ALGEBRAIC AUTOMORPHISMS OF OPERATOR ALGEBRAS

RICHARD V. KADISON AND JOHN R. RINGROSE

1. Introduction

In [9] we initiated a study of the group of *-automorphisms of a C*-algebra in its norm topology proving, there, that if $||\alpha - \iota|| < 2$ for a *-automorphism α of a C*-algebra \mathfrak{A} acting on \mathscr{H} , there is a unitary operator U in \mathfrak{A}^- , the weak-operator closure of \mathfrak{A} , such that $\alpha(A) = UAU^*$ for all A in \mathfrak{A} . Using the holomorphic function calculus together with the techniques of C*- and von Neumann algebras, we showed that, in this case, α lies on a norm-continuous, one-parameter group of *-automorphisms of \mathfrak{A} and is, therefore, the exponential of a derivation of \mathfrak{A} . The derivation theorem [2; p. 312, Corollaire] completes the argument. We noted, as a consequence of those results, that the connected component of the identity in the group of *-automorphisms of \mathfrak{A} is open and (algebraically) generated by its norm-continuous, one-parameter subgroups.

Since a *-automorphism α is an isometry, $\|\alpha\| = 1$; so that, in any event, $\|\alpha - \iota\| \leq 2$. One of the main points of [9] is that as soon as α leaves the surface of the ball (of radius 2 about ι) in which it must lie, it becomes weakly-inner. Nevertheless, for the structural results about the (norm) topological groups of *-automorphisms, it would suffice to establish our results for a *-automorphism α such that $\|\alpha - \iota\| < a$, with α any positive constant. J. Dixmier gives such a proof [2; pp. 313-315], which he ascribes to J. P. Serre, where $a = \sqrt{3}$. By applying arguments similar to ours directly to an automorphism α of an arbitrary Banach algebra (rather than to an implementing operator), G. Zeller-Meier [14] noted that α is the exponential of a derivation when its spectrum lies in the open right half-plane. S. Sakai [12; 4.1.19] concludes from this that an automorphism α (not necessarily adjoint-preserving) of a C*-algebra \mathfrak{A} acting on a Hilbert space is implemented by an invertible operator in \mathfrak{A}^- if $\|\alpha - \iota\| < 1$.

If α is an automorphism of \mathfrak{A} , it may happen that $\|\alpha\| > 1$ when α is not assumed to be adjoint-preserving. In this case, the condition $\|\alpha - \iota\| < 2$ no longer has the topological significance of moving α off the surface of a ball in which it has to lie. Despite this, it turns out that (once again) α is weakly inner when it is interior to this ball. The purpose of this note is to prove that fact (and related results) for arbitrary automorphisms of C*-algebras; (see Theorem 5).

2. Automorphisms

With \mathfrak{A} a Banach algebra, we denote by $\mathfrak{sp}(A)$ the spectrum of an element A of \mathfrak{A} . Our automorphisms of C*-algebras are not, in general, adjoint-preserving; those which preserve adjoints are described as *-automorphisms. As usual, $\mathfrak{B}(\mathcal{H})$ denotes the algebra of all bounded linear operators acting on the Hilbert space \mathcal{H} .

If \mathfrak{A} is a C*-algebra with centre \mathscr{C} , each automorphism α of \mathfrak{A} leaves \mathscr{C} invariant. An element C of \mathscr{C} is normal, and therefore is self-adjoint if and only if it has real spectrum. From this, and since α preserves spectrum, it follows that the restriction

Received 31 October, 1972.

 $\alpha|\mathscr{C}$ is a *-automorphism of \mathscr{C} . Uniqueness of the norm topology in a C*-algebra ([10; p. 188, Theorem 4.1.20]; for a more general result see [8]) implies that α (and α^{-1}) is continuous.

For completeness, we include a short proof of this last result. With A self-adjoint in \mathfrak{A} , there is a real number λ in sp(A) such that $|\lambda| = ||A||$. Since $\lambda \in \text{sp}(\alpha(A))$,

$$\|\alpha(A)\| \ge |\lambda| = \|A\|;$$

so α is norm increasing on self-adjoint elements. We prove next that the set \mathcal{M} of self-adjoint elements of \mathfrak{A} has image $\alpha(\mathcal{M})$ closed in \mathfrak{A} . For this, suppose that

 $A, A_n \in \mathfrak{A}, A_n = A_n^* (n = 1, 2, ...)$ and $\|\alpha(A_n) - \alpha(A)\| \to 0$ as $n \to \infty$.

Then

$$\|A_n - A\|^2 = \|(A_n - A) (A_n - A^*)\| \le \|\alpha((A_n - A) (A_n - A^*))\|$$

$$\le \|\alpha(A_n) - \alpha(A)\| \|\alpha(A_n) - \alpha(A^*)\| \to 0,$$

since

$$\|\alpha(A_n) - \alpha(A)\| \to 0$$
 and $\|\alpha(A_n) - \alpha(A^*)\| \to \|\alpha(A) - \alpha(A^*)\|$.

Thus $A (= \lim A_n)$ is self-adjoint, and $\alpha(A) \in \alpha(\mathcal{M})$.

Since \mathcal{M} and $\alpha(\mathcal{M})$ are (real) Banach spaces, and the restriction $\alpha|\mathcal{M}$ is norm increasing, the Closed Graph Theorem shows that $\alpha|\mathcal{M}$ is continuous. Continuity of α on \mathfrak{A} now follows from the equation

$$\alpha(A) = \alpha(\frac{1}{2}(A + A^*)) + i\alpha(\frac{1}{2}i(A^* - A)).$$

We summarise in the following result the conclusions from the preceding paragraphs.

LEMMA 1. If \mathfrak{A} is a C*-algebra with centre \mathcal{C} , and α is an automorphism of \mathfrak{A} , then α is bicontinuous and the restriction $\alpha | \mathcal{C}$ is a *-automorphism of \mathcal{C} .

LEMMA 2. If \mathfrak{A} is a C*-algebra acting on a Hilbert space \mathscr{H} , α is an automorphism of \mathfrak{A} and $||\iota-\alpha|| < 2$, then α extends to an ultraweakly bicontinuous automorphism $\overline{\alpha}$ of \mathfrak{A}^- , which leaves the centre of \mathfrak{A}^- elementwise fixed, and $||\iota-\overline{\alpha}|| = ||\iota-\alpha||$.

Proof. With π the universal respresentation of \mathfrak{A} , there is a central projection P in $\pi(\mathfrak{A})^-$, and a *-isomorphism ϕ from $\pi(\mathfrak{A})^- P$ onto \mathfrak{A}^- , such that $\phi(\pi(A)P) = A$ for each A in \mathfrak{A} (see, for example, the first paragraph of the proof of [11; Theorem 4]). By [2; p. 54, Corollaire 1], ϕ is ultraweakly bicontinuous. The automorphism $\pi \alpha \pi^{-1}$ of $\pi(\mathfrak{A})$ is bicontinuous in the norm topology, and is therefore bicontinuous also relative to the ultraweak topology, since this is the weak topology on the Banach space $\pi(\mathfrak{A})$ [3; p. 237, proof of Corollaire 12.1.3.]. By means of the Kaplansky density theorem and the (separate) ultraweak continuity of operator multiplication, it follows (as in [9; p. 40, proof of Lemma 3]) that $\pi \alpha \pi^{-1}$ extends to an ultraweakly bicontinuous automorphism β of $\pi(\mathfrak{A})^-$, and that

$$\|\iota - \beta\| = \|\iota - \pi \alpha \pi^{-1}\| = \|\pi(\iota - \alpha) \pi^{-1}\| = \|\iota - \alpha\| < 2.$$

With Q a central projection in $\pi(\mathfrak{A})^-$, $\beta(Q)$ is another such projection by Lemma 1.

Since Q, $\beta(Q)$ are commuting projections, and

$$\|\beta(Q) - Q\| = \frac{1}{2} \|\beta(2Q - I) - (2Q - I)\| \le \frac{1}{2} \|\beta - \iota\| \|2Q - I\| = \frac{1}{2} \|\beta - \iota\| < 1$$

it follows that $\beta(Q) = Q$. By continuity, and the spectral theorem, β fixes each element in the centre of $\pi(\mathfrak{A})^-$. Since $\beta(P) = P$, the restriction $\gamma = \beta | \pi(\mathfrak{A})^- P$ is an ultraweakly bicontinuous automorphism of the von Neumann algebra $\pi(\mathfrak{A})^- P$, and leaves its centre elementwise fixed. With A in \mathfrak{A} ,

$$\begin{split} \phi\gamma\phi^{-1}(A) &= \phi\gamma\phi^{-1}\phi\big(\pi(A)P\big) = \phi\gamma\big(\pi(A)P\big) = \phi\Big(\beta\big(\pi(A)P\big)\Big) \\ &= \phi\big(\beta\pi(A)\ \beta(P)\big) = \phi\big(\pi\alpha\pi^{-1}\pi(A)\ P\big) = \phi\big(\pi\alpha(A)\ P\big) = \alpha(A). \end{split}$$

With $\bar{\alpha} = \phi \gamma \phi^{-1}$, $\bar{\alpha}$ is an ultraweakly bicontinuous automorphism of \mathfrak{A}^- , which extends α and leaves the centre of \mathfrak{A}^- elementwise fixed. Since the *-isomorphism ϕ is isometric,

$$\|\iota - \bar{\alpha}\| = \|\phi(\iota - \gamma)\phi^{-1}\| = \|\iota - \gamma\| = \|(\iota - \beta)|\pi(\mathfrak{A})^{-}P\| \le \|\iota - \beta\| = \|\iota - \alpha\|;$$

so $\|\iota - \bar{\alpha}\| = \|\iota - \alpha\|$.

For the next two lemmas, we shall employ the concept of the numerical range

$$W(T) = \{ \langle Tx, x \rangle : x \in \mathcal{H}, \|x\| = 1 \}$$

of a bounded linear operator T acting on a Hilbert space \mathcal{H} . We shall need the following properties:

- (a) W(T) is convex;
- (b) the closure $W(T)^-$ contains sp(T);
- (c) if \mathscr{H} is the direct sum $\Sigma \oplus \mathscr{H}_a$ of a family (\mathscr{H}_a) of Hilbert spaces, and $T = \Sigma \oplus T_a$ (where $T_a \in \mathscr{B}(\mathscr{H}_a)$ for each a, and sup $||T_a|| < \infty$), then $W(T)^-$ is the closed convex hull of $(\bigcup W(T_a))$.

For (a), which is the infinite-dimensional version of the Toeplitz-Hausdorff Theorem, we refer to [13]. For (b), it suffices (after (a)) to note that $W(T)^-$ contains the approximate point spectrum of T, and so contains the boundary of sp (T). A Banach space generalization of (b) is proved in [1; p. 88, Theorem 1]. Finally, (c) is an immediate consequence of (a), together with the definition of W(T).

LEMMA 3. If \mathcal{H} is a Hilbert space and α is an automorphism of $\mathcal{B}(\mathcal{H})$, there is an invertible element T of $\mathcal{B}(\mathcal{H})$ such that

$$\alpha(A) = TAT^{-1}(A \in \mathscr{B}(\mathscr{H})), \quad ||T|| = 1, \quad ||T^{-1}|| = ||\alpha||.$$

If, further, $\|\iota - \alpha\| < 2$, T can be chosen so that

$$W(T) \subseteq \{z : \operatorname{Re} z \ge \frac{1}{6} [4 - \|\iota - \alpha\|^2]^{\frac{1}{2}} \}.$$

Proof. By [6; p. 100, Theorem 2] there is an invertible element T of $\mathscr{B}(\mathscr{H})$, such that $\alpha(A) = TAT^{-1}$ for each A in $\mathscr{B}(\mathscr{H})$. Upon replacing T by $||T||^{-1}T$, we may suppose that ||T|| = 1; and it is apparent that, then, $||\alpha|| \leq ||T^{-1}||$. We can now choose sequences (x_n) , (y_n) of unit vectors in \mathscr{H} , so that $||Tx_n|| \to ||T|| = 1$ and $||T^{-1}y_n|| \to ||T^{-1}||$. For each n, choose an operator V_n , in the unit ball of $\mathscr{B}(\mathscr{H})$,

which maps $T^{-1} y_n$ to $||T^{-1} y_n|| x_n$. Then

$$\|\alpha\| \ge \|\alpha(V_n)\| = \|TV_n T^{-1}\| \ge \|TV_n T^{-1} y_n\| = \|T^{-1} y_n\| \|Tx_n\|;$$

whence $\|\alpha\| \ge \lim \|T^{-1} y_n\| \|T x_n\| = \|T^{-1}\|$, and so $\|\alpha\| = \|T^{-1}\|$.

Now suppose that $||\iota - \alpha|| < 2$, and let $r_0 = \frac{1}{6} [4 - ||\iota - \alpha||^2]^{\frac{1}{2}}$. We shall prove that $|\langle Tx, x \rangle| \ge r_0$ whenever x is a unit vector in \mathscr{H} . This implies that the point a, closest to 0 in the compact convex set $W(T)^-$, satisfies $|a| \ge r_0$. Elementary geometrical considerations then show that $W(T)^{-}$ is contained in the half-plane

$$\{z: \operatorname{Re} | a^{-1} | \bar{a}z \ge r_0\};\$$

and all the conclusions of the lemma are satisfied when T is replaced by $|a^{-1}|\bar{a}T$.

It remains to show that $|\langle Tx, x \rangle| \ge r_0$ when $x \in \mathcal{H}$ and ||x|| = 1. With E the one-dimensional projection whose range contains x_i ,

$$\| \iota - \alpha \| \ge \| (I - 2E) - \alpha (I - 2E) \| = 2 \| \alpha(E) - E \| = 2 \| TET^{-1} - E \|$$

$$\ge 2 \| Tx \|^{-1} \| (TET^{-1} - E) Tx \| = 2 \| Tx \|^{-1} \| TEx - ETx \|$$

$$= 2 \| Tx \|^{-1} \| Tx - \langle Tx, x \rangle x \| = 2 \| Tx \|^{-1} (\| Tx \|^{2} - |\langle Tx, x \rangle|^{2})^{\frac{1}{2}}$$

$$= 2 [1 - |\langle Tx, x \rangle|^{2} / \| Tx \|^{2}]^{\frac{1}{2}}.$$

Thus

$$\begin{split} |\langle Tx, x \rangle| \ge \frac{1}{2} \|Tx\| [4 - \|\iota - \alpha\|^2]^{\frac{1}{2}} \ge \frac{1}{2} \|T^{-1}\|^{-1} [4 - \|\iota - \alpha\|^2]^{\frac{1}{2}} \\ = \frac{1}{2} \|\alpha\|^{-1} [4 - \|\iota - \alpha\|^2]^{\frac{1}{2}} \ge \frac{1}{6} [4 - \|\iota - \alpha\|^2]^{\frac{1}{2}} = r_0, \end{split}$$

since $\|\alpha\| \leq 1 + \|1 - \alpha\| < 3$.

LEMMA 4. If α is an automorphism of a C*-algebra \mathfrak{A} and $\|\alpha - \iota\| < 2$, then there is a derivation δ of \mathfrak{A} for which $\alpha = \exp \delta$.

Proof. Since the assertion of this lemma is independent of the representation of A, we may assume, without loss of generality, that A acting on the Hilbert space \mathscr{H} is the reduced atomic representation (see, for example, [9; p. 35]). In this case, there is an orthogonal family of projections commuting with \mathfrak{A} , having ranges \mathscr{H}_a , such that \mathfrak{A} acts irreducibly on each \mathscr{H}_{a} , that these subrepresentations are inequivalent for distinct a, and that each irreducible representation of \mathfrak{A} is equivalent to one of these subrepresentations. Writing " \mathfrak{A}_a " for the restriction of \mathfrak{A} to \mathscr{H}_a , it follows, from [7; Corollary 4] and the irreduciblity of \mathfrak{A}_a , that

$$\mathfrak{A}^- = \sum_a \oplus \mathfrak{A}^-{}_a = \sum_a \oplus \mathscr{B}(\mathscr{H}_a).$$

As $\|\alpha - \iota\| < 2$, Lemma 2 applies; and α extends to an automorphism $\bar{\alpha}$ of $\mathfrak{A}^$ such that $\|\bar{\alpha} - \iota\| = \|\alpha - \iota\| < 2$. Moreover, $\bar{\alpha}$ leaves the centre of \mathfrak{A}^- elementwise fixed so that the restriction $\bar{\alpha}_a$ of $\bar{\alpha}$ to each $\mathscr{B}(\mathscr{H}_a)$ is an automorphism for which $\|\bar{\alpha}_{\alpha} - \iota\| \leq \|\bar{\alpha} - \iota\| = \|\alpha - \iota\| < 2$. From Lemma 3, there is an invertible operator T_a of norm 1 on \mathscr{H}_a such that $||T_a^{-1}|| = ||\bar{\alpha}_a||, \ \bar{\alpha}_a(A) = T_a A T_a^{-1} (A \in \mathscr{B}(\mathscr{H}_a))$ and $W(T_a) \subseteq \{z; \operatorname{Re} z \ge r_0\}$, where $r_0 = \frac{1}{6} [4 - ||\alpha - 1||^2]^{\frac{1}{2}}$. If $T = \sum_a \bigoplus T_a$ then $||T|| = 1, \sum_{a} \oplus T_{a}^{-1}$ is the inverse T^{-1} of T and $||T^{-1}|| \leq ||\alpha||$. In addition, from the comments preceding Lemma 3, sp $(T) \subseteq W(T)^- \subseteq \{z : \operatorname{Re} z \ge r_0\}$.

Let \mathbb{C}' be the plane of complex numbers with 0 and the negative real axis deleted. Let Log z be $\ln r + is$ with $-\pi < s < \pi$, where $z = r \exp is$, for z in \mathbb{C}' . From the holomorphic function calculus for elements of a complex Banach algebra and the Spectral Mapping Theorem [5; VII, 3.11] $B = \text{Log } T \in \mathcal{B}(\mathcal{H})$, $T = \exp(B)$, and

$$\operatorname{sp}(B) \subseteq \{r+is : \ln r_0 \leq r \leq 0, -\operatorname{arc} \cos r_0 \leq s \leq \operatorname{arc} \cos r_0\}.$$

We now change our notation, and denote by $\bar{\alpha}$ the automorphism $A \to TAT^{-1}$ of $\mathscr{B}(\mathscr{H})$. Expansion in powers of B shows that $\bar{\alpha} = \exp(\operatorname{ad} B)$, where

$$ad B(A) = BA - AB$$

(see, for example, [9; Lemma 2]). As ad B is the difference of two commuting operators on $\mathscr{B}(\mathscr{H})$ (namely, left and right multiplication by B), and each of these has the same spectrum as B, we have

sp (ad B) $\subseteq \{r+is : \ln r_0 \leq r \leq -\ln r_0, -2 \arccos r_0 \leq s \leq 2 \arccos r_0\}.$ Thus

$$sp(\bar{\alpha}) \subseteq \{r \exp is : r_0 \leqslant r \leqslant r_0^{-1}, -\pi < -2 \arccos r_0 \leqslant s \leqslant 2 \arccos r_0 < \pi \}.$$

For each real r, let \tilde{r} denote multiplication by r. Let g, be $\exp \circ \tilde{r} \circ \text{Log on } \mathbb{C}'$. On the strip $\{z : |\text{Im } z| < \pi\}, g_r \circ \exp = \exp \circ \tilde{r}$. Since ad B has spectrum in that strip and exp and \tilde{r} are holomorphic (see [5; VII, 3.12]),

$$g_r(\bar{\alpha}) = g_r(\exp [\operatorname{ad} B]) = \exp (r \operatorname{ad} B) = \exp (\operatorname{ad} rB).$$

Defining $\bar{\alpha}^r$ to be $g_r(\bar{\alpha})$, $\bar{\alpha}$ lies on the norm-continuous, one-parameter group, $r \to \bar{\alpha}^r$ of automorphisms of $\mathcal{B}(\mathcal{H})$.

When we prove that each $\bar{\alpha}'$ leaves \mathfrak{A} invariant, we will have that $\alpha(=\bar{\alpha} \mid \mathfrak{A})$ lies on the norm-continuous, one-paramater group of automorphisms $r \to \bar{\alpha}' \mid \mathfrak{A}$, so that $\alpha = \exp \delta$ for some derivation δ of \mathfrak{A} (as in [9; Lemma 2]). To prove that $\bar{\alpha}'$ leaves \mathfrak{A} invariant, note that $\bar{\alpha}' = (2\pi i)^{-1} \oint_C g_r(z) (z-\bar{\alpha})^{-1} dz$, where C is a (rectifiable, Jordan) curve with sp ($\bar{\alpha}$) in its interior. As the integral is formed in the sense of normconvergence and \mathfrak{A} is norm closed, it will suffice to show that $(z_0 - \bar{\alpha})^{-1}$ leaves \mathfrak{A} invariant for each z_0 on an appropriate curve C. With the limitation noted earlier on the location of sp ($\bar{\alpha}$), we can choose a compact set K with sp ($\bar{\alpha}$) in its interior K_0 , and a curve C in \mathbb{C}' with K in its bounded component, such that $(z_0 - z)^{-1}$ is holomorphic in z on K_0 . By Runge's Theorem, $(z_0 - z)^{-1}$ is uniformly approximable by polynomials on compact subsets of K_0 . Thus $(z_0 - \bar{\alpha})^{-1}$ is a uniform limit of polynomials in $\bar{\alpha}$ (see [5; VII, 3.13]), for z_0 on C; and it leaves \mathfrak{A} invariant.

Recalling that [2; p. 312, Corollaire] each derivation δ of a C*-algebra \mathfrak{A} acting on a Hilbert space \mathscr{H} has the form $\delta = \operatorname{ad} B | \mathfrak{A}$, for some B in \mathfrak{A}^- , as an immediate consequence of Lemma 4, we have

THEOREM 5. If α is an automorphism of the C*-algebra \mathfrak{A} acting on the Hilbert space \mathscr{H} , and $\|\alpha - \iota\| < 2$, there is an invertible operator T in \mathfrak{A}^- such that

$$\alpha(A) = TAT^{-1}$$

for all A in A.

Remark A. If α is an automorphism of the von Neumann algebra \mathscr{R} such that $\|\alpha - \eta\| \leq 2$, then α is inner.

Remark B. As there are *-automorphisms of von Neumann algebras (factors) which are outer [2; p. 288, Exercise 15], and for *-automorphisms α , $\|\alpha - \iota\| \leq 2$, we see that the constant 2 cannot be improved in Theorem 5.

Remark C. With \mathfrak{A} a C*-algebra and aut (\mathfrak{A}) the group of automorphisms of \mathfrak{A} provided with its norm topology, we denote by aut, (\mathfrak{A}) the connected component of the identity. Employing the argument of [9; Theorem 7], we deduce, from Lemma 4 and Theorem 5, that aut, (\mathfrak{A}) is an open subgroup of aut (\mathfrak{A}) which is generated (algebraically) by its norm-continuous, one-parameter subgroups. If \mathfrak{A} acts on \mathscr{H} and $\alpha \in \operatorname{aut}$, (\mathfrak{A}) then $\alpha(A) = TAT^{-1}$ for all A in \mathfrak{A} and some T in \mathfrak{A}^- .

References

- 1. F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras (Cambridge 1971).
- 2. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (2nd. Edition Gauthier-Villars, Paris, 1969).
- 3. -----, Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1964).
- 4. ——, "Sur les automorphismes des algèbres de Banach", C. R. Acad. Sci. Paris Ser. A., 264 (1967), 729-731.
- 5. N. Dunford and J. T. Schwartz, Linear operators, Part I (Interscience, New York, 1958).
- 6. M. Eidelheit, "On isomorphisms of rings of linear operators", Studia Mathematica, 9 (1940), 97-105.
- J. G. Glimm and R. V. Kadison, "Unitary operators in C*-algebras", Pacific J. Math., 10 (1960), 547-556.
- 8. B. E. Johnson, "The uniqueness of the (complete) norm topology", Bull. Amer. Math. Soc., 73 (1967), 537-539.
- 9. R. V. Kadison and J. R. Ringrose, "Derivations and automorphisms of operator algebras", Comm. Math. Phys., 4 (1967), 32-63.
- 10. C. E. Rickart, General theory of Banach algebras (Van Nostrand, Princeton, 1960).
- 11. J. R. Ringrose, "Automatic continuity of derivations of operator algebras", J. London Math. Soc., 5 (1972), 432-438.
- 12. S. Sakai, C*-algebras and W*-algebras (Springer, Berlin, 1971).
- 13. M. H. Stone, "Hausdorff's theorem concerning hermitian forms", Bull. Amer. Math. Soc., 36 (1930), 259-261.
- G. Zeller-Meier, "Sur les automorphismes des algèbres de Banach", C. R. Acad. Sci. Paris Ser. A., 264 (1967), 1131-1132.

University of Pennsylvania.

University of Newcastle upon Tyne.