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The structure of factors, by S. Anastasio and P. M. Willig, Algorithmics 
Press, New York, 1974, iii+116 pp. 
In a paper appearing in the 1929 Mathematische Annalen {Zur Algebra 

der Funktionaloperatoren und Theorie der normalen Operatoren), von 
Neumann initiated the study of Rings of operators (renamed von Neumann 
algebras in J. Dixmier's classic, Les algèbres d'opérateurs dans l'espace 
Hilbertien, Paris, 1957). These are algebras, JR, of bounded linear trans
formations (operators) of a Hubert space //into itself, closed in the strong-
operator topology (An-+A means that Anx-+Ax, for each x in H) and 
having the property that A*, the adjoint of A, is in R if A is. Von Neumann 
saw two motivating forces behind the study of these algebras: applications 
to the newly emergent Quantum Physics, and application to the study of 
infinite groups. Quantum Physics, as it was being formulated, was in
volved with algebraic combinations of (selfadjoint) operators. It was 
certain to require (at the mathematical level) a deeper understanding of the 
structure of algebras of operators. The technique of group algebras had 
been so useful in the study of finite groups that some corresponding 
construct for infinite groups was certain to be crucial for their analysis. 

The detailed study of von Neumann algebras was undertaken in a series 
of papers written in collaboration with F. J. Murray. The first appeared 
in the 1936 Annals of Mathematics, On rings of operators. Since noncom-
mutativity was the basic technical problem, Murray and von Neumann 
moved quickly to the study of those von Neumann algebras, factors, 
whose centers consist of scalar multiples of the unit element. 

As in much of Functional Analysis, the statements of results in the 
theory of operator algebras are algebraic in flavor. The ideas, proofs and 
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difficulties are analytic. The condition that the von Neumann algebra be 
closed in the strong-operator topology is the first such analytic "subtlety". 
With no closure assumption, there are no (serious) results (other than 
those which refer to a closure). Other closure conditions can be (and are) 
imposed. Norm-closure (closure relative to the norm induced by the 
operator bound) leads to the (broader) class of C*-algebras. All other 
conditions commonly imposed lead, again, to the von Neumann algebras— 
though this takes some proving. Loosely speaking a von Neumann algebra 
bears the same relation to a C*-algebra that an algebra of bounded Borel 
measurable functions bears to an algebra of continuous functions. This 
relation takes explicit form in theorems about commutative operator 
algebras. In the general case, the spirit of this relationship pervades the 
subject in the nature of the proofs and the formulation of results. In 
particular von Neumann algebras are generated by projections (self-
adjoint idempotents), in the same way that the characteristic functions of 
Borel sets generate the algebra of bounded measurable functions. 

The basic technique of Murray and von Neumann consists of a method 
for comparing the "sizes" of projections in a von Neumann algebra R 
(relative to R). Two projections E and F in R are said to be equivalent 
modulo R when some operator in R maps the range of E isometrically 
onto the range of F. When the von Neumann algebra is a factor, M, 
Murray and von Neumann develop a dimension function, d, on the set of 
projections in M uniquely characterized (up to a positive multiple) by 
the properties of taking the same value on equivalent projections, nonzero 
values on nonzero projections and "additivity" (d(E+F)=d(E)+d(F) 
when EF=*0). The value 00 may be assumed by d (on "infinite" pro
jections—those equivalent to some proper subprojection). The theory 
indicates that d can have the following ranges (after suitable normali
zation): {0, 1, 2, • • • , «}, [0, 1], [0, oo], and {0, oo}. These possibilities 
correspond to (define) the classes of factors of type In (n can be oo), 
type Hi, type II», and type III, respectively. The first class (type In) is 
characterized by having minimal projection. In this case the factor is 
•-isomorphic to the algebra of all bounded operators on «-dimensional 
Hubert space. (The * signifies that the isomorphism preserves the ad
joint—equivalently, carries selfadjoint elements onto selfadjoint elements. 
The isomorphism automatically preserves norms and the strong-operator 
topology on the unit ball in the algebra.) 

The first question that comes to mind is that of the actual existence of the 
other classes. In their 1936 article Murray and von Neumann construct 
examples of type IIX and 11^ factors by Ergodic Theory techniques. In 
the third paper (written by von Neumann, Annals of Mathematics, 1940) 
a more complicated application of this technique was used to construct 
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factors of type III. The factors of type IIX are characterized as having no 
minimal projections and the identity operator finite (i.e., not an infinite 
projection). Those of type II*, have no minimal projection, some nonzero 
finite projection, and I is infinite. The other factors comprise the type 
III class (all nonzero projections are infinite). 

The next question, in order of importance, is that of "isomorphism". 
As noted, all factors of type In are *-isomorphic. Is the same true for 
factors of type IIx? In other words, is the job of classification (up to 
algebraic type) completed by the above separation in terms of the range 
of the dimension function? Murray and von Neumann answered this 
question (negatively) in their fourth paper (which appeared in the 1943 
Annals of Mathematics) by producing two nonisomorphic factors of 
type IIx. In the process they construct a class of examples of such factors 
different from those they described in the 1936 article and closer to the 
initial motivation of group algebras. 

If G is a countable (discrete) group each of whose conjugacy classes 
(other than that of the identity element) is infinite, His l2(G)9 the Hubert 
space of square-integrable, complex-valued functions on G, and Lg is the 
(unitary) operator corresponding to left translation by g'1 on G (that is, 
(Lg(cp))(g')=(p(g-1g')), then the von Neumann algebra (on H) generated 
by {Lg\g in G} is a factor of type IIj. (The infinite conjugacy classes 
provide the necessary noncommutativity to yield a factor.) Two non
isomorphic factors of type IIx are obtained by applying this construction 
to the free (nonabelian) group on two generators and to the group of 
finite permutations of the integers. In the latter case, given a finite number 
of group elements, some group element other than the identity commutes 
with all of them. This translates itself into a corresponding approximate 
(in the sense of the strong-operator topology) commutativity property for 
the associated factor. The same property is not enjoyed by the factor 
associated with the free group; for this property would force more of an 
approximate, finitely-additive measure on the free group than it can 
tolerate. 

At this point, Murray and von Neumann had clarified the problem. 
There was no longer a question (in more than a formal sense) of how many 
•-isomorphism classes of factors of type IIx there are. There are certainly 
an infinite number. Moreover it was abundantly clear that refined con
tortions with groups and approximate commutativity would produce an 
infinite number of nonisomorphic Hi factors. It was equally clear (with 
a small amount of preliminary manipulation) that this route to the exam
ples would be horribly complicated (in a group, combinatorial, analytic 
sense) and not terribly interesting from the point of view of usable tech
nique or information about the structure of factors. To whom was all 
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this clear ? To those few of us who took up the subject of factors in 1950— 
and I daresay, to Murray and von Neumann after they had located the 
two isomorphism classes. No one had worked with factors from the time 
Murray and von Neumann stopped (1943) until 1950 and no one worked 
with factors other than Murray and von Neumann while they were at 
work. 

Precisely the group, approximate-commutativity route to an infinite 
number of examples of nonisomorphic IIX factors was followed (from 
1962 to 1969). It was as complicated and uninteresting as expected (with 
one exception to be noted). This is not to say that, as a mathematical 
work, it is unimportant. It provided a decent burial for the question still 
open in a formal sense. But should it be exhumed, displayed in a book 
and extolled in the preface to that book? Much that is important as 
mathematical work and must be endured on the route to some goal is 
not worth reading. Nonetheless the first half of the book under review 
is devoted to a systematization and presentation of this work. 

J. T. Schwartz writes a brief preface to the book. It is not carefully 
written. He attributes direct integral theory to Murray and von Neumann. 
It is work done and published by von Neumann alone (Ann. of Math., 
1949). Schwartz notes that "They [Murray and von Neumann] also 
succeeded in giving a complete structural account of a special subclass of 
the type II factors, the so-called hyperfinite factors of type IIx." This is 
quite misleading. We know that it represents one isomorphism class ; but 
aside from that we know very little about its structure. Does it contain a 
nonhyperfinite factor? Schwartz states that "Investigation of • • • and of 
factors continued actively in the period immediately following the von 
Neumann-Murray work." Not so—the subject lay fallow until 1950. 
He goes on to say "• • • there was little success in analyzing the structure of 
factors deeply. In particular, no one was able to decide the fundamental 
question of the existence or nonexistence of infinitely many nonisomor
phic factors of type IIx and of type III." Everyone was able to decide the 
question—not many thought it worth the enormous effort to arrange for 
its burial (at least not in the same plot of ground in which Murray and 
von Neumann had placed their two examples). Schwartz then claims, 
about the eventual solution, that "this work has made possible subsequent 
vigorous steps in our understanding of the factor theory and of the struc
tural invariants of factors." The Hi examples have done virtually nothing— 
except for the third isomorphism class of IIx factors produced by Schwartz 
himself (just prior to the Stockholm Congress in 1962)! Schwartz develops 
a technique for projecting the algebra of all operators onto certain factors 
which is quite useful in other connections and leads to interesting struc
tural questions. It is the most important technique to emerge from the 
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entire study. If Schwartz's statement has any validity, it resides in his 
having included the IIX and type III studies in one statement—an unfor
tunate union, for they are quite different in quality. The type III develop
ments are really important. 

It may seem unwarranted to subject Schwartz's short preface to this 
searching scrutiny. Very likely, he just wants to give the book a good 
sendoff and stay within reasonable bounds of accuracy. But the danger of 
convincing the unitiated that there is really much worth detailed study in 
the IIx isomorphism classes (as they now stand) is too great to let it pass 
unnoted. It is all the more misleading because it is difficult work. Complex
ity is often confused with value in mathematics. 

The recent drive to the infinite number of isomorphism classes of 1^ 
factors began some years after Schwartz's notable contribution. W.-M. 
Ching constructed a fourth class in his thesis under I. Halperin's direction. 
The drive ended a year later when, quite appropriately, another research 
student (this time of G. Reid), D. Mc Duff, constructed an infinite set. 
During that year, some of the older lions, sensing the kill, moved in to 
find fifth (Sakai), sixth and seventh (Dixmier-Lance), and eighth and 
ninth (Zeller-Meier) classes of 1^ factors. 

The situation for type III factors was very different. Murray and von 
Neumann had constructed many examples but had not distinguished 
isomorphism classes of type III factors. (It is likely from their Une of 
work that they had not made a serious attempt to do so.) Employing the 
approximate-commutativity technique of Murray and von Neumann, 
modified for type III factors, L. Pukanszky constructed two nonisomorphic 
factors of type III (Math. Debrecen 1956). Shortly after his construction 
of the third isomorphism class of IIx factors, Schwartz extended his method 
to yield a third isomorphism class of type III factors. 

The physicists' interest in the von Neumann algebra development was 
far from negligible. R. Haag's "local ring" formulation of quantum field 
theory (associating von Neumann algebras with regions of Minkowski 
space-time) had opened a promising line of investigation. H. Araki had 
established (1963) that type III von Neumann algebras were present in the 
description of the free field. Further work indicated strongly that most of 
what would be found in the way of von Neumann algebras associated 
with the quantum physics of infinitely extended systems would be type 
III factors (and probably hyperfinite, at that—that is, generated by an 
ascending union of algebras *-isomorphic to finite-dimensional matrix 
algebras each containing I). 

Working on his Ph.D. thesis (as a physics student under Arthur 
Wightman), R. T. Powers studied representations of canonical anticommu
tation relations (CAR). He proved (not in, but as an offshoot of, his thesis) 
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that there is a one parameter family of such representations generating 
mutually nonisomorphic factors of type III. From their very nature, 
they are hyperfinite factors. Thus Powers had answered another important 
question. There are nonisomorphic, hyperfinite, type III factors (unlike 
the IIj situation, where Murray and von Neumann had proved them iso
morphic). The interplay between mathematics and physics was vital in 
this work. The methods Powers used were inspired by physical structure 
(notably the "cluster decomposition property" of states—the tendency 
for their correlations to diminish far off in space—or time), but he made 
critical use of the methods that had been developed in C*-algebra theory 
(notably Glimm's results on UHF algebras—again, thesis work). 

At this same time, M. Tomita proposed a solution to an old question 
raised by Murray and von Neumann concerning type III factors. M. 
Takesaki systematized, extended and developed the ideas of Tomita, 
fashioning a powerful tool for the study of type III von Neumann algebras. 
He, H. Araki and A. Connes have used this tool, over the past four years, 
in an awe inspiring analysis of such algebras. If anything can be described 
as "vigorous steps in our understanding of the factor theory and of the 
structural invariants of factors," this is it. In effect they have established 
that type III von Neumann algebras are crossed products of the reals with 
a type II von Neumann algebra and proved a uniqueness for this decom
position. The problem returns, then, to the structure of factors of type 
IIx. Despite the infinite set of nonisomorphic examples, we know precious 
little about this structure. 

The second half of the book under review devotes itself to type III fac
tors. It begins with a discussion of infinite tensor products and a presen
tation of Powers's result on nonisomorphic, hyperfinite, type III factors. 
They take an effective route to this result. Unfortunately their route 
avoids one of the most striking and important results Powers obtains in 
his proof—the transitivity of pure states of a UHF algebra (in particular, 
of the CAR) under *-automorphisms (Corollary 3.8 of Powers's 1967 
Annals of Mathematics article). After this they present an incomplete 
though useful, account of the Araki-Woods extension of Powers's work. 
This is followed by J. J. Williams' version of the construction of a con
tinuum of nonisomorphic, nonhyperfinite type III factors. Again, we 
are back at a worthy result not worth detailed exposition in a book. 

It would be unreasonable to expect the authors to record the truly 
important developments centering on the analysis of type III von Neumann 
algebras. These results are too recent for that. I would advise the reader 
interested in studying this area to wait for such a book and to hope that 
it is written by one of the heroes of that victory. 

RICHARD V. KADISON 


