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INTRODUCTION

During this series of lectures, I want to outline for you some of the main
results in the theory of von Neumann algebras. There are many subjects,
of considerable importance, on which I will not touch. The subjects discussed
are what many of us consider to be the core of the theory. These subjects
could be classified under three headings: the Basics, Comparison Theory of
Projections, and Unitary Equivalence. Under this last heading—and the main
part of it—I include the theory of normal states.

It no longer makes very much sense to draw a sharp line between the
results and methods of C*-algebra theory and those of the theory of von
Neumann algebras. Nonetheless there are areas of each of these subjects
which are unambiguously identified with the one but not the other. For our
purpose, we will want some of the tools of C*-algebra theory. A description
of these will provide us with an appropriate introduction.

As excellent general references, we cite the two books of J. Dixmier
“Les algébres d’opérateurs dans I'espace Hilbertien (Algébres de von
Neumann)” Cahiers Scientifiques Fasc. XXV: Gauthier-Villars, Paris,
1957, 2™ éd. 1969 and “Les C*-algeébres”, Cahiers Scientifiques Fasc. XXIX,
Gauthier-Villars, Paris, 1964, 2™ éd. 1969, (especially pp. 1-55 of “Les C*-
algébres”). In addition, S. Sakai’s “C*-algebras and W*-algebras”, Ergebnisse
der Mathematik und Ihrer Grenzgebiete Bd. 60, Springer-Verlag, Berlin, 1971,
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gives an excellent account of fundamentals and recent work. The combined
bibliography of the Dixmier-Sakai books is comprehensive.

1. SOME C*-ALGEBRA BASICS

The Hilbert spaces with which we deal are complex (the field of scalars
is C). The inner product is denoted by {x, y)> for a pair of vectors x, y in
# . The length or norm of x is denoted by || x| (= {x, x>*). The operators
on # are linear transformations of 5# into 4#; and we assume that they are
continuous unless otherwise stated. The bound or norm of an operator
T is denoted by ||T|| (=sup {||Tx||:||x|] < 1}), and we recall that the
continuity of T is equivalent to its boundedness (|| T|| < o0). The set of all
bounded operators on # will be denoted by #(5#). It is an algebra under
the usual operations of addition, multiplication by scalars, and multi-
plication (=iteration of transformations) (so (A4 + B)(x) = Ax + Bx,
(ad)x = a(Ax), and (4B)x = A(Bx)). The function A — || 4|| is a norm relative
to which #(s#) becomes a normed space. It is complete in this norm, so
that it is a Banach space; and, indeed, | AB|| < || 4|| | B|. Thus #(s#) with
the norm 4 — | A| is a Banach algebra. The metric topology on &(#)
associated with the norm is called the norm topology.

The adjoint operation on %(s#) provides an important piece of algebraic
structure. Recall that, with 4 in Z(s#) there is associated an A* in B(#),
called the adjoint of A4, characterized by the equality (Ax, y)> = (x, A*y) for
all x and y in . One verifies without difficulty that:

(1) (a4 + By* = aA* + B*
(2) (AB)* = B*A*

(3) (4*)* = 4
) [ a4*] =[] }4*]
) 4] = J4*]-

An operator 4 such that 4 = 4* is said to be self-adjoint. A subset # of
B(H) such that F* = F (equivalently, A* e F if 4 e %) is said to be self-
adjoint. A subalgebra U of () which is both norm closed and self-adjoint
is called a C*-algebra.

One of the key initial results of the theory—a slight generalization of
a result of Gelfand and Neumark states:

THEOREM 1.1. If # is a Banach algebra with an involution A — A* satisfying
(1), (2), (3) and (4), above, then there is a Hilbert space # and a C*-algebra U
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acting on it such that # is algebraically isomorphic to U by means of an iso-
morphism ¢ for which ¢(B*) = $(B)*.

In stating and proving the result it is usual to assume (5) as well as (1)+4),
and to assume that 2 has a unit element. We will denote the unit element of
AB(¢) by I (so that Ix = x) and refer to it as the identity operator. The
theorem just noted establishes the “independent algebraic existence” of a
C*-algebra—independent of its action on a particular Hilbert space. It
is often useful to think of the C*-algebra in this way and to speak of its
representations on a particular Hilbert space 5. A representation of the
C*-algebra 2 on the Hilbert space J is a homomorphism ¢ of U into
B(o) such that ¢p(4*) = P(4)* for each A in W. It is a non-trivial fact that the
image ¢(A) of A under this mapping is norm closed—hence, a C*-algebra.
If ¢ is an isomorphism (the kernel of ¢ is (0)), we say that ¢ is a faithful
representation of 2. When the transforms ¢(2)x of a vector x in J# by
operators in ¢(2) lie dense in 3, we say that ¢ is a cyclic representation of U,
and that x is a cyclic vector for ¢() (and for ¢).

The technique of proof of Theorem 1.1, as developed by Segal was especially
useful. It involved a construction of representations of U based on a special
type of linear functional on . The functionals are called states and the
procedure is known as the GNS (Gelfand-Neumark-Segal) construction.
In order to describe this construction, we make use of another essential
structure possessed by C*-algebras—basic to their analysis—the order
structure. If we think of U as acting on S, a positive operator in #() is an
operator A such that (4x,x) > 0 for all x in #; and the set of positive
operators in A forms a cone (4 + B >0 if A and B are positive; a4 is
positive if 4 is positive and a > 0; 4 = 0 if both 4 and — A are positive).
Relative to this cone, the real linear space of self-adjoint operators in U is a
partially-ordered vector space. We write “4 > B” for “A — B is positive”.
The unit element I of A is an order unit: for each self-adjoint 4 there are
constants a and b such that al < 4 < bl. Moreover —||A|I < A< | A|I:
and || 4 | is the least non-negative constant for which this inequality is valid.
A state of U is a linear functional p on U such that

i) p(A) =2 0when 4 >0
(i) p(I) = 1.

The GNS construction proceeds as follows:

With p a state of ¥ define an inner product {, } on A by means of the formula
{4, B} = p(B*A). As (A*Ax,x) = (Ax, Ax) = || Ax||* > 0 for each 4 in
A (i.e. A*A > 0 for each A4 in A) {,} is a positive semi-definite inner product
on A. This is enough in order that the Cauchy—Schwarz inequality should
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hold and
|{A, B}| = |p(B"‘A)| < {A,A}*{B, B}t = p(A*A)*p(B*B)t.

It follows that p(T'A) = O for all T in A if p(A*A) = 0 (of course, p(4*A4) = 0
if p(TA) = 0 for each T in A). The set of such A is a left ideal " in U called
the left kernel of p. It is the set of null vectors with respect to the inner product
{,}. If A is self-adjoint —||A|I <A< |A|I; so that —| A| < p(4) <
| 4]. Thus |p(4)| < | 4|. In general,

|(T)] = |pUT)| < pFP(T*T) < | T*T|* = | T|.

Thus states of A are bounded linear functionals on U of norm 1 (attaining
their norm at I). The converse is also valid—functionals p on U of norm 1
for which p(I) = 1 are states of . This is not difficult to prove but requires
some information we have not yet discussed.

The quotient Banach space /X has a positive definite inner product,

(A+A,B+ X)) =pB*A) = {4, B},
induced on it by {, }. With ¢(4) defined on A/ by:
Po(A)(B + X)) = AB + X,
the resulting mapping is well-defined, since X is a left ideal and bounded
relative to the norm on /X" associated with { , ) for
| @o(A)B + KH)||* = | AB + X |* = p(B*A*AB) < || A*A | p(B*B)
—|4l? B+ X

where we have made use of the fact that B*HB > 0if H > 0 (since (B* HBx, x)
= {(HBx, Bx) > 0) so that

p[B*(]| A*A |1 — A*4)B] > 0.

It follows that | ¢,(A) | < || 4| and that ¢,(A) can be extended to a bounded
operator ¢(A) on the completion #, of /A" relative to the metric deduced
from ¢, . It is easy to check that ¢ is a homomorphism of U into #(#,)
(and from the preceding, | ¢(4)| < || 4| ). That ¢ preserves adjoints follows
from:

(HA)B + H),C + A> = p(C*AB) = (B + X, p(A*)(C + X)).

Thus ¢ is a representation of A. We say that ¢ is the representation of U
engendered by p; and, when it is desirable to indicate the dependence of the
representation on p, we denote it by n,. The element I + %" in 5 ,, which we
denote by x , for simplicity of notation, has special properties. To begin with

%
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| x,|* = p(I) = 1; so that x, is a unit vector. In addition, $(A)x, = A/A";
so that, by construction, ¢ is a cyclic representation and x,, is a cyclic vector
for ¢. Finally, p(4) = {¢(4)x,, x,>. Note that the functional ¢(4)—
{H(A)x,, x,> is a state of $(A). We call such a state a vector state of $()
and say that this vector state represents p.

In the description of the order structure on 2, in particular, when defining
positive operators, we assumed that 2 acts on a Hilbert space. If 2 is not so
represented, a technique using the spectrum of elements in a Banach algebra
allows us to define the order structure. I remind you that a complex number
A is said to lie in the spectrum of an element of U (relative to W) when A — Al
fails to have a two-sided inverse in 2. The spectrum sp(A4) is a non-empty.
closed subset of C contained in the disc of radius|| A|| (so that sp(4) is compact).
The positive elements of A are identified, now, as those self-adjoint elements
A of U for which sp(A) consists of non-negative real numbers.

It might be appropriate to pause, here, and note some specific examples
of C*-algebras.

(1) With 3 of dimension n, #(#) is a C*-algebra, isomorphic to the
algebra of n x n complex matrices when # is a finite cardinal.

(2) If X is a compact Hausdorff space and C(X) is the algebra of complex-
valued continuous functions on X (with pointwise operations) then C(X) is
a C*-algebra—where complex conjugation of functions is taken as the
involution. In this last case, the C*-algebra is abelian. A specific example is
had by choosing the interval [0, 1] for X. It is worth noting that we have
described all commutative C*-algebras in this example (at least as far as
their algebraic structure goes).

THEOREM 1.2. If W is a commutative C*-algebra there is a compact Hausdorff
space X such that W is *-isomorphic to C(X).

This description of commutative C*-algebras contains the algebraic
content of the “spectral theorem”. The set of all states of a C*-algebra is a
convex subset of the (continuous) dual space A" of A. In the topology of
convergence on elements of U, the w*-topology, this convex set is compact
(as a closed subset of the unit ball). The Krein—-Milman theorem assures
us that it is the closed convex hull of its extreme points—the pure states of
A. The pure states of A are those states p such that

p=ap, +(1 —ap,

with 0 < a < 1 and p,, p, states, only when p, = p, = p. The pure states
of C(X) are the functionals corresponding to evaluation of functions in
C(X) at a point of X. Theorem 1.2 can be proved by this technique: examine
the pure states of a commutative C*-algebra, show that they are multipli-
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cative, linear functionals, and that they form a closed subset of the dual. In
general the pure states of a C*-algebra do not form a closed subset of the
dual. The vector states of #(#) are among the pure states of £(5#) but are
not all pure states of #(s#). All the others annihilate the compact operators.

If A is a C*-algebra and A is a self-adjoint operator in 2, let A(A) denote
the C*-subalgebra of U generated by 4 and I. Since U(A) (the norm closure
of the polynomials in A4) is commutative W(4) =~ CX), for some compact
Hausdorff space X. With p a point of X, let p, be the state of (A) which
assigns to each element the value of its corresponding function. The con-
struction of the *-isomorphism of a commutative C*-algebra with C(X)
carries with it the information that the isomorphism preserves order and norm
0 p, is a state. Applying the Hahn-Banach theorem, we extend p, to a
functional p of norm 1 on . Since py(I) = 1, p is a state of A. Now p,(4?) =
po(A)? so that p([4 — p(A)I]*) = 0 and A — p(A)I is in the left kernel of p.
Thus p(B(A — p(A)I)) = 0 for each Bin . That is, p(BA) = p(B)p(A) for each
B in . Symmetrically, p(AB) = p(A)p(B). It follows that A — p(A4) does
not have an inverse in U and that p(A4) espy(A4). From the outset, p(4) =
po(A4) €SPy, (4). It follows that sp,(4) and $Py 4y (4) coincide, for a self-
adjoint 4 in A. What amounts to the same thing, 4 — A has an inverse in
A if and only if it has an inverse in A(A). For arbitrary T in U, if T lies in the
C*-subalgebra U, of A, T has an inverse in U, if and only if both T*T and
TT* have inverses in %, (for then T has both a left and right inverse in U,
hence a two-sided inverse). This last occurs if and only if T*T and TT* have
inverses in U which is the case if and only if T has an inverse in .

Several useful facts emerge from this discussion:

(i) The spectrum of an element of a C*-algebra is not dependent on the
C*-subalgebra containing it in which the spectrum is computed.

(ii) A state of a C*-subalgebra of a C*-algebra has an extension to the full
algebra which is a state.

(iii) If p is a state of A and A is a self-adjoint element of A such that
p(A%) = p(4)?, then

P(AB) = p(A)p(B) = p(BA).

(iv) If A is a commutative C*-algebra generated by the single self-adjoint
element A then A = C(sp(4)).

If A acts on A, and x is a unit vector in S such that (A4%x, x) = (Ax, x)?
for some self-adjoint 4 in 2, then, from the preceding:

(A = {Ax, x>D)*x,x) =0

so that Ax = (Ax, x) x, and x is an eigenvector for A. Let 5# be L,([0, 1])
relative to Lebesgue measure and let A be the C*-algebra consisting of
{M,: f in C([0,1])} where M(g) = f.g. We call M, the multiplication
operator corresponding to f. The state p, of A defined by p,(M,) = f(0)
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extends to a state p of #(#). Denoting by A the identity function on [0, 1],
p(M;)? =0= p(M?). If p were a vector state of #(s#), that vector would be
annihilated by M, . But no L,-function on [0, 1] other than 0 is annihilated
by multiplication by A. Thus p is not a vector state of Z(s¢).

If p, is a state of the C*-subalgebra A, of A the set of all state extensions
of p, to A is a convex, w*-compact set of states of U. If p is one of its extreme
points and p = ap, + (1 — a)p,, with 0 <a <1 and p,, p, states of U,
then this same relation persists on U, Since p, is pure, p, = p, |¥U, =
p,|Wy; and p,, p, are extensions of p,. Since p is extreme in the set of such
extensions, p = p, = p,; and p is a pure state of A. Thus pure states of
C*-subalgebras have pure state extensions. In the case of the multiplication
algebra, above, and the pure state p, of U described there, if we take for p
a pure state extension of p, to #(5¢), we have an example of a pure state of
#(s#) which is not a vector state.

If ¢ is a representation of the C*-algebra U on a Hilbert space 3, ¢ is
said to be an irreducible representation of U (equivalently, ¢() is said to act
irreducibly on ) when each non-zero vector in J is a cyclic vector for
¢(A). In this case no proper closed subspace of s is invariant under ¢(2).
If ¥ is a closed subspace of ## the operator E which assigns to a vector its
orthogonal projection on ¥” is a projection (operator) with range ¥~ A check
shows that E is self-adjoint and idempotent (E? = E) and that ¥ is invariant
under an operator A and its adjoint if and only if AE = EA. Thus ¢ is
irreducible if and only if I and O are the only projections commuting with
o(A). If ¢ is engendered by the state p, ¢ isirreducible if and only if p is pure.
In effect, a commuting projection different from 0 or I provides a means for
decomposing p.

If A acts on H# and x is a unit cyclic vector for A the representation 7,
corresponding to the vector state 4 —» {(Ax, x) = w (4) = p(A) is unitarily
equivalent to the action of & on . The mapping Ax — m,(4)x, extends
to an isomorphism (= unitary transformation) U of # onto #, and
UAU™! = n (A) for all A in 2.

2. VON NEUMANN ALGEBRA BASICS

The strong-operator topology on #(J) is the topology for which the net
(T,) is convergent to T when ||(T, — T)x|| - O for each x in 5#. The weak-
operator topology on #(X) is that in which (T)) converges to T when
(Tx,y> = (Tx,y) for each x and y in . The weak-operator topology
is weaker (coarser) than the strong operator topology. Nevertheless

THEOREM 2.1. The weak- and strong-operator closures of a convex subset of
B(H) coincide.
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In essence, if " is convex its strong-operator closure is contained in its
weak-operator closure. Suppose A is in its weak-operator closure but not
in its strong-operator closure. Then there are vectors x,,...,x, such that
(Ax,,..., Ax,) is not in the norm closure of {(Kx,,...,Kx,): K in X'} in
the direct sum J# @ ... @ # (= H#) of # with itself n times. The Separation
Theorem tells us that there is a linear functional f on 2 and a scalar a such
that f(Ax,,...,Ax,) > a and f(Kx,,...,Kx,) < a for each K in ). But
linear functionals on S arise from vectors; so that there is a vector (y, , ..., y,.)
in # such that CAX,y,> + ... + {Ax,y,> >a while (Kx;,y,> + ...
+ (Kx,,y,> < a—which contradicts the choice of A in the weak-operator
closure of .

It follows from this result that the strong- and weak-operator closures of a
subalgebra of #(s#) coincide. Those weak-operator closed subalgebras of
B(H#) stable under * are called von Neumann algebras. It follows from
Theorem 2.1 that a linear functional on a von Neumann algebra £ is weak-
operator continuous on a convex subset ¢ if and only if it is strong-operator
continuous on 2. By choosing subbasic open sets appropriately in C it is
enough to note that the linear functional has, as inverse image of a convex
set, another convex set; which allows us to convert the condition on this
inverse image of being strong-operator closed to one of being weak-operator
closed. This works as well for a linear mapping » from one von Neumann
algebra £, into another £,. Here we assume that # is continuous on X in
the strong-operator topology to #, in the weak-operator topology, and
conclude that it is continuous on ” in the weak-operator topology to £, in
this same topology.

The change in closure assumption from norm closed for C*-algebras to
strong-operator closed for von Neumann algebras produces significant
structural changes even though it seems like a fine technical distinction.
For one thing, the von Neumann algebras have many projection operators
while the C*-algebras may have none. In a deeper sense, the passage from the
C*-algebras to the von Neumann algebras corresponds to the passage from
the algebra of continuous functions to the algebra of bounded measurable
functions. This correspondence can be made quite formal in the commutative
case (Theorem 1.2 is part of the story).

A feature of the weak-operator topology is a certain compactness property
it possesses.

THEOREM 2.2. The unit ball (R), in & is weak-operator compact, where X is a
von Neumann algebra.

The proof of this proceeds as does the proof that the unit ball in the dual
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of a normed space is compact—making use of the representation of bounded,
conjugate bilinear functionals on J# in terms of bounded operators and
the definition of the weak-operator topology.

If {H,} is a monotone increasing net of self-adjoint operators on J# then
{H x, x) is monotone increasing for each x in 3. If H, < kI, for all a, then

(H,x,x) converges for each x. By “polarization” {H,x, y) converges for
each x, y in 5. The resulting limit is a bounded conjugate bilinear functional
on M and corresponds to a self-adjoint operator H on #. Not only is H the
weak-operator limit of {H,}, but an argument with the Schwarz inequality
shows that it is a strong-operator limit of {H}. Of course H, < H for all a
and H is the least operator with this property. Thus H is characterized as the
(unique) least upper bound of { H, }. If all the H, lie in a von Neumann algebra
AR, then H lies in &.

If 0 < A < I, by passing to the function representation of (A), (4'/")
can be seen to be a monotone increasing sequence bounded above by I. It
has a least upper bound E which is its strong-operator limit. Then (42") has
E? as its strong-operator limit. But (4'") = (4%/*") is a subsequence of
(A?™); so that E = E2. One can show, now, that E is the projection on the
closure of the range of A. We denote this range projection by R(A). As
R(TT*) = R(T) for each bounded T, we conclude that the range projection
of each T in a von Neumann algebra £ lies in . Thus von Neumann algebras
have many projections. If {E_,} is a family of projections their union, v ,E_,
and their intersection, A E,, are the projections on the subspace spanned by
their ranges and on the intersection of their ranges, respectively. Since
R(E + F) = E v F, we see that E v F e # if the projections E and F lie in
R. If {E,} is a family of projections in the von Neumann algebra # then
unions of finite subfamilies lie in # and form a monotone increasing net
(bounded above by I) with least upper bound (strong-operator limit) v_E,.
Thus (E=)V, E,e ®. Since E -V, (E — E,) =/, E,,, E,e®. Let P be
the union of the range projections of all operators in the von Neumann
algebra #; then PA = A for all A in £ so that P is a unit for 2. For con-
venience, when we speak of von Neumann algebras, henceforth, we assume
that they contain I.

The algebra #(5#) is an example of a von Neumann algebra. Its centre
consists of scalar multiples of I. Those von Neumann algebras with centre
consisting of the scalar operators only are called factors. Another example
is constructed from the algebra of multiplications on L, (S, x) (S a measure
space with measure x) by bounded measurable functions. This is an abelian
von Neumann algebra. Recalling that an abelian C*-algebra is *-isomorphic
with some C(X) and noting that each von Neumann algebra is a C*-algebra,
one naturally wonders about the special nature of X in the case of an abelian
von Neumann algebra.
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THEOREM 2.3. If &/ is an abelian von Neumann algebra thenof =~ C(X), with
X a compact Hausdorff space in which the closure of each open set is open (as
well as closed).

We say that X is extremely disconnected in this case and call the sets which
are both closed and open clopen sets.

Since each bounded monotone increasing net {4} ins has a least upper
bound A4 in&/ and since the isomorphism between o/ and C(X) is order-
preserving, the same is true for each such net { f,} of functions in C(X). That
is, there is an f in C(X) which is a least upper bound for { f,}. This condition
will cause X to be extremely disconnected. From another viewpoint, we have
seen that./ has many projections. Each will correspond to an idempotent
function in C(X); and such a function is the characteristic function of a
clopen set.

If 4 corresponds to f in C(X) there is a largest clopen set O, on which f
takes values not exceeding 4. A clopen set on which f takes values not exceed-
ing A has the closure of the set of points at which f takes values exceeding
A in its complement. This last set and its complement are clopen. The
complement contains the first clopen set and is itself a clopen set on which
f takes values not exceeding 4. It is O,. The characteristic function of O,
is in C(X) and corresponds to a projection E, in &/. The characterization of
0, as the largest clopen set on which f takes values not exceeding 4 allows
us to conclude that

(1) E; < E, when 4 < 4,
(2 Azs2Ex = Ejps
(3) V,E, =Iand AE, =0.

As a matter of fact, E, =0 for A < —| A|| — ¢ for each positive ¢ and
E,=1Ifor A2 ||A|.A family of projections {E,} satisfying (1), (2) and (3)
is called a resolution of the identity; and the particular one we constructed
is called the resolution of the identity for A. If we assign to f_”w AdE, the
meaning of norm convergence of approximating Riemann sums, then

© 1Al
f ldEl=f LdE, = A.

—® =4l -e

This last formula is the classical Spectral Theorem. We can read out of this
discussion the fact that each self-adjoint operator is the norm limit of finite
linear combinations of mutually orthogonal “spectral projections” for
A with coefficients in sp(A).

There are two key approximation theorems at the base of the study of
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von Neumann algebras. If # < £(s#) we write
F' = {(T:TeB(H), TA=AT forall Ain #}.
We call #' the commutant of F.

THEOREM 2.4. (Double Commutant Theorem) If & is a von Neumann algebra
(containing I) then (R') = A.

Of course #Z = (#’). Suppose A is in (#'). To show that A is in the
strong-operator closure of # (hence in #), we must show that given a finite
set of vectors x,,..., x, there is a T in & such that || (T — A)x,]| is small.
For the idea of the argument, we do this for one vector x,. Let E, be the
projection with range [#x, ]. Since the'range of E, is stable under B and B*
for each B in #, E,e #'. Thus A commutes with E; and Ax, € [#x,], so
that thereisa T'in & with ||(T — A)x, || small. The case of n vectors is handled
by using n x n matrices with entries in & acting on J# @ ... @ J# (n times)
in this same fashion.

The second key approximation result is:

THEOREM 2.5. (Kaplansky Density Theorem) If U is a self-adjoint algebra
of operators on a Hilbert space then each operator in the unit ball of the strong-
operator closure, W™, of W is in the strong-operator closure of the unit ball
of A. Moreover, self-adjoint operators in (U~), are approximable by self-
adjoint operators in (N),, positive operators by positive operators; and, if U
is norm-closed, unitary operators by unitary operators.

The ingredients of the proof are the following. Suppose H is a self-adjoint
operator inr (A7), . If (T,) is a net of operators in U tending to H in the weak-
operator topology then ([T, + T.*]) tends to H in this topology. Since H is
in the weak-operator closure of the set of self-adjoint operators in % and this
set is convex, H is in the strong-operator closure of this set. Let (H,) be a
net of self-adjoint operators in 2I with strong-operator limit H. With the aid
of the function representation of commutative C*-algebras, we can apply
continuous functions defined on the reals to self-adjoint operators. If f is
such a function and f(4) = A for 2in [—1, 1] then f(H) = H. If, in addition,
the range of fis in [ — 1, 1], then || f(K)| < 1 for each self-adjoint K. Finally,
if f defines a strong-operator continuous mapping on the self-adjoint
operators, then (f(H,)) has f(H) (=H) as strong-operator limit and
lf (H,)|| < 1. Now f(H,) is in the norm closure of U so that there is some
self-adjoint operator in the unit ball of A near f(H,) in norm, hence, strong-
operator near f(H,) (and H).

What can be proved is that each continuous f which vanishes at oo
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defines a strong-operator continuous function on the self-adjoint operators
in #(s¢). The fact that multiplication is strong-operator continuous on
bounded sets yields the result that polynomials are strong-operator con-
tinuous on bounded sets of self-adjoint operators. With the Stone—Weier-
strass theorem one concludes, now, that all continuous functions are strong-
operator continuous on bounded sets. The Cayley Transform H — (H —il)
(H + il)"! = u(H) maps self-adjoint operators H into unitary operators
and is strong-operator continuous—by inspection. Moreover, #(H) does not
have 1 in its spectrum. The function —i(z + 1)(z — 1)™! is an inverse to the
Cayley Transform (where |z| = 1 and z # 1). I f is a continuous real-valued
function on R vanishing at oo, define g(z) to be f(—i(z + 1)(z — 1)7!) for z
different from 1 and z of modulus 1. Then, letting g(1) be 0, g is continuous
on the unit circle (since f vanishes at oo) and g(w(H)) = f(H). This exhibits
f as the composition of two strong-operator continuous mappings, the
Cayley Transform and a continuous function g on the bounded set of unitary
operators. For arbitrary operators T'in (U ~),, we use U, the 2 x 2 matrices
over A~ acting on # @ #. The operator H with 0 on the diagonal and
T, T* at the off-diagonal positions is self-adjoint, has norm 1 and is in
(A3),. It is a strong-operator limit of self-adjoint operators of norm 1 in 2.
Each entry has norm not exceeding 1 and tends to the corresponding entry
of A. Thus T is the strong-operator limit of elements in (21),.

3. ALGEBRAIC STRUCTURE IN VON NEUMANN ALGEBRAS

The first crude division of von Neumann algebras into distinct algebraic
isomorphism classes can be effected in terms of minimal projections. The
most forceful use of minimal projections occurs in connection with factors.
A projection E in a von Neumann algebra £ is said to be minimal (in #) when
E # 0 and 0 < F < E for a projection F in & only if F = E. Clearly the
property of being minimal for a projection is preserved under *-isomorphisms.
The one-dimensional projections in £(#) provide examples of minimal
projections, and this situation is virtually general.

THEOREM 3.1. If A is a factor with a minimal projection, then I is the sum of
minimal projections in #. The cardinal number n of all families of minimal
projections in M with sum I is the same; and M is *-isomorphic to & (),
where H# is n-dimensional.

In the situation described in this theorem, .# is said to be a factor of type I .
For a factor with a minimal projection, the theorem stated constitutes a
complete description of its algebraic structure (two factors with a minimal
projection are *-isomorphic if and only if they have the same cardinal n).
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Restricting this discussion to factors is not a serious limitation. Roughly
speaking, each von Neumann algebra is a direct sum of factors. More pre-
cisely, when 5 is separable, a von Neumann algebra is a direct integral of
factors. The indexing family for the “sum” is a measure space and, instead of
summing, we must integrate the component “factors”. In any event, the
model of a von Neumann algebra as a direct sum of factors is an excellent
guide to their structure. It places the proper emphasis on the role of factors
in the theory.

For a finer analysis of the algebraic structure of von Neumann algebras,
it is useful to develop a theory which compares the sizes of the ranges of
projections in such an algebra, relative to that algebra.

If E and F are projections in a von Neumann algebra &, we say that E
is equivalent to F (modulo 2), and write E ~ F (mod £), when there is an
operator V in # mapping the range of E isometrically onto that of F.

Replacing V by VE, we can require that ¥ be “normalized” so that it
annihilates the range of I — E. In this case, we say that V is a partial isometry
with initial projection E and final projection F. A computation shows that
V*V = E and VV* = F. Conversely, if V satisifes these equations, it is a
partial isometry with initial projection E and final projection F. The pro-
jection E is a partial isometry with initial and final projection E:; so that
E ~ E. If V is a partial isometry with initial and final projections E and
F, respectively, then V* has F and E as initial and final projections, res-
pectively. Thus F ~ E if E ~ F. If, in addition, W is a partial isometry with
initial projection F and final projection G, then WV is a partial isometry
with initial projection E and final projection G. Thus E ~ G, if E ~ F and
F ~ G. It follows that ~ is an equivalence relation on the projections of . It
determines when two projections have “the same size™ as measured by
operators in X.

It may seem like a difficult project to find isometries in # comparing
projections. Actually, arbitrary operators in £ do almost as well. The key
to this observation is the “polar decomposition” of operators. Noting that
| Tx||? = | (T*T)¥x ||, we see that the operator ¥ which maps (T*T)*x
onto Tx extends to an isometry of the closure of the range of (T*T)* onto
that of T. Extending V by defining it to be 0 on the orthogonal complement
of the range of (T*T)* produces a partial isometry with initial space the
closure of the range of (T*T)?* (which is the closure of the range of T*); and
T = V(T*T)% If Te®R, then (T*T)! is in the C*-algebra generated by T,
hence in #. One shows without difficulty that ¥ commutes with each self-
adjoint operator commuting with T'; so that Ve (#') = #. It follows that
R(T) ~ R(T*). In particular, if T maps some part of the range of E onto
some part of the range of F, that is, if FTE # 0, R(FTE) ~ R(ET*F) so that E
and F have equivalent non-zero subprojections. Now {TEx:x in H, T in
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) is stable under 2 and &', so that the projection Q on the subspace spanned
by this set is in #' and #” (=%). Thus Q is in the centre, 4, of Z. If FTE = 0
for all T in # then FQ = 0; and F < I — Q. In the situation where E < Q
and F < I — Q, no operator in £ will map a non-zero vector in the range of
E onto one in the range of F. We conclude, from this discussion, that E and
F fail to have equivalent non-zero subprojections in £ if and only if they are
“separated” by a central projection (E < Q, F <1 — Q).

Associated with the equivalence relation ~, there is a partial ordering on
the equivalence classes. We write E < F when E ~ E; < F. (All the usual
notational conventions related to a partial ordering will be used, e.g. F 2 E
as well as E X F, etc.). There is no difficulty in showing that E < E or that
E<GfEZSFand F S G.Itistruethat E~ Fif ES Fand F < E; but this
requires a Hilbert space analogue of the Cantor-Bernstein argument in set
theory to establish it. The study of this partial ordering in a von Neumann
algebra, is the comparison theory of projections in that algebra.

In a factor, there is no possibility of separating non-zero projections by a
central projection. Such projections always have equivalent non-zero
subprojections. Combining this with the fact that E~ F if E=)E,
F =YF, and E, ~ F, for all a, and an exhaustion argument, we have:

TueoOREM 3.2. If E and F are projections in a factor M, then either E < F or
F<E.
To parallel this general comparability in factors we have:

THEOREM 3.3. (The Comparison Theorem) If E and F are projections in a
von Neumann algebra R, there is a central projection Q such that QE < QOF
and(I — Q)F < (I — Q)E.

By analogy with set theory, a projection E in # equivalent to a proper
subprojection is said to be infinite (relative to &), otherwise finite. A factor .#
with a non-zero finite projection but nominimal projection is said to be of
type II; of type II, if I is finite, of type II_ if I is infinite. If .# has no non-
zero finite projection it is said to be of type II1. Loosely speaking, a von
Neumann algebra is of type I, I1,, I, or III if all the factors appearing in
its decomposition are of that type. It is possible to define von Neumann
algebras of various types without reference to the factors appearing in the
decomposition—that is, in “global” terms. Each von Neumann algebra is
the direct sum of von Neumann of various “pure” types (some of the sum-
mands possibly not present).

It is apparent that type is preserved under *-isomorphism, and we have
seen that all factors of type I, (same n) are *-isomorphic. Are there factors
not of type I? If G is a countable (discrete) group and # is I,(G), the square
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summable functions on G, and L_, R are the operators defined on # by:

(LyX)(g) = x(g5 '9), (R, x)(9) = x(ggo),

then L, and R, are commuting unitary operators. Let £ and £ be the von
Neumann algebras generated by {L,: g in G} and {R: g in G} reSpCCtlvely
Then & = R (so that #; = & G) If each conjugacy class in G is infinite
(with the exception of {e}) then % (and R;) is a factor of type II,. Specific
examples arise from the group IT of those permutations of the integers
which move at most a finite number, and F, the free (non-abelian) group on n
generators (n > 2). It is known that #; and & _are not isomorphic. Using
weak-commutativity techniques that establish this, a non-denumerable
collection of groups were constructed, recently, with associated II, factors
pa1rw1se non-isomorphic.

If A is a factor of type II , acting on # and M is the algebra of all those
N, x N, matrices with entries from .# which, acting on J#, the ¥,-fold
dlrect sum of s with itself, yield bounded operators, then ./ is a factor of
type II_. Moreover, each factor of type I arises in this way from a factor
of type II,.

To exhibit factors of type III, we make use of the (unique) C*-algebra
A which is generated as a C*-algebra by an infinite sequence (.47) of C*-
subalgebras ./, mutually commutmg, each isomorphic to the algebra of
complex 2 x 2 matrlces There is no difficulty in constructing ¥, explicitly,
on L,(0,1). Representmg each element of #jasa2 x 2 matrix, let p‘ be the
state of .#7; which assigns Aa + (1 — A)b to 4; in 4, where a and b are the
diagonal entries of A; and 4 is in [0, 1]. There is a state p, of A with the
property that

PiA - Ay) =Pl (A))... 05 (4,),
when A4, e A,...,4; € A, and jy,...,j, are distinct. Applying the
GNS constructjon to IR we construct representations of 7, of A on 5 ;. Then
n, and =, are irreducible; so that n (W)~ = AB(#,) and =, (A)” = 9?(3? )-In
addition = *(‘ZI)‘ is a factor of type II, (*-isomorphic to ,‘?n, curiously enough).
Withiand 4'in (0, 3), = A(QI) and x, (A)~ arenot *-isomorphic and are factors
of type IIL. Thus 7,(A)" is a factor of type III for A # 0,4, 1; and this family
contains a non-denumerable infnity of non-isomorphic factors of type III.

Recent results make deep inroads into the analysis of the structure of
type III von Neumann algebras. In essence each such can be realized, in a
canonical manner, as the von Neumann algebra generated by a one-para-
meter group of unitary operators, each inducing an automorphism of a
von Neumann algebra £, having no summand of type III, and £,
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4. ACTION OF VON NEUMANN ALGEBRAS ON SPACES

The problem of when two von Neumann algebras act in the same way on
their underlying Hilbert spaces can be reduced to a comparison of their
algebraic structure. The main result is:

THEOREM 4.1. (Unitary Implementation) If #, and &, are von Neumann
algebras acting on Hilbert spaces #, and #,, respectively, x, and x, are unit
vectors in H, and ¥, such that [R,x,] = [®\x,] = #, and [R,x,] =
[#,x,] = #,, and ¢ is a *-isomorphism of R, onto R, then there is a unitary
transformation U of #, onto-#, such that A = U~ '¢(A)U.

We say that U implements the isomorphism ¢. Diligent use of this result
and the comparison theory of projections reduces the question of action on
the space to one of algebraic type for von Neumann algebras.

If the vector state w, |#, can be “transported” to a vector state »_ |2, by
means of ¢ (that is, if we can find a unit vector y, in s, such that (4Ax,, x,)
= (#(A)y,,y,> forall Ain #,), and if y, can be chosen cyclic for Z, then the
mapping Ax, — ¢(A)y, is an isometric mapping of #,x, onto #,y, and
extends to a unitary transformation U of [#,x,] (=#,) onto [Z,y,]
(= #,). There is no difficulty in showing that U implements ¢.

In any event the functional w defined by: w(¢(4)) = (Ax,, x,), is a state
of #,. It has certain continuity properties. The programme outlined above
motivates the study of such states.

A state w of a von Neumann algebra £ is said to be completely-additive
when w(} E,) = Y  o(E,) for each orthogonal family {E,} of projections in
R.

A *-isomorphism of one von Neumann algebra £, onto another %,
preserves order; so that Zaqb(Ea), the smallest projection larger than each
@(E,), is the image ¢(}_E,) of the projection ) E,, when {E_} is an orthogonal
family of projections in . Thus wo ¢ is a completely additive state of R,
wis a completely-additive state of £, .

An ostensibly more stringent continuity requirement is that lim, w(H,) =
o(H) for each monotone increasing net (H) of self-adjoint operators in £.
States which satisfy this condition are said to be normal states (of #). Finally,
there are the assumptions that  is weak (or strong)-operator continuous on
(#),. We saw that the equivalence of these two assumptions was a conse-
quence of the fact that convex sets of operators have the same weak and
strong-operator closures. The main result relating these conditions on w is:

THEOREM 4.2. If w is a state of the von Neumann algebra A the following con-
ditions are equivalent.

(a) There is a countable family {y,} of mutually orthogonal vectors such that
Z" yn “ : = 1 and w= anyn|%'
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(b)There is a countable family of vectors {x,} such that ) | x,||*> =1 and
w="Y,0,|2

(¢) w is weak-operator continuous on (#),.

(d) w is strong-operator continuous on (%),.

(e) w is normal.

(f) w is completely-additive.

As for the possibility of realising a normal state w as a vector state, the
condition for this can be described, best, in terms of the support of w. If
I — E is the union of all projections in # which are annihilated by w, E is
said to be the support of w. It follows from the fact that w is normal that
oI — E) = 0. It is not difficult to conclude that w(H) > 0 unless R(H) <
I — E, for a positive H in &.

THEOREM 4.3. A normal state of a von Neumann algebra # acting on a Hilbert
space X is a vector state if and only if its support E is a cyclic projection in #
(that is, E has a range [R'z] for some vector z).

In the circumstances of the Unitary Implementation Theorem, there is a
vector x, such that [#),x,] = 5 ,. If E is any projection in £, then [%, Ex, ]
= [E®,x,] = E(s#,); so that the support of each normal state is a cyclic
projection in £,, and each normal state of #, is a vector state. An application
of comparison theory allows us to choose the vector representing the state asa
generator for 5, under £, when the state is separating (since [#,x,] = #,),
which supplies what is needed for the proof of Theorem 4.1.



