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I. Introduction. Since the late 1920s and early 1930s, 

when Dirac and Yon Neumann phrased the basic assumptions of 

quantum mechanics in the formalism of Hilbert spaces, it has 

been accepted procedure to identify the observables of a phys- 

ical system with self-adjoint operators on a Hilbert space. 

Computation with the mathematical model requires that we consider 

functions and, in particular, polynomials in these observables. 

These functions occur, for example, when we try to describe the 

Hamiltonian of the system. The family of self-adjoint operators 

representing our observables must possess some algebraic structur~ 

One may simply assume that each self-adjoint operator represents 

some observable - this works reasonably well if the system being 

studied has finitely many degrees of freedom and we have no need 

to consider the mathematical model of it in other than irreducible 

representations. That assumption is not adequate for systems with 

infinitely many degrees of freedom - the study of quantized fields 

and quantum statistical mechanics (after passing to the thermo- 

dynamical limit) requires other models. 

In this article, some of the models that have come to be 

useful for studying systems with infinitely many degrees of free- 

dom will be described along with some of the powerful techniques 

and results that have been developed during the more than fifty 

years that this subject has been studied. The canonical com- 

mutation and anticommutation relations, associated with infinite 

systems of particles satisfying Bose-Einstein and Fermi-Dirac 

statistics, respectively, and their representations by operators 

on Hilbert spaces is a recurring theme in the investigation of 

such systems. A particular operator algebra.is remarkably suited 

to the analysis of the representations of the canonical anticom- 

mutation relations. We• shall describe this connection. The 

results we discuss will be illustrated by applying them to this 

algebra and producing information about representations of the 
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canonical anticommutation relations. All of these results are to 

be found in the text and exercises of [6] (specific reference 

to results in [6] will be made where appropriate). 

2. Notation and preliminaries. Our Hilbert space ~ has 

scalar field ~, the complex numbers. ~ The inner product of two 

vectors x and y in ~ is denoted by ~x,y>. It is linear in x 

and conjugate linear in y. The length or norm of a vector x is 

x,x> ½ and is denoted by lixll. The bound or norm of a (contin- 

uous) linear transformation T of ~ into itself (bounded operator) 

is (sup{ llTxll : ilxii & i, x E ~ ] ) denoted by I!TII The family 

of all bounded operators on ~ is denoted by ~(~ ). The adjoint 

of an operator T in ~(~) is denoted by T* (and characterized by 

the equality, $ Tx,y> = <x,T*yb for all x and y in ~ ). 

A family ~ of operators in ~(~) is said to be self- 

adjoint when ~ = ~* (= [ T* ; T E ~ ). A subset ~ of ~(~ ) 

that contains each linear combination aT+S and product TS of oper- 

ators T and S in ~ and is self-adjoint (T* E ~ if T E ~) is said 

to be a (self-adjoint) operator algebra. If ~ is a self-adjoint 

operator algebra such that T E ~ when IIT-Tnll ~ 0 and each T nE~, 

we say that ~ is a C*-algebra. We assume that our operator 

algebras contain the identity element I (for each x in ~ , Ix = x) 

If ~ is a self-adjoint operator algebra such that T E • when 

ll(T-Tn)Xll -- 0 for each x in ~ and each T n E ~ , we say that 

is a yon Neumann algebra. A factor is avon Neumann algebra 

whose center ( [ T E ~ : TS = ST for all S in ~ ) consists of 

scalar multiples of I. 

3. Matricial operator algebras. The algebra ~(~ ) is a 

factor (hence, avon Neumann algebra and a C*-algebra). If ~ is 

n-dimensional with n finite, then B(~ ) is isomorphic to Mn(C), 

the algebra of n×n complex matrices. 

A class of C*-algebras that has come to be useful for models 

in quantum physics was introduced by Glimm [2]. These are the 

matricial C*-a!gebras. Given a sequence of positive integers 

r(1),r(2),... , and an infinite dimensional Hilbert space ~ , 

one can construct a family {~j~ of C*-subalgebras ~j of ~(~ ) 

such that each ~j contains I, AjA k = AkA j when Aj ~ ~j,A k E ~k 

and j # k (we say that ~j and ~k commute, in this case), 

and ~(j is isomorphic to Mr(j) (C) (j = 1,2,---). The norm 

closure of the algebra generated by ~I' ~2'''" , is a 

matricial C*-algebra. Glimm shows (see [6:Section 12.1]): 
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THEOREM Two matricial C*-algebras ~! and ~ , generated 

by ~, ~2'''" and ~ i' ~ 2''''' with orders r(1),r(2),... 

and s(1),s(2),.-- , respectively, are isomorphic if and only if 

each prime power pm that divides some product r(1)-.-r(j) also 

divides some product s(1)---s(k). 

If each r(j) is 2 and each s(j) is 3, then ~ and m are 

not isomorphic. If each r(j) is 2 and s(1) = 2, s(2) = 4,s(3)= 8, 

• .., then ~ and B are isomorphic. The case where each r(j) 

is 2 gives rise to the CAR algebra, which is of special interest 

in quantum physics. The representations of the CAR algebra and 

those of canonical anticommutation relations are very closely 

related. 

4. The canonical anticommutation relations. The system 

of relations 

CjC k + CkC 9 = 0 (j,k = 1,2,.--) 

CjC~ + C~Cj = 0 (j # k) 

CjC~ + C$C3 J = I (j = 1,2,---) 

in the infinite set of Variables CI,C2,... , is called the canoni- 

cal anticommutation relations. A set of operators o .o CI,C2,---, on 

a Hilbert space, that satisfies the canonical anticommutation 

relations is said to be a representation of the canonical anti- 

commutation relations. 

A representation of a C*-algebra ~ is a homomorphism of 

into ~(~ ) that preserves adjoints for some Hilbert space 

The connection between t~e representations of the canonical anti- 

commutation relations and representations of the CAR algebra is 

established with the aid of Pauli spin matrices. We write 

Ox ' Oy , Oz , for the matrices 

respectively. With ~ the CAR algebra generated by commuting 

subalgebras ~I' ~9,''" , each isomorphic to Mo(C), we ident- 

ify ~n with M 2(C) and write ~ln), ~(n), o(n)~, for the 

Pauli matrices in ~n" Let An be O (1)'~'z °~ n-~( ~n)- 0~ n))/2" 
In this notation, the following theorem describes the way the 

representations of the canonical anticommutation relations are 

tied to those of the CAR algebra. 
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THEOREM The elements AI,A2,--- , in ~ satisfy the canoni- 

cal anticommutation relations and generate ~ as a C*-algebra. If 

is a representation of ~ on the Hilbert space ~ ,then 

~(AI), ~(A2),''" , is a representation of the canonical anticom- 

mutation relations (on ~ ). If CI,C2,--- , is a representation 

of the canonical anticommutation relations on a Hilbert space~ , 

then there is a unique representation ~ of the CAR algebra ~ on 

such that @(AI) = C 1 , ~(A2) = C 2 , --. 

5. Some irreducible representations. There are two basic 

structures needed for the characterization of representations of 

C*-algebras [4]. If ~ is a C*-algebra and ~ is a representation 

of ~ on a Hilbert space ~ , then ~(~ ) is a self-adjoint oper- 

ator algebra on ~ (It is,in fact, a C*-algebra - that is, 

closed with respect to taking limits relative to the operator norm 

[6: 4.1.9].) If we adjoin to ~ (~) ali the operators in ~(~ ) 

that are limits of operators in ~(~ ) on vectors in ~ (as de- 

scribed in Section 2), the resulting family ~(~ )- is avon 

Neumann algebra. The combination of the "type decomposition" for 

~(~ )- and that for ~(~ )' , the von Neumann algebra consisting 

of those elements of ~(~ ) that commute with every element of 

~(~ ) (and, hence, of ~(~ )-), is one of the basic structures 

involved. It need not concern us, for the present, since we con- 

sider irreducible representations in this section. When 9 is 

irreducible, ~( ~ )- = ~(~ ) (equivalently, ~(~ )' consists of 

scalar multiples of I). (We may take either of these conditions 

as our definition of irreducibility.) If • is the CAR algebra, 

then ~ is necessarily separable when ~ is irreducible. (This 

is true, more generally, when ~ has a countable number of gener- 

ators as a C*-algebra.) In this way, the considerations of the 

type decompositions of ~(~ )- and ~(~ )' disappear. 

The second basic structure needed is measure-theoretic in 

nature. While it has a general description [4], it usually 

appears in more convenient special forms in special cases. We 

shall take advantage of such special structure for our construc- 

tion of inequivalent irreducible representations of the CAR 

algebra. 

The CAR algebra ~ is generated by an infinite commuting 

family of self-adjoint subalgebras [~ n=l,2,.., with each ~n 

containing the identity element I of ~ and * isomorphic to M2(~). 

n for each S such that Choose matrix units [ Ejk}j,k=l,2 n 
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(E~k)* = Enkj (For example, we may choose for E njk the element 

of ~n corresponding to the matrix in M2(~) with 1 in row j and 

column k and 0 at all other entries.) The subalgebra ~n of 

generated by ~i ' ' ~n is * isomorphic to M2n(~). The 

set of all products E~ --'E n 3(1)k(1) j(n)K(n) is a (self-adjoint) 

system [ F n , 2 n jk : j,k = i,--- ~ of (2nx2 n) matrix unlts for ~n" 

As n varies these systems of matrix units fulfill certain compat- 

ibility conditions: 
r 

F n F m jk = ~ (j,k 1 "'',2 n ) 
h=l (j-l)r+h,(k-l)r+h R , 

where n i m and r = 2 m-n. It is reasonably clear that such a 

compatible family of (self-adjoint, 2~ 2 n, n = 1,2,...) matrix 

unit systems acting on a Hilbert space ~ generate the CAR algebra 

and, thereby, give rise to a representation of ~ and of the 

canonical anticommutation relations. 

We construct our irreducible representations of the CAR by 

describing such systems of matrix units on the Hilbert space 

L2(S , ~ ,m) (= L2) , where S is the half-open interval [0,i), ~ is 

the O-algebra of Borel subsets of S and m is a (o-finite) posi- 

tive measure on S Let D be the subset of [0,i) consisting of 

rationals with denominator some power of 2 (the "dyadic ratio- 

nals"). Provided with addition modulo i, S is a group and D is a 

subgroup. For each d in D, let gd be translation by d (modulo I) 

on S so that [gd : d E D ] is a group G of transformations of S. 

Assume that our measure m has been chosen invariant under each 

element of G. Define F n jk (j,k = i,..-,2 n) acting on L 2 by 

(F~kf) (s) = I~ (s+2-n(k-j)) elsewhere(2-n(j-l)i Son S<2-nj) 

where f E L 2 Computations show that IF n " jk : j,k = i,---,2~ is 

a self-adjoint system of 2n×2 n matrix units and that these systems 

form a compatible family as n varies. With h a bounded measur- 

able function on S, let M h denote the " multiplication" operator 

on L 2 that transforms f (in L 2) to the product hf. Further com- 

putation shows that F~. is M h where h is the characteristic func- 
_n33 

tion of [2-n(j-l),2 j). It follows that the only operators com- 

muting with all F n jk are those M h such that h is (almost every- 

where) invariant under each element of G. The condition that 

such invariant functions are constant (almost everywhere) is equ~ 

valent to the condition that G act ergodically on S (relative to m 

- see [6 : 8.6.6]). Thus the representation "m of the CAR on 
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L2(S,g ,m) is irreducible if and only if G acts ergodically on S. 

We say that a point s of S is an "atom" for m when m({s})> 

0. A point s in S is an atom for m if and only if the multipli- 

cation operator corresponding to the characteristic function of 

the one-point set [s~ is a non-zero projection P(m) on L 2 For 

each n, there is a unique integer j in i,---,2 n such that 

2-n(j-l) i s ~ 2-nj 

The multiplication operator corresponding to the character- 

istic function of [2-n(j-l),2-nj) is a projection in ,m(~ ) (the 

algebra on L 2 generated by all F n jk ) and corresponds to a projec- 

tion Pn in ~ (in fact, to the matrix unit E9 3j). Now A n ,m(Pn) 

= P(m). Thus s is an atom for m if and only if ^n,m(Pn) # 0. 

If there is a unitary operator U such that U* ,m(A)U = "m' (A) 

for each A in ~ (that is, if "m and Wm. are unitarily equi- 

valent for our two G-invariant measures m and m'), then 

U*P(m)U = U* A ,m(Pn)U = AU* ,m(Pn)U = A ,m.(Pn) = P(m') 
n n n 

Of course, then, P(m) # 0 if and only if P(m') # 0 Thus m 

and m' have the same set of atoms when "m and "m' are unitarily 

equivalent. 

For specific examples, choose a point s in S and let G(s) 

be its "orbit" under G' Let m be the measure that assigns to 
s 

each Borel set, as measure, the number of points of G(s) it con- 

tains. Since G(s) is an orbit, m s is G-invariant and the atoms 

of m are precisely the points of G(s). Now G is a countable 
s 

group and S has the cardinality of the continuum. Two orbits 

either coincide or are disjoint. Thus there are a continuum of 

disjoint orbits and so a continuum of measures m s with mutually 

disjoint sets of atoms. Each of these continuum measures is 

ergodic under G and therefore gives rise to an irreducible repre- 

sentation of the canonical anticommutation relations. No two of 

these representations are unitarily equivalent. (See 

[6 : pp. 759-766] for details.) 

6. states and representations. The most effective method 

for producing representations of C*-algebras involves the GNS 

construction for a state of that algebra. A linear functional 

p on a C*-algebra • is said to be a state of ~ when p(A) ~ 0 

for each positive operator A in • and p(I) = i. If ~ acts on 

the Hilbert spa~e ~ and x is a unit vector in ~ , then the 

mapping A -- <Ax,x> provides us with an example of a state. 
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We denote this state by ®x when ~ is ~(~) and w~ other- 

wise. We refer to it as a vector state of ~ The state p is 

said to be faithful when p(A) > 0 if A > 0 . With p a 

faithful state of ~ , the mapping. (A,B) -- p(B*A) defines a 

(positive definite) inner product < , > on ~ relative to 

which it has a Hilbert space completion p ~ With . (A) (B) 
P P 

defined as AB, . (A) is a linear operator on ~ and 
P 

<. (A) (B), .p(A) (B)>p = <AB,AB> = p(B*A*AB) 
P 

Now A*A • llAJi2I so that B*A*AB ~ JlAJJ~B*B, and 

p (B*A*AB) • HA II 2 (B'B) = il l 2 <B,B>p 

2 liAll2jlBjl~ and ll.p(A)lJ ~ IIAIJ It follows Thus II. ° (A)BII 

that wo(A) extends (uniquely) to a bounded linear operator, we 

denote again by . (A), on ~ It is easy to check that . 
0 

is a representation of ~ on We call .p the GNS (Gelfand- 

Neumark-Segal) representation for O This construction has an 

extension to general states (not necessarily faithful) that need 

not concern us. Note that p(A) = <.p(A) (1),I>p for each A in 

, so that p becomes a vector state when "transported" to 

.9(~). Note too that {.p(A) (I) : A E ~} = ~ and ~ is 

dense in ~P The "vector" I in ~ is said to be cyclic under 

. (~) and "0 is said to be a cyc!ic representation of 

Wit~ O a faithful state of ~ , W 0 is a faithful representation 

of ~ - that is, .p(A) = 0 only if A = 0 (for.p(A)(I) = A). 

The class of states of the CAR algebra ~ known as product 

states is of special interest in quantum statistical mechanics. 

Suppose that ~ is generated by the commuting family [ ~r ~ with 

each ~r * isomorphic to M2(C). Choose a self-adjoint system 

of 2x2 matrix units [Ejk } in ~r Then each A in ~r has the 

form ~ CjkEjk with Cjk a complex number. Define Or(A) to be 

arcll+(l-ar)C22 , where 0 < a r • ½ . Then Or is a state of 

r With A.3 in ~j , define P(AI--.An) to be P l(Al)-.-On(An) 

It is not difficult to show that p extends to a state p of ~ , 

the product state ® P r While far from apparent, it the case 

that the GNS representation "O for O has the following proper- 

ties: .p( ~)- is a factor on ~p , and with x 0 the unit vector 

in ~O corresponding to I (so that p(A) = <Wp(A)x 0 ,Xp>p for 

each A in ~ and .pj~I)Xp is dense in ~p ), Wx~"o ( ~)- is faith- 

ful. With . (~) a factor, we say that p is a factor state 
P 

of ~ . Our program in the final sections is to study these 
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factor representations of the canonical anticommutation relations 

arising from the product states as described• For this purpose, 

we develop some of the essential theory of factors. 

7. Types of factors. An initial separation of factors into 

types that are algebraically distinct (non-isomorphic) can be 

effected by studying their lattices of projections. If ~ is a 

factor and E is a minimal projection in • (that is, E # 0 and if 

0 • F ~ E with F a projection in ~ , then F = 0 or F = E), then 

~ is isomorphic to ~(~) for some Hilbert space ~ In par- 

ticular, I in ~ is the sum of an orthogonal family of minimal 

projections in ~ If n is the (possibly infinite) cardinal 

number of that family of minimal projections, then ~ has dimen- 

sion n. In this case, we say that ~ is of type I 
n 

Factors need not have minimal projections. Let G be a (di~ 

crete) group all of whose conjugacy classes (other than that of 

the group identity) are infinite• Let ~ be 12(G) (square-summ- 

able, complex-valued functions on G with the inner product <f,hb 

= ~ g EG f(g)h(g) ). For each g in G, define (Lgf) (g') to be 

f(g-±g') for each g' in G, where f E ~ Then each Lg is a 

unitary operator on ~ and {Lg : g 6 G] generates a factor 

If x 0 is the element of ~ that takes the value 1 at the group 

identity and 0 at all other elements of G, then ~ I~ is a x 
state T of % with very special properties. Most0importantly, 

~(AB) = ~ (BA) (an easy computation). We say that T is a 

tracial state on ~ (although we may happen on it in many differ- 

ent ways)• It is also the case that ~ has no minimal prQjec- 

tions. If it did, ~ would be isomorphic to ~(~ ) and I would 

be the sum of n minimal projections• The value of T at all min- 

imal projections is the same positive number b (easily seen) and 

~I) (= i) would be nb - from which, n is finite. Thus ~ , 

~(~), and ~ , would all have finite linear dimension• But 

{L ] is an infinite linearly independent family in ~ (not diff- 
g 

icult). We call factors with no minimal projections and a tracial 

state, factors of type II I. Specific examples are obtained by 

choosing for G the free group on n ( > I) generators or the group 

of those permutations of the integers that move at most a finite 

number of integers. The factors of type II 1 obtained from these 

two groups can be shown to be non-isomorphic. Factors of type I~ 

need not be isomorphic to one another. 
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A factor ~ may have no minimal projections and may have no 

tracial state but possess a family of projections [Ea~ with the 

following properties: yE a = I, [A : A E ~ , EaAE a = A~ (= ~ a ) 

has a tracial state T ( ~ is necessarily a factor). In this a a 
case, with H a positive element of ~ , E Ta(H) (= T(H)) is in 

[0,oo] The mapping T of ~+ • , the positive elements in ~ , 

into [0,0o] is a tracial weight on ~ - that is, T(H+K) = 

T(H)+ T(K) , T(aH) a T(H) when a > 0 , and T(A*A) = T(AA*) 

for each A in ~ In addition, ~ is semi-finite - that is, each 

T in ~ is the limit (on vectors) of linear combinations of ele- 
+ 

ments in ~ at which ~ takes finite values. Finally, T is 

normal - that is there is a family of vectors {Xb~ such that 

T(H) = Z<HXb,Xb~ for each H in ~ +. We say that ~ is a 

factor of type II when it has no minimal projections, has no 
oo 

tracial state but has a non-zero normal semi-finite tracial weight. 

Specific examples of factors of type II0o arise from specif- 

ic examples of factors of type II I. If ~ is a factor of type II 1 

acting on a Hilbert space ~ and ~ is the countable (Hilbert- 

space) direct sum of ~ with itself, then each element of B(~) 

corresponds to an infinite matrix all of whose entries lie in 

~(~). The elements in ~(~) whose matrix representations have 

all entries in ~ form a factor of type IIoo. Moreover each fac- 

tor of type IIoo has this form (namely, infinite matrices with 

entries in a factor of type IIl). 

Finally, there are the factors that possess no non-zero 

normal semi-finite tracial weights. These are the factors of 

type III. They play the dominant role in the operator algebra 

formulation of quantum field theory and quantum statistical mech- 

anics. Specific examples were first obtained from an ergodic- 

theoretic construction [7]. We won't describe these, since we 

shall be constructing examples by other means. 

The type classification of factors provides us with a means 

of distinguishing among factor representations of the canonical 

anticommutation relations. We say that a factor representation 

of a C*-algebra ~ is of type In, IIl, IIoo , or III, when the 

factor ~(~) has the corresponding type. With ~ the GNS rep- 

resentation for the state p of ~ we say that fl ~s of type In, 

IIl, IIco , or III, when ~p has the corresponding type. 
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8. Modular theory and the T-invariant. A deep result of 

Tomita's (see [6 : 9.2~]) associates with each faithful state w 

of avon Neumann algebra ~ some structure (the modular structure 

of ~ and w ) that wili be critical in helping us distinguish fac- 

tor representations of the canonical anticommutation relations. 

It is easiest to describe this modular structure after using the 

GNS representation ~ of ~ for w . Through this representation, 

we may assume that ~ acts on a Hilbert space ~ and that w(A) 

= <Au,u> for each A in ~ where u is a unit vector in ~ such 

that Ru is dense in ~ (we say that u is generating for ~ ) and 

T = 0 when Tu = 0 and T E ~ (we say u is separating for ~ ). 

The mapping S O that assigns A*u to Au for each A in @ is a con- 

jugate-linear operator on the dense domain ~u. Its adjoint con- 

tains the conjugate-linear operator F 0 that assigns A'*u to A'u, 

where A' is an operator in the commutant ~' of ~ (those bounded 

operators commuting with all operators in ~ ). Now ~'u is 

dense in ~ (this follows from the fact that u is separating for 

), so that S O has a closure S. Let A be S*S. Then S has a 

polar decomposition J ~ ½ , where J is a conjugate-linear isometry 

of ~ onto itself. From the fact that S O = S01 , it follows that 
-i 

J = J = J*. Tomita's main result states that J ~J = ~' and 

~t ~ ~-it = ~ for each real t. In particular, with ~(A) 

defined to be ~tA b -it for each A in ~ , we have that ~t is 

a * automorphism of ~ for each real t. Moreover, ~t+t' = ~t ~t' 

for each pair of real numbers t and t'. We refer to the one-para- 

meter group of * automorphisms t ~ % of ~ as the modular auto- 

morphism group for w (or u). 

The state w and the one-parameter automorphism group [ ~t ~ 

are interrelated by a condition introduced into the infinite-sys- 

tem formulation of quantum statistical mechanics to describe 

equilibrium states by Haag, Hugenholtz, Winnink [3,7]. It results 

from the construction of ~t that for each pair of elements A and 

B in ~ there is a complex-valued function f defined, continuous, 

and bounded on the strip [z E C : 0 ~ Im z ~ I~ (=.~), and 

analytic on the interior of that strip, such that 

f(t) = w(~t(A)B), f(t+i) = w(B ~t(A)) (t 6 R). 

When a one-parameter group of automorphisms[ st~ and a state w of 

avon Neumann algebra ~ fulfill this condition, we say that 

the group satisfies the modular condition relative to w. It 

follows from this condition (together with some complex function 
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theory) that ~ (~t(A)) = e (A) for each A in ~ and all real t. 

(We say that w is invariant under ~t.) Using the assumption that 

w is faithful, the modular condition yields that ~t(H) = H for 

some H in ~ and all real t, if and only if e (AH) = ~HA) for 

all A in ~ An element such as H is said to lie in the central- 

izer of w (See [6 : 9.2.13 and 9.2.14].) In addition, there 

is a unique (continuous) one-parameter group of * automorphisms 

of ~ (the modular group) that satisfies the modular condition 

relative to a given faithful normal state w of ~ [6:9.2.16]. 

A useful extension of this last result [6 : 9.2.17] asserts that 

it suffices to find our complex-valued function f satisfying the 

continuity, boundedness, and analyticity condition just for A and 

B in a self-adjoint subalgebra of ~ provided each element of 

is a limit (on vectors) of elements of this subalgebra. 

The relation between the modular automorphisms corresponding 

to two faithful normal states of ~ is established in [i]. If 

[~t~ ,[~t~ are the corresponding modular automorphism groups, 

there is, for each t, a unitary operator U t in ~ such that, for 

each A in ~ , ~t(A) = U t ~t(A)U~ , Us+ t = U s ~s(Ut) , and 

Utx ~ x for each x in ~ as t ~ 0. (The mapping t ~ U t is the 

Connes cocycle relating a t and ~ t ") In particular, ~ t is an 

inner * automorphism of ~ (that is, there is a unitary operator 

V in ~ such that ~t(A) = VAV* for each A in ~ ) if and only 

if ~ t is inner. Thus the set T(~ ) of real numbers t such that 

~t is inner for the modular automorphism group [~t~ of 

relative to a faithful normal state of ~ is the same for all 

faithful normal states of ~ It follows that this set (which 

is trivially seen to be a subgroup of ~) is an (isomorphism) in- 

variant for ~ It is the T-invariant [i], and will help us to 

distinguish certain factor representations of the canonical anti- 

commutation relations. (See [6 : 13.1.9].) 

9. Some general properties of the T-invariant. If ~ is a 

factor not of type III, a sequence of Radon-Nikodym results (in 

the non-commutative setting of operator algebras), involving the 

normal tracial weight, leads to the conclusion that T(~) = ~, 

that is, each modular automorphism group of ~ consists entirely 

of inner automorphisms. The T-invariant is not at all sensitive 

to factors of types other than III. (See [6 : 9.2.21] ) In the 

case of a type III factor • acting on a separable Hilbert space, 

almost the reverse situation prevails. A measure-theoretic, 
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cohomological argument shows that all the automorphisms of a one- 

parameter group can be inner only if the group is implemented by 

a one-parameter group of unitary operators in ~ ([5] - see also 

[6 : 14.4.3-14.4.10]). In this event, the factor will have a 

non-zero, normal, tracial weight and cannot be of type III 

[6 : 9.2.21]. Thus, for a factor ~ of type III acting on a sep- 

arable Hilbert space, T(~ ) must be different from {R. Indeed, 

complicated measure- and group-theoretic considerations show that 

T(~ ) must have Lebesgue measure 0. 

As to what subgroups of ~ appear as T(~ ) for some factor 

acting on a separable Hilbert space, it is known that each 

countable subgroup of ~ arises in this way. Suppose G is an arbi- 

trary subgroup of ~ (perhaps ~ itself) considered as a discrete 

group. With w a faithful state of a factor ~ acting on a 

Hilbert space ~ and {~t} the corresponding modular automorphism 

group, a special construction allows us to realize G as T(h ) for 

some factor ~ To effect this construction, we introduce the 

Hilbert space direct sum ~ 8 ~t (= ~ ) of copies ~t of 

(one for each real t). The elements of ~ are functions x on IR 

such that x(t) E ~t for each real t (and ~ {ixtIi2 : < co). We 

define operators ~ (A) on K for each A in ~ by (~(A)x) (t) = 

Ax(t) and V(t) by V(t)x(s) = Aitx(s-t), where ~tA A -it = 

~t(A) for each A in ~ Then the von Neumann algebra R gener- 

ated by [~(A), V(t) : A E ~ , t E ~} ~s called the crossed-product 

of • by the automorphism group [ ~t } " Let ~ be the von Neumann 

subalgebra of ~ generated by ~(~) and [ V(t) : t E G } . (Then 

is isomorphic to the crossed-product of ~ by the automorphism 

group ~ ~t : t 6 G ].) If ~t is an outer automorphism of ~ for 

t in G different from the identity, then h is a factor [6:13.1.5] 

Relative to appropriately defined (normal) states of R and h , 

[ V(t) : t 6 ~ ~ implements the modular automorphism groups of R 

and ~ (See [6 : 14.4.19].) 

In the next section, we construct certain factor represent- 

ations of the canonical anticommutation relations and compute the 

the T-invariant for the factors arising. Among these is a factor 

(of type III) for which T(~) = [ 0} (no ~t is inner other 

than the identity automorphism). If we perform the foregoing con- 

struction with this factor as ~ , then R becomes a factor of 

type III and T(R) = ~ - but ~ is not separable. In this same 

case, T(h) = G, the restriction of h to ~t6 G 8 ~t is a * iso- 
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morphism, and ~ t E G 8~t is separable. 

I0. Some factor representations of the CAR. With ~ the 

CAR algebra and p the product state of ~ determined by the 

sequence of numbers [ar~ in (0,½], as described in Section 6, 

we noted that ~p is a factor representation ~ We introduce 

b r as log (arl(l-ar)). Then: 

- (3° lal+it l+it col 
(i) T( ,p (~) ) = [ t 6 ~ : ~ [i - + (l-a r) I] 

r=l i r 

oo 
[ t 6 IR : ~ e-br Sin 2(½brt) < co } 

r=l 

(2) If a r - ½ and b2r - oo,_ then np ( ~)- is a factor of 

type II 1 and T( np(~) ) = ~. 

(3) If ~a r <oo (equivalently, ~e-br < oo), then ~p( ~)- 

is a factor of type I 
oo 

0 and ~a = co, then ~p(~) is a factor of (4) If a r r 

type III. 

(5) If a = (r+l) -I , then T( ~ (~) ) = [0~. In this case, 
r p 
(~) serves as the factor ~ we needed in Section 9. 

P 

With a r as in (5), b r is log r. If we alter the a r (equi- 

valently, the br) slightly, the T-invariant can change signifi- 

cantly. Let [x] denote the largest integer not exceeding x. 

(6) If b r = [log r] (r = 3,4,---), then 

T( ~ (~) ) = [0, ±2n , ±4~ , ±6n ,... ]. 
P . 

(7) If b r n! when [e n! ] = < r ~ [e(n+l)!], then T( ~p(~) ) 

contains each rational multiple of 2~ (but is not ~). 

(See [6 : 13.1.15,13.4.9-13.4.15] for details.) 
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