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1 INTRODUCTION

In [9; Satz VI1, Weyl proves that each bounded, self-adjoint
operator can be "perturbed" by the addition of a self-adjoint compact
operator to yield a self-adjoint operator that is diagonalized by some
orthonormal basis. Von Neumann [8] gives a simpler proof and sharpens
this result. In answer to a question of Halmos [2], Berg [1] (see also
[31) proves the same result for normal operators.

In a sweeping extension of these results, Zsido [10], using
techniques developed by Halmos [41, when introducing the important concept
of quasitriangularity, and methods of von Neumann algebra theory, proves
the corresponding result for countably generated commutative C*-subalgebras
of a countably decomposable, infinite, semi-finite factor. Among other
results, Zsido shows that each self-adjoint operator in a countably de-
composable factor of type I or II ~ is the sum of a diagonal operator

Z&)
n=1 2n

En and a self-adjoint operator C in the (unique) proper, norm-
closed ideal generated by the finite projections, where each En is one-
dimensional in the I_case and of trace 1 relative to a given normal,
semi-finite tracial weight in the II_  case. Kaftal [7] has extended
some of these results to include normal operators.

In the next section, we present an extension of the Weyl
theorem that is stronger than the Zsido extension, in one way, and weaker
in another. The proof is simpler than most arguments that yield the Weyl
theorem. It deals with the possibility of special block decompositions of
the self-adjoint operators in these factors and makes use of the "block
diagonalization" theorem of [5]. Both this result (Theorem A) and the
Isido result yield the Weyl theorem at once in the classical (I ) case.
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2 BLOCK DECOMPOSITION AND WEYL'S THEOREM IN SEMI-FINITE FACTORS
By using [5]1, we show directly that each self-adjoint operator
has a block decomposition with blocks of arbitrarily prescribed small
dimension, the "off-diagonal® matrix lying in the (unique) proper norm-
closed ideal.
Theorem A.

Suppose M is an infinite countably decomposable, semi-finite
factor and F is the (unique, proper) norm-closed, two-sided ideal, the
norm closure of the ideal I of operators with finite range projection.
Let F be a non-zero finite projection and H a self-adjoint operator in
M . Then there is an orthogonal family of projections (G ,Gz,...} in M
such that sz =1, Gj <F (§=1,2,...), and Zj#k GJ.HGk is an
operator in F

Proof.

We use the spectral projections for H and iterated bisection
of [-[[H||, [{H]|1 to construct projections {Ejk} , where ;
je10,1,2, ...} and ke (1,...,29} , such that T B -
Let {E], E2, ...} be an orthogonal family of finite projections in M
with sum I . Let F0 be 0 and Fj be

I.

UIR(E Ep) K e 1,...,2% , hedl,...,ih

. . . ]
Since Ejk is the sum of Ej+1k' for certain k' , we have that
Fj < Fj+1 .
Let ajk be the midpoint of thejinterva1 for which Ejk is
L9 2
the spectral projection and let Aj be 2y 1 ajkEjk . Then

- -J
| |H Ajll < 27V|{H]| . Let ij be

U{R(EjkEh) the(1,...,51 .

Then ij < Ejk for each k , {ij t ke {1,2,...,23}}'15 an orthogonal

2J

Zk='| F

family since (Ej : k E.{1,2,...,2J}} is, and F, = i« -
- (g2 i

As E = (2 Ejk)Eh » we have that I . E < Fj . Thus

u§=] Fj =1, and {Fj} is strong -operator convergent to I . Since

R(EjkEh) “ R((EjkEh)*) = R(Ethk) < E, [6; Proposition 6.1.6], and E,

is finite, each R(EjkEh) is finite. From [6; Theorem €.3.81, each
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Fj is finite. Let Mj be Fj'Fj-1 (j =1,2,...) . We show that Mj+1
commutes with A. . To see this, note that if j < j' , then
Ej'k < Ejk' for some k' , whence Fj'k < Ej‘k < Ejk' . It follows that

Fj'k commutes with A. as does FJ.l . Hence M,

j+1 (=F
with A, . We conclude that

j+1'%) commutes

J
[ HGMGHT s LA M T+ TIMg(Asq-1] < 272
Thus j-1
| IFJ.[(HMJ.-MJ.H)MJ.-MJ.(HMJ.-MJ.H)]FJ.l | = | |kf1 (M HM MM ) ||
< 2] [HM M H] |
<273
J-1

Since D (MkHMj + MjHMk) (=Cj) has a finite range projection (from

[6; Theorem 6.3.8]) and ||Cj|| < 2'(j'3)||H|| , we have that z;_, C

j=2 7j
converges in norm to an operator ijk MJ.HMk in F

We can find a finite orthogonal family of equivalent pro-
jections with sum M] and with each projection in the family equivalent
toa subprojection of F . (If M] < F, we may use {M]} as this family.)
Let {Gg.l]() : sk = 1,...,n]} be a self-adjoint system of matrix units
with {G§})} the orthogonal family (cf. [6; Lemma 6.6.41). From [51],
there is a unitary operator U] in M]MM] (acting on M](H)) such that

U]M]HM]U: has a diagonal matrix relative to {G(l)} 3 that is

J
n
1
* (1) * (1)
U]M]HM]U] = ji] ij U]M]HM]U] ij .
Equivalently,
n
- *e(1) * o(l)
M]HM] = ji] U]ij U]M]HM]U] ij U] .

We now repeat this construction for each of M2,M3,..., producing unitary
elements U2,U3,..., in MZMM2 R M3MM3,..., and matrix unit systems

{G§ﬁ)} s {Ggg)},..., such that
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>
=

= uglm *a{h)
MHMy = 2 UpGLo UMy HM U 6L

.
nm™
—

With H the Hilbert space on which M acts and x a vector in Mh(H) R
let Ux be Ux . Then U defines a unitary operator in M and U
commutes with each Mh . Moreover, for h in {1,2,...} ,

n

h *
_ (h) *.(h)
M, = k) U*a{Yum o6 {8y
we enumerate  U'G{1u, e ... 0%6(1) v, u*e{Bu, L as
nyny

G]’GZ"°' . Thus

M] = G] +...+ G, M2 =G + G

+... s
n]+1 n]+n2

It follows that ZE=1 MhHMh G HG and that the compact operator

J 1
Zj#k MJ.HMk coincides with . sk G. HGk » for the apparently missing terms

GJ.HGk , where j #k and Gj’Gk are subprojections of the same Mh R

are all 0 since Gj and Gk are distinct principal units of the same
matrix unit systems that diagonalize the operators MhHMh in these
cases. O

Corollary B.

With H a separable Hilbert space and H a self-adjoint
element in B(H) , there is an orthonormal basis for H relative to
which the matrix for H with the diagonal entries replaced by 0 is
compact.

Proof.

Let F be a one-dimensional projection in Theorem A. Then
each Gj is either 0 or one dimensional. For our orthonormal basis,
we choose an orthonormal basis for each Gj(H) and use their union. 0O

Once we are reconciled to the loss of diagonalizability of
self-adjoint "matrices" when we pass from finite to infinite, we note that,
at any rate, the spectral theorem allows us to find an orthonormal basis
relative to which all off-diagonal terms are small. Indeed, with ¢
positive and {E],...,En} a finite orthogonal family of spectral pro-
jections for H with sum I such that ||H-zijj|| <e , where
A],...,An are points of the spectrum of H , the union of orthonormal
bases for E](H),...,En(H) provides us with an orthonormal basis relative
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to which the matrix of H-ZAjEj has each entry of absolute value less
than ¢ and ZAjEj has a diagonal matrix. Thus each off-diagonal entry
of H has absolute value less than ¢ . (In fact, the operator whose
matrix has 0 at diagonal entries and the off-diagonal entries of H has
norm less than 2¢ , for all diagonal entries of H—ZAjEj have absolute
value less than ¢ , whence the diagonal matrix with these diagonal entries
has norm less than ¢ as does H-ZAjEj .) Arranging for smallness of the
off-diagonal matrix in the sense of compactness, as in Corollary B, is
striking. By starting with Mr » r sufficiently large, in place of M]
in the proof of Theorem A (so that our series estimates begin with Zr),
we can arrange that the off-diagonal matrix has small norm as well as
being compact.

Some simple considerations allow us to draw the matrix repre-
sentation result of Corollary B directly from the Weyl theorem. If we
know that H=D + C , where D 1is a diagonal relative to the ortho-
normal basis {e } and C is compact, then {||Cen||} tends to 0
since {en} converges weakly to 0 , and compact operators convert
weakly convergent sequences to norm convergent sequences [6; Exercise
2.8.201. Thus {<Cen,en>} converges to 0 . The diagonal entries for
the matrix of C relative to {en} are {<Cen,en>} . It follows that
the diagonal operator with diagonal entries the diagonal of C s compact
[6; Exercise 2.8.261. Hence the difference of C and this diagonal
operator is compact. That difference is the off-diagonal matrix obtained
from the matrix of H relative to {en} .

With some sharpening of these techniques, we can see that the
"block diagonal" matrix formed from C is compact for all "sizes" of
blocks. We make this precise in the following proposition.

Proposition C.

If C 1dis a compact operator on the separable Hilbert space H
and {En} is an orthogonal family of projections, then annCEn is
compact.

Proof .

Let o be the linear mapping of B(H) 1into itself that
assigns zEnTEn to T . Since

126, TEy 1 = suptlE,TE |13 = suptl €, [1 1711 11Eg |1y < 11TI)

we have that |la|l <1 . Suppose that F is a one-dimensional projection
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and x 1is a unit vector in its range. Then EnFEn is self-adjoint with
range spanned by Enx . If EnFEn #0 , then EnFEn is a positive
multiple of the one-dimensional projection with range spanned by Enx .
If y is a unit vector in the range of En » then

_ B 2 -1 -1
EFEy = <€ x = |1E x| 2y, 1E x[|TE o1 [E xI T x

whence that multiple (and the norm of E FE ) is ||Enx||2 . Since
z||Enx||2 <« , we have that o(F) 1s the norm 1imit of the operators

22=] EnFEn (m=1,2,...) , each of which has finite-dimensional range.

Thus oF) 1is compact.

If T has finite-dimensional range, it is a linear combination
of one-dimensional projections (not necessarily mutually orthogonal) and
o(T) is compact. Since o 1s bounded, we have that o(C) (= zEnCEn) is
compact when C is compact. a

The argument of Proposition C relies on the fact that
{IIEnFEnII} tends to 0 . This need not hold in a factor of Type II
when F is replaced by a projection of (relative) dimension 1, even when

each En has relative dimension 1. To see this, let F = z:=]

F, is a subprojection of E_ of dimension 2" . Then |IEFE,I] =1

Fn » where

for all n . Of course = EnFEn =3 Fn = F , 1in this case, so that

I EnFEn is in the unique, proper, norm-closed ideal of the factor. These
comments raise some doubts about the validity of the assertion of
Proposition C as formulated for (countably decomposable) factors of
Type II_ . By using more sophisticated techniques, we prove that the
assertion of Proposition C 1is valid for all countably decomposable semi-
finite factors. (Although Proposition D subsumes Proposition C, it was
our purpose to argue the assertion of Proposition C in relatively basic
terms. )

Proposition D.

Let M be an infinite, countably decomposable, semi-finite
factor, I the two-sided ideal in M consisting of all operators in M
whose range projection is finite, and F be the norm closure of T
If {E],Ez,...} is an orthogonal family of projections in M and A e F,

then =5 EjAE; < F



Kadison: The Weyl theorem and block decompositions 115

Proof.

Suppose, first, that A 1is a finite projection F in M
Let p be the unique, normal, semi-finite tracial weight on M such that
p(F) =1 (cf. [6; §8.51). Then

©

p(EEFE)=£p(EFE) hmzp(EFE)
_]JJ j=1 J noe j=1
= 1im Ep(FE F) = 1im p((zE)F)
n» j=1 n-< 3-1
< Tim o(F) = o(F)
N>«

As noted in [6; Proposition 8.5.11, Mp is a two-sided ideal. Since M
is infinite and semi-finite, I ¢ Mp (cf. [6; Theorem 8.5.71), whence
M) is a proper, two-sided ideal. Hence MySF and z;=]EjFE. e F.O
Using Proposition D, we can extend Corollary B to infinite,
countably decomposable, semi-finite factors and prove it in sharpened
form.
Corollary E.
Let M be an infinite, countably decomposable, semi-finite
factor, D a numerical dimension function on the set of projections in
M, {1',2',...} an infinite sequence of positive integers (not
necessarily distinct), and H a self-adjoint operator in M . Then there
is an orthogonal family {En} of projections in M with sum I such that

n' < D(En) < n'+1 and an orthogonal family {EysBops -+ sEqryt  Of equi-

valent projections in M with sum En such that EnHEn J']EJnHE s

and zn#mEnHEm is in the unique, proper, norm-closed ideal F of M
Proof.

With F a projection of dimension 1, there are projections
G],Gz,... as described in the statement of Theorem A. Since zD(G;)
= D(sz) = D(I) =« and D(Gj) <1, we can find an orthogonal family
of projections {En} , With sum T , such that n' < D(En) <n'+l , for
some positive integer n' , and each E is the sum of a subset of

{G],Gz,...} . By choice of {Gj} s #k HGk e F . From Proposition D,

Zha Eh(zj#ijHGk)Eh e F . Since each En is a sum of certain Gj s
I GjHGk - E

G.HG)E, = I EME F
j#k h=1 kTh

(z
h Jj#k J n#m
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As n' < D(En) <n'+l , we can find an orthogonal family
{F1n’F2n""’Fn'n} of equivalent projections in M with sum En
Using [5], as in the proof of Theorem A, we construct a unitary operator
U in M that commutes with each En and satisfies

! * *

EnHEn = ji] U anUEnHEnU anU
We complete the proof by choosing U*anU as Ejn .0

If we take B(H) as M , 1in the preceding corollary, we con-
clude that, for each bounded, self-adjoint operator, we can find an ortho-
normal basis relative to which the matrix of that operator has an arbit-
rarily preassigned system of diagonal blocks of finite size in diagonal
form and the matrix, with its diagonal entries replaced by zero, is compact.

Remark F.

If the self-adjoint operator H on the separable Hilbert space
H 1is represented as a matrix whose associatedoff-diagonal matrixis compact,
then the essential spectrum and the essential norm of H (that is, the
spectrum and norm of the image of H in the Calkin algebra) can be read
from the diagonal of this matrix. Let F be the set of diagonal entries
that appear at a finite number of diagonal positions, $ be the closure
of the set of all diagonal entries, and spe(H) be $\F . Then
spy(H) is the essential spectrum of H and sup{|x]| : X e spg(H)}
(= ||H||e) is the essential normof H . If [JHI] =0, then H fis
compact. In any case, ||H||e is the (minimum) distance from H to the
ideal of compact operators on H . If ||H||e #0 , the special matrix
representation described provides a ready means for constructing (many)
compact approximants to H realizing this distance. For general bounded
operators on H , the polar decomposition can be used, in conjunction
with the preceding construction, to produce compact approximants. Similar
comments apply to countably decomposable II_~ factors and their unique,
proper, norm-closed ideals. 0O
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