Representations of matricial
operator algebras

R. V. Kadison

1. Introduction and preliminaries

In [10; Chapter IV], Murray and von Neumann introduce a class of
factors of type 1I, which appear as the ultraweak closure # of the union
of an ascending sequence {%;} of distinct C*-algebras, where 2, is
* isomorphic to the algebra of all n; X n; complex matrices, each containing
the same unit element. We call the sequence {,} a matricial nest, their
union a matricial operator algebra, a C*-algebra in which such a union is
norm dense a uniformly matricial C*-algebra, and a von Neumann
algebra in which such a union is ultraweakly dense a matricial von
Neumann algebra. We say that {3} is a generating (matricial) nest for its
union and its various closures.

Murray and von Neumann prove that all finite matricial factors are
* isomorphic[10; Theorem XII, XIV]. They call such factors ‘approximately
finite’ (the terms “hyperfinite’ and ‘approximately finite-dimensional’ are
also used); and in the process of proving their uniqueness result, they
establish various properties of finite matricial factors. In particular, they
show that if the finite factor # has the property that each finite set of
operators A,,.... A, in M can be approximated to within a preassigned
positive ¢ in trace norm by operators By, ..., B, lying in a finite type I
subfactor of # containing the identity operator I (that is, B,.. .., B, are
such that [[A;,—B;]1<e for all j in {1,...,n}, where [[A]f=7(A*A)
and 7 is the (unique) trace on # normalized so that 7(I)=1) then # is
matricial. We shall say. in this case, that M has the (trace-norm) finite
approximation property. More generally, we replace “trace-norm’ by other
topologies and refer to this approximation property in these topologies.
We apply this terminology to C*-algebras as well.

In [S] it is proved that a properly-infinite von Neumann algebra that
has the * ultrastrong finite approximation property and acts on a separ-
able Hilbert space is matricial with a generating nest {2} such that %; is
isomorphic to all 2/ x2' complex matrices. In [4], [9], [11; Corollary 5.2],
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and [11; §6.8], it is proved that the universal enveloping von Neumann
algebras (the ‘biduals’) of all uniformly matricial C*-algebras are
* isomorphic; from which it follows that if a von Neumann algebra acting
on a separable Hilbert space has one matricial generating nest it has all
possible generating nests. Put in another way, this result states that if a
uniformly matricial C*-algebra has a separable representation on ¥ then
every other uniformly matricial C*-algebra has a representation on ¥
with the same commutant. If A and B are C*-algebras such that when
one has a (separable, cyclic, factor, etc.) representation on a Hilbert space
# the other has a representation on ¥ with the same commutant, we say
that A and B are (separable-, cyclic-, factor-, etc.) isoreductive. Of course,
isomorphic C*-algebras are isoreductive (in all senses); but isoreductive
C*-algebras need not be isomorphic (as the example of uniformly matri-
cial C*-algebras illustrates). Glimm introduced the uniformly matricial
C*-algebras (which he called uniformly hyperfinite) in [6). He proves that
the prime power divisors of the orders of the algebras in a matricial
generating nest determine such algebras up to algebraic isomorphism. He
proves, too, that a countably generated C*-algebra with the (norm) finite
approximation property is uniformly matricial. It follows from Glimm’s
results that, for example, the uniformly matricial algebra with nest {2}
where the ‘order’ of ¥, is 2’ (this is the CAR algebra) and that where the
order of %, is 3’ are not isomorphic. But in a sense that one immediately
feels, without its being made precise, all uniformly matricial C*-algebras
are very much alike. The isoreductivity is one important aspect of this
‘sameness’.(Indeed, a tentative title for [11] was ‘Similarities Between
UHF Algebras’, where, by ‘similarities’, Pedersen has in mind ‘re-
semblances’.)

While it is not the subject proper of this article, we propose the study
of isoreductivity (in various forms) as an important aspect of the general
analysis of the structure of C*-algebras. There are two broad features of
this study that seem especially prominent. The first is the general nature
of isoreductivity—including such questions as what forms of isoreductivity
imply others or more extensive forms (for example, cyclic isoreductivity is
the same as isoreductivity for representations with commutant having
countably decomposable centres) and such as whether isoreductive C*-
algebras contain ‘common dense approximate models’. The second fea-
ture involves establishing various types of isoreductivity for special classes
of C*-algebras. (Are the C*-algebras generated by the regular rep-
resentations of the free groups on more than one generator factor-
isoreductive? finite-factor-isoreductive? cyclic-isoreductive?) It may be as
sensible to develop structural results capable of telling us whether or not
two C*-algebras resemble one another as it is to try to decide whether
or not they are algebraically identical (isomorphic). In this connection,
compare Rieffel’s closely related notion of Morita equivalence [14].
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In proving the isoreductivity of uniformly matricial C*-algebras Elliott,
Maréchal and Pedersen pass through Glimm’s results on type I C*-algebras
[7] and quote the Murray-von Neumann results for finite matricial
factors. Elliott combines a direct quote of Glimm with the result of (5]
while Pedersen reconstructs Glimm's techniques of quasi-matrix unit
systems in a form suitable for his purposes.

Murray and von Neumann establish their results by what we might call
the ‘cutting and pasting’ techniques of operator algebras (in conjunction
with intricate approximations). These techniques are applied to systems of
matrix units. A system of nx n matrix units is a family {E,} of operators
such that E,E, =E,, EuE.,«=0 when h#h', and E,=E%, for
kbR in{l,...,n}. If £ E;=1I, we say that {E, } is a unital system
of nXxn matrix units (for A, if {E,} generates N—so that ¥ is a factor of
type 1,). In general, we use “unital’ to refer to the presence of a unit in
the appropriate sense. (So, for example, we refer to a unital subfactor
when the subfactor contains I.)

By employing these time-honoured techniques of matrix unit approxi-
mation and some new strategies, we prove the (cyclic) isoreductivity of
uniformly matricial C*-algebras directly (in Section 4) as well as recap-
turing the Murray-von Neumann uniqueness result and their finite—
approximation—property characterization of finite matricial factors by
simpler arguments. In Section 2, we prove some results on finite rep-
resentations of C*-algebras with a unique tracial state (that is, a state 7
such that 7(AB)=1(BA) for each pair of ¢lements A and B in the
algebra); and we note, from these facts, that it suffices, for the unique-
ness, to show that all finite matricial von Neumann algebras contain some
one uniformly matricial C*-algebra as an ultraweakly dense subalgebra.
Any matricial C*-algebra will do, but one is extremely well-suited to the
needs of our argument. It is the uniformly matricial C*-algebra (we
denote by ‘?(.’) that has a generating nest such that every power of every
prime divides some order of an algebra in the nest. This is the point
where the strategy changes from that of the Murray-von Neumann
argument. A good deal of their technical effort is devoted to ‘trimming
away the excesses’ gathered during their constructions. With our (elemen-
tary) representation results in place, and passing through ., we need not
bother with ‘trimming’—on the contrary, we must engage in ‘stuffing’
(which is technically very easy).

The properly-infinite case is quite different. To begin with, a properly-
infinite matricial von Neumann algebra need not be a factor (even if it is
of type I—as the direct sum of two inequivalent representations of the
CAR algebra illustrates).

The major breakthrough of Powers [13] shows that uniqueness is no
longer valid (for type 11I matricial factors); though Connes’s classic result
[3; Theorem 7.4] establishes uniqueness for matricial factors of type II..
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The work of Araki-Woods [1] and Connes [3] parametrizes type III
factors and establishes uniqueness for the matricial type III factors in
many cases, when the additional parameter is taken into account. The
work of Connes [2] employs the Tomita-Takesaki theory [15] in its
parametrization of type III factors which extends the scope of the original
parametrization of Araki-Woods [1]. At the same time, Connes replaces
the internal characterization of finite matricial factors (the finite approxi-
mation property) by a deep and powerful ‘external’ characterization
(‘injectivity’, or the existence of a ‘hypertrace’) [3: Remark 5.3.4,
Theorem 5.1]—and, in the process, he answers virtually all of the older
open question about matricial factors. Despite the important structural
differences among the infinite matricial factors, the uniformly matricial
C*-algebras are factor-isoreductive—emphasizing the fact that isoreduc-
tivity tells us something about the common properties of uniformly
matricial C*-algebras rather than about the von Neumann algebras
generated by the images of representations. The failure of general unique-
ness in the infinite case denies us the luxury of using only .. Our
argument, in this case, must produce an arbitrary generating nest. The
strategy for this construction is described in the introduction to Section 4,
and the techniques are those developed in Lemmas 4.4, 4.5, and 4.6.

In Section 2, we prove the finite factor representation results, men-
tioned, along with some other preparatory facts. In Section 3, we present
a simplified version of Glimm’s basic theorems on uniformly matricial
C*-algebras.

We are pleased to record our gratitude to the National Science Foun-
dation (USA) for support of our work. Many of these results and the basic
techniques that enter the arguments were developed during the prepara-
tion of {8]. Our thanks are due to John Ringrose for many illuminating
discussions on this subject.

2. Preparatory results

If ? is a uniformly matricial C*-algebra and {¥l,.} is a generating nest for
A, each 9, has a unique tracial state. If A, <A, the restriction of the
tracial state of %,, to %, is the (unique) tracial state of 9, ; so that there is
a unique tracial functional 7, of norm 1 on U5, W,.(=A,,). Thus 7, has a
unique bounded extension 7 to A, 7(I) = 1=|l7||; and 7 is a tracial state of
A. If 7' is another tracial state of 9, the restriction of 7’ to each Y, is the
unique tracial state of %A,. Thus 7 and 7' agree on U,, and, by norm
continuity of 7— 1’ on N, 7= 7". Each uniformly matricial C*-algebra has
a unique tracial state. Concerning C*-algebras that admit a unique tracial
state, we prove some results that will be of use to us in establishing the
(algebraic) uniqueness of the finite, matricial von Neumann algebra.
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Proposition 2.1. If the C*-algebra N acting on the Hilbert space ¥
admits at most one tracial state and the weak-operator closure, %~, of W is
a finite von Neumann algebra, then A~ is a factor.

Proof. If 7 is the normalized, centre-valued trace on A~, P is a
non-zero central projection in A~, x is a unit vector in the range of P, and
y is a unit vector in , then w, ° 7 and w, ° 7 restrict to the unique trace
on . From the ultraweak continuity of 7 on %~, w, © 7 and w, ° T agree
on 2”. Thus (Py, y)=(7(P)y, y)= (w, ° T)(P)=(w, ° T)(P)=(Px, x)=1.
Thus P=1I, and "~ is a factor. O

In the theorem that follows, we speak of ‘finite representations’ of a
C*-algebra . These are the representations ¢ of 9 such that ¢(21)” is a
finite von Neumann algebra.

Theorem 2.2. If the C*-algebra N admits at most one trace then all
finite representations of 2 are quasi-equivalent.

Proof. If ¢ is a finite representation of 9 on the Hilbert space ¥, then
A admits a trace. Let ¢, be the (cyclic) GNS representation of A on ¥,
corresponding to this tracc: and let ¢ be the direct sum of ¢, and ¢. Let
E be the projection of ¥,D X onto ¥,; and let x, be a unit vector in
¥, such that [¢(N)x,]= ¥, and (ABx,, x,) =(BAxq, x,) for all A and B
in ¢(A)". If P is a central projection in ¢()” E;, and P is equivalent to a
subprojection E in ¢(A)"Ej, then (P—E)x,=0; so that (P—E)E,=0,
where E, is the projection in ¢(N)” E; with range [E y(N) E{x,]). But
then (P-E) is orthogonal to the central support, E;, of E, relative to
YQA)"Ey; and E=P. Hence ¢(A)"E, and (A)"Cg, are finite von
Neumann algebras (where Cg; is the central support of E|, relative to
Y(A)).

By assumption ¢(A)"(I-E})(=¢(N)") and, hence, YQ)"C_g, are
finite. Thus ¢(A)~ is finite. Since Y(N) admits at most one trace; Y(A)~
is a factor, from Proposition 2.1. Hence A — AE; and A —> A(I - E;)
are isomorphisms of ()~ onto Y(A)™Ey(=¢o(A)7") and «N)~(I - E})
(=¢(N)7), respectively; so that ¢ and ¢, are quasi-equivalent. [

Corollary 2.3. All finite representations of a uniformly matricial C*-
algebra are quasi-equivalent.

Corollary 2.4. If two finite von Neumann algebras R, and R, have
ultraweakly-dense, * isomorphic, matricial subalgebras 2, and %, then R,
and R, are * isomorphic.



Proof. The identity represcntation and the * isomorphism of U, onto
A, are two finite representations of the uniformly matricial C*-algebra
A,. From the preceding corollary, these representations are quasi-
equivalent. Thus the given * isomorphism of %, onto 2, extends to a
* jsomorphism of R, onto ®,. O

Corollary 2.5. Each uniformly matricial C*-algebra U has a (faith-
ful) representation as an ultraweakly dense C*-subalgebra of a factor of

type 11,.

Proof. From the proof of Theorem 2.2, we see that the GNS rep-
resentation corresponding to the (unique) tracial state of 9 is a (faithful)
representation of A as an ultraweakly dense C*-subalgebra of a factor of
type II,. O

Lemma 2.6. A matricial von Neumann algebra, R, has no non-zero,
finite-dimensional, central summands; and each unital subfactor N,, of R
of type 1, is contained in a unital subfactor ¥, of R of type 1,,,, where m is
a preassigned positive integer.

nm?

Proof. Let Q be a non-zero central projection in ® and 4 be a unital
subfactor of R of type I,. Since # is simple and contains I, the mapping,
T— TQ, is an isomorphism of 4 onto #Q in RQ. Hence RQ has
(linear) dimension at least k*. There are unital subfactors # of R ot type
I, with k arbitrarily large, since & is matricial. Hence #Q is not finite
dimensional.

It follows that there is a unital subfactor & of R of type I, with k any
preassigned positive integer. Choose k to be nm; and let {E;.} and {F;}
be unital systems of n X n matrix units in A and for ¥, respectively. If V
is a partial isometry in ® such that V¥V =E,, and VV*=F,,, then
Y1 F,,VE,; is a unitary operator U in ®; and UE,U*=F,. Thus
UNU*(=)) is a unital subfactor of & of type I, containing #,. O

Lemma 2.7. A matricial von Neumann algebra, R, with countably-
decomposable centre € is * isomorphic to a cyclic, matricial von Neumann
algebra acting on a separable Hilbert space.

Proof. Suppose ® acts on ¥. Since € is countably decomposable;
there is a cyclic projection E’' in ®’' with central support I (see [8;
Proposition 5.5.16]). The mapping T— TE' is a * isomorphism of &
onto RE’ acting on E'(¥) (= ¥,). Since R is matricial, RE’ is matricial,
hence, countably generated. As RE’ has a generating vector and a
countable generating family, %, is separable. [



REPRESENTATIONS OF MATRICIAL OPERATOR ALGEBRAS 7

3. The uniformly matricial C*-algebras

In this section, we prove Glimm'’s theorem classifying uniformly matricial
C*-algebras up to * isomorphism. Let 2 be a matricial C*-algebra and
{,) be a generating nest for A, where A, is a (finite) unital factor of type
I,. If g% - - - q& is the prime factorization of 7, then (from elementary
Wedderburn theory) U, is generated by a family of commuting unital
factors, k; of which are of type I, (je{1,..., m}). If we apply this form of
decomposition, successively, to ¥,, to ;N to A;NA,, ..., we con-
struct a commuting family of type I subfactors of prime order that
generates A as a C*-algebra. These prime order subfactors can be
grouped together to form a generating nest whose members are unital
factors of types other than {r,}; but a ‘prime factorization’ of the new nest
will yield the same primes as before and the same number of unital sub-
factors of that prime order. (That number may well be infinity.)

If 2 and ‘B are uniformly matricial C*-algebras with generating nests
that yield the same prime factorization, subfactors of the same prime
order can be put in correspondence (giving rise to a one-to-one corres-
pondence between the total families) and a * isomorphism constructed
between corresponding subfactors. Since finite, unital subfactors that
commute are (tensor-product) independent, there is a * isomorphism
between the subfactors generated by corresponding finite families in each
of A and B that restricts to the given isomorphism on each factor in the
family. In this way., we construct generating nests, {%,} and {8,} for
and 1B, respectively, and * isomorphisms ¢, (of ¥, onto B,) that are
extensions of one another. Since each ¢, is an isometry, the * isomorph-
ism they define of Ur-( ¥, onto U;-, B, is an isometry, and has a
unique isometric extension mapping  onto *B that is a * isomorphism.

From the discussion to this point, we see that the specific numbers r,
appearing as the types of a particular generating nest for U are not
significant; but that the primes appearing in the factorizations of the
numbers r,, may be significant in describing the algebraic structure of .
We have seen that if 2 and B have generating nests with the same prime
factorization then ¥{ and B are * isomorphic. Nothing we have seen thus
far rules out the possibility that all uniformly matricial C*-algebras are *
isomorphic.

Suppose A and B are * isomorphic, uniformly matricial C*-algebras
with generating nests {¥1,} and {8}, respectively; and suppose that r
divides the order of some B, but of no ,. Then B contains a unital
subfactor of type I,; and, via the * isomorphism, % contains such a
subfactor. In the theorem that follows, we show that ¥ cannot have a
unital subfactor of type 1, when r divides the order of no member of a
given generating nest for A. Glimm's theorem follows directly from this
result and our preceding discussion.
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Theorem 3.1. If {N,} is a generating nest for a uniformly matricial
C*-algebra W and X is a unital subfactor of N of type 1,, then some U,, is

Of ‘YP" lkr'

Proof. Let E be a minimal projection in . Since |J5., A, is norm
dense in %; there is an A in some U, such that | A — EJ| is small. Thus ||A||
is near 1; and, replacing A by [|A|™' A, we may assume that |A|=1.
Replacing A by 3(A*+ A), we may assume that A is self-adjoint. Since
E-A’=E(E-A)+(E-A)A; we may assume that A is a positive
operator in the unit ball of %,. For such an A, |A - F||<}, where F is the
spectral projection for A corresponding to (4, 1]; so that ||[E—F||< 1 (and
F is a projection in N,). Thus (I- E)AF and (I- F)A E are 0. (If there
were a unit vector in the range of either, then ||E — F|| would be at least 1.)
Hence 1-7(E)++(F)=7(I-E)++(F)=7[(I-E)AF]+1[(I-E)vF]=
7[(I- E)v F) =<1, where 7 is the (unique) normalized tracial state on .
Thus 7(F) =7(E); and, by symmetry, 7(E)=<7(F). Hence 1(E)=r(F).
Now k/m = 7(F)=1(E)=1/r, where F is the sum of k minimal projec-
tions in U, (of type I,,) and E is a minimal projection in a unital subfactor
of type 1. It follows that m=rk. O

It follows from this theorem that if 9, is, for example, the uniformly
matricial C*-algebra whose ‘prime factorization’ contains only unital
subfactors of type I. (this is the CAR algebra) then U, contains no unital
subfactor of type I,. The information contained in the prime factorization
of some generating nest for a uniformly matricial C*-algebra 2 can be
assembled in the expression, 23" ..., which we call the supernatural
number of A. The exponent n; of the jth prime p; in the supernatural
number of A indicates the number of subfactors of type I, appearing in
the prime factorization of A derived from some generating nest for ¥ (as
described above). With this terminology, Glimm’s result has the following
form.

Theorem 3.2. To each supernatural number there corresponds a uni-
formly matricial C*-algebra. Two such algebras are * isomorphic if and
only if they have the same supernatural number.

Proof. The second assertion is a consequence of Theorem 3.1 and the
discussion preceding it. The first assertion can be proved by using the
argument of the last paragraph of the proof of Lemma 2.6, where R is
replaced by B(%) and ¥ is infinite dimensional. O

We conclude this section by stating Glimm's criterion for a C*-algebra
to be uniformly matricial. (Detailed proofs of lemmas entirely analogous
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to the norm approximations needed for this result will be given in the
next section for the more difficult case of strong *-operator approxima-
tion.)

Theorem 3.3. If the (unital) C*-algebra N is countably generated and
if each finite set of operators in N can be approximated in norm io a
preassigned degree of accuracy by operators in a unital, finite, type 1
subfactor of A, then N is uniformly marricial.

4. The matricial von Neumann algebras

In this section, we establish our basic results on isoreductivity (Theorem
4.10 and Corollary 4.11) and complete our proof of the Murray-von
Neumann uniqueness of finite matricial algebras (Theorem 4.9). The
technical lemmas needed for these results involve matrix unit approxima-
tions in von Neumann algebras. In the case of matrix approximations in a
finite matricial factor, Murray and von Neumann make use of the trace
norm, which, after minor rearrangement, amounts to approximation on a
single vector—a trace vector. In the case of a general von Neumann
algebra, a trace and trace norm are not available; so that more care and
some special devices are necessary. Our approximations are performed on
prescribed finite sets of vectors; and we must not allow operators chosen
at later stages of the arguments to act on vectors yielding vectors then
necded in further approximations. We will usually be given a system of
n X n matrix units (or a part thereof) at the outset; and, to avoid the
difficulty just mentioned, we will want to be able to apply these matrix
units to the vectors on which the approximations are made. We introduce
a technical device that permits us to do this.

A set & of vectors in the unit ball (), of a Hilbert space ¥ will be said
to be closed with respect to a partial isometry V on ¥ whose initial
projection E is orthogonal to its final projection F when Ex, Fx, Vx, V*x,
(I-E)x, (I- F)x, and (I- E~ F)x are in & for each x in %. For each x in
X, the seven vectors, just listed, together with O form a closed set with
respect to V as does this same set with x adjoined.

If y in & is such that Ey = Fy =0, then {0, y} is closed with respect to
V. The union and intersection of sets closed with respect to V are closed
with respect to V. If {E, } is a system of n X n matrix units then, for each
xin ¥, {0, x, Eyx,(I-E)x:jk=1,...,n; E=E;; +---+E, ; ,1<j,<
Ja<-+* <jn=n}is the minimal set containing x and closed with respect
to all Ej, j# k. Thus each finite set of vectors in (¥), is contained in a
finite set closed with respect to all Ey, j# k.

In loose terms, the programme that follows is aimed at showing that
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each unital subfactor ¥, of type I, of a matricial von Neumann algebra &
is contained in another unital subfactor & of type I, where r is a
preassigned positive integer, and that there are operators in the unit ball
of ¥ that approximate a given finite set of operators in the unit ball of ®
on a given finite set of vectors to a preassigned degree of accuracy. These
approximations performed successively, with greater and greater accu-
racy, assure us that a generating nest for a uniformly matricial C*-algebra
A of R can be constructed that has strong-operator closure containing a
(countable) generating family for ®; so that %~ =R. The ability to
introduce a given integer r as a divisor of the type at each stage, allows us
to construct 2, * isomorphic to a given uniformly matricial C*-algebra. In
this form, the programme is most easily carried out when % is properly
infinite. When @ is finite, it will suffice, from Corollaries 2.4 and 2.5, to
construct some one given A as a dense subalgebra. In the finite case,
constructing & to have type I,, (and with the other properties described
above) for a specified integer r is a more strenuous process; but it is
relatively easy to make some (unspecified) multiple of r a divisor of the
type of N. Clearly, then, our goal in the finite case should be to construct
., (described in Section 1) as a dense subalgebra. It is in this respect that
our argument differs strategically from the Murray-von Neumann
argument—and simplification occurs. We use the freedom afforded by
basic representation results applied to the special situation of uniformly
matricial C*-algebras to indulge the ‘excesses’ permitted by constructing
A, rather than attempting the rigidly restrictive construction of a generat-
ing nest of unital, finite, type I factors each of whose types is specified.
This last is what the Murray-von Neumann proof does (and is required
for the properly-infinite case, where additional ‘space’ is available to
allow this construction in simplified form).

In the first lemma, we show that if a 2X2 matrix unit system is
approximable (in the strong *-operator topology) by operators in the unit
ball of a finite type I subfactor then an approximation can be made by a
2 X 2 matrix unit system in the subfactor. Using this, we show the same, in
the next lemma, for unital nxXn matrix systems (with the resulting
approximation dependent on n). The next three lemmas show that nearby
matrix unit systems can be ‘rotated’ onto one another by a unitary
operator in & near I. (The first of the three deals with the finite and the
next two with the properly-infinite cases.) The two lemmas that follow
these construct & (as described) in the properly-infinite and finite cases,
respectively.

Lemma 4.1. If Vis a partial isometry in the von Neumann algebra
acting on the Hilbert space ¥, V*V=E, VV*=F, EF=0, ¥ is a
subfactor of R of type 1,, & is a closed set of vectors with respect to V, and
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A, B, T are operators in the unit ball of N such that |(A - E)x|<
b(<107"), [(A*— E)x||<b, |(B - Fx||<b, [[(B*~ F)x|j<b, [(T- V)x||<b,

I(T*— V*)x||<b for each x in &, then there are orthogonal projections M
and N and a partial isometry W in N such that

W*W =M, WW#* = N, (M —E)x|<4b'??,

"(N— F)x“<4bll.‘l{ "(w_ V)XH< 2b|/32, "( w* _ V*)XH< 2bl/32

for all x in &. If A is a projection, M can be chosen so that M= A.

Proof. Replacing A by 3(A+A*) and B by 3B+ B*), we may
assume that A and B are self-adjoint. With x in &, we have

(A - A%)x||<||A(E - A)x||+](A — EXI - E)x|}< 2b.

Since A is a self-adjoint operator in the unit ball of ¥; A=3%"., A,G,,
where |A;| =1 and {G}} is an orthogonal family of projections in . If
d=>b", X(,={j:A,¢[—d, dlu[l-d, d]}
and je Xo; then d><|A;l - |1—A]. Thus
d* ) IGxP= ¥ (- AD? Gl = X ll\, = AD G

j€ X i€Xa i€Xa

= 2 Iy = ADGxIP = (A - A?)x|2 < 4b>.
j=1

J
If —d=A;<d then |A|=d=b""<10"" so that 9|A|/10=|r|-[A)P =
|A; —A7|. Similarly, if 1-d=A;<1 then [1-A;|=1-A,<d<107! so that
911-A1/10=1-A;=(1—-1))*=|A;—A}l. Let M, be the sum of those

G;’s for which 1 -d=A;. Then

10\2
A= Moxl'= () T 1, -\DGaf+ T 1GaF

1€ Xy
10}?
= (7,—) A - A%)xl?+4b<5b>+4b -
and (since b<107Y)

(M, — E)x||<(5b% +4b)""?+ b < 3b'>.

If A is a projection, the preceding construction yields A as M, Now
|EBx||=|E(B - F)x||<b; and ||BEx||=|[(B— F)Ex||<b; so that

IBMox||<|B(M, — E)x|| +|BEx||< 36" + b
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and
M, Bx|| < (M, — E) Bx]|| + ||EBx|
=|(Ma— E)Fx||+|(My— EXB - F)x| +||EBx||
<3b'2+3b.
Thus (since b<1072)
B —(I- M) B(I—-My))x||<|IM,Bx||+2 [|[BM,x||<9b">+5b
and
(T - My)B(I— M,) - Flx[| <105*3(<107%).

Applying the previous argument with (I - M,)B(I - M,) and F in place
of A and E, we can construct a projection N, in (I— M,)N(I—M,) such
that

(No = F)x|| <[5(10b'2)2 +-4(106/2)]"2 + 1062 < 7 "/*

(for 10b'2<3b"* and [5(10b'%)? + 4(10b"2)]"2 < 2b "3, since b< 1079).
If NoTM, =S = W(S*S)'?, where W is a partial isometry in ¥ such
that W*W =M= M, and WW*=N=<N,, then
(S = V)x|i = {(No TM, — FVE)x||<||N(TM, ~ VE)x||+ (N, — F) VExl|
=< T(M,~ E)x|l+ (T~ V)Exl|+ (N, ~ F) Vx|
=3b"2+b+7b"*<8b";

and [(S* - V*)x||<8b"4. Thus

I(S*S— V*V)x||=|I(S*S — E)xl|
=[S*(S— V)x||+[(S*- V*) Vx| < 16b'*;

and ||(§S* - F)x||< 16b"/*. Hence
I(S*S - (S*S)2)xll<32b" and J[SS*—(SS*)*)x||<32b'.

Arguing, now, as at the beginning of this proof, with $*S in place of
A, let Y, be {j:u;¢[0,d,]U[1—d,, 1]}, where S*S=37_ 4G}, {G)
is an orthogonal family of projections in W, and d,=(16b"%)V4
i€ Yo, then d0<|u,l N-wl; so that ¥ v |GixIF<64b's. Thyg
S*9)"2= S*STlP = T, v, ("~ ) - G+ Sy, (1)~ ) |Gix<
d(,||xI|2+64b"‘<3b”"’ (since b<10 '"; and [[[(SS*) ”‘-SS*]x“ <
3b"'%. Hence

W = V)xli< (W - WMo)x||+ | W(M, — E)x||+ | W(E — (§*S)'72)y
+](S = V)x||<3b"2+16b"*+3"2b'2 4 8p 14 < 5 p 12
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(since b<1077); and I(W*—- V*)x|<31b"*+3'2p'32<2b'*? (since
b<1077). It follows that
[(W*W - V*V)x|= (M- E)x||<4b'"?,

and [(N- P)x|<4b'. O

Lemma 4.2. For each positive integer n there is a positive integer m,, and
a positive function m — f(n, m) on the positive integers such that f(n, m) —
0 as m — = and such that if R is a von Neumann algebra, {E;} is a unital
system of n X n matrix units in R, A is a unital subfactor of ® of type 1,,, ¥
is a closed set of vectors with respect 10 all E,, j# k, and {A,} is a family
of operators in the unit ball of ¥ such that A%, = Ay, (B — Ap)xlil<m™
for each x in &, then there is a unital system of n X n matrix units {F,} in ¥
such that ||(E, — F)x||< f(n, m) when m, < m, for each x in &.

Proof. From Lemma 4.1, there are mutually orthogonal projections
M),. M},, and a partial isometry M3, in & such that M}, M}, =M},
LMY, =M}, where M\.=M3%,, (M}, — E,)x||<4m~'32,
II(MQZ*EZZ)XII<4M4/32’ H(Mél - Ezn)x"< 2m™ 132, ”(M:Z_ Exz)x"<
2m~"*2, for each x in &, provided m~'<10~''. For j, k in {2, 3},
”[Eik -(I-M| I)Ajk(l_ M)l
= "[(I_ Ell)Eik(I_ E,)-- M:l)A/k(I‘ M; 1)]IH< 8m~ "7 +m".
We can apply Lemma 4.1, again, to the algebra (I - M},)N¥N(I—-M]},)
with E,;, Ei;, Ej; in place of E, F, V of that lemma, Mj,,
(I-M})A;(I-M},), I-M})As(I-M!})) in place of A, B, T and
8m '"*2+ m~" in place of b. This application yields orthogonal projec-
tions M3,, M3, and a partial isometry M3, (all in (I—-M])N(I-M},))
such that M3,M3,= M3} (where Mj3,=M3*%), M3 M3, =M32,<Mj,
{(since A is the projection MJ,, in the present case) and such that
WE;\ — M3)x|| <4(8m™ 172+ m~")32 (, h=2,3)
for x in &. Let M2, be M,M3,, M3, be M},*(= M3,M3},), and M3, be
M7,M2,. Then, since
"(M;z - M%z)x" S[I(le»z - Ezz)X" +||(E>, - M%:)xl,l
<4(8m—ll32+m—'l)l/32+4m—l/32.
we have
"(M%z_El?)an"(M}zM?Iz—M:zMéz)X"*’"(M:zM;z"M}zEzz)xu
+|(M1:Ez = EE x| <5(8m ™2 + m™1)112,
(M3, - Ez.)xHSIl(M%zMél ~M3LE) x|+ [(M3:Ey — M3, Ey ) x|
+|(M3,E,y — ExEz )x[|<5(8m™" + m~1)"*2
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(provided m,, is suitably large). Thus

"(M:;l -E, l)x" = "(M%ZMgl —E,E;)x|< 10(8m™'32+m™")17%,
so that, for each x in &,

M3 - Ep)xll<108m ™"+ m="22  (j,h=1,2,3,]j-h|<1).

Continuing in this way (at the next stage we construct M3;, M3, and

M3, such that M3,M3,= M3, and M3 ,M3},=M3,<M?2,; and then we
replace M3; by M3,M3; labelled as M3,, then M22 by M3;M3,, and so
forth), we construct mutually orthogonal projections M,,...,M, and
partial isometries M,,; in ¥ such that M, ;M. =M, ;1. M, M, ;=
M;, where M;;,, =M%, and II(Ejj—M,.,-)x]|<fo(n m) ICEj.1; — M) x|l <
fo(n, m), where, for each n, f,(n, m) tends to 0 as m tends to infinity. To
construct M3,, M3, and M3;, m~! must have been chosen so small, at the
outset, that 41(8m '3+ m™")"*2< 10" (so that Lemma 4.1 applies). If
15k<j5 n, deﬁne M;k tO be Mi_l st Mk+]k and Mk; tO be M?k‘ Then
{M,} is a self-adjoint system of n X n matrix units in &, and, for each x in

"(E,k k)X"
"( jii-1" " Ekﬂk“lwnml to Mkﬂk)x"
=WE;-1- - Exow =M Ej_yj—2- - E..u)xll
oMoy Mok oo = M- M) x|l
< nfo(n, m).

(=L)<

Since M,,, ..., M,, are orthogonal equivalent projections in & and X is
of type I,,; I-Y7_, M, is the sum of n orthogonal equivalent projections
Ny, ..., N, in N. Let {N,} be a self-adjoint system of n X n matrix units
in & (formed on {N;}); and let F, be M, + N,. Then {F,} is a unital
system of n X n matrix units in . Since

st =1~ 5 Ma)a] <|(1- £ m
we have, for each x in &,

“(Ejk - F}u)x“ S"(Ejk - Mjk)x|l+ ||N,uxl| <2nfy(n, m).

Let f(n,m) be 2nf,(n,m); and let m, be chosen so large that if
m~'=m_' at the outset, then, at the last stage of the construction,
Lemma 4.1 applies to allow us to find M,, and M,,_,. O

Now

M;)x|| < nfy(n, m).

x| < nf()(nv m);

Lemma 4.3. If {E,} and {F,.} are unital systems of n X n matrix units
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in the finite von Neumann algebra ® and ¥ is a closed set of vectors with
respect to all E;, j# k, such that |(E; — F,)x||<a for each xin & then there
is a unitary operator U in R such that UE, U*=F,, for j, kin {1,...,n}
and (U - Dx||<(10n—1)a for each x in &.

Proof. Let V,,(E,,F,,E,;,)"? be the polar decomposition of F,,E,,;
so that V,, is a partial isometry in & with initial projection E, the range
projection of E,,F,,, and final projection F, the range projection of
F,,E,,. We have,

[(EHF\\EH)Uz_En]z:[(EnFnEn)lm_Ell]zEu
5[(E:11F1|En)“2‘En]z[(EnFllEu)“:""En]2
=[E“F“E“—E”]2=[E“(F“—E“)E”]z;

and, with x in &,
"[(EuFuEu)Uz—Eu]x“S"En(Fn _En)Enx”
<|(F),—E.)Enxl<a,
since E,,x € &. Similarly,
"[(FIIEIIFII)”2—Fll]x"S"(Ell_Fll)Fllx"S“(EllFll_Ell)x“
+||(E”—F“)x||<20.
Thus
“(Vll_Ell)x“="(VllEll_Ell)x“S"[VHEll— V“(E”F”E”)”z]x"
+|I(F11EII_EII)XH<20
and
(Vi - Fo)x|=|[VT F,— VI(F,E, Fi,)"*]x|
+||(£1|F|1_Fn)x||<4a-
It follows that,

"(Eu" E)x“5"(5n - VTlEn)x"“'"(VTlEu -Vi Vn)x“

S"(E“ - VTI)EHX"+”(E11 - Vn)x"
<IE,,— Fy))En x| +|(Fy, — VI)E, x[|+2a<7a.

Since E~ F and E,, ~ F;, in R, we have E,, — E ~ F,, - F. (At this point,
we use our present assumption that R is finite.) Let W,, be a partial
isometry in & with initial projection E,, — E and final projection F;,— F.
If U,=W,,+V,, then U, is a partial isometry in & with initial projec-
tion E,, and final projection F,,. Moreover, with x in ¥,

“(Ul "En)xusllwnx“"'"(vn - E“)xﬂ
=W (E\, — E)x|[+][(Vy, - E,))x||<9a.
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Let U, be F,U,E,. Then U}U,=E;, UU}=F;; and, with j in
{2,3,...,n} and x in &, we have

“(U;‘ - E,-,-)x" = “(F;l U, Eli - EilEllEli)x"< 10a.

If U=Y_, U; then U is a unitary operator in R fulfilling the con-
ditions in the statement of this lemma: ||(U-DNx||<(10n—1)a and
UE,-kU*=E1UlE”E]~kE“|UTF”‘: ik~ D

Lemma 4.4. If E, and F, are equivalent, properly-infinite projections
in the von Neumann algebra R and x,, . . ., x,,, are vectors in ¥, the Hilbert
space on which R acts, such that ||(E,— F,)x;| < a;, for each x;, then there is
a partial isometry W in R such that W*W=E, WW*=F, and
(W = Eq)x;|| < 25a,.

Proof. Using the Halving Lemma, we can find orthogonal families
{E,} and {F,} with sums E, and F,, respectively, such that each E, is
equivalent to E, and each F, is equivalent to F,. Let ¢; be (a;—a’)/50
where [[(E,— Fo)x;[| < a’<a;. Since X7, |E.x|P <|ix|? and T7_, |Fx|*<
Ix;|?, we can find E’ in {E,} and F' in {F,} such that ||E'x,]| <& (¢ =ming;)
and |F'xjl<e. If E=E,-E' and F=F,-F then [|(E-F)xj<
a;+2e(=a).

Let V(EFE)'"? be the polar decomposition of FE. Since

[(EFE)IIZ _ E]z = [(EFE)”’ _ E]ZE < [(EFE)IIZ _ E]z[(EFE)”z + E]2

=[EFE - E} =[E(F- E)EY,

we have

[[(EFE)"” - Elx;|<|E(F - E)Ex|<||(F- E)Ex||

=|(F- F*+ FE - E)x||<2 ||(F - E)x||<2a.

Thus

(V- E)x||=l[VE ~ V(EFE)"?1x,|| + |(FE - E)x,|| < 4a,
and (V- F)x|<Sa.

Similarly [[(FEF)"? - Flx,| <2a. Since V*(FEF)"? is the polar decom-
position of EF, |(V*-F)x|<4a and |(V*- E)x]<5a. Thus, if V*V=
E" and VV*=F", then E"~ F" and

IE" = E)xl=I(V*V - E)x|=|(V*V~ V*F+ V*- E)x|
=[(V-Fx|+|(V*- E)x| < 10a.
Since Eo"‘”E'S E,—E" and Fy~ F'<F,-F"; we have EO—E"“' Eo"’
Fo~Fo—F". Let V, be a partial isometry in ® with initial projection
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E,—E" and final projection F,—F”". If W=V,+V then W*W=E,,
WW*=F, and

(W~ Eq)x{[=|(Vo— E'NEs— E")x;|| + (V- E)xil
<2(|E'x|+|(E - E")x) +4a <2¢ +24a <25q. O

Lemma 4.5. If {E,} and {F,} are unital systems of nxn matrix
units in a properly-~infinite von Neumann algebra R acting on a Hilbert
space ¥ and & is a finite set of vectors in ¥ such that, for each x in
%, (Ey — Fy)xll<a, then there is a unitary operator U in ® such that
UE,U*=F, foralljand k in {1,...,n} and (U - Dx||< 52na.

Proof. Note that, for each x in ¥,
(Ej — F,'k}Eth" = “(Eih — FyF, + FyFop— F,E,.)x
S"(Ejh - P;h)x“ +||(Fin — Ewn) x| < 2a.

Since |(E,, - F,)E;jx|| <2a and ||(E,, - F,,)x]|<a, Lemma 4.4. provides
us with a partial isometry U, in ® with initial projection E,, and final
projection F), such that [(U,—E)x|<25¢ and |(U, - E,))E,x||<50a
for jin {1,...,n} and x in &. Let U; be F,,U,E,, for j in {2,...,n}.
Then U%U,=E;, UU%=F;, and, for x in &,

i
“(U; - E,',')x" ="(Fjl U,E,, - EI'IE”EIi)x“
S“(F;IUIEI" - F}lEnEu)x"*"(F}lEnEn _Ey'lEllElj)x“
S"(Ul - Ell)Ex,'X‘|+|‘(I:il - E;.)EI;XU< 52a.

Let U be Y7, U, Then U is a unitary operator in R, UE,U* = F,, for
all jand k in {1,..., n}, and, for x in &, (U~ Dx||=|L-, (U, - E;)x|=
52na. O3

Lemma 4.6. If R is a properly-infinite, matricial von Neumann
algebra acting on a Hilbert space ¥, N, is a unital subfactor of R of type
1,, ¥, is a finite set of vectors in (¥),, {A\,..., A} is a finite set of
operators in the unit ball of R, {r} is a strictly increasing sequence of
positive integers, and € is a positive number, then there is a subfacior N of R
of type 1,,, for some j, containing N,, and containing operators {B,, . . ., B,}
in its unit ball such that |(A; — B))x||<¢ forall x in %, and jin {1,. .., h}.

Proof. Let {E;} be a unital system of nX n matrix units for A, As
described at the beginning of this section, we can enlarge ¥, to a (finite)
set & containing A,x, ..., A,x for each x in ¥, and closed with respect
to each Ey, j# k. Let r be a positive integer chosen sufficiently large that
r'<g/3 and that f(n, r)<e/3(52n). where r— f(n,r) is the function
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introduced in Lemma 4.2. Since & is matricial, there is a unital subfactor
N, of R of type I, containing operators {A;} and {T}, ..., T,} in its unit
ball such that A}, = A,;,

“(Ajk"Ejk)x"<%'_l and |[(T; - A)x||<3r™! (*)
for all jand k in{l,...,n}, iin{1,...,h}, and x in &. Let {M,,} be a
unital system of m Xm matrix units for &,. Since M,,,..., M,,, are

equivalent, finite in number, have sum I, and I is properly infinite; each
M;; is properly infinite in & and each M; is equivalent to I

Repeated use of the Halving Lemma permits us to express M,;, as the
sum of a countable, orthogonal family {M,} of projections equivalent to
M. As I0o IMx|P=|IxI® and TP, MM x| <|lx|?, for j in
{1,..., m}; there are orthogonal projections M and N in {M,} such that
IMM, x| <r'/14m +2, |Mx||<r '/14m +2, [NM,x|<r"'/14m +2, and
INxl|<r '/14m+2, for j in {1,...,m} and x in & With V a partial
isometry in ® such that V*V=M+N and VV*=N, we have that
M;,-M-N+V(=W) is a partial isometry in R such that W*W = M,,
and WW* = M,, ~ M. Moreover, if jis in {1,..., m} and x€ ¥, then

4r7!

"(W—M“)Ml,-x"SIIMM,,xll+||NM1,-x||+||V(M+ N)Mn,-x“S 14m +2

and
-1

14m +2°

ICW* = My ) x| =< || M| +||Nx]| +[| V*Nx|| <

Let N,, be M;,— M, N, be WM,,, N, be M, when j¥1#k, N,; be
N2N,;(= WM,;) when j#1, and N;, be N3,(=M,; W*). Then {N,} is a
system of m X m matrix units and 72, N, =I-M. '

If A is in the unit ball of ¥,, then there are scalars a; such that
A =¥" -1 apM; and |a,|=1. Let B be L}k -, aiNy. Then 1 =||A||=||Bj|
and, with x in &,

"(A _B)x"=“‘i tail(Ml =N+ ali(Mli —Nli)]x+all(Mll -Nu)x

= Zz(u(Ml - N,l)xu +"(Mlj - Nlj)x“) +"Mx"
j=

= 2, (IM;y(M,, - W*)x|| + [(My; = Nyj)xll) + [|Mx]|
j=2

<m 3!t N 4r7! . r
T 14m+2 m14m+2 14m+2

_1,
2
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Thus there are operators By and S, in the unit ball of R, that are linear
combinations of {N,.} such that B} = B,;,

"(Bjk - A,'k)x"<%’_'l and "(Sj - 7})¥||<%’_1- (% *)
Combining (*) and (* *), we have

£
3

for all x in &. Choosing r; so that nr,—m is positive, use the Halving
Lemma to find nr,—m mutually orthogonal projections equivalent to M
with sum M; and adjoin these projections, together with suitable partial
isometries between them and the projections N, to {N,} to form a unital
system of nr; X nr; matrix units and its generated unital subfactor ¥, of &
of type I,,. Since ¥, contains the operators B; and S;, and the type of ¥,
is divisible by n; Lemma 4.2 applies (see (* * *), above, and recall the
choice of r), and there is a unital system {F, } of n X n matrix units in ¥,
such that, for each x in &, ||(E; — Fu)x||<€/3(52n). From Lemma 4.5,
there is a unitary operator U in & such that U*F, U = E;, and, for each x
in¥

"(Bjk—Ejk)x"<’—‘ and |I(SI_A,')X“<'_l<

(% % %)

£ £

3(52n) 3

In particular [(U-IA;x||<e/3 for each j in {1,...,h} and each x in
o, since Axe ¥ for each such x. It follows that U*N,U is a unital
subfactor, W, of & of type I, containing N, and operators U*S;U(=B;)
such that

l(A; — B)x||=[l(A; = U*S;U)x| = [(UA, - S;U)xl|
<[(U-DAxl+(A; = S)x||+]|S(U - Dx||<e
forall x in $yand jin{1,...,h}. O

[(U-Dx||<52n

The lemma that follows is a simpler consequence of Lemmas 4.2, 4.3
and 4.5, than the preceding lemma; but is applicable to finite, matricial
von Neumann algebras as well. It suffices, when combined with the easy
observations on finite representations of uniformly, matricial C*-algebras
(contained in Section 2), for the proof of the Murray-von Neumann
theorem on the uniqueness of the finite, matricial von Neumann algebra
(Theorem 4.9).

Lemma 4.7. If R is a matricial von Neumann algebra acting on a
Hilbert space ¥, N, is a unital subfactor of R of type 1, {A,,..., Ay} isa
finite set of operators in the unit ball of R, ¥, is a finite set of vectors in



(X),, € is a positive number, and r, is a positive integer, there is a unital
subfactor N of R of type 1, containing N, and containing operators
{B.,..., B} in its unit ball such that ||(A;— B))x|<e forall jin {1, ..., h}
and x in &,

Proof. As in the argument of Lemma 4.6, we choose a unital system
{Ej} of nxn matrix units for &, and enlarge ¥, to a finite set ¥ of
vectors in & containing A,x, ..., A,x, for each x in %,, and closed with
respect to each E,, j# k. Again, choose a positive integer, r, so large that
f(n. r)=<¢/3(52n)(<e/3(10n—1)) and r ' <¢/3; and choose a unital sub-
factor &, of & of type 1,, containing operators {A;} and {T\,..., T, } in
its unit ball such that A}, = A,;,

l(Ax —Ep)x[l<r™' and |(T.- A)x||<r (*)

for all j and k in{1,...,n}, iin{1,...,h}, and x in &.

From Lemma 2.6, there is a unital subfactor &, of & of type I,
containing . Since {A;.} are in &, and the type of X, is divisible by n,
we have, from (*) and the choice of r, by application of Lemma 4.2,
that N, contains a unital system {Fy} of nXn matrix units such that
for each x in &, (Ey — Fy)xlI<f(n, r)<¢€/3(52n).

Now AR is a direct sum of its finite and properly-infinite central
summands. Applying Lemmas 4.3 and 4.5 to the appropriate summand
and to the suitably restricted matrix unit systems {E } and {F,.}, we find a
unitary operator U in R such that U*F,U = E,, and, for each x in ¥,
(U - Dx||<¢/3. In particular, (U -1 A;x||<e/3 for each j in {1,..., h}
and each x in &,. It follows that U*#, U is a unital subfactor, &, of R of
type ..., containing ¥, and operators U*T,U(=B;) such that

I(A; — B)x| = "(A,' - U*'T]U)I“
=[I(UA; - TU)x|| = (U - DAx(|+[[(A; - T)x[|+ | T(U - Dx||<e,
for all x in $5and jin{l,...,h}. O

Lemma 4.8. If R is a matricial von Neumann algebra with a count-
ably decomposable centre, there is a representation of the uniformly matricial
C*-algebra ., as an ultraweakly dense subalgebra of R.

Proof. From Lemma 2.7, we may assume that & acts on a separable
Hilbert space . Let {A,...., A,} be a countable generating family of
operators for & (as a von Neumann algebra) in the unit ball of ®; and let
{x,, x5,...} be a denumerable dense subset of (#),. From Lemma 4.7,
we can find an ascending sequence {¥,} of unital subfactors of ® such
that &, contains operators {B,,...,B,} in its unit ball for which
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A, - B)x Ji<h™'foralljandkin{l...., h}andsuchthat ¥\ N, N5, ...,
are of types Iy, Ireyem,, I2'3'stm,.--..respectively. It follows that
Un-1 W, has norm closure isomorphic to A.. and ultraweakly dense
m®&R O

Theorem 4.9. All finite matricial von Neumann algebras with
countably-decomposable centres are factors and are * isomorphic.

Proof. Our assertion follows from Lemma 4.8, Proposition 2.1, and
Corollary 2.4. O

Theorem 4.10. If ® is a matricial von Neumann algebra with a
countably-decomposable centre € then each uniformly matricial C*-
algebra has a (faithful) representation as an ultraweakly-dense subalgebra
of R.

Proof. Let P be the central projection in & such that RP is finite and
R(I-P) is properly infinite. Then ®RP and R(I-P) have countably-
decomposable centres and are matricial, provided 0# P# I. It follows
from Corollary 2.5 that each uniformly matricial C*-algebra 2 has a
(faithful) representation as an ultraweakly-dense subalgebra of a finite
matricial von Neumann algebra. From Theorem 4.9, all such matricial
von Neumann algebras are * isomorphic. Thus there is a (faithful)
representation ¢, of 21 as an ultraweakly-dense subalgebra of RP,
provided P# 0. If we can prove that there is such a representation ¢, of 9
in R(I- P) (provided P# I) then, with ¢(A) defined as ¢,(A)+ ¢,(A)
for each A in ¥, ¢ is a (faithful) representation of A in R. Now ¢ is
(unitarily equivalent to) ¢, @D ¢,: and ¢, and ¢, are disjoint, since each
subrepresentation of ¢, is finite while no subrepresentation of ¢, is finite.
From [8: Corollary 10.3.4, Theorem 10.3.5], ¢(A) = (N) P - (A) =
RPOR(I-P)=R.

It suffices, therefore, to deal with the case where % is properly infinite;
and, applying Lemma 2.7, we may assume, in addition, that &R acts on a
separable Hilbert space ¥. Let {A;} be a countable set of operators in the
unit ball of R that generates & (as a von Neumann algebra); and let {x;}
be a countable, dense subset of (¥),. If 23" --- is a supernatural
number, let {r;} (of Lemma 4.6) be {2"3":- - - p™} and apply Lemma 4.6
to find a unital subfactor X, of & of type I, and an operator B,, in the
unit ball of A, such that |(A,- B, )x,[|<1. Replace {r}, now, by
{pyy - - - pRut}(={rid}) and apply Lemma 4.6, again, to find a unital subfac-
tor &, of R of type I,,,, for some k, containing ¥, and operators B,,, B,,
in its unit ball such that ||(A; - B;;)x||<3; for each j and k in {1,2}.
Continuing in this way, we construct a generating nest for an ultraweakly-
dense, uniformly matricial C*-subalgebra in ® with 2™3™ ... as its
supernatural number. 0O
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Coroliary 4.11. All uniformly matricial C*-algebras are factor- and

cyclic-isoreductive.
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