E FE is in the unique, proper, norm-closed ideal of the factor. These
comments raise some doubts about the validity of the assertion of
Proposition C as formulated for (countably decomposable) factors of
Type 11^ . By using more sophisticated techniques, we prove that the
assertion of Proposition C is valid for all countably decomposable semi-
f in i te factors. (Although Proposition D subsumes Proposition C, i t was
our purpose to argue the assertion of Proposition C in relatively basic
terms.)

Proposition D.
Let M be an in f in i te , countably decomposable, semi-finite

factor, I the two-sided ideal in M consisting of al l operators in M
whose range projection is f i n i te , and F be the norm closure of I .
I f {E-jjEpj...} is an orthogonal family of projections in M and A e F,

then z°! , E.AE. e F .
j-1 j j
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Proof.

Suppose, f i r s t , that A is a f i n i t e projection F in M .

Let p be the unique, normal, semi-f in i te t rac ia l weight on M such that

p(F) = 1 (c f . [ 6 ; §8.5]) . Then

p( E E.FE.) = E P(E.FE.) = lira E p(E.FE.)
j= l 3 J j= l J J n-~> j= l J J

n n
= Tim E p(FE.F) = Tim p(F( E E.)F)

n-̂co j= i J
 n-*» j= l J

< l im p(F) = P(F) .
n-x»

As noted in [6 ; Proposition 8 .5 .1 ] , M is a two-sided idea l . Since M

is i n f i n i t e and semi- f in i te , I I M (c f . [6 ; Theorem 8 .5 .7 ] ) , whence

M is a proper, two-sided idea l . Hence M c F , and E°° E.FE. e F . D
p P j _ i J J

Using Proposition D, we can extend Corollary B to i n f i n i t e ,

countably decomposable, semi-f ini te factors and prove i t in sharpened

form.

Corollary E.

Let M be an i n f i n i t e , countably decomposable, semi-f in i te

factor , V a numerical dimension function on the set of projections in

M , { l ' , 2 ' , . . . } an i n f i n i t e sequence of posit ive integers (not

necessarily d i s t i n c t ) , and H a se l f -ad jo in t operator in M . Then there

is an orthogonal family {E } of projections in M with sum I such that

n1 < V(E ) < n'+l and an orthogonal family {E-. ,E2 , . . . , E , } of equi-

valent projections in M with sum E such that EnHEn = zH ^E. HE. ,
anc* zn^mEnHEm 1S i n ^ e un i '^ue» Proper, norm-closed ideal F of M .

Proof.

With F a projection of dimension 1 , there are projections

G-jjGp,... as described in the statement of Theorem A. Since EP(G.)

= P(EG.) = 0(1) = oo and P(G.) < 1 , we can f ind an orthogonal family
J J

of projections {E } , with sum I , such that n1 < V(E ) < n'+l , for

some posit ive integer n1 , and each E is the sum of a subset of

{G-|,G2,...} . By choice of {G.} , E.,k G.HGk e F . From Proposition D,
eacn En 1S a sum ° -̂s

E E. ( E G.HG. ) E . = E E
= l h j>sic J k h n^m n

= E E HEm e
n m
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As n1 < fl(Ep) < n'+l , we can find an orthogonal family
^ l n * ^ 2 n ' # " 'Fn'n* of equivalent projections in M with sum E
Using [5 ] , as in the proof of Theorem A, we construct a unitary operator
U in M that commutes with each E and satisfies

i

EnHEn = .% U*FjnUEnHEnU V •

We complete the proof by choosing U F. U as E. . •

I f we take B(H) as M , in the preceding co ro l l a r y , we con-

clude t h a t , fo r each bounded, se l f - ad j o i n t operator, we can f i nd an or tho-

normal basis re la t i ve to which the matrix of that operator has an a r b i t -

r a r i l y preassigned system of diagonal blocks of f i n i t e size in diagonal

form and the mat r ix , wi th i t s diagonal entr ies replaced by zero, is compact

Remark F.

I f the s e l f - a d j o i n t operator H on the separable H i lbe r t space

H is represented as a matr ix whose associated off-diagonal matrix is compact,

then the essent ial spectrum and the essential norm of H ( that i s , the

spectrum and norm of the image of H in the Calkin algebra) can be read

from the diagonal of th i s matr ix . Let F be the set of diagonal entr ies

tha t appear a t a f i n i t e number o f diagonal pos i t ions , SS be the closure

of the set o f a l l diagonal e n t r i e s , and sp (H) be 5> \ F . Then
sPe(H) i s the essential spectrum of H and sup{|x| : A e sp (H)}

(= l |H | | e ) is the essent ial norm of H . I f I I H | l e = 0 , then H is

compact. In any case, I |H | | i s the (minimum) distance from H to the

ideal o f compact operators on H . I f | | H | | t 0 , the special matr ix

representation described provides a ready means for construct ing (many)

compact approximants to H rea l i z i ng th is distance. For general bounded

operators on H , the polar decomposition can be used, in conjunction

with the preceding const ruc t ion, to produce compact approximants. Simi lar

comments apply to countably decomposable 11^ factors and t he i r unique,

proper, norm-closed idea ls . D
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