NOTES ON THE FERMI GAS (¥)

RicHARD V. KADISON

The kinematical structure of an infinite system of identical Fermi
particles can be described in terms of the CAR algebra, a C*-algebra
A whose representations are in one-one correspondence with the rep-
resentations of Canonical Anticommutation Relations (CAR). In this
note and the one that follows (by N. M. Hugenholtz), the methods
and steps involved in classifying certain automorphisms of % are

described. The result concerning these automorphisms is contained
in the following theorem.

THEOREM 1: If U is the CAR algebra based on the complex Hilbert
space K and « is an automorphism of A whose transpose & maps the set
of pure, gauge-invariant, quasi-free states of N ondo itself, then, either the
Fock vacuum state is mapped onio itself by & and there is a unitary ope-
rator U on 3 such that x(a(f)) = a(Uf), or the Fock statc is mapped
onto the anti-Fock state by o and there is a conjugate-linear, unitary
operator W on X such that «(a(f)) = a(Wf)*.

The study of equilibrium states of infinite Fermi systems motivates
this work. Such states can be labeled by one-parameter, automorphism
groups of % that commute with the dynamical group. Earlier work [1, 2
on asymptotic orbits of states of such systems indicates that, loosely
speaking, the primary stationary states are quasi-free. An automor-
phism commuting with the free, time evolution will map this set of
states into itself. What can be said about such automorphisms?
A more primitive problem involves the description of those automor-
Phisms which map the set of gauge-invariant, quasi-free states onto
itself. The theorem stated above answers this question.

A. development of the theory of the CAR algebra in its Fock rep-
regsentation in the framework of the « exterior calculus» and a cor-
responding development of gauge-invariant, quasi-free states is critical

(*) I risultati conseguiti in questo lavoro sono stati esposti nella conferenza
tenuta il 13-marzo 1975.
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for our arguments. The following result (noticed independently by
J. E. Roberts—unpublished—we have learned) is a byproduct of
this latter development.

PROPOSITION 2: If T is a linear transformation of the Hilbert space 3€
into the Hilbert space X and | T| <1, then the mapping

a(fn)* cee a’(fl)*a(g.l) cee “(!]m) —>(7;(1' m)* e a‘(Tfl)*a(Tgl) vee a(_Tgm)

extends (uniquely) to a completely-positive, linear mapping vy, of the
CAR algebra Aze over K into Ay, the CAR algebra over XK.

The program of this note is to present the development of the Fock
representation of A and of gauge-invariant, quasi-free states of U in
the exterior-algebra framework. The note that follows, by N. M.
Hugenholtz, will illustrate how this development is used in a combina-
torial, counting process that compares dimensions of intersections.

With J a complex Hilbert space and J, the n-fold tensor product,

8o that, for @,. ..., #n, Y1, ...y Yo In I,
(2, R...QZ |1 D ... @?Iu> = <21}y1) o {ZulYny o

let S be the projection operator on X, which assigns
1
m z 2(0) Zo) & ... @xo(n)

to 2, ®... ®x,, where ¢ is a permutation of {1, ey m} and %(o) is
+1 if ¢ is even, —1 if ¢ is odd. The range of S, is the space e
of antisymmetric tensors. We write ,A... A2, for (nN)ES (2, ® ... ® )
(the « antisymmetrized, n-particle state with wave functions x,. ..., Tah)-

We have:

BN oo AT YA o AYn) = B B e RS (4 Do @YaV
= Z %(0’) <:I‘)1 Il‘/a(l)} e <$n|ydn)> = det (<;‘L‘,-!?/,-}) .

Thus, assuming x;A...A%, and y,A...Ay, are not 0, they are ortho-
gonal if and only if there are scalars ¢,.....c,. not all 0, such that

n . n
G =.zl Cestsly; = < zcifvel?/§>2
1= i=1

that is, if and only if the space, [x,, ..., 2,], generated by %. - Lns
contains a non-zero vector (X ¢,x;) orthogonal to [#. ..., ¥al- If, 1o
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addition, the intersection, [x,,..., =, 1N [¥1s -3 ¥als Of the spaces
(. .... 2] and [y, ..., ¥.] has dimengion n — 1 (in this case, we say
that the spaces are « perpendicular »), the projections with ranges
[z, ....%,] and [4, ..., y,] commute. It follows that {e N NE ) s
an orthonormal basis for J@ if {e,} is an orthonormal basis for JC.
Moreover, ,A...Az,= 0 if and only if ,, ..., , are linearly dependent
(if and only if [z,,..,,] has dimension less than n). Thus
refx,.....x,], if 2Am A Ax, =0 and LA A2, # 0. From this, if
LIA Ny = Y A AYa 70, then [y, ..., ) =={y,,...,,]. On the other
hand, if [2;,....2,]= [¥,. ..., ¥,]. then, expressing each ¥, as a linear
combination of x,,...,2,, we see that A AR, and AL AY, aTe
scalay multiples of one another. We say that x AL A, Is o product
vector-the exterior (ov, wedge) product of e e, .
e ]
The antisymmetric Foeck space, ¥xe, is 2}@ Tq,f" By definition Jei@
7 = )

consists of complex scalar multiples of a single (unit) vector @,, the
Fock vacuum: and K is JC. 1f JE were finite dimensional, € would
be the (tinite-dimensional) « exterior » algebra over JC. The mapping, A,
from the a-fold Ciwtesian product ¥ x...x¥ {o JE@W which assigns
LA ATy to (), .0, 7,) is an alternating, #-linear mapping. 1f a is
such & mapping of EX...xXJH into a space X, there is a mapping d
of X9 into X such that @ = doA. In particalar if 7 is a lincar ma)-
ping of ¥ into X then (2, ..., z,) = Lry A\ ATx, is an alternating
#-linear mapping of x... X € into K& s0 that there is a linear map-
ping T of J& into X such that P, A... Ax,) — Toyno ATx,. 1T
is & unitary transtormation of J& onto X. metric considerations apply
and T is a unitary transformation of K onto X 1t 71,
k=3 Dk, k=X B K. P, %) = (z, 0) and Q(u, v) = (u, 0), with «, ¥
in JC and w. v in X, then there is « unitary transformation U of jé
onto X such that QUP(x, y)== (T2,0)for all >, y in JC. Then U is a
unitary transformation of L onto X and @ is « projection of K
onto 1. Since 7' is the restriction of QU to 3, we see that [T <1.
If T is o positive operator with pure point spectrum. computing norms
with a basis of eigenvectors for 7. we find that IT3e) = 2y ... A
where 7. ..., 4, ave the n largest cigenvalues of T (multiplicity in-
cluded).  An approximation argument provides the corresponding
result for a general positive operator: and polar decomposition provides
& norm formula for a general bounded operator. A simple check
vields (7'y* = Ttx.

Since (fi, ..., f.) = FAHLA .. Afy is an alternating, n-linear mapping,
there is a linear mapping, a,(f)*, of JE@ into JCYL, with value fAfA.. AT,
at fIALAF,. The family @ ())*} defines a mapping a(f)* on Je@.
With {e;} an orthonormal basis for i€ afe)* maps {e A he
1¢ {'51; v dnb,mo= 0,1, 2, ...} onto an orthonormal basis for the ortha-
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gonal complement, JE& © X; and a(e,)* annihilates this complement.
Thus a(e,)* is a partial isometry with initial space ¥ and final space
D © K. It follows that I =a(e,)*ale,) -+ ale,)a(e,)* (={ale,), a(e)*},).
More generally a(f)a(f)* + a(f)*a(f)= <{f|f} I. Polarization of this yields:
{a(f), a(g)*} . = (flg> I. We note that our inner produet, {f|g}, is linear
in g and conjugate linear in f. We have {a(f)*, a(@)*} .= 0, as well.
A conjugate-linear mapping f—a(f) of J& onto operators a(f) on a
Hilbert space satisfying the relations (canonical anticommutation
relations)

{a(f)’ a’(g)*}-:-:: (f:g>I 9 {a(f), a(g)}.lf.;o

is said to be a represeniation of the CAR. The particular representaiion
we have exhibited on ¥ is called the Fock representation.

We can exhibit the annihilator a(f) as explicitly as we described
the ercator a(f)* by expanding the determinant expression for
TAY N AYn|TA o Anp in terms of its first row:

FAY A AYR BN AT
= <Z’/z/\---/\?/n|“(f)(w1/\---/\‘75n)>

= z (—' 1 )5+l,\’ﬂfni> <?I~:f\ vee /‘A*.?/n[wl/\ (3] /\'/L'i_l/\a"i.i.l/\w;q),/\ -~-/\wn> ’
i=1

so that

B,
a(f )@\ Ady) = D (— L@ g A o e ATy AR a A e AL
i=1

With £ a projection on JE, we denote by A,(E) and A(E) the
%-algebra and C*-algebra, respectively, on J{ generated by {a(f):
Ef=f}. We write %, and % in place of () and A(I), The C*-algzebra
U is the CAR algebra and its action on J is called its Fock rep-
resentation. The state ¢, of U for which @ (4) = (D|AD,> is called
the Fock (vacuum) state of A. Note that each a(f) is in its left kernel
K(q).,(a(f)*a(f))m O); 8o that each product of annihilators and cre-
ators (monomial) in which an annihilator appears to the right is in J.
Now each monomial is & sum of monomials in which all creators are
to the left of all annihilators (we say that such a monomial is Wick-
ordered—and anti-Wick-ordered if all creators are to the right of all
annihilators); so that ¢, annihilates all Wick-ordered monomials in 9,
other than I. Thesc mouomials span the null space of ¢, on A,. If
o i8 a state of A and o< 2¢,, then a(f) is in the left kernel of ¢. Thus
o and ¢, have the same null space in A, and agree at I. Hence 9 :-= ¢;
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and ¢, is a pure state of A. Exactly the same considerations apply to
the restriction of ¢, to N(E), for each projection I¥ on 3. Thus the
restriction of g, to A(E) is pure. '

The Hilbert space J€, obtained from JC by assigning an element f
to each j in I, defining (¢f + g) to be ¢f +§ and 7> to be I
produces ¥, anti-Fock space, and @, is the anti-Fock vacuum. The
mapping f —a(f)*(= a(f)) is a representation of the CAR (over Je),
the anti-Fock vepresentation; and the mapping a(f) — &(f) cxtends to
a %-isomorphism, A — 4, of the CAR algebra A over JC onto the CAR
algebra ( over J. The state ¢, of A defined by A —<(B,[AP,> is the
anti-Fock state of . Bach a(f)* is in the left kernel of ¢r; so that,
replacing «(f) by a(f)* and using anti-Wick ordered monomials instead
of Wick-ordered monomials in the argument above, we have that the
restriction of ¢, to each (E) is pure.

Since ¢, is pure and @, is cyclic for 2, the weak-operator closure,
A7, of A, is B(IP), the algebra of all bounded operators on J@. Sim-

4

ilarly A(E)~E,= B([2(E)®P,]), where E, is the projection (in A(E)')

N
with range [W(E)D,]. If Uy is (I —2E), then U;P,= &,, a(g) Ug ==
= Ugalg), for each g in (I — E)(3€), and a(f) Uz= — Uga(f), for each f
in £(3C). If 4, is an even monomial in Uy(I — F) (that is, 4, is the
product of an even total number of annihilators and creators) and 4,
is an odd monomial in A(I —E), then A, and A4,U; lie in AE).
Since Wo(E) and Wo(I — E) generate A, and D, is cyclic for A, ;

K = (U By] = [WEVA(I — E) By] = [A(EYA(E)' D] .

Thus F, has central carrier I in %(%)~; and the mapping o of A(E)E,
onto A(E)~ which assigns 4 to AE, is a *-isomorphism.

Now. a{f)®,=0 and, when Ef=0, a(f)(Us(E)D,)~: (0). Thus
() E,= 0 and E,a(f)*-=0, when Ef= 0; so that £,AE,— AE, when
A is in A (I —E). It follows that B — i, BE, is a (completely-) po-
sitive, linear mapping of B(¥®) onto A(E)~%,. The composition of
this mapping with ¢ is o completely-positive, linear mapping, ¥e,
of B(X%) onto A(E)~. By construction of .,

Ve(@(e)® ... a(e)* ayy) ... a(ym)) = a(Br,)* ... a(Bs)*a(Ey,) ... 6(Eyn) .
More generally we have Proposition 2 (stated earlier).

Proor: If o= e @R, K=KQX, Pk, h')= (, 0) for &, &' in I,
QUE, k) == (K, 0) for k, &' in X, and T'(h, #') = (Th, 0), then there is &

unitary transformation U of # onto K such that QUP = T. The map-
PINg a(f) — o( Uf) extends, uniquely, to a %-isomorphism of 3 onto AL
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The composition of the restriction of this isomorphism to Az (P)
and ygq is .

We note that the characterization of vy, as the result of distribut-
ing T throughout a Wick-ordered monomial is independent of the ordey-
ing only if T is an isometry; for yy(a(f)a(f)*}= yo{I —a(f)*a(f))
== I —a(Lf)*a(T]) # a(Tf)a(Tf)*, when [f}==1, unless (Tf{7f>==1.

If AeB(¥) and 0<LA<I, we call goyp,; the gauge-invariant,
quasi-free siate of A with one-particle operator A. We write ¢, for this
state and note that there is no conflict between this notation and the
designation of the Fock and anti-Fock states of % by ¢, and ¢, (i.e.
these states are quasi-free with one-particle operators ¢ and I, re-
spectively). Note that

pala(f) ... alfi)*alg,) ... a(g.))
- (pl(a'(A?!fn)* a(A-% fl)*“(A}gl) eee a‘(Aﬁgn))
= {Bo|a(AF],) ... a(AFf)a(ATg,)* ... a(Alg,)* &,

= det ((*’P’?zmgf)) == det (<g,]4f.>)
= det ({g;jAf;}) = SOA-Agu AL A AAfLY

ProrosiTioN 3: If E is a finite-dimensional projection on JC with
{1, ..., €.} an orthonormel basis for E(JC), then

¢e(T) = {es A Aea|T{ey A New)y

ProoF: Let {e;} be an orthonormal basis for J¢, and T be a Wick-
ordered monomial in annihilators and creators corresponding to basis
elements. Then {e,A...A¢.|T(e;A...A€x> is 0 unless T has the form
W) ... ale;, V¥ale,) ... ale, }, with {3,,...,7,} an m-element subset
of {1, ..., n}, in which case its value and that of ¢g(T) is y(¢). If T
does not have this form y(I)=0, so ¢s(T)= 0. Thus our cquality
holds.

It follows that ¢, is pure when E is a finite-dimensional projection
on J. More generally, if E is any orthogonal projection on J and o
is a state of U such that o< 2¢; then the restrictions of o to A(E) and
(I — E) coincide with those of ¢, and ¢,, respectively. Using the
fact that monomials 4 and A’ in U,(E) and U,(I — E), respectively,
commute or anti-commute and that Wick-ordered monomials are in
the left or right kernels of ¢, while anti-Wick ordered monomials are
in the left or right kernels of ¢, (other than ¢I, ¢%0), we conclude
that o(44')= p(A)o(A4’). The same is true for 4 in A(E) and A’
in (I —E). Thus p = ¢z and ¢y is pure.
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If 0t Aot with Ay 47) in B(JC), using the Spectral Theorem,
there is & one-dimensional projection E, on 3 and s positive number ¢
such that 0<A,;<I and 0<4,<7J, where 4,= A, }-{E, and A,=-
= A,—1FE,. Computing with an orthonormal basis {e;} for € such
that I,e,= e;, we have that ¢, = 4 (¢, + ¢4,)- To see this, note that

pafale, ) ... a(e; Yrale;) ... afe;))

= C‘e,-lA...,/\&e,-n[A,u.e,-ﬁf\.../\Ake,-n} R

where == 0,1,2; and that dqe;= 4,¢;= A,e;, when j=£1. Thus P4
is purve if and only if 4 is a projection.

From the foregoing, if E is u finite-dimensional projection, ¢ 18
a pure, gauge-invariant, quasi-free state equivalent to the Fock state.
Conversely, if E is & projection on one-particle space J& and ¢ I8 equi-
valent to the Fock state, then I is a finite-dimensional projection.
This follows as a special case of [3; Theorem 2.8]). A direct proof is
not difficult. If gy= w,|¥, for some unit vector z of J&, then
1 == gg(ale;)* ale;)) == o, (ale;)*ale;)), where {e;} is an orthonormal basis
for K(X). Thus a(e;)*x= 0, for each j. If

4 [4
€T == z c’l.pn’in‘.jp..fmel'lﬂ‘"‘/\ei.u/\ejl/\"‘/\eim ?
'1.1"...» <i11;j1<.-- ‘<im

where {¢;} is an orthonormal basis for (I — E)(J), then

. ’ 4
0= a((’,)*.b' — z C,-lm;n“-.__.,-m(?,,’\e.,-,/\.../\e,-”/\(.’,-lf\‘..A.,ejm;

80 that je {i),..., &x} unless ¢; ;.. ., = 0. If E(¥) is infinite-dimen-
sional, we can choose j not in {i,,...,%,}; and #= 0, contradicting
the assumption that z is a unit vector. Thus F is a finite-dimensional
projection.

Testo pervenuto il 12 aprile 1975.
Bozzo licenziate il 4 settembre 1976.
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