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Algebras of unbounded functions and operators

Richard V. Kadison

1. Introduction and preliminaries

In [7] M.H. Stone introduces the concept of what has become known as an
extremely disconnected compact Hausdorff space. These are the compact Haus-
dorfl spaces with the property that the closure of each open subset is open as well
as closed. Such closed and open subsets are said to be clopen. Stone describes the
main result, relating such spaces to their algebras of continuous functions in [7]
and presents the detailed analysis and arguments in [9]. He notes that X is an
extremely disconnected compact Hausdorff space if and only if C(X,IR), the
algebra of continuous, real-valued functions on X, is a boundedly complete lattice
(that is, each subset of C{X,R) that has an upper bound in C(X,R), relative to
the pointwise ordering, has a least upper bound). At the same time he states the
equivalent condition that each bounded Baire function differs from a continuous
function on a meager set (that is, a subset of a countable union of closed nowhere-
dense subsets of X - also called a set of the first category).

Again in [7], Stone alludes to the possibility of dealing with “unbounded con-
tinuous” functions on an extremely disconnected compact Hausdorff space X. In
[9; Theorem 9], he proves that each finite Baire function differs from the quotient
of two continuous functions on a meager set, where the denominator vanishes on
a nowhere-dense subset of X. Fell and Kelley [1] continue Stone’s work. They
extend one of Stone’s results slightly; by showing that each Borel function on X
with values in a compact metric space differs from a continuous function on X on
a meager subset of X. Their purpose is to use the Riemann sphere as the compact
metric space; so that they can deal with (unbounded) complex-valued functions.
They note, “Let & be the set of all continuous functions on X to the complex
sphere which are oo only on a non-dense set. € is an algebra, if we agree that fg
and f+g are those continuous functions which agree with the product and sum
save on a set of Cat L.” (Their note is a sketch account - a fuller report would
establish uniqueness of the associated continuous function and deal with those
that assume the value oc only on a nowhere-dense subset.) They continue Stone’s
program, describing a Borel function calculus for normal operators and noting
that “The algebra € is isomorphic to an algebra .« ....” Their starting point is an
abelian von Neumann algebra &/ and an isomorphism of o/ with C(X), the
algebra of complex-valued continuous functions on an extremely disconnected
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compact Hausdorff space X. They describe a process for extending this isomor-
phism to € and mapping € onto an unspecified algebra &/ of (unbounded)
normal operators containing . (We shall see that the image is, in fact, the
algebra of operators “affiliated” with o/ - to be described later.) This extended
isomorphism amounts to the introduction of an unbounded-Borel-function cal-
culus for the normal operators in .o/ (and .&7), on the one hand, and a simulta-
neous spectral resolution of those operators on the other. This was, of course, a
very large part of Stone’s point in 1940.

In a broad sense, the purpose of this article is to supply the next logical steps in
Stone’s program: a fuller understanding of the structure of the algebra of un-
bounded continuous functions on X, a fuller understanding of the algebra of
unbounded normal operators containing the initial abelian von Neumann algebra,
and detailed understanding of the relation between the two. To state, more
specifically, what is done, and by way of establishing basic delinitions and prelimi-
nary notation, we define the principal structures to be studied.

L.1 Definition. Let X be an extremely disconnected compact Hausdorff space. A
(finite) complex-valued function f defined and continuous on X\Z, where Z is a
closed nowhere-dense subset of X, is said to be a normal function (on X) when,
given a point p in Z and a positive number », there is an open set ¢ in X
containing p such that n<|f(q)| for each q in ¢\Z. If f is real-valued, we say that
[ is a self-adjoint function (on X). We denote by .47 (X) and .#(X), respectively, the
family of normal functions on X and the family of self-adjoint functions on
X n

It follows from this definition that the functions in .4°(X) are those continuous
mappings of X into the Riemann sphere that assume the value oo on a (closed)
nowhere-dense subset of X. In §2 we show that .4°(X) and ¥ (X) are algebras
(over the complex numbers, €, in the first case, and over the real numbers, R, in
the second). To pass, as Fell and Kelley do in [1], through their extension of
Stone’s result concerning the association of a continuous function on X with a
Borel function, would represent a shortening of the argument (though not a
significant shortening if careful and detailed arguments are given); but this route
encounters some disadvantages when our special purposes are taken into consid-
eration. It does not give us a close enough view of how the normal functions
combine to produce the normal functions that are their sum and product. (We
shall see that the sum and product is the pointwise sum and product at points
where both functions are finite - so that this sum and this product are no distant
relation to the normal functions that give rise to them.) It masks the fact that the
existence of these algebras is a truly bizarre and remarkable phenomenon (stem-
ming {rom the equally bizarre and remarkable properties of the extremely discon-
nected compact Hausdorff spaces). To illustrate this last point more fully, we
consider the (pointwise) algebraic structure on the family of continuous mappings
of the unit interval [0, 1] into the Riemann sphere (as above). If f(x) is x~!
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+sin(x~ ') and g(x) is —x~', what value (in the Riemann sphere) can be assign
to f+g at 0 in order to arrive at a continuous mapping? Why are we not
embarrassed in the same way when we deal with an extremely disconnected
compact Hausdorff space? The extraordinary topological properties of such
spaces shield us from the difficulties so easily fabricated on a space such as [0, 1].
It is not enough to have total-disconnectedness for a genuine algebraic structure

. . 1 ..
to exist as is illustrated by the space {0, ~:n=1,2, ...} where the restrictions of the
n

functions f and g, defined above, lead to the same problems. We shall see
(Corollary 2.7), for example, that il f is a self-adjoint function on an extremely
disconnected compact Hausdorff space X then at no point of X does f take (both)
arbitrarily large positive and negative values.

In the definition that follows, we describe the parallel operator-algebraic con-
structs.

1.2 Definition. Let &/ be a von Neumann algebra acting on a Hilbert space
We say that a closed densely defined operator T is affiliated with of (and we write
Tn/, in this case) when U* TU =T for each unitary operator U commuting with
o When & is abelian, we denote by .4" () the family of operators affiliated with
& and by & (s¥) the family of self-adjoint operators affiliated with o/ W

In §3 we shall place an algebraic structure on % (&) (and .4'(=/)) in which sum
and product involve passing to the closure of the ordinary sum and product. We
shall see (Lemma 3.2 and Theorem 3.3(i)) that each finite collection of operators
in A4"(%) have a common core. (A core for a closed densely defined operator A4 is
a linear submanifold of J# such that the graph of the restriction A, of 4 to this
submanifold is dense in the graph of 4 - that is, 4, has closure A, equal to A4.)
As in the case of .4"(X), where the function sum of two normal functions may not
be normal but will have a (unique) normal extension, the sum A+ B of two
operators A and B in A4'(«/) may not be closed but will have a (unique) closed
extension A+ Bn.o/. Similarly AB will have a (unique) closed extension A*Bno/
and A°B=B"A. In addition A**A=A*A=A"A*=AA* for each 4 in A (). (At
the heart of the spectral theory of unbounded operators is the fact that A*4 and
AA* are self-adjoint for each closed densely defined operator A.) In this case (44*
=A* A), we say that A4 is normal (in obvious analogy with bounded operators).
Thus each operator affiliated with an abelian von Neumann algebra is normal.
We shall see, too, that each normal operator is affiliated with an abelian von
Neumann algebra (Theorem 3.6).

In §4 we shall extend the isomorphism between o and C(X) to an isomorphism
between A4(sf) and .47(X). (This extension carries %(&/) onto #(X).) Thus A(X)
is isomorphic to the full algebra of operators affiliated with /. (*Affiliation™ was
known but not too well understood at the time [1] appeared.)
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In §5 we characterize ¥(X) as a vector lattice. This requires an “unbounded-
function” Stone-Weierstrass theorem, which has been proved in §2 (Theo-
rem 2.13).

We note, with gratitude, the support of the National Science Foundation (USA)
during the preparation of this article. The techniques described here have been
used as the basis for the presentation of the spectral resolution of unbounded
normal operators and the introduction of a Borel function calculus for such
operators in [3; §5.6]). The reader who wishes a detailed account of those
applications of this theory can pursue the study there. Much of what appears here
has been affected by that presentation. It is a pleasure to record our debt to John
Ringrose for many illuminating conversations on these topics.

2. The algebra of functions

We assume throughout this section that X is an extremely disconnected compact
Hausdorff space. If f is a self-adjoint function defined on X\ Z, we can distinguish
three subsets of Z: the subset Z, of those points p such that f(q) tends to + oo,
as ¢ in X\ Z tends to p; the subset Z _ of those p such that f(g) tends to —o0;
and the subset Z , of all other points in Z. If p, is a limit point of Z, then p,eZ.
Moreover, p,¢Z _ for otherwise some open set ¢ containing p, meets X\Z in
points at which f is negative. But @ contains a point of Z, and hence points of
X\ Z (since Z is nowhere dense) at which f is large - a contradiction. Similarly
Z _ has no limit points in Z _. Thus if Z, is empty, both Z, and Z_ are closed in
X. We shall see (in Corollary 2.7) that Z, is empty. For the moment, we note
some obvious facts concerning this in the remark that follows.

2.1 Remark. If f is normal and defined on X\ Z, then |f]| is self-adjoint (defined
on X\Z)and Z=Z,. If f200on X\Z, Z=Z_. If f<O0 on X\Z, Z=Z_. In
either case (f>0 or f<0), Z, =§.

2.2 Lemma. If [ is defined and continuous on X\Z, where Z is a closed nowhere-
dense subset of X, the following conditions are equivalent:

() f is normal;

(1) {g:9eX\Z;|f(g)l<n}~ <= X\Z for each positive integer n;

(iii) there is an increasing sequence {X,} of clopen subsets of X such that X, < X\2
for each n, X\ )., X, is nowhere dense in X, and, for each positive a, there is
an m such that a<|f(q)| when ge(X\Z)\X,,,

(iv) there is a countable family {Y,} of mutually disjoint clopen subsets of X such
that Y, X\Z for each n, X\| ., Y, is nowhere dense in X, and, for each
positive a, there is an m such that a<|f(q)] when ge(X\2\\ ™., ¥,.

Proof. If f is normal and peZ then there is an open set ¢/ containing p such that
n<|f(q) if ge @~(X\Z). Thus p is not a limit point of {g: ge X\ Z;|f(g)| <n}, and
(1) follows.,
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In any event, {q:qeX\Z;|f(q)<n} is open in X\Z, hence, in X since f 1:5
continuous on X\Z and X\Z is open in X. Thus the closure, X,, of this set 1s
clopen. Given (i), {J= X,=X\Z so that X\|{J7 ,X,=Z, which is nowhere
dense in X. Moreover if ge(X\Z)\ X, then n<|f(g)| and (iii) follows.

Given (iii), (iv) follows by letting ¥, be X, and Y, be X \X,_, for n=2,3,....

Given (iv), if peZ then X \U;!= . Y, is an open set ¢ containing p such that, for
each g in (X\Z)n0O, a<|f(g)|. Thus f is normal. W

Note that if { is normal and % is a bounded open subset of € (say, |z|<n for z in
%) then

() 7@ c{q: 9e X\Z; If (@) <n}~ = X\Z.
We could replace (ii) of the preceding lemma by:
(iiy S~ '(%)~ <X\Z for each open bounded # in C.

We note for the lemma that follows, that ZuZ' is a (closed) nowhere-dense subset
of X when Z and Z’ are (from the Baire Category Theorem).

2.3 Lemma. If the normal function f defined on X\Z and g defined on X\Z'
coincide on an everywhere-dense subset X, of X\(ZUZ'), then Z=2Z'" and f and g
coincide on X\Z.

Proof. If peZ and a positive a is given, there is an open set ¢ containing p such
that a<|f(q) if ge(X\Z)n@. Since X, is dense in X\(ZUZ’) which, in turn, is
dense in X, OnX, contains some point g. We have a<|f(q)i=Ig(q)l; so that |g|
assumes large values near p. Thus peZ’, and Z< Z'. Symmetrically Z'cZ, and Z
=Z'. As f and g coincide on the dense subset X, of X\Z and are continuous on
X\Z, they coincide on X\Z. B

The preceding lemma assures us that a function defined and continuous on a
dense subset of X has at most one normal extension.

24 Lemma. If {X,} is a family of mutually disjoint clopen subsets of X and f, is a
continuous function on X,, there is a continuous function f on X, vanishing on
X\ 1 X)), whose restriction to X, is f, for each n if and only if {|| f,||} is bounded.
If Y, is an ascending sequence of clopen subsets of X and g is a function defined on

> Y and continuous and bounded there, then there is a function h in C(X)
vanishing on X\(\ ;= , Y,)~ and equal to g on \ J*_, Y,.

n=1 "n

Proof. If there is an f with the properties described, || f| is a bound for {|\ f,|}.
Suppose, now, that {| f,/I} is bounded. Then {[(Re f,), I} {Il(Re f)_1}. {I(Im £,), I}
and {{|(Imf,)_|I} are bounded. If the first assertion of the lemma is established
when all f, >0, then we can find functions (Re f),, (Ref)_, (Imf),, (Im f)_ in
C(X) whose restrictions to X, are (Re f,),, (Re f,)_, (Imf)),, (Im f)_, respective-
ly, and that vanish on X\(|J® ,X,)". Thus (Ref), —(Ref)_+i[(Imf),
—(Im f)_] is the desired function f. We assume (as we may without loss of
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generality) that f,>0 for each n. Let A, be the function in C(X) equal to f; on X
for j=1,...,n and vanishing on X\| Ji_, X;. Then {k,} is an increasing sequence
of functions in C(X) bounded above by an upper bound for {| f,Il}. The least
upper bound f in C(X) of {h,} has the desired properties; for the function equal
to / on ({2, X,)~ and vanishing on X\({ )2, X,)~ is an upper bound for {h,}
in C(X); so that f vanishes on X\(|J= ,X,)~. If f, is the function (in C(X))
equal to f, on X, and vanishing on X\X, then f,<h,<f and f—(g,—/,) is an
upper bound in C(X) for {h,}, where g, is the function (in C(X}) equal to f on X,
and vanishing on X\ X,. Thus g,=/,, and the restriction of f to X, is f,.

The last assertion of the lemma follows by letting X, be Y, X, be Y, —-Y, | forn
=2,3,...,/, be the restriction of g to X, and applying what we have just
proved. B

An obvious modification of the preceding argument establishes the preceding
lemma in the case where {X,} is replaced by an arbitrary family of mutuaily
disjoint clopen sets. We will not have need for the more general result thus
obtained.

2.5 Lemma. The function f defined on a subset of X has a normal extension if and
only if its real and imaginary parts have normal extensions.

Proof. If Re f and Im f have normal extensions g and % to X\Z' and X\2Z",
respectively, then g-+ih (defined on X\(Z'UZ")) extends f and it is normal (since
(g +ih)(g)? =1g(q)* +{a(g))* for g in X\(Z'LZ")).

If f has a norma!l extension the real and imaginary parts of that extension extend
the real and imaginary parts of f We assume (as we may without loss of
generality) that f is normal and defined on X\Z. We denote by R, ,, the open
rectangle in € with vertices (—n, —m), {n, —m), (n,m) and (—n,m). From Lem-
ma 2.2 (i) (and the comment following it), f ~'(R, )" is a clopen subset X, ,. of
X contained in X\Z. Since |(Re f)(g)l<n for ¢ in X, ,,, Lemma 2.4 applies and
RefI\)Z., X, . has a continuous extension g, to ({J»_, X, )~ (=X,) vanishing
on X\X,. If a<n’ then X, =X, and g, agrees with g, on | JZ_, X, , (both are
equal to Re f there) so that g, and g, agree on X,. Note, too, that X\| = , X,
(=Z')=Z. If g is defined to be g, on X, for each n, then g is defined on X\ 2" and
n<lg(g)) for 4 in (X\Z)\X,. Lemma 2.2 (ii1) applies and g is a normal extension
of Ref. Similarly Imf has a normal ¢xtension. W

2.6 Lemma. If f and g are normal functions defined on X\Z and X\Z', respective-
ly, then f+g defined on X\(ZwZ’) has a normal extension f+g.

Proof. From Lemma 2.5, Re f, Reg, Im f, and Im g, have normal extensions. Now
Re(f+g)=Re f+Reg and Im(f4-g)=Im f+Img. Again, from Lemma 2.5, f+g
has a normal extension if Re(f+g) and Im(f+g) do. We may assume without
loss of generality that f and g are real valued. With this assumption, we define
the sets:
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X,=/ 7 = Lat 0N\ (= 1,m))-
Y=g ' [(— LA+ D] \g '[(~1,m)]"
for n=0,1,2,...:and
X _p=f 7 U=R00T NS = nt 1,00
Y =g '\ [(-n,00 " \g~ ' [(-a+1,0]"

forn=2,3,....Let X_, and Y_, be f~![(—1,0)]" and g~ '[{—1,0)], respective-
ly. Then {X,},z and {Y,},., are families of mutually disjoint clopen sets in X.
Moreover,

N\z=\) X, X\z'=\)y,

nel neZ
andforgin X, or Y,,
n<f(@)<n+l or n<g(@<n+i,
respectively. Thus if geX nY, (=V, )
@ ntm<(f+g(g)<n+m+2

and {V, ,,: (n,m)eZ xZ} is a family of mutaally disjoint clopen subsets of X with
union dense in X. For j=0,1,2,..., let U; be | J;, m/~; ¥, » and note that, with g
in U,

f+egilelij+2]ol —j —-j+2],

from (2}; so that j—2<|{(f+g)(q)l <j-+2. It follows from Lemma 2.4 that there is a
function k; in C(X) equal to f+g on U; and vanishing on X\U;". Since

§ = V = X Y):
jgo UJ U z """ (nke)l ")n(nké)z ,,),

(n,m)sZ x

we have
Z'= X\‘on U cZuz,

so that Z” is a closed nowhere-dense subset of X. If f+g¢ is the function defined
on X\Z" as h; on U for j=0.1,..., then, since {U;"} is a family of mutually
disjoint clopen subscts of X and ;—-2<|( F¥+g)(q) for g in U7, Lemma 2.2 (iv)
applies and f+g is self-adjoint (normal). Moreover, f+g is ‘an extension of S
+gz N

27 Corollary. If f is a self-adjoint function defined on X\Z then Z=Z ,0Z _ (and
Z, =p).

Proof. As noted in Remark 2.1, |f] is self-adjoint. From Lemma 2.6, then, | f{+f
has a self-adjoint extension. Now |f|+f is defined on X\Z. Il p is a point of Z,
then each open set containing p contains points at which | f|+f assumes arbitrari-
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ly large (positive) values and points at which it is 0. In this case |f|+f can have
no normal extension. Thus Z , =@, Z=Z,uZ _, and, as noted before Remark 2.1,
both Z, and Z _ are closed. W

2.8 Corollary. If f is a self-adjoint function defined on X\Z then the functions 4(|f|
+f) and 1(|f| —f) have self-adjoint extensions [, and f_.

Proof. Since | f| is self-adjoint, from Remark 2.1, and —f is self-adjoint, Lemma 2.6
applies to yield f, and f_. We note that f, is defined on X\Z_,is 0 on Z_ and
at points g of X such that f(q)<0, and f,(q)=/f(q) if f(g)=0. Similarly, f_ is
defined on X\Z_, is 0 on Z, and at points g of X such that f(g)>0, and f_(q)=
—f(g) if f(g@)<0. Note, too, that f(q)=f,(q)—f_(g) forgin X\Z. B

29 Lemma. If f is a self-adjoint function defined on X\Z then expf defined on
X\Z, is self-adjoint, where (expf)(q)=expf(q) for each q in X\Z and (exp f)(p)
=0forpinZ_.

If 0<f(q) for each q in X\Z and Z,, the set of points of X\Z at which f takes the
value 0, is nowhere dense, then logf defined on X\(ZUZ,} is self-adjoint, where

(log /)(@)y=log(f(q) for q in X\(ZULZ,).

Proof. From Corollary 2.7, Z=Z ,uZ _ and Z_ is closed in X. With p in Z_ and
a positive a given, there is some open set ¢ containing p such that if ge X\Z,
f(g)< —a; and no point of Z_ is in @. Thus exp f(g) <exp —a for each q in 0. (At
points q of Z_, exp f(g) is 0, by definition.) Thus expf is continuous on X\Z ..

If peZ _, since Z _ is closed some open set ¢ containing p contains no points of
Z_ and is such that if ge X\ Z then f(q) (hence exps(q)) is large. Thus expf
defined on X\ Z , is self-adjoint.

If 0<f(q) and Z, is nowhere dense, logf is continuous on X\(ZwZ,). In this
case, Z is Z, for logf (and f) and Z, is Z_ for logf Thus logf defined on
X\(ZuZ,) is self-adjoint. W

2,10 Lemma. If f defined on X\Z and g defined on X\Z' are normal then f-g
defined on X\(ZWZ') has a normal extension f* g.

Proof. We note, first that the interior X, of f~'(0) is clopen (possibly empty); for
f7'0) is closed in X\Z (by continuity of f on X\Z) and f '(0)
cf 'z |z|<1}) S X\Z, from Lemma 22 (ii). Since f~'({z:|z2|<1})" is closed
in X, f~'(0) is closed in X. Thus X5 =f~'(0). As X is open (as well as closed)
in X, X5 =X,. Similarly the mtenor Y, of g~ '(0) is clopen in X.

Let X be X\(XouYy) and f g be the restrictions of f and g 10 X\Z and X\Z',
respectively, where Z=XnZ and Z'=X~Z'. Since Z and Z’ are closed nowhere-
dense subsets of X, f and § are normal. By choice of X, and ¥,, f~'(0) and
£7(0) are closed nowhere-dense subsets of X. If [ defmed on X\(ZuZ') has a
normal extension f* g defined on X\ Z" then f*g defined as /* g on X\Z” and 0
on X,uY, is a normal extension of f-g. To see this observe that X is a clopen
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subset of X whose complement in X is X,uUY,; so that Z" is a closed nowhere-
dense subset of X (as well as of X). Moreover, f * g is continuous on X\ Z" since
it is continuous on X\ Z” and on X,uY,; and |f* g| tends to oo at points of Z".
Thus f°g is a normal extension of f-g. We assume (as we may without loss of
generality) that £ ~1(0) and g~ '(0) are nowhere dense in X.

If Ref-Reg and —Im f-Img have self-adjoint extensions then the sum of these
extensions has a self-adjoint extension (from Lemma 2.6) which is a self-adjoint
extension of Re(f-g). Similarly, if Ref-Img and Imf-Reg have self-adjoint
extensions, then Im(f-g) has a self-adjoint extension. From Lemma 2.5, f-g has a
normal extension in this case. On the other hand, again from Lemma 2.5, Ref,
Re g, Imf, Img have self-adjoint extensions. We assume (as we may without loss
of generality) that f and g are real valued.

From Corollary 2.8, f=f_—f_ on X\Z where [, (>0) and f_(>0) are normal;
and g=g, —g_ on X\Z' where g, (=0} and g_(=0) are normal. Now f-g
=f.e.+f g_—(f,g_+f_g,)on X\(ZuZ). Ifeachof f,g.,f_g_,f, g_ and
f_ g, have self-adjoint extensions then f-g has. We assume (as we may without
loss of generality) that >0 on X\Z, g=0 on X\Z', and (using our first re-
duction) that f~'(0) and g~*(0) are nowhere dense.

Under these assumptions Lemma 2.9 applies, so that log f defined on X\(ZUZ)
and logg defined on X\(Z'LZ,) are self-adjoint, where Z,=f"'(0) and Zj,
=g~ *(0). Moreover Z, and Zj, are the sets of points at which logf and logg tend
to —cc. From Lemma 2.6, log f +logg defined on X\(ZuZ'UZ,UZ,) has a sell-
adjoint extension logf+logg defined on X\Z”. Applying Lemma?29 again,
exp(logf+logg)(=f*-g) defined on X\Z', is self-adjointt For g in
X\(ZuZ'UZ,uZy), we have (f°g)(g@)=exp(log f+loggi(q)=(f-g)q). If
qe(Z U ZYNX\(ZUZ')) then (f-g)(q)=0 and f-g is continuous at g. Thus, on
some open set @ in X containing g, f-g assumes small values. Since
ZUZ'VZ,UZ, is nowhere dense in X (under the present assumptions), ¢ contains
points of X\(ZuZ'UZ,uZ,) and at such points f* g has the same value as f-g. It
follows that g¢Z",, that f* g is continuous at q and that 0=(f" g)q)=(S" g)(g).
Thus f* g is self-adjoint extension of f-g defined on X\(ZuZ), B

Combining Lemmas 2.6 and 2.10 with the obvious fact that a scalar multiple of a
normal function is normal (with the same set of definition except when the scalar
is 0, in which case the unique normal extension is the function 0), we are in a
position to define our algebra of normal functions.

2.11 Theorem. The sets A (X) and F(X) of normal, respectively, self-adjoint func-
tions on X provided with the operations +,* and multiplication by scalars (complex,
respectively, real ) are (associative, commutative) algebras with the constant function
1 as unit and C(X) as a subalgebra.

Proof. To establish such Jaws as

FHg =" g)*h
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note that f*(g*h) and (f* g)*h agree on X\(ZuZ'LZ”) with f-g-h and apply
Lemma 2.3. @

Although caution must be exercised, since the functions in $(X) have varying
domains of definition, the notion of “positive element” that suggests itsell endows
Z(X) with a partial ordering relative to which it becomes a boundedly complete
lartice in the sense described in the following theorem.

2.12 Theorem. The set S(X), of functions f in &(X) such that f(q)=0 for each g
in X\Z, where f is defined on X\Z, is a proper cone in #(X). If {/.} is a net of
elements of F(X) increasing, relative to the partial ordering on S(X) with positive
cone S (X)., and {[;} is bounded above by some element f of (X}, then {},} has a
least upper bound f, in ¥ (X).

Proof. If fey’()()+ and g is positive real number then afef/’(XL If f and g are
in #(X),, f is defined on X\Z and g is defined on X\Z’ then Z=2_,,272'=2Z",
and f4g defined on X\(ZuZ) is in £(X). Thus f+g is f+g deﬁned on
X\(ZuZ') and f$ges(X),. If both f and —f are in (X), then f(¢)=0 for ¢
in X\Z; so that Z=0 and f=0. Thus ¥(X), is a proper cone in ¥(X) and
induces a partial ordering on &(X). We adopt all the usual notational con-
ventions for this ordering (e.g.. f>g or g<f when f~ge ¥(X),).

Note that if h in #(X) is such that h(g)>0 for each g in a dense subset of the set
on which h is defined then he #(X), (from continuity of h on its domain). With f
and g in #(X), we denote the functions L(f+g+if=gl and 3(f¥g=|f =gl by
fvgand fAg respectively. It follows from the comment just noted that fv g and
f A g are the least upper and greatest lower bounds of f and g in ¥(X); so that
F(X) is a lattice relative to the given partial ordering.

If f and g in (X)) are defined on X\Z and X\Z’, respectively, and f<g then
either ge X\(ZuZ') and f(g)<g(q), or geZ _, or geZ',. Thus, if we think of f as
taking the value —o0 on Z_ and +00 on Z, and interpret “f(g)<g(g)” in the
obvious way for points ¢ of ZUZ', then f<g 1f and only if f(g)<g(q) for each g
in X. Moreover, (fvg)(g)= de{f (9).8(q)} and (fAg)(q)=min{f(g},8(q)} for
cach g in X. Suppose, now, that {f;} is an increasing sequence of elements of
&(X) bounded above by f in &(Y). We may assume, without loss of generality,
that {f,} has a first (least) element f,.. for it will suffice to find a least upper
bound in #(X) for the cofinal net of ¢clements of {f,} following f,.. If g is a least
upper bound in #(X) for the increasing net {f,~f.+1} then g+f, =1 is the
least upper bound in ¥(X) for {f,} (since #(X) is a partially ordered vector space
relative (o the partial ordering defined by #(X}_). Thus we may assume, without
loss of generality, that 1<, for each a. If £, is defined on X\Z, then g , defined
at g in X\Z, as f,(¢)~" and at p in Z, as 0, lies in C(X) and f," g,=1. Similarly,
g defined as 0 on Z and 1/f on X\Z lies in C(X) and f*g=1. Since {g,} is
a decreasing net in C(X) bounded below by g, {g,} has a greatest lower bound g, in
C(X). Now, g~'(0)=Z and 0<g<g,; so that (Z,=)g, '(0) is a closed nowhere-
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dense subset of X. If f, is defined as 1/g, on X\Z, then f; is the least upper
bound of {f;} in A(X). N

The fact that the partial ordering of %(X) permits interpreting f<g in a point-
wise sense on all of X underscores the extrzordinary fact that a (sensible} addition
and multiplication can be defined on %(X). What pointwise sense is to be made
of f+g at a point ¢ where f “takes the value + o0 and g “takes the value
—oc”?

In the theorem that follows, we prove a Stone-Weicrstrass type of result for the
algebra #(X). If &, were assumed to be a boundedly complete sublattice of
C(X,R) (rather than #(X)) in the result that follows (in the sense that each
increasing net in %, that is bounded above by some constant has a least upper
bound relative to C(X,R) that lies in %) then the first paragraph of the following
proof shows that .%, = C(X,R) from which, X is extremely disconnected.

2.13 Theorem. If &, is a boundedly complete sublattice of F(X) such that

{J(p).Tp)): feS} =R’
for each pair of points p,, p, in X then ¥, =%(X).

Proof. Given f in CO(X,R), ¢ positive, and p, in X, choose an element f, in %
such that [ (po)=1(po) and f,(pP)=f{p), for each p in X. Let N, be an open set in
X containing p such that f,(g)<f(q)+¢ for g in N,. Select a finite subcovering of
the covering {N,} of X. Let g, be the lattice intersection of the functions f,
corresponding to the sets N, of this finite subcovering. Then g, €%, g,.(po)
=f(po), and g, (q) <f(g)+¢, for each g in X (in the extended sense that g, (q) may
be —o0). For each p in X, choose an open set ¢/, containing p such that we
have f(q)—e<g,(q) for g in ¢,. Select a finite subcovering of the covering {C,} of
X. Let g be the lattice union of the functions g, corresponding to the sets ¢, in
this finite subcovering. Then ge %, and f—e<g< f+e¢. Hence ge ¥, ge C(X, R)
and || f —gll <&. Choosing g, in %~ C(X, R) such that

B

It fil=g,v...vg, then f €% and {f} has f as its least upper bound. Thus
CX,R)c ¥,

With i in #(X), let f,, be the function (in C(X)) equal to h on h=*((—n,m))~ and
0 on X\h~'((—n,m))~, where n and m are positive integers. Let A, be the least
upper bound in #(X) of the increasing sequence { f }. (Note, for this, that {f,} is
bounded above by hv 0 in (X)) Then 4, is in %, and is equal to h at all points
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at which h takes values greater than —n. The greatest lower bound in #(X) of the
sequence {h,} (bounded below by h AQ) is h. (Note that if n<#', the function g, in
C(X) entering in the determination of h,. is less than or equal to f,; so that h, is
an upper bound for {g,} and h, <h,.) Thus he %, and % =(X). A

We conclude this section with a development of the “spectral resolution” of a
function in &(X) and a result on automorphisms.

2.14 Definition. A family {¢,: AeR} of characteristic functions ¢; of clopen subsets
X, of X is said to be a resolution of the identity when it satisfies:

(1) e;<e,.ifigsh,

(i) e, is the greatest lower bound of {e;:i<1} in C(X) (we write: e,
=Aacwer)

(i) 0= A, pe;and 1=V, ge,.

If there are numbers 1 and A’ such that e;=0 and e;- =1 then {e,} is said to be a

bounded resolution of the identity. Otherwise {e,} is said to be an unbounded

resolution. B

If {X,} is a family of clopen subsets of X,V/,X, denotes the smallest clopen set
containing all X, and A, X, denotes the largest clopen set contained in all X,
Since [ J, X, is open and (), X, is closed, V, X, is the closure of | J, X, and A,X,
is the interior of (), X,. If {e,} is a resolution of the identity and e, is the
characteristic function of X, then X, =X, if A<, X,=A, . X,, 0=A,r X,
and X =V, g X;, from (i), (ii) and (iii) of Definition 2.14.

If f is a self-adjoint function defined on X\ Z, we denote by X,(f) the interior of
U,=)f""({A: X <A})UZ_. We show that U, is closed from which it will follow
that X,(f) is clopen. X peU,~ and peX\Z then pef-'({A': A'<1}) since [ is
continuous on X\Z. If peZ then peZ_; for if p were in Z,, some open set ¢
containing p would contain no points of Z_ (since Z_ is closed in X) and no
points of X\ Z at which f takes values less than A+ 1 (since f tends to +o0 atp
on X\ Z). Thus @ would not meet U, contradicting the choice of p in U . Thus
peU, and U, is closed in X. If we include the points of Z_ (at which f “takes the
value” —oo) when we speak of “the set of points of X at which f takes values
not exceeding 4,” then this set becomes U, and X ,(f) can be characterized as the
largest clopen set on which f takes values not exceeding . We denote by e,(f)
the characteristic function of X ,(f).

2.15 Theorem. If f is a self-adjoint function defined on X\Z then {e,(f)} is a
resolution of the identity, bounded if and only if fe C{X). For each resolution of the
identity {e,} there is a self-adjoint function g such that e,=e,(g) for each A. If, in
addition,

By e =Sl p<he

where A<A and e; ;. =e, —e,, then f=g.
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Proof. From the characterization of X ,(f) as the largest clopen set on which f
takes values not exceeding 4 (in the extended sense), one has e,(f)<e,(f) when
A<Z’. Condition (ii) of Definition 2.14 also follows easily from this characteri-
zation; for A, .. X,{(f) is a clopen set on which f takes values not exceeding A
(in the extended sense), by continuity of f on X\ Z, and is therefore a subset of
X,(f), the largest such clopen set. As X,(f})= X ,.(f) when A<A, we have that
XiN=A2Xo(f) and e, ()=A, . e (f). Since X\Z is contained in
Uzem X 2(f) and Z is nowhere dense in X;

X =(X\2Z)~ Q(AL{LXA(.[))- =;anl(f)'

As the clopen set A,z X;(f) is contained in the nowhere-dense set Z;

Axer X:(f)=0. Hence 0= A, gei(f), 1=V, e, (f) and {e,(f)} is a resolution of
the identity.

If e,(f)=0 and e,.(f)=1 for some 4 and A then X,=@ and X, =X. By con-
tinuity of f on the open set X\ Z, it follows, now, that 1< f(q) for each ¢ in X\Z,
and Z_ =0. Moreover f(q)<A for each g in X (=X ,(f)); so that Z =0, fe C(X)
and 2<f<Z' If, on the other hand, we are given that A<f(q)</4 for each q in X
and fe C(X), then X ,(f)=X and X,(f)=0. Thus e, (f)=1, e,(f)=0, and {e,(/)}
is a bounded resolution of the identity.

If {e,} is a resolution of the identity then V=, X =X and AZ , X _, =0, where
e, is the characteristic function of X,. Thus V,*, X _ =X, where X, .
=X,\X,; and X\ ;X _,.(=Z) is a closed nowhere-dense subset of X. If
geX\Z’ then geX \X_, for some n; so that {1':qeX ]} is not empty and is
bounded below. Let g(g)(=A4) be its greatest lower bound. If pe X, \Y,, where
A <A<Z’, then pe X\Z’ (since X, ;=X _,, for large n) and A’'<g(p)<A”. Thus
ig(p) —g(q@)<|A" —4'|. With A” chosen near A, X .. .. is a clopen set containing ¢
on which g takes values near g(g). Thus g is continuous on X\ Z'. Since n<|g(q)|
if ge(X\Z'’\X_, ,, Lemma 2.2 (iii} applies and g is self-adjoint (as defined on
X\Z). Now g(g)<A if ge X ,~(X\Z') so that X ,;nZ', =§. If peZ’_ then each open
set ¢ containing p meets X \Z’ in a point ¢ such that g(g) <A. Thus geX; and p is
a limit point of X,. Since X, is closed, peX, and Z_ <X, for each . If Y is a
clopen set on which g takes values not exceeding 4 (in the extended sense - so
that points of Z"_ may lie in Y), then Y X,. when 1<1. Since A,_, X, =X,
and Y is clopen, Y= X,. Thus X, is the largest clopen set on which g takes values
not exceeding A (in the extended sense). It follows that X,=X,(g) and e, =¢,(g)
for each A

We complete the proof by showing that Z=2Z" and g=f il {e} satisfies (3). From
(), X_,.&X\Z; for if peX _, , then the clopen (in particular, open) set X _, , is
one on which |f| does not assume arbitrarily large values so that p¢Z. Thus Z
cZ' If qeX\Z' and g(gq)=A1" then ge X, ,, when A<A"< 1" In this case, ge X\Z
and

A=de, AP<(f e, ) @=(S" e, )@= @<l e, (@=1.
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Since this holds for all 4 and 4’ such that i< 4" <4, we have that f(q)=1"=g(q).
Thus f and g coincide on X\Z'. Lemma 2.3 applies and Z=Z", f=g. H

2.16 Theorem. The mapping o is an automorphism of #(X) if and only if there is a
homeomorphism y of X onto itself such that a( f)=fon for each f in F(X).

Proof. If fe#(X), then f=h®> with h in #(X), and a(f)=a(h)®> Thus
a(f)eL(X),. Applying this to a~!, we see that « maps ¥(X), onto itself so that
a is an order isomorphism of %(X) onto itsell. Now feC(X) if and only if
—a-1<f<a-1 for some positive real number a. Thus « maps C(X) onto itself
and there is a homeomorphism n such that a(f)=fon for each f in C(X). Let 8
be the automorphism of %#(X) induced by n. Then aof~" is an automorphism y
of #(X) that leaves each f in C(X) fixed. We complete the proof by showing that
y 1s the identity mapping on ¥(X).

With h in #(X),, the proof of Theorem 2.13 assures us that there is an increasing
sequence {f,} of functions f, in C(X) with h as its least upper bound. Thus y(4j is
the least upper bound of {y(f,)}. As y(f,)=f,, we have y(h)=h. Since each g in
H(X) is the difference of functions, gv0 and —(g A0), in #(X),, we have y(g)
=g. B

3. The algebra of operators

We assume throughout this section, that s/ is an abelian von Neumann algebra
acting on the complex Hilbert space . We begin with some preparatory material
concerning extensions of unbounded operators. For arbitrary operators on J#, the
following simple facts are easily verified.

(1) If AcBand C<D then A+C<B+D.
2) If A< B then CA=CB and AC<BC.
(3) (A+BjC=AC+BC, CA+ CB< C(A+B).

In connection with the last assertion of (3), note that, in general, we do not have
equality. This 1s ilustrated by choosing C to be denscly (but not everywhere)
defined, A to be I and B to be —I. Then C(4+B) is 0 but CA+ CB is 0|2(C)
(that is, the restriction of 0 to the domain of C). It follows from these rules that if
CA< AC for each C in some family & then TA<S AT for each sum T of products
of operators in #. We cannot speak of the “algebra” generated by &, for, as we
have just noted, a distributive law fails. However, if & consists of everywhere
defined operators (in particular, of operators in %(¥)), we can speak of this
algebra.

We may add to (1), (2), (3) another easily proved rule.

4 If {T,} is a net of operators in Z(x)) tending to T in the strong-operator
topology and T,4 =BT, for each a, where B is closed, then TASBT.
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To see this, suppose xe%(A4). Then T,xe%(B), and BT, x=T,4x—TAx. Now,
T,x—Tx. As B is closed Txe Z(B) and BT x=TAx, from which (4) follows.

Combining the results of this discussion, we have the following lemma.

3.1 Lemma. If A is a closed operator acting on the Hilbert space # and CA<AC
for each C in a self-adjoint subset F of B(H) then TAS AT for each T in the von
Neumann algebra generated by &.

Il A is a closed operator and E is a projection on # such that EAS AE and AE
is a bounded everywhere-defined operator on #, we say that E is a bounding
projection for A. If {E,} is an increasing sequence of projections each of which is
bounding for 4 and V.2 | E, =1, we say that {E,} is a bounding sequence for A.

32 Lemma. If E is a bounding projection for a closed densely-defined operator A
on the Hilbert space # then E is bounding for A*, A¥*A and AA*; and (AE)*
=A*E. If {E,} is a bounding sequence for A then | )| E (JF) is a core for each of
A, A*, A* A and AA*.

Proof. Note that EA is preclosed, densely defined and bounded, since EA S AE
and AE is bounded. Thus EA has closure AE and (EA4A)*=(AE)* from general
theory. If xeE(#) and ye2(A) then {Ay,x)={y,(EA)* x); so that xe#(A*) and
A*x=(EA)*x. It follows that A*E=(EA)*E. But (I—E)EA=0 so that (EA)*E
=(EA)*=A*E. Now EA*<(AEy*=(EA)*=A*E; and E is bounding for A*. Since
EA*A< A*EAE=4* AE, E is bounding for A* A4 and, similarly, for A4*.

It follows that {E,} is a bounding sequence for A*, A* 4, and AA4*, as well as A. If
xeP(A) then E x—x, E, xe9(A) and AE,x=E _Ax—Ax. Thus U,‘:; VE(2(A) is a
core for A. Since E () S 2(A); \ L | E() is a core for A (and A%, A* 4, A4* as
welll,. R

It is convenient to introduce, at this point, the connection (more fully explored in
the next section) between the self-adjoint operators affiliated with o and the
functions in ¥(X). Suppose Ane’ and A=A* From the basic theory of self-
adjoint operators, A+il and 4 —il are one-to-one linear mappings of 2(4) onto
H# whose inverses, T, and T_, are (everywhere-defined) linear operators with
bound not exceeding 1 and (0) as null space. Moreover, T, =T*. Since T, and T_
are bounded and afliliated with ./, they lie in o/. Each increasing net of self-
operators in &/ bounded above has a least upper bound so that, if & is isomor-
phic to C(X) with X compact Hausdorfl then X is extremely disconnected. Let g,
and g_ be the functions in C(X) corresponding to T, and T_. Then g, =g _ so
that g, and g_ are 0 on the same closed subset Z of X. If the interior Z,, of Z is
non-null its characteristic function e, corresponds to a projection E, in o/ such that
T,E,=0, since g, e,=0. As this contradicts the fact that T, has null space (0), Z
is nowhere dense in X. Let h, and h_ be the reciprocals of g, and g_ on X\Z.
Then h, and h_ are complex conjugates of one another so that £(h, +h_)(=h) is
a real-valued continuous function on X\Z. From the definition of T, and T_, we
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have
AT_T,=T,+iT_T, and AT, T =T_—iT,T..
Since T_T, =T, T_ it lollows that
(5 2iT, T_=7T_-T,
and
6) AT, T_=§T,+T.).
From (5), we have 2ig, g_=g_—g, so that

(N (hlg)+i)y'=g,(q) and (h(@)—i) '=g_(q)

for ¢ in X\ Z. Thus, with p in Z and ¢ in X\Z near p, g_(g) is near 0 and |h(q)| is
large. Thus 4 is a self-adjoint function as defined on X\ Z. In a sense that will be
made precise in the next section, 7 “represents” 4 in ¥(X). For present purposes,
we use the spectral resolution {e;(h)} of h to produce the spectral resolution
{E;(A)} of A (see Theorem 2.15). Of course E,;(A) is the projection in of repre-
sented by e,(h) under the isomorphism of & with C(X). We shall show that AE is
bounded and everywhere defined and that

(8) AE<AE</E,

where E=E,(A)—E,(A) and i<A. Writing e for e,.(h)—e;(h), we have that e
represents E in C(X). Now e is the characteristic function of X ;-(R)\ X ,(h) which
is contained in X\Z. Thus g, (p)g_(p)+0 when e(p)=1. For p in X\Z, we have

9  hp)=[3@g.e_) &, +2)]0)

by definition of h. Moreover, there is a k in C(X) such that kg, g_=e and ke=k
(since g, g_ is continuous and vanishes nowhere on the clopen set X ,.(h)\ X ,(h)).
If K in o corresponds to k, then

(100 KT, T =E.

Since A<h(p)< X', if pe X ,.(W)\ X ;(h); we have
ig.g e<ilg, +g_ e<Ag,.g e,

from (9), and
ikg,g_e=le<i(g, +g Yke=3(g, +g_)k

<Xkg,g_e=Ae
Thus
(11) AE<YT,+T_)K<KE.

Combining (6), (10), and (11), we have (8). It follows that AE is bounded and
everywhere defined; and, from (6), (9) and (10), that 4% e corresponds to AE in
C(X).
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With these few spectral-theoretic techniques at our disposal, we proceed to the
construction of the algebra of operators affiliated with <.

3.3 Theorem. If o/ is an abelian von Neumann algebre acting on the Hilbert space

X and A, Bnof then

() each finite set of operators affiliated with o have a common bounding se-
quence in o .

(i) A+ B is densely defined and preclosed and its closure A $ By,

(i) A- B is densely defined and preclosed and its closure A° By,

(ivy AB=B A and A* A=AA*=A*" 4);

(v} (aA+B)*=aA* 1B,

(vi) (A*B)y*=B*'A*;

(vil) if ASB then A=B, if A is symmetric, A=A*,

(viii) the family A"(Z) of operators affiliated with & forms a commutative *-algebra
(with unit 1) under the operations of addition + and multiplication * described
in (ii) and (ii1).

Proof. Throughout this argument, U denotes a unitary operator in . Since

U*AU=A, we have U*A*U=A*; and A*no/. At the same time U*4*AU

=A4*A and A*Ans/. If E is a projection in ., (2E—1I) is a unitary operator in

H(S.'); so that QE—I) A(QE —I)=A. Thus EA< AE. From general theory, A*A

is self-adjoint. Let {E,} be its spectral resolution and let F, be E, —E_,. Then

U*E,U=E, and E,eo. As A*AF, is bounded and everywhere defined, AF, is

everywhere defined and closed, since A is closed and F, is bounded. The closed

graph theorem tells us that AF, is bounded. (This follows directly, as well, since

IAF, x|2 = (F, x, A*AF, x) <|| A* AF,}| | x|I2)

As {E)} is an increasing sequence of projections in o/ with least upper bound I
and F, ACAF,; if xe?(A), F,x—x and AF,x=F,Ax—>Ax. Thus {7 F,(#) is a
core for A and {E} is a bounding sequence in .« for A.

Suppose {E,} is a bounding sequence in o/ for {4}, j=1,....m—1 and {F} is a
bounding sequence in &/ for 4,, where A€« Then {E F} is a bounding
sequence in .« for A,,..., A,. In particular, | J;_ , E, F,(#) is a common core for
A,,...,A,. It follows that both A+ B and A*+ B* are densely defined. But 4*
+ B*<(A + B)*, so that (4 + B)* is densely defined and A + B is preclosed.

If {E,} is a bounding sequence in & for A,B,A* and B*, then E,ABc AE,B
CABE, and AE,BE,c ABE,. As AE, and BE, are bounded and defined every-
where, AE,BE,=ABE,. Thus {E,} is a bounding sequence for AB and, similarly,
for BA and B* A*. In particular B* A* is densely defined. As B* A* (4B)*, (AB)*
is densely defined and AB is preclosed. At the same time, ABE =AE BE,
=BE,AE,=BAE,. Thus A" B and B* A agree on their common core { J | E, (#);
and A°B=B*4. As A*A and AA* are self-adjoint, A*A=A*"A=A"A*
=AA* If xe@(A)2(B)(=%Z(A+Bj), Uxe2(A+B) and U*xe%(A+B). Thus
U(2(A+B))=2(A+B) and UX(4+B)U=A+B. It follows that U¥(4+B)U=4
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B and A¥Bnst. If ye2(AB), then ye2(B) and ByeZ(A). Thus UyeZ(B) and
BUy=UBye2(A). 1t follows that Uye@(AB). Since U*ye2(AB), U(Z(AB)
=%(AB). As U* ABUy=ABy, U*A*BU=A"B and A" By«

With {E,} bounding for 4 and A*, E,A*< A*E, and E_A*<(AE,)*. Thus A*E,
and (AE,* are bounded everywhere-defined extensions of the same densely
defined operator E, A*. It follows that (AE,)* = A*E,. Suppose that {E_} is bound-
ing for B, B* aA % B, (aA+B)*. A"B, (A" B)*, and A*"B*(=B*"A4*) as well. Then,
from the foregoing,

(@4* +B*) E,=aA*E,+B*E,=a(AE)* +(BE,)*
=({@A+B)E,)*=(aA ¥ B)*E,
and
(A*BWE,=(A"B)E,* =(AE,BE,)* =(BE,*(AE,)*
=B*E, A*E,=(B*' A*)E,.

Since (aA + B)* and ZA* + B* agree on their common core J® | E, (o), they are
equal. Similarly (4 B)*=B*" 4*(=A*"B*).

If A is symmetric, A< A*, a special case of A=B. If {E,} in & is bounding for 4
and B, we have AE_ =BE, since 4E, < BE,,. Thus 4 and B agree on their common
core | JX | E (), and A=B.

Choosing a common bounding sequence for all operators involved, it is routine to
verily such identities as (A°B)* C=A"(B* C), and (viii) follows. @

As noted in (iv) of the preceding theorem, A*4=AA* for each 4 affiliated with
an abelian von Neumann algebra .o/ By analogy with the case of bounded
operators, we expect normal operatocs to be affiliated with abelian von Neumann
algebras. With the aid of the lemmas that follow, we shall prove this. We
conclude from this that the multiplication operators corresponding to unbounded
(complex-valued) measurable functions (finite almost everywhere) are normal. Our
first lemma 1s a condition for an operator to be normal.

3.4 Lemma. If {F,} is a bounding sequence for the closed operator A on the Hilbert
space # and AFE, is normal for each n, then A is normal.

Proof. From Lemma 3.2, (AF)*=A*F,; so that A*AF,=A*F AF,=(AF)*AF,
=AF(AFE)* =AF,A*F,=AA*F,. Thus the self-adjoint operators A*A4 and AA*
agree on | J | F,(#). a core for each of them. Thus A*4=44* 0

3.5 Lemma. If BAS AB and & (A)y< %(B), where A is a self-adjoint operator and B
is a closed operator on the Hilbert space ¥, then E; B BE, for each E, in the
spectral resolution {E,} of A.

Proof. We note that B(4+iJ)=BA+iB under the present assumptions. From (3),
BA +iB< B(A +il). Suppose xe 2(B(A +il)). Then xeZ(A) and Ax+ixeZ(B). By
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assumption xe 2(A)S %(B) so that Axe%(B), as well. Thus xe2(BA+iB) and
B(A+il)x=BAx+iBx. Hence B{A +iI)= BA+iB and the stated equality follows.
Similarly B(A—il)=BA —iB.

Let T, and T_ be the (bounded, everywhere-defined) inverses to A +il and A —il,
respectively. Then, from (1), (2), (3) and the preceding paragraph,

T,B=T,BA+il)T,=T,(BA+iB)T,cT,(AB+iB)T,
=T,(A+il)BT, =BT,

Similarly T_B<BT_. From the discussion preceding Theorem 33, T, =T* so
that Lemma 3.1 applies; and TB< BT for each T in the von Neumann algebra s/
generated by T, and T_. In particular E;B<BE, foreach . B

3.6 Theorem. An operator A is normal if and only if it is affiliated with an abelian
von Neumann algebra.

Proof. Since AA*A=A*AA and Z(A4* A)c %(A), Lemma 3.5 applies. Thus E; A
c AE, for each 2, where {E,} is the spectral resolution of A*A; and F, A< AF, for
each n, where F,=E —E_ . In the same way, 4*A*A=A*AA* and 2(A*A)
=Z(AA*)S D(A*); so that F,A* < A*F, for each n. As in the proof of Theorem
3.3, AF, and A*F, are bounded since A* AF,{=AA*F) is. Moreover F, A* < (AF)*
so that both (AF)* and A*F, are bounded extensions of the densely defined F, A4*.
Thus (AF)*=A4*F, (and (A*F)*=4F). Note, too, that A4F, AF,<AAF, and
AF, AF, S AAF,, when n<m. Since AF, AF, and AF, AF, are everywhere defined,
AF AF, =AAF,=AF, AF,. At the same time, A*F, AF, =A*AF,=AA*F,
=AF, A*F,. Thus {F,, AF,, A*F,: n=1,2, ...} generates an abelian von Neumann
algebra .

If xe #(A) then F, x—x and AF,x=F, Ax—>Ax; so that { J= , F,(#) is a core 2,

for A. With U a unitary operator in .o/’ and x in Z,, AUx=AUF,x=AF,Ux
=UAF,x=UAx. From Remark 3.7, Ans/ (and A*ns/). B

37 Remark. If T is a closed densely defined operator with core 2, and TUx
=UTx for each x in 2, and each unitary operator U commuting with a von
Neumann algebra 2, then Th#&. To see this, note that with y in & (T). there is a
sequence {y,} in &, such that y,—~y and Ty,—Ty (since 2, is a core for T). Now
Uy,—Uy and TUy, =UTy,—UTy. Since T is closed, Uye%(T) and TUy=UTy.
Thus 2(T)ycs U(Z(T)). Applied to U*, we have 2(T)< U(2(T)); so that U(Z(T))
=4(T). Hence 2(U* TU)=%(TYand U*TUy=Ty for each y in Z(T). W

4. The isomorphism

In the process of developing some of the spectral theory for (unbounded) self-
adjoint operators through the corresponding theory for such functions in & (X)
(preceding Theorem 3.3), we assigned a function 4 in & (X) to a self-adjoint
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operator A affiliated with an abelian von Neumann algebra o (where & is
isomorphic to C(X)). Our aim, in this section, is to show that this correspondence
extends to a *-isomorphism of .4 (&) onto .#'(X) whose restriction to o/ is the
given *-isomorphism of & with C(X). This is effected in the following theorem.
The reciprocals of normal functions, appearing in the statement and proof, refer
to their inverses in the algebra 4" (X).

4.1 Theorem. If & is an abelian von Neumann algebra. ¢ is an isomorphism of o
with C(X) and we define ¢ on & (sf) by:

() 20H)=¢o([H+il]"") " +¢o([H—iI]"")~",

then @ is an isomorphism of (&) onto ¥ (X). If we have Ansf, A, =3(A+A4%),
Az=;(A—A*), and @(A) is defined to be ¢(A,)+ip(A,), then ¢ is an isomor-
phism of A (&) onto N (X). The restriction of @ to 7 is ¢,.

Proof. We observed (preceding Theorem 3.3) that ¢(H), as defined in (1), lies in
L(X). If Hesol, H+il and H—il have inverses in &/: so that @o([H+il]~')~!
=@o(H+il), @o([H--iI1"")"'=¢,(H~il), and @(H)=¢,(H). Similarly, with A
in &, @(A)=¢@q(A4).

We prove that ¢ is an isomorphism. The identities ¢(aH + K)=a¢(H)+ ¢(K) and
@(H*K)=¢@(H)"(K) are proved by reformulating them, using (1), in terms of
Po([H+iI17"), @o([K £il]™"), @ol[aH+K +il]~"), and @ ([H*K +il]~"), per-
forming the formal algebraic operations (justified in .4"(s/) and .47(X)), and using
the corresponding identities for ¢,. Again, these same identities are valid when
operators A and B affiliated with o replace H and K (by virtue of the validity of
the usual algebraic operations in 4 '(of) and A(X) and these identities, just
established, for self-adjoint operators affiliated with 7).

If (H)=0 then the normal functions @q([H+il)~")~"' and —¢y([H —il]~")"!
are equal. Thus @ ([H+iI]7") and —~@y([H-iI1"") are equal. Since ¢, is an
isomorphism, [H+if]~' and —[H —iI]~" are equal. Thus H=0, in this case. It
follows that ¢ is an isomorphism of A4"(&7) into 4" (X).

To see that ¢ maps .¥(«f) onto ¥ (X), note that with h in (X), (h¥i)~! and (h
—i)~" are in C(X). Choose T, and T_ in s so that ¢o(T,)=(h+i)~" and (T _)
=(h2i)~'. Then T_ =T}, since (h+i)~* and (h=i)"' are complex conjugates of
one another. If T, has non-zero null space the projection on that null space lies
in o/ and corresponds to a non-zero characteristic function in C(X) whose
product with (h3i)~? is O, contradicting the fact that (h3i)~' vanishes on a
nowhere-dense set. Thus T,, and, similarly, T , have null space (0). Since T_
=T*, both T, and T_ are one-to-one mappings of # onto dense linear mani-
folds in # Let B, and B_ denote the mappings inverse to T, and T_. If U is a
unitary operator commuting with &, U’ commutes with 7, and T_; so that
UB, U*=B, and UB_U*=B_. Thus B, neo and B_ns/. Since [=B, T,
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=B_T_, we have 1=¢(B,)*(hFi)~'=¢(B_)'(h=i)~"'; and ¢(B,)=h+i, ¢(B_)
=hZ2i Thus B, =il (and B_ +il) in ¥ (&) arec mapped by ¢ onto h; and ¢ is an
isomorphism of & (/) onto ¥ (X). Since the real and imaginary parts of a normal
function have self-adjoint extensions, ¢ is an isomorphism of .4'(&/) onto
A(X) 1

The spectrum, sp(T), of a closed densely defined operator T on J# is the set of
complex numbers = such that T—z[ is not a one-to-one mapping of its domain
onto J¢ (with a, necessarily, bounded inverse). If T is normal, from Theorem 3.6,
Th<«f for some abelian von Neumann algebra . If ¢ is the isomorphism of
A7() with 4" (X) constructed in the preceding theorem, the range of ¢(T) is
sp(T). To see this, note that z¢sp(T) if and only if T=zI has an inverse in .
Thus z¢sp(T) if and only if ¢(T)=z has an inverse in C(X). Since ¢(T) is a
normal function on X, @(T)=z has an inverse in C(X) if and only if z is not in
the range of ¢(7T) (and this inverse is 0 on the closed nowhere-dense subset of X
on which ¢(T) is not defined). It is possible for an element T of .4 (/) to have an
inverse in A4 (s7) not in &7, so that Oesp(T).

5 A charactérization

In this section, we prove a theorem (5.11) characterizing & (X) as a vector lattice
in the style of the Stone-Krein-Kakutani-Yosida characterization of C(X,R) as a
vector lattice [8, 5, 6, 4, 10]. (Compare [2; Section4] for a discussion of the
C(X,R) result and for some of the terminology and constructs we use here.) Two
distinctions between the cases of ¥ (X) and C(X,R) should be noted:

(1) We do not have a norm on & (X) (nor can we expect to define one).

(i) Our compact-Hausdorff spaces are extremely disconnected in the case of

L (X).

Let ¥ be a partially ordered vector space. We recall (see [2; Definition 2.1]) that
an element e in the positive cone ¥ of ¥ is an order unit for ¥~ when, for each v
in ¥, there is a positive real a such that —ae<v<ae. The existence of an order
unit amounts to assuming that the elements of ¥ are “bounded”. The ordering
on ¥  is said to be archimedian when an element v such that p<ae for each
positive a must be negative (that is, v<0). This condition amounts to assuming
that there are no “infinitely small” elements in ¥" It is the condition that ¥~ has
no “radical” (that is, that ¥~ is semi-simple). There is a norm associated with the
order unit e (||v|| is defined as inf{a: —ae<v<ae}); and among the complete
archimedian ordered vector spaces those that are lattices are precisely the ones
that are linearly order isomorphic to C(X,RR) for some compact Hausdorff space
X. The space X is the set of extreme points (the pure states) of the family of
positive linear functionals on ¥ that take the value 1 at e (the states) topologized
by the weak xtopology. In case ¥ is assumed to be a boundedly complete lattice,
it is not necessary to assume that ¥ is norm-complete. An argument similar to
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the one appearing in the proof of Theorem 5.4 establishes that ¥~ is linearly order
isomorphic to C(X,R) with X an extremely disconnected compact-Hausdorff
space.

To find an ordered-space characterization of £ (X), we both want and do not
want an order-unit assumption. We need many “bounded” elements but do not
want to assume that each element is bounded. This is managed with the aid of a
semi-order unit.

5.1 Definition. An element v of a partially ordered vector space ¥ is said to be
bounded with respect to an element e in ¥, (or, simply, e-bounded) when there is a
positive scalar a such that —ae<v<ae. When each element of ¥ is the least
upper bound of an increasing net of e-bounded elements of ¥, we say that e is a
semi-order unit for v. W

The following lemma will prove useful.

5.2 Lemma. Let ¥~ be a vector lattice, v, be vv 0, and v_ be —(v AQ) for each v in
¥. Then v=v, —v_. If ¥ is boundedly complete and e is a semi-order unit for v,
then v=\/2 ;v A ne, for each vin ¥

Proof. For each u in ¥ the mapping w—w+u is an order isomorphism of ¥~ onto
¥ and, therefore, preserves unions and intersections. The mapping w— —w is an
“anti-order isomorphism” of ¥° onto ¥  and, therefore, reverses unions and
intersections, Thus

v=t—(A0)+vA0=0+(0Vv —0)+vA0=0v0+0vA0=0, —v_.

If ¥ is boundedly complete, e is a semi-order unit for ¥; and ue¥’, then u is
V, u, for some subset {u,} of e-bounded elements of ¥. For each a we can choose
a positive integer n, 50 that u,<n_e, whence u,<urn,e<u. If {n,} is an infinite
family, it contains arbitrarily large positive integers; and u is V2 ,u A ne. If {n,}
is finite, it has a largest element ng; and uange=\/,u An,e=u. In this case, 0 <u
=uAnge<nye; and again, u=V,2  uAne.

For an arbitrary element ¢ in ¥,

vane=(v, —v_)ane=[v, A{ne+v_)]—v_.
Thus

\7 VAne= {GI([:»+ A(ne+v_)]—u_)=[n\m} v, A(ne+v_)] —v_
=1

n=1 n=1
0

2[V v+/\ne] —v_=v,—v_=v. B
n=1

To characterize &(X), we want to rule out both infinitely small and infinitely
large elements. We rephrase the archimedian condition for this purpose.
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5.3 Definition. A partially ordered vector space ¥  is said to be archimedian
ordered when 0 <0 if v <av, for some v, in ¥ and all positive scalars a. B

This condition follows from the usual archimedian condition on ¥" when ¥~ has
an order unit e; for if v<av, for all positive a, and b is a positive scalar such that
vo<be, then v<abe for each positive a. From the standard archimedian condition
[2; Definition 2.1]. v<0. In the revised form, the archimedian condition elim-
inates the possibility that there is an (“infinitely large™) element v in ¥~ such that
ave < v for some non-zero ¢, in ¥, and all positive a; for, in this case, vo<bv for
all positive b and v, <0.

We prove, first, a result characterizing C(X,R) as a vector lattice when X is an
extremely disconnected compact-Hausdorff space.

5.4 Theorem. A boundedly complete archimedian vector lattice ¥ with order unit e
is linearly order isomorphic with C(X,R), where X is an extremely disconnected
compact-Hausdorff space and e corresponds to 1.

Proof. From [2; Theorem 4.1], ¥ is linearly order isomorphic to a norm-dense
linear sublattice of C(X,IR) containing the constants, where X is the
weak *closure of the space of extreme maximal ideals of ¥~ (effectively, maximal
lattice ideals or pure states of ¥7). The image ¥, of ¥ in C(X,IR) is, therefore, a
boundedly complete lattice (and is norm dense in C(X,IR)). We shall show that
the least upper bound f, of a subset {f,} of ¥; relative to ¥, is its least upper
bound relative to C(X,R). Suppose f is an upper bound for {f,} in C(X.R). We
show that f, < f. If p, is a point in X corresponding to an extreme maximal ideal
of ¥, then with p(f) defined as f(p,) for f in C(X,R), p|¥, is a positive linear
functional on ¥, that has a unique positive extension to C(X,IR) (for the extreme
points of the set of positive extensions of p| ¥, are pure states of C(X,IR) and
correspond to points of X having the same value on functions in ¥, as p,; but
functions in ¥, separate points of X). Thus

Sf(po)=inf{g(py): ge¥;. f <g}.

If f(po)</folp,), there is a g in ¥, such that f<g and g(p,)< f,(py). Since
f,<f<gfor all q, and ge¥,, and f, is the least upper bound of {f,} in ¥;, we
have that f,<g. In particular, f;(p,) <g(po} - contradicting the choice of g such
that g(pg) < fo(po). 1t follows that f,(po)< f(po) for each p, in X corresponding to
an extreme maximal ideal in ¥. As these points are dense in X and f—f, is
continuous on X, f, < f. As in the first paragraph of the proof of Theorem 2.13, ¥,
=C(X,R). Hence C(X, R) is a boundedly complete lattice and X is an extremely
disconnected compact-Hausdorff space. 8

If f, g and h in &(X) are defined at p, then

[(f v g Ahl(p)=min {(f v g}(p), h(p)} = min {max { f (p), g(p)}, h(p)}
=max {min { f(p), h(p)}, min {g(p), h(p)}} =[(S A h) v (g A B)](p).
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Thus

(%) fvglah=(fAhyv(gnh).
A “distributive law” stronger than () is valid in &% (X):

(**) gA(\a/fa)= Yg/\f;-

To establish (x#), note that gA f,<gA f for each a, where f=\/,f,. Thus h<gn /,
where h=\,gA f,. Il h<gA f, then there is a clopen set ¢ in X and a positive
constant ¢ such that h(p)+c<(gA f)(p) for p in O. If g(p)</,(p) for some p in @,

then g(q) < f,(q), g(q) < f(q), and (g A f)(q)=g(q) [or each q in some clopen subset
¢, of ¢ containing p. But then, for all g in @,,,

(g~ f)@)=g(@<h(g)<g(g)—c.

Thus f(p)<g(p) for each p in @. Since f=\,f,, we have, from this, that
f(p)<g(p) and (g A f}(p)= f(p) for each p in @. Hence

LD =@ ALPI<hPp)<@Af)p)—c=f(p)—c
for each p in @ - contradicting the fact that f=\/, f,. Thus h=gA f, which is (»).

The condition (+*) is a type of (complete) continuity on the operations of in-
tersection and union in %(X) - in the framework of operator algebras it would be
a “normality” or “strong-continuity” condition on the corresponding operations.
Weakened forms of (*) and (x*) will be needed for our characterization of % (X).

5.5 Definition. A semi-order unit e for a vector lattice ¥ is said to be distributive
when
(uvvyaae=(unae)v(vAaae)

for all u and v in ¥~ and all scalars a. If ¥~ is boundedly complete and, for each
increasing net {v,} in ¥, with an upper bound in ¥~ and each positive scalar ¢,

aen(Vu)=Vaenn,
a a

we say that e is completely distributive. W
Note that if ¢ is distributive for ¥, then
(wnv)vae= —[(~[unvl)a(—aell= —[([—u]v-v])A(—ae)]
=—[[-uJa[—aehv([-v]A[—ae])]
[—([—uwlr[—aeDIn[—([—v)A[—ae])]

=(uvae)a(vvae).

5.6 Lemma. If ¥ is a boundedly complete archimedian vector lattice with a com-
pletely distributive semi-order unit e, there is a linear order isomorphism 5 of ¥ into
F(X) for some extremely disconnected compact-Hausdor{f space X such that n(e)
=1 and the least upper bound of {n(v,)} relative to ¥ (X) is n(v). where v=\,v,.
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Proof. Let ¥, be the family of e-bounded elements in ¥ Then ¥, is an archi-
median vector lattice with order unit e. If {¢,} is a subset of ¥, bounded above by
ne, then {v,} has a least upper bourd v in ¥ Of course, v,<v<ne for each v,.
Thus ve¥,, and v is the least upper bound of {z,} in ¥,. It follows that ¥, is
boundedly complete and, from Theorem 5.4, that there is a lincar order isomor-
phism n of ¥, with C(X,R), where X is some extremely disconnected compact-
Hausdoril space. From Theorem 2.12, (X} is a boundedly complete archimedian
vector lattice (as well as an algebra over R). We shall extend 5 to a linear order
isomorphism of ¥~ into .#(X) (with the properties noted in the statement of this
lemma).

With v in ¥, let v, be vAne. Then, if n<m,
t,Ane=(vAme)Ane=(pAne)Ame=v, Ame=u,,
and, for each pin X,
(n(v,) A 1) (p)=min {n{v,) (P), n} =n(r,) (p).

If n(,)(p)<n, it follows that n(v,)(P)=n(v,)(p). Let @ be the open set
UZ 1 n(v,)" ([0, n) and define n(v}(p), for p in O, to be limn(v,)(p) as n— .
From the foregoing, #{v)(p) is n(,){(p) when #(v,)(p)<n. Thus n(z} and n(vr,) agree
on the open set (v,)~ ([0, n)); and n(v) is continuous on €. Il Z, is the closure of
the interior of the complement Z of @, then Z, is clopen since Z is closed. Let ¢,
be the element of ¥, such that n(e,) is the characteristic function of Z,. If peZ,
then pén(n,)~ ([0, ); so that n<n(r,)(p) and nn(ey) <nlv,). Thus ne,<v,<v, and
e,<n~'v for each positive integer n. Since ¥~ is archimedian, ¢, <0; and e,=0.
Hence Z,=0, and Z is nowhere dense. If peZ, then m=n(v,}(p) for each m; so
that pen(v,, )~ '((n, n+1]) for each n. Now n(v,, )~ "'((n,n+1]) is open in X; and
il gen(y,, )~ "(n,n+1I\Z, then ge® and n<n(v,,,)(¢).. Hence n(v)(g)>n, and
n(0)e. S (X).

From the definition of #(v) and Lemma 5.2, we have:
awi=n(V v,) = ¥ niw) ()

Suppose u and o are in ¥,. Since w,+v,<{u+v),,; we have that n(u,)
+’I(Un)$’1((“+ﬁ)2,,)ﬁi1(u+ U). Thus

V o)+ nw)= V )3V )

=n(w) F n(v) < U +v).

If we assume, in addition, that uey,, say u<n,e, then with m equal to the larger
of n and n,, we have

u+v), <@u+v)r(ut+me)y=u+(vAame)=u,+v,.
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Again, n((u+v),)<n(u) +n(v,)< n(u)+n(v) for each n; so that g(u+v) < nu)+n(v).
Thus n(u+ v)=n(u)+ n(v) when u and v are in ¥ and ue¥;. For arbitrary u and v
in ¥, we have n(u,+v)=n(u,) +n(v). Now V< l(;1(:1,,)+11(v)) n(u)+r1(v) while «,
+o=(u+v)A(ne+ )2 (u+v), Thus gu+v)< V2, 1, +v)=nu)+n(v); and

nlu+ u)=n(u)+n(v)

when u and v are in ¥, . It follows, now, that » extends (uniquely) to a linear
mapping (we denote, again, by ) of the linear span ¥ of ¥, into ¥ (X). Since n
maps ¥, into (X)), ,n is order preserving.

We show, next, that

2 guaAv)=n@an),  nuvey=nu)vn()

when u and v are in ¥7,. Note for this that
wao),=unvane=uane)Alvane)=u,rv,.

To prove the analogous result for (uvv),, we must make use of our assumption
that e is distributive. With this assumption in force,

(uv o), =(uvvane=(uAne)v(vane)=u,vu,.

If #(u} and n(v) are defined on X\Z and X\Z', respectively, and pe X\ (ZuZ’),
then
(n(u) An(v)) (p)=min {n () (p}, n(v) (P)}

=min {n(x,)(p), 7(v,) (P)},
and

(n(u) v n(v)) (p)=max {n(u) (p), n(x}(p)}
=max {n(u,) (p), n(v,}(P)},
provided that n is chosen larger than »(u)(p) and #(v)(p). At the same time,
nu Av)(pj=n((u A v),) (P)=nlu, Av,)(p)

=) A n@, ) (p)=min {n(x,)(p), nl(v,) ()},
and

nu v o) (p)=n(luv v))(P)=nu, v v,)(P)
=(n(u,) v n(v,)) (p)=max {n(u,) (p), n(v,)p)},

provided m is larger than n(u v v)(p) and n(u A v)(p). Thus n(u) An(v) and n(uav)
agree on the dense set X\(Z U Z’} as do n(u) v ¢(v) and n(u v »). From Lemma 2.3,
we have (2).

We prove, now, that for each u in ¥#;
) au)=n)., nu_)y=nH_.

Since # is an order isomorphism of ¥, onto C(X,R), (3) holds when ue¥,. In
general, writing u, for (1 Ane)v (—ne), we have,
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(u,),=[uvO)ane]v(—ne)=(uvO0Ane=(urne)v0
=[uAane)v0lv(—nej=[(uarne)v(—ne)]v0=(u),

and
u_)y={(—(uAO)Ane]v(—ne)

=—[(uAO}v(—ne)]=—f[(unne) A0l v(—ne)]
=([uane}v(—ne)) A0)= —(u, AG)=(u,)_.
Since u,e ¥},
(U, Au_),=u Au_nsne=(u,),Au_),=u), Alu,)_=0.
Thus

%0
U, ANK_ ="Vl(u+ A l(;)’,:O.

It follows, now, that
4  O=nu, ru_Y=n(u,)An(u_).
By coustruction, n(u)=n(u,)—n(u_); and both n{u,) and n(v_) are positive.
Combining this last information with (4), we have (3).
Since
urny=u+0A@—-uy=u—(Q—u)_
and
uvo=u+0vw—u)=u+(v—u),,
we have that
n(uAv)=n(w) =n((v —w)_)=n(u) = ((v) — ) _ = n(u) A p{v)
and
n(uv v)=n(u) +n((r—u) ) =) +n©) —n@), =1(u) v @)

If ue ¥, and n(u)=0, then n(u,)=0since 0<u, <u and 5 is order preserving. Thus,
from (1),

Suppose ve¥” and 0=n(v)=n(vr,)>=n(v_). Then (), =n(v,)=nlv_)=n(v)_. Since
7(v), An(v) =0, we conclude that n(v, )=n(v), =n(v)_=n(v_)=0. Thus v =v_
=0, and v=v, —v_=0.

To this point, we have established that # is a linear order isomorphism of ¥~ onto
a sublattice ¥, of #(X) and that n maps ¥, onto C(X,R). We show, now, that ¥,
is boundedly complete in the sense that if {5(v,)} is a subset of ¥; that has an
upper bound in ¥, then the least upper bound of {n(v,)} relative to ¥ (X) lies in
¥o. In fact, we show that if v=\/,v,, then »n(v)=\/, n(v,). Passing to the increasing
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net of least upper bounds of finite subsets of {v,} containing a given finite subset,
we may assume that {v,} is an increasing net in ¥~ with a smallest element v,.
Replacing {v,} by {v,—v,}, we may assume that each v, is in ¥, . With this
assumption, v, nee¥, for each positive integer n; and, since e is completely
distributive,

(Vnw)anl=V () Anl)=V n(v, ane)=n(V (v, Ane))
=n((V v,)ane)=n(\ v)anl.

Since the self-adjoint functions V/,#n(v,) and n(\/,¢,) are the least upper bounds in
Z(X) of {{\/ n(x,)anl} and {n(V,v)Anl}, respectively, n(v)=\,n(x,). B

The hypotheses of the preceding lemma are not sufficient to ensure that there is a
linear order isomorphism of ¥  with &(X) for some extremely-disconnected
compact-Hausdorff space X. If X, is a non-null clopen subset of X distinct from
X. the set ¥, of functions in %(X) that are bounded on X, satisfy these
hypotheses. Clearly ¥;#%(X). More than this, ¥; is not linearly order isomor-
phic with any & (Y). This follows from the (easily proved) fact that ¥; has “quasi-
bounded™ sequences that are not bounded in ¥; (see Definition 5.9 and Proposi-
tion 5.10 following). Although we established in Lemma 5.6 that the image ¥ of
¥ is a sublattice of &(X) and each subset of ¥, bounded above by an element of
¥, has its least upper bound relative to ¥ (X) in ¥,, we did not conclude that
each subset of ¥, bounded above by an element of ¥(X) has an upper bound in
¥, (nor can we hope to conclude this, in general, in view of the example )ust
mentioned). Thus Theorem 2.13 is not applicable. The device of quasi-bounded
subsets of ¥, allows us to identify (a priori) those subsets of ¥ that will have an
upper bound in .%(X) (after the isomorphism of Lemma 5.6 is constructed).
Preliminary to defining quasi-boundedness, we must introduce the notions of an
“idempotent” and “support” in our vector lattices. With the function model in
mind, the significance of these definitions becomes clearer.

5.7 Definition. An element ¢, of a vector lattice with semi-order unit e is an (e )
idempotent when ae, A e=¢, for each real number a greater than 1.

5.8 Definition. The support s(v) of a positive element v of a boundedly complete
vector lattice with semi-order unit e is A {e,: ¢, idempotent, (¢ —e ) Az =0}.

5.9 Definition. A subset {r,} of the positive elements of a boundedly complete
vector lattice ¥~ with semi-order unit ¢ is quasi-bounded when /% e,=e, where
e,=s(ne—\/,v,Ane). When each such subset of ¥" has an upper bound in ¥" we
say that the lattice is full.

5.10 Proposition. Let X be an extremely disconnected compact-Hausdorff space.
(i) A function g in ¥ (X) is an idempotent if and only if it is the characteristic
Sunction of a clopen subset af X.
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(i) With f in (X),, s(f) is the characteristic function of the closure X, of
{p:peX,0<f(p)); s(f) is an idempotent.

(iii) If 0< f <g with fand g in & (X), then s(f)<s(g).

(iv) A subset of #(X), is quasi-bounded if and only if it has an upper bound in
F(X). In particular, (X)) is full.

Proof. (i) Suppose g is defined at p and 0+ g(p)# 1. Then g(p)+ag(p) for some real
a greater than 1. Since (ag A 1)(p)=min {ag(p), 1} Fz(p), ag A 1% g for this choice
of a; and g is not an idempotent. Thus, if g is an idempotent, it takes only the
values 0 and 1 where it is defined; and g is the characteristic function of some
clopen set.

If g is a characteristic function, then ag A 1 =g for each real a greater than 1; and
g is an idempotent.

(i) If g is an idempotent in & (X) such that (1 —g) A f=0, then g(p)=1 if f(p)>0.
Since s(f) is the greatest fower bound in (X)) of all such idempotents, it is clear
that s(f) is the characteristic function of X .

@iii) I10< f<g, then X ;€ X and s, <s,.

(iv) If {f,} is a subset of #(X), bounded above by f, then f,An< f An for each a
so that V,f,An< fAan and thus n—f an<n—V\, £, An. From (iii), s(n —f An)<
s(n—\, f, An). Now s{n—f an) is the characteristic function of the closure of the
set of points p such that f(pj<n. Since fe ¥ (X),

1= C’ s(n—fAan<g {l/ s(n—Vf,/\n).
n=1 n=1 a

Hence {f,} is quasi-bounded.

Suppose { f,} is a quasi-bounded subset of ¥(X), . If s(n—\/,f, A n) is the charac-
teristic function of X, then (J, X, is dense in X (since {f,} is quasi-bounded).
If n< f,.(p) for some a’ and some p in X, then n< f_.(g) for all g in some clopen
set Y containing p. Thus (n—\, /., An)(g)=0 for all g in ¥, and YnX,=@ in
particular, p¢ X . It follows that f,(p)<n for each a and ail p in X,. On the other
hand, if #’<n and Y’ is a clopen set such that f,(p')<#" for each a and ail p" in Y’,
then (\/,fyan){p)<n’ and s(n—-\, f,Anp)=1 for all p’in Y. Thus Y'C X, in
this case. As just noted, for each a and all p in X,_,, f(p)<n—1. Hence X _,
cX,. Let Y, be X \X,_,. Define f(p) to be n for p in Y, n=1,2, ... Since X,
=0, {Y,:n=12,...} is a disjoint family of clopen sets whose union is dense in X.
From Lemma 2.2, fe #(X). Forpin Y,, f.(p)<n=f(p). Thus, f,<f for each a and
fis an upper bound for {f,}. @

511 Theorem. If ¥ is a full boundedly complete archimedian ordered vector lattice
with a completely distributive semi-order unit e, there is a linear order isomorphism
nof ¥ onto S (X), where X is some extremely disconnected compact-Hausdorff
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space. The mapping n carries e onto 1 and ¥, the set of e-bourded elements of ¥,
onto C(X,R).

Proef. From Lemma 5.6, there is a linear order isomorphism » of ¥ into £(X)
mapping e onto 1 and ¥, onto C(X,R), where X is some extremely disconnected
compact-Hausdorlf space. In addition, if {v,} has a least upper bound v in ¥ then
#(v)=V,n(v,). To show that the image % of n is a boundedly complete sublattice
of #(X) in the sense of Theorem 2.13, we must show that if {5(r,)} has an upper
bound in #(X), then {r,} is bounded in ¥. For this, we show that {v,} is quasi-
bounded in ¥~ (and then apply the assumption that ¥~ is full). Theorem 2.13 will
apply, then, yielding the conclusion that % is #(X).

Note that ¢, is an idempotent in ¥" if and only if n(ey) is an idempotent in .¥(X),
for n(aeyne)=anleg)n 1. Thus the set of idempotents relative to 7, coincides
with the set of idempotents in ¥(X) (since C(X,R)=¥3). Il v is a positive element
i ¥,, we can compute its support s,(v) relative to ¥ and its support s(v) relative
to #(X). The sets of idempotents whose greatest lower bounds (relative to ¥, and
to F(X)) are s,(v) and s(v) coincide. So do their greatest lower bounds (from the
properties of » noted). Thus sq(v)=s(v). The sets of supports used to determine
quasi-boundedness of {5(v,)} relative to ¥, and S (X) are the same. So are the
least upper bounds of this set of supports (relative to ¥, and to #(X)). Thus
{n{v,}} is quasi-bounded relative to one of ¥, and F(X} if and only if it is
guasi-bounded relative to the other. By assumption, {5(v,)} is bounded relative to
#(X), and from Proposition 5.10(iv), {n(v,)} is quasi-bounded in &(X). Hence
{n(v,}} is quasi-bounded in ¥;, and {v,} is quasi-bounded in ¥. B

In the (bounded) case where ¥" has an order unit e, it is not necessary to assume
that e is distributive to establish the linear order isomorphism of ¥~ with C(X,R).
(See Theorem 5.4.) The assumption that e is (finitely} distributive was used to
imbed ¥~ as a sublattice of ¥(X) (see the proof of Lemma 5.6); although without
making this assumption there is a linear order isomorphism of ¥~ into ¥ (X) such
that ¥, maps onto C(X,R).

5.12 Problem. Can ¥ (in the proof of Lemma 5.6) be shown to be a sublattice of
F(X) without the assumption that ¢ is (finitely) distributive?

5.13 Problem. Without the assumption that e is completely distributive, can we
conclude that the least upper bound of a subset of ¥ that has an upper bound in
¥, coincides with its least upper bound relative to #(X)?
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