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 1. Introduction. One of the primitive forms of the spectral theorem

 tells us that a self-adjoint (hermitian) matrix A over the complex numbers

 C can be "diagonalized"-there is a unitary matrix U such that UAU-1

 has all its non-zero entries on the diagonal. It is important that we are

 dealing with matrices over C (rather than over R), for the process of

 diagonalizing A involves solving polynomial equations (either explicitly or

 implicitly). Despite this, matrices over rings (not fields) of one sort or an-

 other appear in many mathematical situations; the analysis of the forms to

 which such matrices, satisfying special conditions, can be reduced often

 plays a crucial role in dealing with particular problems. In the theory of

 operator algebras in general and von Neumann algebras especially, the

 process of forming matrices over such algebras is a construction of great

 importance. It occurs in a critical way in the proof of the Double Commu-

 tant theorem, the main result of the first paper [4] in that subject.

 There is a natural structure on the set hR,, (2f) of n X n matrices over
 the operator algebra 2t that makes it a C*-algebra when 2t is a C*-algebra

 and a von Neumann algebra when 2t is a von Neumann algebra. The alge-

 braic structure on OR,, (2f) corresponds to the usual addition and multipli-
 cation of matrices (employing the addition and multiplication in 1). The

 adjoint of a matrix [Ajk] (with Ajk in 2t as its j, kth entry) is the matrix

 whose k, jth entry is A * . The norm on OR,, (2f) is most easily described in
 an "extrinsic" form by supposing (as we may) that 2t is represented faith-

 fully on a Hilbert space SC whereupon OR,, (2f) is represented faithfully on
 S @ ... * * C (=Sk), the n-fold direct sum of SC with itself, through the

 usual matrix action on "column vectors. " The norm on OR,, (2f) is the one it
 inherits from 63(JC), the algebra of all bounded linear operators on SC. (It

 is a basic result that this norm is independent of the representation of 2t on

 SC [3, Proposition 11.1.2].)

 Manuscript received August 28, 1982.
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 A self-adjoint element of hW, (2f) in its representation on JC is simply a

 self-adjoint operator on SC. In matrix terms, it is an element [Ajk] such
 thatAjk = A * for alli, k in { 1, ..., n }. Similar comments apply to normal
 and unitary elements in M1n (2f). The fundamental problem concerning

 diagonalization is whether or not each normal element of Mn (20) can be
 diagonalized. In the next section, we give an example, based primarily on
 higher homotopy groups of spheres, of a C*-algebra 2t and a unitary ele-
 ment of 92 (2) that cannot be diagonalized. In the third section, we prove
 the principal result of this article, namely that when 2t is a von Neumann
 algebra each normal element can be diagonalized. We show (Theorem

 3.19), in fact, that each abelian self-adjoint subset of M,n(2fJ) is simultane-
 ously diagonalizable (that is, one unitary element in M1n (2f) transforms all
 elements of the subset to diagonal form). This is proved as the last of a

 series of twenty results the main thrust of which is to construct a compari-

 son theory for projections in a maximal abelian subalgebra of a von
 Neumann algebra relative to that von Neumann algebra. We consider only
 countably decomposable algebras to avoid complicated but peripheral car-
 dinality problems.

 Many questions and topics for further investigation stem from these
 results. We list some of these with a few related comments.

 1.1 Carry out the "relative" comparison theory for other than the
 maximal abelian subalgebras. Of course this program takes clearer form
 after studying the results of the third section; but without that further
 study, general principles might indicate that the case of abelian subalge-
 bras is the easiest and the case of comparison in a factor (relative to a fac-

 tor) is the most difficult. This might have been so if the "absolute" com-
 parison theory for a factor were not complete; but with the "absolute"
 theory available there is little to do in the "relative" factor case. For exam-
 ple, two projections in a subfactor of a II1 factor are equivalent in the
 larger factor if and only if they are equivalent in the smaller factor. (The
 normalized trace on the larger factor restricts to the (unique) normalized
 trace on the smaller factor.) All non-zero projections in a II1 subfactor of
 an infinite factor (acting on a separable space) are infinite hence, equiva-
 lent in the larger factor. But the problem for other von Neumann subalge-
 bras of a von Neumann algebra has interest, and the problem for C*-subal-

 gebras has special interest with relation to the rapidly developing K-theory
 of C*-algebras.

 1.2. The problem of diagonalization can be refined in various ways.
 Although we note that some normal elements of 2 X 2 matrix algebras
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 over certain C*-algebras cannot be diagonalized, some normal elements

 can be. Which are they-in a general context?-in special contexts?

 1.3. The example we give to illustrate the failure of diagonalization

 involves the C*-algebra of continuous mappings of a compact Hausdorff

 space X into the algebra of n X n complex matrices (equivalently, the alge-

 bra of n X n matrices over C(X), the algebra of continuous complex-val-

 ued functions on X). More specifically, the X of our example is the 4-

 sphere and n is 2. The construction of a non-diagonalizable normal

 (unitary) element is based on homotopy results. We may ask: what topo-

 logical properties of X guarantee that it is diagonalizable (that is, that nor-

 mal n X n matrices over C(X) can be brought to diagonal form)?

 1.4. What topological properties of X will guarantee that normal

 2 X 2 matrices over C(X) can be diagonalized (2-diagonalizability)? What

 is the relation of n-diagonalizability to m-diagonalizability?

 2. An example. From [2], ir4(S3) is the additive group of integers

 modulo 2. Letfo be an essential mapping of S4 into S3.' We represent S3 as
 the surface of the unit ball in C2. If U e SU(2) and U(1, 0) = (1, 0), then

 U(O, 1) = O(0, 1) for some complex number X of modulus 1. Since det(U)
 = 1 = I * X, we have that U(O, 1) = (0, 1) and U = I. Thus the mapping,

 go: U -- U(1, 0) of SU(2) into S3 is one-to-one. If { f, f2 } is an orthonor-
 mal basis for C2 and V0 is the unitary that maps (1, 0) ontof1 and (0, 1)

 onto Of2 where I 0 6 = 1, then det(V0) = 0 det(V1). Thus Vo E SU(2) if 0 =
 det(V1). Hence go is a homeomorphism of SU(2) onto S3 and g -1fo is an

 essential mapping ho of S4 into SU(2). For topological purposes, we can
 identify S3 and SU(2).

 Let 2t be the C*-algebra C(S4, 63(C2)) of continuous mappings of S4
 into 63(C2) (equivalently, the algebra of 2 X 2 matrices over C(S4 )). Then

 ho is a unitary element Uo in W. Suppose there is a unitary element U in 2t
 such that UUo U-1 is diagonal (in the representation of 2t as 2 X 2 matri-

 ces over C(S4)). Then U(p)Uo(p)U(p)-1 is a diagonal 2 X 2 matrix over C
 for each p in S4. Let V(p) be U1 (p)U(p), where

 dtU(p) O
 U1 (p) = .

 0 1

 Then V(p) E SU(2), V is a unitary element in 2X, and V(p)Uo (p) V(p) =

 U(p)Uo(p)U(p) -1 .
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 Again, V and V-' are mappings of S4 into SU(2) and correspond to
 mappings of S4 into S3. Since V(p)Uo (p) V(p) is diagonal and in SU(2),

 it has the form [XP) (p)], where I X(p) = 1. Thusp -- V(p)UO(p)V(p)1
 is a mapping of S4 into SU(2) whose image lies in a subset homeomorphic

 toS1. Since 7r4(SW) = {0}, this mapping is not essential. Let {f } denote the
 homotopy class of a mappingf of S4 (with base pointp0) into SU(2) with base

 point I. Since SU(2) is a topological group, the class { V U0 * V' } of

 V * U0 * V- 1 is the product of the homotopy classes { V}, { Uo }, and { V`1 }.
 (See [1] Satz II where this is proved for "Fe-spaces"-we include a proof

 below.) As ir4(SU(2)) is abelian, { V} { IU0} { {V-, }
 {Uo}I{V}I{V_1} = { Uo{ VI V-'} = {U0}. But {VU0V-1} is 0 if
 VU0 V- 1 is diagonal, as noted; while { U0 } is not 0 by choice. It follows that

 Uo cannot be diagonalized.
 We show that two mappingsf and g of S' into a topological group !

 have group productf * g in the homotopy class {f } { g }. For this, choose

 (standard) mappings a+ and a_ of S' into S' (with base point p0) each
 homotopic to t, the identity transform of S' onto S', with the property that

 a+ (p) = p0 for eachp in S' (the "Southern Hemisphere") and a- (p) =
 p0 for each p in S' (the "Northern Hemisphere"). Let H+ and H_ be
 homotopies of a+ and t and a_ and t, respectively. (Thus H+ (0, p) p =

 H_ (0, p) for eachp in Sn; H+ (1, p) = a+ (p) and H_ (1, p) = a_ (p) for
 eachp in Sn; H+ (t, p0) = p = H_ (t, p0) for t in [0, 1]; H+ and H_ are
 continuous mappings of [0, 1] X S' into S'.) Then {f } {g } is, by defini-

 tion, the homotopy class of h, where h(p) = f(o+ (p)) if p e S' and h(p)

 = g(or (p)) if p eS' . Define F(t, p) to bef(H+ (t, p)) * g(H_ (t, p)) (this is

 the product in !) and note that, for all t in [0, 1], F(t, po) = f (pO)g(p0) =
 e (sincef(p0) = g(p0) = e by assumption), F(O, p) = f(p) g(p) for each

 p in S', and F(1, p) = f (H+ (1, p)) g(H_ (1, p)) = f (a+ (p))g(u_ (p)) =
 h(p) for each p in Sf, for if p E S +, h(p) = f (a+ (p)) and g(ao (p)) =

 g(p0) = e, while if p E S' , h(p) = g(or (p)) andf(o+ (p)) = f (po) = e.
 Since H+, H_, f, g, and multiplication in q are continuous, F is continu-
 ous. Hence F is a homotopy of h andf * g.

 Another example is obtained by replacing S4 by S3 andfo by the iden-
 tity mapping. The argument is unchanged.

 Added in proof Jan. 5, 1984: Compare this example with Section 4 of

 "Diagonalizing Matrices Over C(X)" (to appear in J. Functional Analysis)

 by K. Grove and G. K. Pedersen. This paper provides a splendid analysis

 and complete answer to 1.3.
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 3. The main results. Let 61o be a von Neumann algebra acting on a

 Hilbert space 3C0 and let 61 be the von Neumann algebra 91tn(610) acting
 on 3C0 (3... *? JCO (= 3C) as described in the introduction. We shall show,
 as one of the last (Theorem 3.19) of the series of results that follow, that

 each commutative self-adjoint subset 8 of 6R is simultaneously diagonaliza-

 ble-that is, there is a unitary (matrix) U in 61 such that UAU-1 has all

 off-diagonal entries 0 for everyA in S. In particular, if A is normal, there is

 a unitary U such that UAU-1 is normal. Before beginning what is essen-
 tially the proof of this result, we sketch the structure of the argument. If we

 find n orthogonal equivalent projections F1, .. . , F,, in 61 with sum I, then

 each Fj is equivalent to Ej, where Ej is the projection in 61 whose matrix
 has entry I at the j, j position and all other entries 0. If we can arrange,

 moreover, that each Fj commutes with every A in 8,' then each such A is
 diagonal with respect to every matrix unit system for 61 in which F1,

 F,, are the principal units. There is a unitary operator U in 61 such that

 UFj U- 1 = Ej for eachj in { 1, . . ., n }. It follows that UA U-1 commutes
 with each Ej, and is therefore diagonal, for each A in S. Our problem then
 is to find n projections F1, .. ., F,, with the propeities described. The
 larger the "relative commutant" of 8 in 61 (the von Neumann subalgebra

 consisting of those operators in (R that commute with all A in 5) the easier

 it should be to find these projections; but we have very little "general"

 control over this relative commutant. At the very least, 8 is contained in a

 maximum abelian self-adjoint (henceforth, simply maximal abelian) sub-
 algebra of (R and each such is contained in the relative commutant of S.

 Now 8 may very well generate (or be) a maximal abelian subalgebra of (R,

 in which case, 8 is its own relative commutant. We see therefore that we

 must be prepared to (and it will suffice to) find n (orthogonal) equivalent

 projections with sum I in each maximal abelian subalgebra of (R. We prove

 this for (R in the eighteen results that follow.

 3.1 LEMMA. If (R is a von Neumann algebra acting on a Hilbert

 space SC, a(i is a maximal abelian subalgebra of 61, and E is a projection in

 (a minimal among the projections in (a that have the same central support

 as E (relative to (R), then E is an abelian projection in (R.

 Proof. From [3; Proposition 5.5.6], the center of EGIE (acting on

 E(JC)) is CE, where C is the center of 6R, and (37E is a maximal abelian
 subalgebra of E6RE. If F is a non-zero projection in GE, then F E (a and

 F c E. Thus F = CiF ! CFE. IfF < CFE, then (I - CF)E + F is a
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 projection in (a (note that C ' (i) with central support CE. Moreover (I -
 CF)E + F < E. But this contradicts the minimality of E. Hence F = CFE.
 It follows that each projection in (GE is in CE, so that CE = CE. Thus the
 center CE of ?1E15 is a maximal abelian subalgebra (GE of ?1E15. Hence
 ELRE = CE, ELRE is abelian, and E is an abelian projection in (R. U

 3.2 LEMMA. If (R is a von Neumann algebra and (a is a maximal
 abelian subalgebra of 6R, then either (a = (R or (a contains two non-zero
 orthogonal projections E and F such that CE = CF and E < F.

 Proof. If G is a projection in (a such that CGCI-G = 0, then G =
 CG, for

 G c CG ' I - CI-G - (I - G) = G.

 It follows that either each projection in (a is central in 6R, in which case the
 center of (R coincides with (a and (a = (R (since (a is maximal abelian in

 (R), or (P =)CGCI-G * 0 for some projection G in (a. In the latter case,
 PG and P(I - G) have the same central carrier P. From the Comparison
 Theorem [3; Theorem 6.2.7], there is a non-zero central projection Q such
 that Q c P and either QG < Q(I - G) or Q(I - G) < QG. In any event,
 one of QG, Q(I - G) serves as E and the other serves as F, when (R is not
 abelian. U

 3.3 LEMMA. If (R is a von Neumann algebra that has no abelian
 central summands and (a is a maximal abelian subalgebra of GR, then (a
 contains a projection E such that CE = CI-E = I and E < I -E.

 Proof. Let {LEa } be a family of non-zero projections in (a maximal

 with respect to the properties that { CEa } is an orthogonal family and Ea <
 I - Ea for each a. From Lemma 3.2, (a contains non-zero orthogonal pro-
 jections Eo and Fo such that Eo : Fo (<I - Eo). Thus the family {Ea } is
 non-null. LetE be 2aEa . Then CE = 2aCEa (=P). If P * I, then (R(I - P)
 is a non-abelian von Neumann algebra (since (R is assumed to have no
 abelian central summands) and (I - P) is a maximal abelian subalgebra
 of (R(I - P). Again from Lemma 3.2, there is a non-zero projection El in
 (i(I - P) such that El < (I - P) - l. If we adjoint El to the family
 {Ea }, we have a properly larger family than {Ea }, contradicting the max-
 imality of {Ea}. Thus P = I. Since

 Ea = CEaEa < CEa(I-Ea) CEa -Ea
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 for each a, we have that

 E = Ea <CE -Ea = I-E
 a a

 and CE P = L

 3.4 LEMMA. If (R is a countably decomposable von Neumann alge-

 bra acting on a Hilbert space JC and (a is a maximal abelian subalgebra of

 (R that contains no non-zero finite projections, then for each positive inte-

 ger n, (a contains n orthogonal projections with sum I equivalent in 61.

 Proof. Note, first, that under the hypotheses on (a, (R has no abelian

 central summand, for if P is a non-zero central projection such that 61P is

 abelian, then P is in (2 and P is an abelian, hence finite, projection in 61.

 From Lemma 3.3, there is a projection E in (a such that CE = CI-E = I.

 From [3; Corollary 6.3.5], two countably decomposable properly infinite

 projections in (R with the same central support are equivalent. Thus E, I -

 E, and I, are equivalent in (R. Again E(RE acting on E(JC) is a countably

 decomposable von Neumann algebra in which GE is a maximal abelian

 subalgebra that contains no non-zero finite projections. Applying Lemma

 3.3 once again, we find a projection F in (WE equivalent to E - F and E (in

 ERE, and hence in 61). We now have three orthogonal equivalent projec-

 tions, F, E - F, and I - E, in (a (with sum I). Continuing in this way, we

 construct n orthogonal equivalent projections with sum I in (a.

 3.5 LEMMA. If (R is a von Neumann algebra of type I with no infi-

 nite central summand, then each maximal abelian subalgebra of 61 con-

 tains an abelian projection with central support L

 Proof. Let (a be a maximal abelian subalgebra of (R. By assumption

 on (R and the type decomposition theorem [3; Theorem 6.5.2], (R has a

 central summand (RPn of type In, with n a positive integer. If n 1, then P
 is a non-zero abelian projection in the center of (R and hence in (a. If n >

 1, then (RPn acting on P,, (JC) is a von Neumann algebra without abelian

 central summands and (iPn is a maximal abelian subalgebra of it. From

 Lemma 3.3, (iPn contains a projectionE1 such that CE1 = Pn and El : Pn
 - El. Now El (RE, acting on El (JC) is a type I von Neumann algebra with
 no infinite central summand. (See [3; Corollary 6.5.5].) Again, either (1E1
 has a non-zero abelian projection F, in which case F(RF = FE1 RE1F is

 abelian and F is an abelian projection in (a, or there is a non-zero projec-
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 tion E2 in (iE1 such that E2 : E- E2 . Continuing in this way (we con-
 sider E2 (RE2, next), we produce either a non-zero abelian projection in (a

 or a set of n non-zero projections E1, . . ., En in (RPn such that Ej+1 Ej
 - Ej+, 1 E Pn- E, and Ej+1 < Ej. If Q is the central support of En,
 thenEn 9 Q(En_-1-En )9 Q(En-2 -En- 1 ) .. * Q(El -E2 )9 Q(Pn -El )
 are n + 1 orthogonal projections in 61Pn with the same non-zero central

 support, which contradicts the fact that 61Pn is of type In . Thus the process
 must end with a non-zero abelian projection for (R in (2 before we construct

 En .
 Let {Ea } be a family of non-zero projections in (a abelian for (R and

 maximal with respect to the property that { CE } is an orthogonal family.
 Let P be Ea CE . If P * I, then (R(I- P) is a von Neumann algebra of type
 I with no infinite central summand. From what we have just proved (2(I -

 P), a maximal abelian subalgebra of (R(I - P), contains a non-zero abe-

 lian projection Eo for (R(I - P). But then, adjoiningEo to {Ea } produces a
 family properly larger than {Ea } of non-zero abelian projections for (R in (a

 with mutually orthogonal central supports, which contradicts the maximal

 property of {Ea}. Thus P = I. From [3, Proposition 6.4.5], 2aEa is an

 abelian projection for (R, has central support I, and lies in (a. a

 3.6 LEMMA. If (R is a von Neumann algebra of type Inn, with m and
 n positive integers, then each maximal abelian subalgebra of (R contains n

 orthogonal projections with sum I equivalent in (R.

 Proof. Let (@ be a maximal abelian subalgebra of 61. Since 61 is of

 type I with no infinite central summands, Lemma 3.5 applies and (@ con-

 tains an abelian projection E1 with central support I. If E1 = I, then m =

 n = 1 and the proof is complete. If E1 * I, then (I - E1)(R(I - E1) is of

 type Imn_ and (2(I - E1) is a maximal abelian subalgebra of (I - E1 )(R(I
 - El). Again (2(I - El) contains an abelian projection E2 for (I -
 El )(R(I - E ) with central support I - E1 relative to (I - E1 )61(I - E1 ).
 Thus E2 is abelian for 61 and has central support I relative to 61. To see this

 last, note that if P is a central projection in (R such that E2 ' P, then E2 ?

 P(I- El) and P(I - El) is central in (I - E1)(R (I - El). Hence P(I -
 El) = I-El and I-E1 c P. ButI - E1 has central support I in 61 by
 choice of E1 and our assumption that (R is of type Imn with mn not 1. Thus
 P = I. If I * E1 + E2, we can apply the same procedure to (I - E -

 E2) (R (I - E- E2) to produce E3. Continuing in this way, we find mn

 orthogonal projections in (i with central support I relative to 61. Adding m
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 of these projections at a time, we construct n orthogonal projections in (@

 with sum I equivalent in (R. U

 3.7 LEMMA. If (R is a von Neumann algebra of type I,n (nfinite) act-
 ing on a Hilbert space SC and (a is a maximal abelian subalgebra of (R, then

 there is a set of n (orthogonal, equivalent) projections in (a with sum I each

 abelian with central support I in (R and (a is generated algebraically by

 these projections and the center C of (R.

 Proof. We proceed by induction on n. When n = 1, (R is abelian, (R

 = (, and I is a projection in (a abelian in (R with central support I. More-

 over, =( 6(R) is the center of (R. Suppose n > 1 and we have established

 our assertion when (R is of type Ik with k less than n. Then (R has no infinite

 central summands. Lemma 3.5 applies and there is a projection El in (a

 such that El is abelian and CE1 = I. It follows now that (I - El )61(I -

 El) acting on El (JC) is a von Neumann algebra of type I,n and (2(I - l)
 is a maximal abelian subalgebra of it. The inductive hypothesis applies

 and I - E1 is the sum of n - 1 projections E2, . . ., En, in (2(I - l)
 abelian in (I - E1 )61(I - E1 ) (and hence, in (R) with central support I -

 E1 in (I - E1 )(R(I - E1). As in the proof of Lemma 3.6, it follows that I

 =CE1 = CE2=. = CEn
 It remains to show that E1, ..., L,E and C generate (a algebraically.

 SinceEj(REj acting onE1(JC) is an abelian von Neumann algebra with cen-
 ter CEj and in which G,Ej is a maximal abelian subalgebra, we have that
 Ej(REj = CEj = aEj for eachj in {1, .. .,n}. If AEa (2, then

 n n n

 A =A FL= Ej AEj= ECjEj,
 j=i j=i j=i

 where Cj E C. e
 3.8 COROLLARY. If (R is a von Neumann algebra of type I with no

 infinite central summand and (2 is a maximal abelian subalgebra of (6R,

 then for each positive integer nfor which 61 has a central summand (RP, of
 type I,, ( contains a set of n (orthogonal, equivalent) projections abelian

 with central supports P, and sum P,, in 6R, and (iP, is generated algebrai-
 cally by these n abelian projections and the center of 61P,.

 Proof If 61 has the central summand 61P., then 61Pn is a von
 Neumann algebra of type I,n and (iP, is a maximal abelian subalgebra of
 it. Our assertion follows by applying Lemma 3.7 to 61P, and (iP, U
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 3.9 LEMMA. If (R is a countably decomposable von Neumann alge-

 bra of type I,, and (a is a maximal abelian subalgebra of (R with the prop-
 erty that I is the union of projections in (a finite in 6R, then there is an

 infinite orthogonalfamily of projections in (a abelian with central support I

 and sum I. For each positive integer n, C2 contains n orthogonalprojections

 with sum I equivalent in (R.

 Proof. Let {Fb } be a family of projections in (a finite in (R and maxi-

 mal with the property that { CFb } is an orthogonal family. If P = Nb CFb
 and P ? I, then I - P is a non-zero projection in (a. If I - P is orthogonal

 to all finite projections of 61 in (a, the union of these finite projections is not

 I, contrary to assumption. Thus there is a projection Fo in (a finite in 61

 such that Fo(I - P) * 0. But then {FO(I - P), Fb } is a family of finite
 projections in (a, properly larger than {Fb }, whose central supports form

 an orthogonal family. This contradicts the maximal property of {Fb }.

 ThusP = I. From [3; Lemma 6.3.6], EbFb is a projectionFin a finite with

 central support I in 61. The von Neumann algebra F6(F is of type I with no

 infinite central summand and aF is a maximal abelian subalgebra of it.

 From Lemma 3.5, (iF contains a projection Eo abelian in F6IF (and hence,
 in 61) with central support F in F61F. Since F has central support I in (R so

 has Eo. Thus Eo is an abelian projection in (R with central supportI and Eo
 lies in (i.

 Let {Ea } be a maximal orthogonal family of projections in a abelian

 with central support I in 6R, and let E be laEa . If E * I, then (I - E) (R(I

 - E) is a von Neumann algebra of type I in which 6t(I - E) is a maximal

 abelian subalgebra. Moreover, I - E is the union of projections in (i(I -

 E) finite in (I - E) (R (I - E). From what we have proved to this point, (i(I
 - E) contains a projection E1 abelian with central support I - E in (I -

 E) (R(I - E). It follows that E1 is abelian with central support CI-E in (R.

 If CI-E = I, we can adjoin E1 to {Ea } contradicting the maximal property
 of {Ea }. Thus (Q =)I-CI-E ?0. Now Q(I-E) = O so that { QEa}is a

 family of projections in a abelian with central supports Q and sum Q in (R.

 We have just established that if (R is a von Neumann algebra of type I

 and (i is a maximal abelian subalgebra of it with the property that I is the

 union of projections in (i finite in 6R, then there is a non-zero central pro-

 jection Q in 61 that is the sum of projections in a abelian and equivalent in

 6R with central supports Q. Let { Q, } be a maximal orthogonal family of
 such central projections. If 0 * I - 2cQC (-QO), then (RQo is a von
 Neumann algebra of type I and aQo is a maximal abelian subalgebra of it
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 with the property that Qo is the union of projections in iQo finite in RQo .
 Thus there is a non-zero central projection Q1 in (RQo that is the sum of
 projections in iQo abelian with central supports Qi in 1RQo (hence, in iR).
 Adjoining Qi to { QC } produces a family that contradicts the maximal

 property of {Q,}. Hence Ec Qc = I.
 Since (R is countably decomposable of type I<, the same is true of

 (RQc. We can index the set of projections in 6iQC with sum QC (abelian in
 (R with central supports QC) as Elc, E2C, . From [3; Proposition 6.4.5],

 r2CE,c (=En) is an abelian projection with central support I (=EcQc)
 in (R for each positive integer n. Moreover, each En 6 ( and En_ E=

 ECQC = I.

 If Fk = Ej-o Ek+jn for k in {1, . . ., n}, then {F1, . .., Fn} are n
 orthogonal projections in (i, equivalent in (R with sum I. U

 3.10 Remark. If (R is not assumed to have a "uniform decompos-

 ability character" (that is, if (R has central summands corresponding to

 different infinite cardinal types), the first assertion of Lemma 3.9 is not

 valid for (R but the second remains true. In any event, we can partition the

 family of abelian projections (in (i) with sum QC into n subfamilies with the
 same cardinality (as each other). Summing each of these subfamilies, we

 arrive at n equivalent projections Fl c ... , Fnc in (6 with sum QC. If we let
 Fk be EcFkc, then F1, . .., Fn is a set of projections in a equivalent in GR
 with sum I. U

 3.11 LEMMA. If (R is a countably decomposable von Neumann alge-

 bra of type I,, acting on a Hilbert space JC and n is a positive integer, then
 each maximal abelian subalgebra of (R contains n orthogonal projections

 with sum I equivalent in (R.

 Proof. Let (i be a maximal abelian subalgebra of (R, and let Eo be
 the union of all the projections in (i finite in (R. If Eo = 0, then a has no
 finite non-zero projections and an application of Lemma 3.4 completes the

 argument. If Eo = I, then Lemma 3.9 completes the argument. We may

 suppose that 0 < Eo < I. In this case, (I - Eo) (R (I - Eo) acting on (I -
 Eo)(JC) is a von Neumann algebra of type I and a(I- Eo) is a maximal
 abelian subalgebra of it that contains no finite non-zero projections. From

 Lemma 3.4, there are n orthogonal projections E1, ..., 17En in (i(I - Eo)
 with sum I - Eo equivalent in (I - Eo) (R (I - Eo) (and hence, in (R).
 From [3; Proposition 6.3.7] there is a central projection P0 in (R such that

 POEO is finite and either I - P0 is 0 or (I - PO)EO is properly infinite.
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 Suppose PO * 0. Then PO is properly infinite, since (R is of type I,, and PO

 = PoEo + PO (I - Eo) with PoEO finite. Hence PO (I - Eo) is properly
 infinite from [3; Theorem 6.3.8]. Now Po(I - Eo) Po (j=1 Ej) and
 POE, . . ., POEn are equivalent, by choice of E1, ..., En. Thus POE1,
 ... . POEn are equivalent (countably decomposable) properly infinite pro-
 jections in (iPO, and PO (E1 + Eo), POE2, ..., POEn are n equivalent
 (countably decomposable, properly infinite) projections with sum PO in

 (6PO. (Use [3; Corollary 6.3.5] for this.)
 It will suffice to locate n orthogonal equivalent projections in a(I -

 PO) with sum I - PO. In effect, we may assume that Eo is properly infinite
 with central support I (that is, that Po = 0). With this assumption, Eo 6(Eo

 acting on EO(3C) is a countably decomposable von Neumann algebra of
 type IX,, and (GEo is a maximal abelian subalgebra with the property that Eo
 is the union of projections in (GEo finite in Eo0 dEO. From Lemma 3.9, there

 are n projections F1, .. ., Fn in aEo equivalent in E0cREo (hence in (R)
 with sum Eo. The n projections E1 + F1, ..., En + Fn are equivalent in
 (R, have sum I, and lie in (i. U

 3.12 LEMMA. If (R is a von Neumann algebra of type IH, acting on a
 Hilbert space JC, 6 ( is a maximal abelian subalgebra of (R, E is a projection

 in (CiI, P is a non-zero central subprojection of CE, r is the (normalized)

 center-valued trace on 6R, and e is a positive real number, then there is a

 non-zero subprojection F of E in a such that r(F) ' eP.

 Proof. Replacing (R, SC, a, and r, by 6RCE, CE(JC), aCE, and the

 (normalized) center-valued trace on G{CE, respectively, we may suppose,

 without loss of generality that CE = I. Since E6RE acting on E(JC) is a von

 Neumann algebra of type HI and (iE is a maximal abelian subalgebra of it,

 from Lemma 3.3 there is a projection E1 in (iE such that CE1 = E and E1

 < E-E1, where CE is the central support of E1 relative to E6lE. If Q is a

 central projection in 6R containing E1, then QE is a central projection in

 E(RE containing E1. Since CE1 = E, E c QE. HenceE = QE andE c Q.

 Under our present assumption, CE = I, so that Q = I. It follows that

 CE = I.

 In the same way, we can find a subprojection E2 of E1 in 6? such that

 CE2 = I and E2 < E1 - E2 . Continuing in this way, we find a sequence

 {En } of projections in a? (where Eo = E) such that CEn = I, En+l < En ,
 and En+l + 1 En -En + 1. By construction there is a subprojection Ej' of
 E_ 1 - Ej equivalent to E for each j in { 1, .. ., n }. (Note that Ej' is not
 assumed to lie in (i.) Hence r(En ) < (n + 1) I and r(PE,,) = Pr(En ) c
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 (n + 1)-'P. For large n, (n + 1)f- c e and r(PE) < cP. We complete
 the proof by choosing F to be PEn and noting that E 2 F E (t. U

 3.13 PROPOSITION. Let (R be a von Neumann algebra of type II,, a
 be a maximal abelian subalgebra of (R, and r be the (normalized) center-

 valued trace on (R. If H is an element in the center of (R such that 0 < H c

 I, then there is a projection E in (a such that r(E) = H.

 Proof. From the spectral theorem, there is a central projection P

 and a positive e such that 0 < EP < H if 0 < H. From Lemma 3.12, there

 is a non-zero projection E in a such that r(E) < cP. Thus there is at least

 one non-null orthogonal family of non-zero projections in a whose traces

 have sum dominated by H. Let i3 be the set of such families partially or-

 dered by inclusion. The union of each chain in i3 is a member of i3 that

 serves as an upper bound of that chain (for the sum of the traces of projec-

 tions in an element of i3 is the least upper bound in the operator ordering of

 the set of finite subsums and each finite subsum is dominated by H). Thus

 i3 has a maximal element {Ea }. Since r is normal (see [3; Theorem

 8.2.8(vi)]), r(E) = r2ar(Ea) (CH), where E = 2aEa (EEa). If r(E) <

 H( cI), then there is a non-zero central projection Q and a positive e' such

 that

 'Q c Q(H - r(E)) ? Q(I - 7(E)) = r(Q(I - E)) ? CQ(I-E) = QCI-E

 (See [3; Proposition 5.5.3].) Thus Q = QCI-E, and Q CI-E. From
 Lemma 3.12, there is a non-zero subprojection Eo of I - E in ai such that
 r(EO) c E'Q. Now

 r(E + Eo) = r(E) + r(Eo) ' r(E) + E'Q ' r(E) + Q(H - r(E)) ' H

 and {Eo, Ea } is an orthogonal family of non-zero projections in a properly
 larger than {Ea}. This contradicts the maximal property of {Ea}. Thus

 r(E) = H. U

 3.14 COROLLARY. Let (R be a von Neumann algebra of type II, act-
 ing on a Hilbert space SC, h be a maximal abelian subalgebra of (R, E be a

 projection in a, andr be the (normalized) center-valued trace on (R. If H is

 an element of the center e of (R such that 0 c H < r(E), then there is a

 projection F in a such that r(F) = H and F _ E.

 Proof. Proposition 3.13 applies to the von Neumann algebra E6RE



 1464 RICHARD V. KADISON

 of type IH, acting on E(JC) and the maximal abelian subalgebra (GE of it to
 yield a projection F in (GE such that r(F)E = HE. (Note for this that HE E

 CE, the center of ERE, and that 0 c HE C E, since 0 c H C r(E) C I.)

 As r(F) - H E eC and (r(F) - H)E = 0, we have that (r(F) - H)CE = 0.

 NowF c E c CEso that r(F) = T(FCE) = T(F)CEand r(E) = T(E)CE.

 Moreover, 0 c H C r(E) = 1(E)CE < CE, so that HCE= H. Thus

 r(F) = H. U

 3.15 COROLLARY. If (R is a von Neumann algebra of type IH, and n
 is a positive integer, then each maximal abelian subalgebra of (R contains

 n orthogonal equivalent projections with sum I.

 Proof. Suppose a is a maximal abelian subalgebra of (R. From Cor-

 ollary 3.14, there are projections E1, . . ., En in ai such that r(E1) = n -'I

 and Ej+ 1 - I-(E1 + * * * + Ej) forj in { 1, . . ., n -1 }. Since r(Ej) =
 7-(Ek), E1, ..., En are equivalent and by construction they are mutually

 orthogonal. Moreover, r(NEjE) = Ejr(Ej) = I. Since r is faithful and 2jEj
 c I, E1, ..., Enhave sum I. U

 3.16 LEMMA. If (R is a countably decomposable von Neumann alge-

 bra acting on a Hilbert space JC, (R has no central summand of type I, a is
 a maximal abelian subalgebra of (R, and n is a positive integer, then each
 non-zero projection in a contains n non-zero orthogonal projections in a
 equivalent in (R.

 Proof. Let E be a non-zero projection in a. Then EGRE acting on

 E(JC) is a countably decomposable von Neumann algebra with no central
 summand of type I and (GE is a maximal abelian subalgebra of ERE. If we

 show that (E contains n non-zero orthogonal projections equivalent in

 E(RE, then these n projections are orthogonal subprojections of E in a and
 are equivalent in (R. It suffices to show that a contains n non-zero ortho-
 gonal projections equivalent in (R.

 If (i contains a non-zero finite projection F, then F(RF acting on F(JC)

 is a von Neumann algebra of type II, and (iF is a maximal abelian subalge-
 bra of it. From Corollary 3.15, a3F contains n orthogonal subprojections

 equivalent in F6IF with sum F.

 We may suppose now that a has no non-zero finite projections. In this

 case, Lemma 3.4 applies and a has n orthogonal projections with sum I
 equivalent in (R. U

 3.17 LEMMA. If (R is a countably decomposable von Neumann alge-

 bra with no central summand of type Iand n is a positive integer, then each
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 maximal abelian subalgebra of (R contains n orthogonal projections with

 sum I equivalent in (R.

 Proof. From Lemma 3.16, a maximal abelian subalgebra a of (R

 contains n non-zero orthogonal projections equivalent in (R. Thus the set 8

 of sets { 1, . . ., in } of n elements, where each 5j is an orthogonal family

 {Eja }aeA of non-zero projections in a, each 5j is indexed by A, Ela, .
 Ena are equivalent for each a in A, and U7q=1 5j is an orthogonal family, is
 non-null. We partially order 8 in such a way that { 1, ..*, in} ? { 1

 ., } precisely when the indexing of the families of the second set ex-

 tends the indexing of those of the first set (which entails, in particular, that

 5j C 3j' forj in { 1, ... , n }). Let { 5:1, ..., 5}n } be a maximal element of 8
 relative to this ordering; and let Ej be the union of the projections in 5j.
 Then {E1, . .., En } is an orthogonal family of non-zero projections in a

 equivalent in (R (see [3; Proposition 6.2.2]). It remains to show that -jL_ Ej
 = I. Suppose the contrary. Then I - E7n= Ej contains n non-zero ortho-
 gonal projections F1, ... , Fn in a equivalent in (R (from Lemma 3.16). By
 adjoining Fj to 5j5, we construct a set in 8 properly larger than { 9i' ...
 c5n } (relative to the given partial ordering on 5). This contradicts the maxi-

 mal property of {1 1, ..., in }. Hence Ej=L1 Ej = 1. U
 3.18 THEOREM. If (Ro is a countably decomposable von Neumann

 algebra and (R is the von Neumann algebra of n X n matrices over (Rog
 then each maximal abelian subalgebra of 61 contains n (orthogonal) equiv-

 alent projections with sum L

 Proof. Suppose ai is a maximal abelian subalgebra of (R and C is the

 center of 61. Then C ' ai so that each of the central projections corre-

 sponding to the central type decomposition of 6R lies in (i. If P is a central
 projection in (R, then (iP is a maximal abelian subalgebra of (RP. From [3;

 Theorem 6.5.2], there are central projections P<,, P1, P2, .. ., andPc with

 sum I such that either PC = 0 or (RPC is a von Neumann algebra with no
 central summand of type I; and either Pm = 0 or (RPm is a von Neumann

 algebra of type Im for all m in {Ioo, 1, 2, ... }. We shall note that (R is
 countably decomposable so that (RP is countably decomposable for each

 central projection P in (R. We shall also see that Pm is 0 unless m is divisible

 by n. Thus aiPc contains n equivalent projections Elc, ... Enc with sum
 PC from Lemma 3.17 and (6Pc,0 contains n equivalent projections E1 X, ....
 En,oo with sum Pc< from Lemma 3.11. From Lemma 3.7, (iPm contains m
 equivalent projections with sum Pm. If Pm = 0, then (iP, contains n

 equivalent projections with sum Pm (each projection equal to 0). If Pm * 0,
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 then m is divisible by n and, again, aiPm contains n equivalent projections

 Em, . . Enm with sum Pm for each m. Let Ej be Ej, + Ejo0 + Em=1 Ejm
 for eachj in { 1, .. ., n }. Then {E1, ... , En } is a set of n equivalent projec-
 tions in (i with sum I.

 It remains to show that (R is countably decomposable and that m is

 divisible by n if Pm * 0. Let Fj be the projection in (R whose matrix has I at
 thej, j entry and 0 at all others. If { Ga: a E A } is an orthogonal family of

 non-zero subprojections of Fj in GR, then each Ga has matrix whose only
 non-zero entry is a (non-zero) projection Ea in (Ro, and {Ea: a E A } is an

 orthogonal family of projections in (Ro. Since (Ro is countably decompos-

 able, A is countable; and Fj is a countably decomposable projection in (R.
 From [3; Proposition 5.5.9], each Fj is the union of an orthogonal family of
 cyclic projections in (R. Since each Fj is countably decomposable, each
 orthogonal family of non-zero cyclic projections is countable. It follows

 that j7=1 Fj, the identity in R, is the union of a countable family of cyclic
 projections in (R, and from [3; Proposition 5.5.19], the identity in (R is

 countably decomposable.

 The matrix of Pm has a central projection Qo c6f (Ro at each diagonal
 position and 0 at all others. Suppose Pm * 0 so that (RPm is of type Im.

 From [3; Corollary 6.5.5] the projection M in (RPm whose matrix has Qo at
 the 1, 1 entry and 0 at all others is a sum of projections abelian in (RPm.

 Using [3; Proposition 6.4.5], we can find a subprojection G of M abelian in

 (RPm with the same central carrier Pm as M. The matrix of G has some

 projection Go in (ROQO at the 1, 1 entry and 0 at all others. Since G is
 abelian in (RPm with central support Pm, Go is abelian in (R Qo with cen-

 tral support Qo. Thus (R0Qo is of type I. Suppose M1, . .., Mk are ortho-
 gonal abelian projections in 1R0Q0 each with non-zero central support Q.

 By placing each Mj at any one of the diagonal positions and 0 at all other
 positions, we form nk orthogonal abelian projections in (R each with cen-

 tral support Q1, the diagonal matrix with Q at each diagonal entry. Since

 (PM is of type Im; nk < m. It follows that each central summand of (R Qo
 is of type Ij, wherej < mr/n. Now (R Qo has a central summand of type Ik
 for some finite k. If we assume, in the preceding argument, that M1 + * * .

 + Mk = Q, then the nk abelian projections formed from M1, . .., Mk

 have sum Q,. Thus (RQ1 is of type Ink as well as of type Im. By uniqueness
 of type decomposition (see Theorem 6.5.2 of [3] and the comments pre-

 ceding it), m = nk. Hence m is divisible by n, k = m/n, and (ROQO is
 of type Ik U
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 3.19 THEOREM. If (R6 is a countably decomposable von Neumann

 algebra, (R is the von Neumann algebra of n X n matrices with entries in

 6Ro, and 8 is an abelian self-adjoint subset of (R, then there is a unitary
 element (matrix) U in 6R such that UAU' has all its non-zero entries on

 the diagonalfor each A in S.

 Proof. We follow the pattern described in the introductory com-

 ments to this section and make use of the notation established there. By

 Zorn's lemma, 8 is contained in a maximal abelian self-adjoint subfamily

 (i of 61. From maximality, (i is a maximal abelian (self-adjoint) subalge-

 bra of (R. From Theorem 3.18, there are n orthogonal equivalent projec-

 tions F1, . . ., Fn in 6? with sum I. The matrix with entry I in the k, j posi-

 tion is a partial isometry in (R with initial projection Ej and final projection
 Ek. Thus E1, . . ., En are n orthogonal equivalent projections in 6R with

 sum I. We prove that Ej and Fk are equivalent in 61 for all j and k in { 1,
 , n }. Of course, it suffices to show that E1 and F1 are equivalent in (R.

 Suppose the contrary. From the comparison theorem [3; Theorem 6.2.7],

 there is a non-zero central projection P in (R such that either QE1 < QF1

 for each non-zero central subprojection Q of P in (R or QF1 < QE1 for

 each such Q. We may suppose that PE1 < PF1 without loss of generality.

 Replacing E1, . ., En, F1, . . ., Fn, and (R, byPE1, * .* , PEn, PF1, * * *

 PFn 9 and 61P, respectively, we may suppose, without loss of generality,
 that QE1 < QF1 for each non-zero central projection Q in (R. If QE1 is

 finite for some non-zero central projection Q, then so are QE2, . . ., QEn,

 and Q (= QE1 + * * * + QEJ) from Proposition 6.3.2 and Theorem 6.3.8
 of [3]. But QEj - Gj < QFj so that Ej=- 1 QEj = Q - Ejn=1 Gj < Ej=1 QFj
 = Q. Thus E1 and all Ej are properly infinite projections with central car-

 rier I. Since E1 < F1, F1 and all Fj are properly infinite with central carrier
 I (see [3; Proposition 6.3.7]). From the proof of Theorem 3.18, 6R is coun-

 tably decomposable. Thus E1 - F1 from [3; Corollary 6.3.5], contradict-

 ing our assumption that E1 < F1. Thus Ej - Fk for allj and k in I 1, ...
 n }. (Note that this last conclusion is valid even when (R is not countably

 decomposable; but using the countable decomposability of (R, which is

 available to us under the present hypotheses, it is possible to give this brief

 proof).

 Let Vj be a partial isometry in (R with initial projection Fj and final

 projection Ej forj in { 1, .. ., n } and let U be EjL_ 1 Vj. Then U is a unitary
 element in (R and UFj U 1 = Ej. Since Fj commutes with every element in
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 (6 and hence in 8, Ej commutes with UA U- 1 for all A in S. Hence UA U
 has all its non-zero entries on the diagonal when A E S. U

 3.20 COROLLARY. With the notation and assumptions of the pre-

 ceding theorem, if A is a normal element of (R, then there is a unitary

 element U in (R such that UA U has all the non-zero entries of its matrix

 on the diagonal.

 Proof. Since A is normal, {A, A* } is an abelian self-adjoint family

 in (R and Theorem 3.19 applies.
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